

Estudio de la distancia de decaimiento

Dr. José Antonio Gutiérrez Gallego Profesor Titular del área de ICGF Universidad de Extremadura

Todos los análisis de los flujos de personas y bienes sobre el terreno, utilizan el término de **interacción espacial** para denotar como cualquiera de esos flujos actúa sobre el territorio.

La interacción de estos flujos está directamente afectada por el espacio de terreno medido en distancia de separación entre el origen y el destino del desplazamiento.

La separación de los individuos respeto a los lugares que estos pretenden alcanzar afecta a las relaciones espaciales que se producen.

El concepto de distancia de decaimiento surgió en la década de los 60 del siglo pasado.

Este concepto hace referencia a la proximidad entre el origen y el destino, y es inversamente proporcional a la distancia espacial de separación entre el origen y el destino.

Es la percepción del individuo de la inutilidad del servicio ofrecido según aumenta el tiempo de desplazamiento para alcanzar dicho servicio.

En el ámbito de la geografía de los servicios, algunos investigadores han definido la distancia de decaimiento como uno de los elementos clave en el análisis espacial.

Hay dos términos íntimamente relacionados con la distancia de decaimiento: impedancia y gradiente de la distancia.

La distancia de decaimiento ha sido usualmente aplicada en las actividades de transporte y en los usos del suelo, debido a su asociación histórica en los modelos de gravedad.

Estos modelos se basan en la ley de la gravedad de Newton, determinan por analogía que la fuerza demográfica de interacción entre dos ciudades, es igual a la fuerza de la gravedad, sustituyendo las masas por la población de las ciudades de origen y destino del desplazamiento.

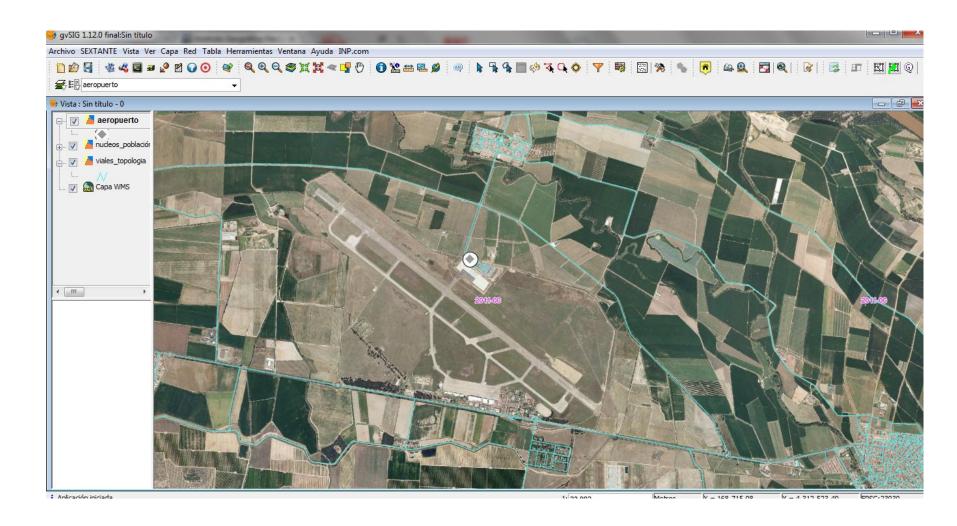
$$FD = k \frac{P_1 P_2}{d_{12}}$$

Algunos autores consideran que es más apropiado utilizar funciones matemáticas, obtenidas a través de encuestas realizadas a los posibles usuarios.

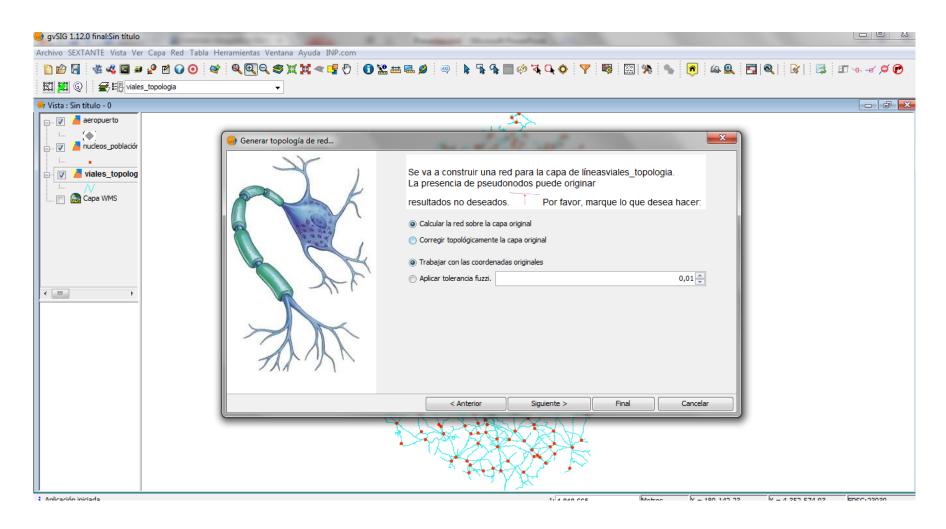
La influencia de la distancia en el uso potencial de un servicio es a menudo conceptualizada a través de las funciones matemáticas de la distancia de decaimiento.

Estas funciones relacionan la distancia o el tiempo de los usuarios al servicio y la probabilidad de uso del mismo.

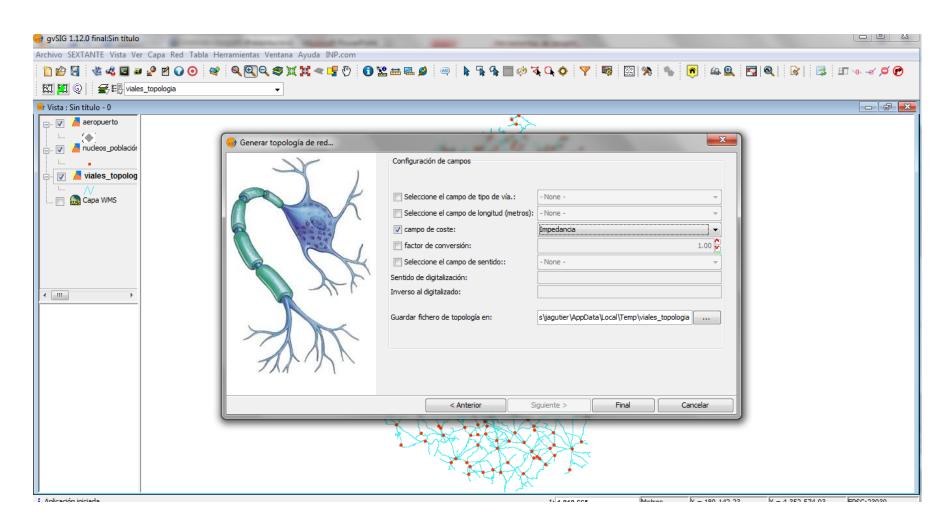
Generalmente se suelen emplear funciones de tipo exponencial, potencial y Tanner.

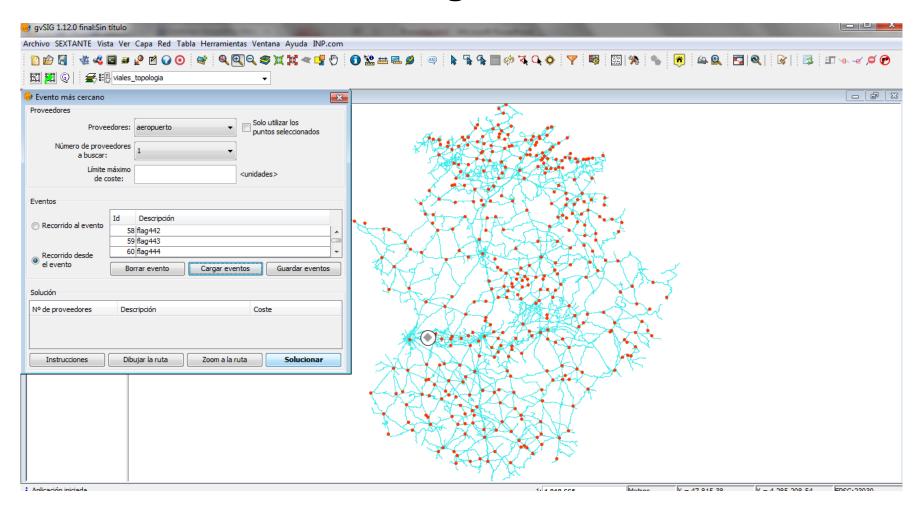

Como ejemplo de aplicación analizaremos el caso del aeropuerto de Badajoz.

A través de una encuesta a los usuarios del aeropuerto se ha determinado la distancia de decaimiento al citado servicio.


Las funciones se han ajustado por el método de mínimos cuadrados, pudiendo obtener del citado método de ajuste una estimación del error medio cuadrático obtenido.

Función de distancia de decaimiento	Fórmula básica
Recta de regresión	m x + b
Función exponencial lineal	$e^{eta x}$
Función potencial	x^{β}
Función Tanner	$x^{\beta_1}e^{\beta_2x}$

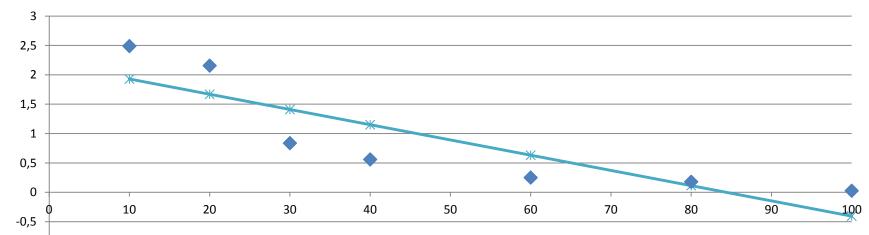

Localización


Generación de topología de red

Asignación de impedancia de red

Cálculo de la matriz origen-destino

Matriz origen/destino

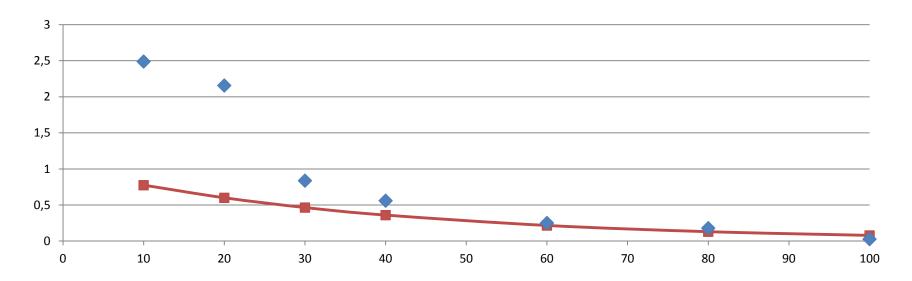

Matriz encuesta

Ratio

rango Pob grup viajes ratio 14 2,49 310 2,16 24 0,84 41 0,56 37 0,25 57 0,18 4 0,03

Estrategias

X	Y	XY	X2	у'	,	(Y-y')^2	y = mx + b
10,00	2,49	24,888	9 100	1,9	93	0,31	$0 = (y - mx - b)^2$
20,00	2,16	43,129	2 400	1,6	67	0,24	n 2
30,00	0,84	25,102	9 900	1,4	41	0,33	$\frac{\partial \chi^2}{\partial x^2} = 0 \implies \sum 2mx^2 - 2vx + 2xb = 0$
40,00	0,56	22,365	3 1600	1,2	15	0,35	$\frac{\partial \chi^2}{\partial m} = 0 \implies \sum_{i=1}^n 2mx^2 - 2yx + 2xb = 0$
60,00	0,25	15,013	1 3600	0,6	63	0,15	_ n
80,00	0,18	14,310	4 6400	0,1	11	0,00	$\frac{\partial \chi^2}{\partial b} = 0 \implies \sum_{i=1}^{n} 2b - 2y + 2xm = 0$
100,00	0,03	2,620	2 10000	-0,4	41	0,19	∂b $\sum_{i=1}^{n} 2b^{i} = 2j + 2imb^{i}$
340,00	6,50 n	147,430 7	0 23000	Emo	с	1,566	$\frac{n\sum_{i=1}^{n} xy - \sum_{i=1}^{n} x\sum_{i=1}^{n} y}{n\sum_{i=1}^{n} x^{2} - \sum_{i=1}^{n} x\sum_{i=1}^{n} x} = m$
	m b	-0,026 2,187					$\frac{\sum_{i=1}^{n} x^{2} \sum_{i=1}^{n} y - \sum_{i=1}^{n} x y \sum_{i=1}^{n} x}{n \sum_{i=1}^{n} x^{2} - \sum_{i=1}^{n} x \sum_{i=1}^{n} x} = b$

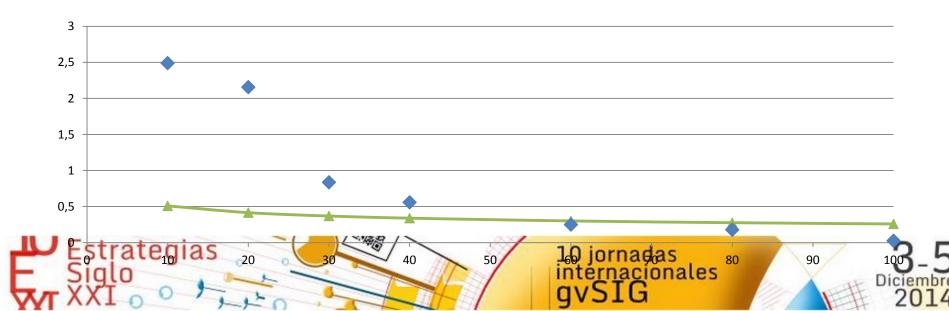

rango	xlnY	XX	y=e ^{xβ}	Error^2			
10	9,12	100	0,77404	2,9407			
20	15,37	400	0,59913	2,4253			
30	-5,35	900	0,46375	0,1391			
40	-23,25	1600	0,35896	0,0401			
60	-83,13	3600	0,21506	0,0012			
80	-137,68	6400	0,12885	0,0025			
100	-364,19	10000	0,07720	0,0026			
suma	-589,11	23000	Emc	0,8905			
β - 0,0256							

$$y = e^{\beta x}$$

$$0 = (\ln y - \beta x \ln e)^2$$

$$\frac{\partial \chi^2}{\partial \beta} = 0 \implies \sum_{i=1}^n 2 x \ln y - 2 \beta x^2 = 0$$

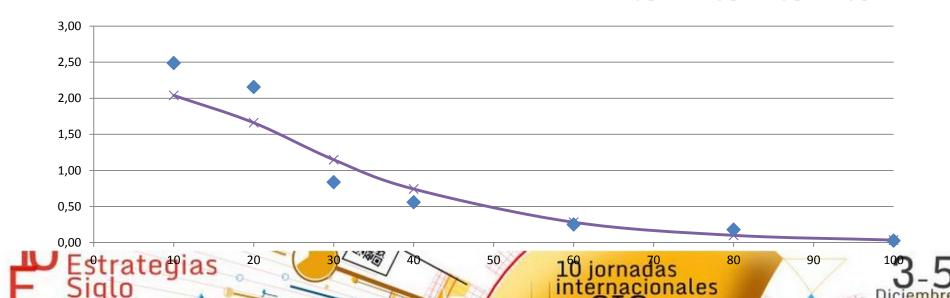
$$\frac{\sum_{i=1}^{n} x \ln y}{\sum_{i=1}^{n} x^2} = \beta$$



$$y = x^{\beta}$$

$$0 = (\ln y - \beta \ln x)^2$$

$$\frac{\partial \chi^2}{\partial \beta} = 0 \implies \sum_{i=1}^n 2 \ln x \ln y - 2 \beta \ln x \ln x = 0$$

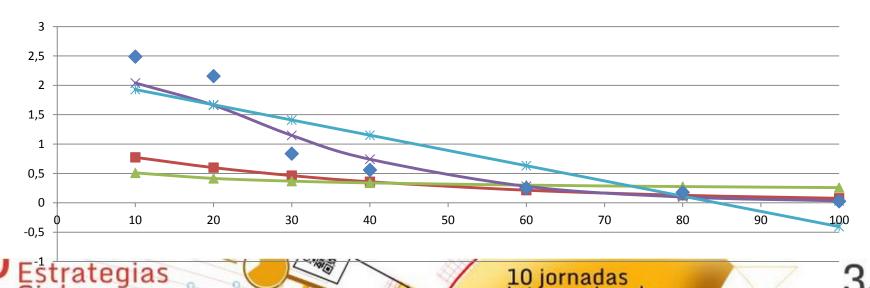

$$\frac{\sum_{i=1}^{n} \ln x \ln y}{\sum_{i=1}^{n} \ln x \ln x} = \mu$$

lnxlnx l	nylny l	nylnx x	dnx xlny	xx	y=x ⁰	$\alpha e^{x\beta}$ E	rror^2	$0 = (\ln y - \beta_1 \ln x - x\beta_2)^2$
5,3	0,8	2,1	23,0	9,1	100	2,0396	0,2019	n
9,0	0,6	2,3	59,9	15,4	400	1,6610	0,2455	$\frac{\partial \chi^2}{\partial x^2} = 0 \implies \sum_{n=1}^{\infty} 2 \ln x \ln y = \beta_n \ln x \ln x = x \beta_n \ln x = 0$
11,6	0,0	-0,6	102,0	-5,3	900	1,1480	0,0969	$\frac{\partial \chi^2}{\partial \beta_1} = 0 \implies \sum_{i=1}^n 2\ln x \ln y - \beta_1 \ln x \ln x - x\beta_2 \ln x = 0$
13,6	0,3	-2,1	147,6	-23,3	1600	0,7419	0,0334	21
16,8	1,9	-5,7	245,7	-83,1	3600	0,2812	0,0010	$\frac{\partial \chi^2}{\partial \beta_2} = 0 \implies \sum_{i=1}^{N} 2x \ln y - \beta_1 x \ln x - x^2 \beta_2 = 0$
19,2	3,0	-7,5	350,6	-137,7	6400	0,0997	0,0063	$\partial \beta_2 = 0 = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j$
21,2	13,3	-16,8	460,5	-364,2	10000	0,0340	0,0001	1-1
96,626	19,937	-28,335	1389,271	-589,1	23000	Emc	0,2891	$\frac{\sum_{i=1}^{n} \ln x \ln y \sum_{i=1}^{n} x^{2} - \sum_{i=1}^{n} x \ln y \sum_{i=1}^{n} x \ln x}{\sum_{i=1}^{n} \ln x \ln x \sum_{i=1}^{n} x^{2} - \sum_{i=1}^{n} x \ln y \sum_{i=1}^{n} x \ln x} = \beta_{1}$
β_1	0,57041							$\sum_{i=1}^{n} \ln x \ln x \sum_{i=1}^{n} x^{2} - \sum_{i=1}^{n} x \ln y \sum_{i=1}^{n} x \ln x$
β_2								$\frac{\sum_{i=1}^{n} \ln x \ln x \sum_{i=1}^{n} x \ln y - \sum_{i=1}^{n} \ln x \ln y \sum_{i=1}^{n} x \ln x}{\sum_{i=1}^{n} \ln x \ln x \sum_{i=1}^{n} x^{2} - \sum_{i=1}^{n} x \ln y \sum_{i=1}^{n} x \ln x} = \beta_{2}$

 $v = x^{\beta_1} e^{x\beta_2}$

 $0 = \left(v - x^{\beta_1} e^{x\beta_2}\right)^2$

Conclusiones


EMC

Y = mx+b *1,566*

 $Y = e^{x\beta}$ 0,891

 $y = X^{\beta}$ 1,020

 $y = x^{\alpha}e^{x\beta}$ 0,289

10 jornadas internacionales avSIG

Bibliografía

GUTIÉRREZ, J., CARDOSO Y GARCÍA PALOMARES, J. C. (2007): Modelos de demanda potencial de viajeros en redes de transporte público: aplicaciones en el metro de Madrid. IV Seminario Ordenamiento territorial. Encuentro In-ternacional Interdisciplinario. Universidad Nacional de Cuyo (Argentina)

GUTIÉRREZ, J., CARDOSO Y GARCÍA-PALOMARES, J. C. (2008): Modelo de estimación directa de la demanda de metro a nivel de estación: un enfoque alternativo basado en regresión múltiple, funciones de caída de la demanda y herramientas SIG. XV Congreso Panamericano de Ingeniería de Tránsito y Transporte. Cartagena de Indias (Colombia).

GUTIÉRREZ, J. AND GARCÍA-PALOMARES, J.C. (2008): Distance measure impacts of public transport service areas. Environment and Planning B, Planning and Design, 35: 480-503.

INSTITUTO L. R. KLEIN (2000), "Anuario Comercial de España 2000". "la Caixa", Barcelona.

CHASCO LAFUENTE, P. (2000), "MODELOS DE GRAVITACIÓN COMERCIAL: UNA APLICACIÓN AL ANUARIO COMERCIAL DE ESPAÑA" CHASCO LAFUENTE, P. (1988), "Modelos de Localización de Centros Comerciales". Tesis Doctoral. Facultad de Ciencias Económicas y Empresariales. Universidad Autónoma de Madrid.

CHASCO YRIGOYEN, C. (1997), "Modelos de determinación de áreas de mercado del comercio al por menor". Tesina. Facultad de CC. Económicas y EE. (Universidad Autónoma de Madrid).

CHASCO YRIGOYEN, C. e INSA CIRIZA, R. (1999), "Hispano-Lusitanian Market Areas in 1997". Emprego e Desenvolvimento Regional, Vol. 1. Coimbra.

CHASCO YRIGOYEN, C. y VICÉNS OTERO, J. (1998), "Spatial interaction models applied to the design of retail trade areas". 38th Congress of the European Regional Science Association. Viena.

GIL, I, A. MOLLÁ y G. BERENGUER (1997), "La Imagen del Punto de Venta y su Incidencia sobre la selección del Establecimiento". AEDEMO, nº 54, marzo; pp. 46-54.

MARTÍNEZ, L. M Y VIEGAS, J M (2013) "A new approach to modelling distance-decay functions for accessibility assessment in transport studies". Journal of Transport Geography 26 87–96

MORENO JIMÉNEZ, A (2002) "Delimitación y predicción del área de mercado para establecimientos de servicios a los consumidores con sistemas de información geográfica". Estudios Geográficos, Vol 63, No 247

RUST, R.T. y N. DONTHU (1995), "Capturing Geographically Localized Misspecification Error in Retail Store Choice Models". Journal of Marketing Research, vol.XXXII (febrero, 1995); pp. 103-110.