

Implementación de la operación localización-asignación para el módulo de análisis de redes de gvSIG.

Romel Vázquez Rodríguez

Departamento de Ciencias <mark>de la Computación</mark> Universidad Central "Marta Abreu" de Las Villas

Valencia, 2015

- 1 Motivación e introducción
- 2 Redes
- 3 Localización-Asignación
- 4 Diseño e implementación
- 5 Conclusiones y trabajos futuros

■ Con el objetivo de tomar mejores decisiones estratégicas

- Con el objetivo de tomar mejores decisiones estratégicas
- y entender mejor los mercados dinámicos

- Con el objetivo de tomar mejores decisiones estratégicas
- y entender mejor los mercados dinámicos
- han surgido métodos para la localización óptima de instalaciones y servicios

- Con el objetivo de tomar mejores decisiones estratégicas
- y entender mejor los mercados dinámicos
- han surgido métodos para la localización óptima de instalaciones y servicios
- con eficiencia espacial.

Existen problemas difíciles de resolver en el proceso de toma de deciciones en la planificación urbana y regional

- Existen problemas difíciles de resolver en el proceso de toma de deciciones en la planificación urbana y regional
- Se necesitan desarrollar las herramientas más adecuadas para tratar estos problemas

- Existen problemas difíciles de resolver en el proceso de toma de deciciones en la planificación urbana y regional
- Se necesitan desarrollar las herramientas más adecuadas para tratar estos problemas
- En este trabajo se aprovechan las ventajas de la integración de los modelos de localización-asignación con los SIG.

- Existen problemas difíciles de resolver en el proceso de toma de deciciones en la planificación urbana y regional
- Se necesitan desarrollar las herramientas más adecuadas para tratar estos problemas
- En este trabajo se aprovechan las ventajas de la integración de los modelos de localización-asignación con los SIG.

Objetivo

Extender el módulo de redes de gvSIG mediante la incorporación de la operación de localización-asignación para realizar nuevos análisis sobre redes de transporte.

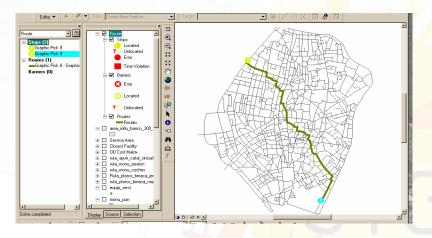
Tipos de redes

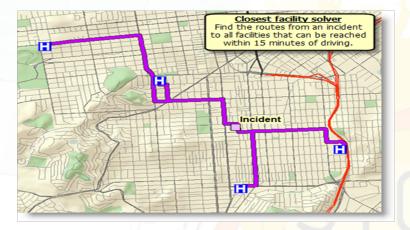
- Redes de transporte: redes no direccionadas
- Redes de servicios: redes direccionadas

Operaciones sobre redes de transporte

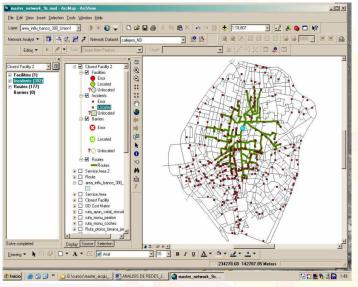
- Mejor ruta
- Facilidad más cercana
- Área de servicios
- Matriz de costo origen destino
- Enrutamiento de vehículos.
- Localización-Asignación

Mejor ruta

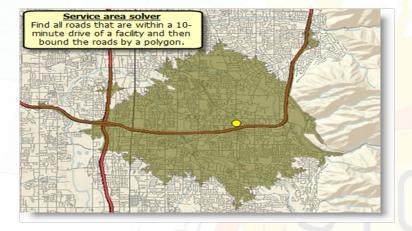




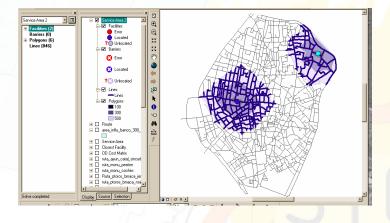
Mejor ruta



Facilidad más cercana

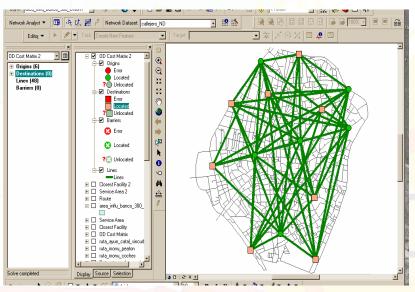


Facilidad más cercana

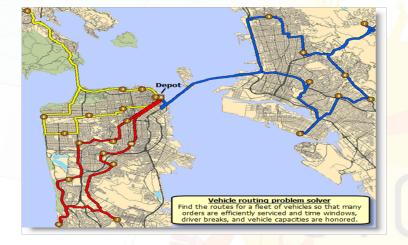


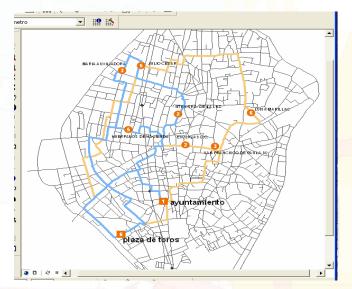
Área de servicios

Área de servicios



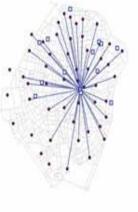
Matriz de costo origen destino

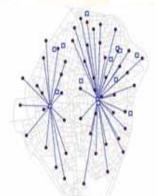

	ObjectID	Shape	Name	OriginID	DestinationID	DestinationRank	Total_Time
	133	Polyline	Buffalo - Detroit	5	2	5	252
	134	Polyline	Milwaukee - Milwaukee	6	6	1	0
	135	Polyline	Milwaukee - Chicago	6	1	2	98
	136	Polyline	Milwaukee - Indianapolis	6	7	3	265
	137	Polyline	Milwaukee - Detroit	6	2	4	355
	138	Polyline	Milwaukee - Cleveland	6	3	5	419
	139	Polyline	Indianapolis - Indianapolis	7	7	_ 1	0
Ĺ	MM (34)	~~√√(in,e/~)	Indianapo Columbus		وسے مسم		A CONTRACTOR



Enrutamiento de vehículos

Enrutamiento de vehículos


Localización-Asignación

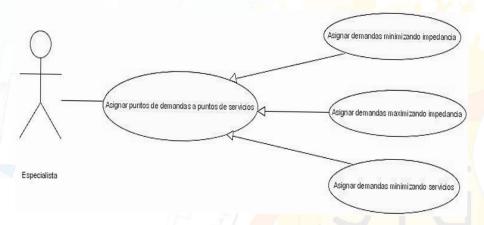


Localización-Asignación

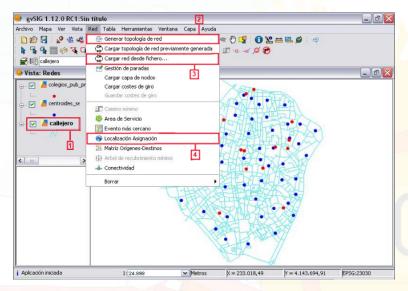
Localización-Asignación

Análisis relacionados con una doble vertiente:

- Localización óptima de servicios
- Asignación de los puntos de demanda a estos servicios


Se divide en varios problemas:

- Minimizar impedancia. Se enfoca en hacer mínima la suma de las distancias desde los puntos de demandas hasta el punto de servicio asignado a cada una de ellas.
- Maximizar impedancia. Pretende que la suma de las distancias sea máxima
- Minimizar servicios. Asigna las demandas de forma tal que la cantidad de servicios sea mínima, teniendo en cuenta a su vez que la distancia sea la menor posible.



Casos de uso del sistema

Ejecutar extensión

Panel de opciones

Implementación de los algoritmos genéticos

- Se utilizó la biblioteca jgap para implementar los algoritmos genéticos.
- Se implementó una función de evaluación para cada tipo de problema.
 Minimizar impedancia, Maximizar impedancia y Minimizar servicios.
- población inicial de 500 cromosomas y 1000 iteraciones
- cantidad de genes de un cromosoma coincide con la cantidad de puntos de demanda
- valores admisibles para cada gen coincide con la cantidad de puntos de servicios
- el índice del gen significa el punto de demanda y el valor indica el punto de servicio al que se asignó.

Validación Minimizar Impedancia

Validación Minimizar Servicios

ArcGIS

gvSIG

Minimizar Servicios

Minimizar Servicios

Conclusiones y trabajos futuros

Conclusiones

- Se incorporó la operación Localización-Asignación al módulo de redes de gvSIG logrando así que se puedan realizar nuevos análisis.
- Se comprobaron los resultados de la herramienta desarrollada para gvSIG con las respuestas de ArcGIS para los mismos ejemplos.

Trabajos futuros

- Implementar todas las variantes posibles del problema Localización-Asignación.
- Desarrollar otros problemas sobre análisis de redes de transporte en gvSIG.

