THE HORTON MACHINE FOR DATA ANALYSIS TO HELP SCIENTISTS... AND NOT ONLY

Andrea Antonello, Silvia Franceschi

HydroloGIS - gvSIG Association

13as Jornadas Internacionales gvSIG

18-20 Oct 2017

WHO AM I?

- cofounder of HydroloGIS
- HydroloGIS is member of GvSIG Association
- Osgeo Charter Member and GFOSS advocate
- develop and coordinate Geopaparazzi
- develop and coordinate the HortonMachine project (former JGrasstools)
- working on integration of the HortonMachine and Geopaparazzi in gvSIG

Interview of the second se HydroloGIS S.r.l. - Via Siemens, 19 - 39100 Bolzano www.hydrologis.com

Supported over the years by the Universities of Trento (prof. Rigon) and Bolzano (prof. Tonon), HydroloGIS

L.E.S.T.O. - LiDAR tools Entering gvSIG

2014 2015

JGRASSTOOLS? HORTONMACHINE?

Due to historical reasons and due to the first releases of the gvSIG plugins in the last month the JGrasstools project decided to go back to its original name: **The Horton Machine**

It is beyond the scope of this presentation to discuss further about it.

THE HORTONMACHINE IN GVSIG Most functionalities can be accessed from the main menu:

THE SPATIAL TOOLBOX

THE SPATIAL TOOLBOX

The GUI

Models are grouped by categories:

- HortonMachine: geomorphology analysis
- Raster and vector processing
- Mobile tools: support for Geopaparazzi (digital field mapping)
- LESTO: LiDAR Empowered Science Toolbox Open Source

HORTONMACHINE MODULES

Drainage direction, total contributing area, network and watershed extraction, rescaled distances and hydrologic attributes, slope, curvatures, hydrologic indexes and geomorphologic attributes.

STATISTICS

Interpolation of meteorological data with Kriging (rainfall and temperature) and Jami (temperature, pressure, humidity and wind).

PEAKFLOW

Evaluation of the maximum discharge for a given precipitation (works also with statistical information rainfall Intensity-Duration Curves)

SAINT VENANT & HECRAS

Simplified 1D hydraulic model: it is **based on Saint Venant** equations, is GIS based, i.e. input and output are GIS layers.

Water depth and velocity are calculated for each section and lateral contributes (inflow and outtakes) are handled.

SHALSTAB

Hillslope stability: Shalstab Critical rainfall

The stability condition is calculated for a given precipitation.

unconditionally stable 0 [mm/day]<qcrit<50 [mm/day] 50 [mm/day]<=qcrit <100 [mm/day]

.gcrit>=200 [mm/day] unconditionally unstable

📕 100 [mm/day]<=qcrit< 200 [mm/day

DEBRISFLOW

Triggering, propagation in network and final propagation on the fan

LESTO

Developed in collaboration with the Free University of Bolzano. At the moment the toolbox is mainly dedicated to forestry analysis.

ADAPTIVE TIN, GENERATION OF DTM FROM LIDAR

EXTRACTION OF BUILDINGS FROM LIDAR DATASETS

SINGLE TREE EXTRACTION

Vegetation: individual tree crown approaches are followed, aimed to detect position and main characteristics of each single tree.

Modules that work both on raster and point clouds.

THE RASTER MAP CALCULATOR The mapcalc is a tool that can be use to perform map

algebra on raster maps.

Let's assume you want to know which part of an elevation model between 1000 and 1300 meters looks towards south.

Once you calculated the aspect map with the Spatial Toolbox, you can use a mapalgebra formula like this:

```
if (dtm_all>1000 && dtm_all<1300 && aspect >160 && aspect <200 ) {
  result = dtm all;
else {
  result = -9999.0;
```

THE RASTER MAP CALCULATOR

The GUI of the mapcalc looks like the following. And the map from the previous formula like the one in the map view.

GEOPAPARAZZI TOOLS FOR GVSIG

The plugins contain a set of tools dedicated to the interaction with the digital field mapping app for android Geopaparazzi.

It is beyond the scope of this presentation to describe these tools.

To summarize in gvSIG it is possible to:

- create the map background data as .mbtile
- export all the data contained in the project as shapefiles
- and browse the images linked in the shapefiles

EPANET

EPANET is a powerful and well known software for water supply system management (analysis) and design.

Again, it is beyond the scope of this presentation to describe these tools.

TOOLS AND UTILITIES

The Horton Machine plugins contain a set of small tools and utilities that can be useful in a number of situation.

We often need them when we create new modules and need to test them on large rasters.

Most of them can be accessed from the main menu:

THE POSITION INFO TOOL

This tools allows the user to view the clicked coordinates and see them in a different projection and also copies them into the clipboard:

WKT GEOMETRY TOOL

One can select a geometry in the layer and extract the WKT representation of the geometry. The same way one can write/paste some WKT geometry and insert it in the layer.

THE PROJECTION TOOL

A projection can be chosen and customized in the textarea (ex. missing Bursa Wolf Parameters).

This tool will do nothing more than create the prj file for the layer's source.

ed as:	2150.4
Prj Tools	r, ⊠, ⊠
Layer to add prj file to	aspect 🔹
Select CRS	
Customize	PROJCS["Monte Mario / Italy zone 1", GEOGCS["Monte Mario", DATUM["Monte_Mario", SPHEROID["International 1924", 6378388.0, 297.0, AU TOWGS84[-104.1, -49.1, -9.9, 0.971, -2.917, 0.714, -11 AUTHORITY["EPSG", "6265"]], PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG", "8901"]], UNIT["degree", 0.017453292519943295], AXIS["Longitude", EAST], AXIS["Latitude", NORTH], AUTHORITY["EPSG", "4265"]], PROJECTION["Transverse_Mercator"], PARAMETER["central_meridian", 9.0], PARAMETER["latitude_of_origin", 0.0],

THE FEATURE BROWSER

The feature browser is a simple yet very usefull tool when you need to check a dataset. The tool puts the features in a list and allows the user to browse them back and forth.

The raster styler can be accessed from the main menu or from the context menu (right click) on raster layers:

Right now, when one defines a colortable for a map, he gets 255 color rules and an unreadable legend.

The map of aspect ranges between 0 and 360 degrees, usually coloured from white to black between 0 and 180, and from black to white between 180 and 360. \rightarrow 3 rules

oject manager		2 ^m	X				
cument types-							
View	Table Map	Charts	View: Untit	tled oect 0 180 360 flanginec			
titled		New Open Rename			N	in all	SIA
ssion Unt	itlad	Properties	5		300		
ession ame: Unt wed as:	itled	Properties					
ssion me: Unt ved as: Simple Single B	itled Band Raster Styler	Properties		* ø 🛛			
ssion me: Unt ved as: Simple Single f Layer to style	itled Band Raster Styler	Properties					
ssion me: Unt ved as: Simple Single f Layer to style Opacity Optional Novalue	aspect -9999.0	rmat 0 Vinterp	polated				
ssion me: Unt ved as: Simple Single f Layer to style Opacity Optional Novalue Select Colortable	aspect -9999.0 aspect	rmat 0 VInterp	polated				
ssion wei Unt Ved as: Simple Single B Layer to style Opacity Optional Novalue Select Colortable	itled Band Raster Styler aspect 70 V Number fo -9999.0 aspect 255 255 255 0 0 0 255 255 255	rmat 0 Vinterp	polated	 ▲ Apply 			

If we style also an elevation model and add some transparency, we get a nice 3D feeling

And then there are maps that need categories. Ex. to nicely read a map of flowdirections you need to have a legend showing the directions.

We often need to analize small portions of large rasters. Everything looks the same, due to the fact that the colortable is calculated on the whole raster. A local **colortable** would be handy:

This is what the Raster Graphics View it here for. Once opened from the context menu of the selected raster, it openes a small window:

Once selecting the options show cells and no text, it is possible to view the local colortable:

It is also possible to view the raster values:

View: Untitled														888 6 0	X
🖽 🗹 🎇 dtm_all										1819.7	1819.3	1819.1	1818.7	1818.5	18.
							1820.8	1820.6	1820:3	1819.9	1819.6	1819.4	1819.0	1818.7	18:
					1821.8	1821.5	1821.1	1821.0	1820.7	1820.3	1820.1	1819.7	1819.5	1819.2	18:
			1822.7	1822.5	1822.3	1822.0	1821.8	1821.6	1821.3	1821.0	1820.6	1820.2	1819.9	1819.6	18
	1823.3	1823.2	1823.0	1823.0	1822.9	1822.7	1822.4	1822.2	1821.9	1821.4	1821.0	1820.7	1820.4	1820.1	18
	1823.7	1823.7	1823.6	1823.6	1823.5	1823.2	1823.0	1822.6	1822.4	1822.2	1821.9	1821.5	1821.0	1820.6	18:
	1824.1	1824.1	1824.2	1824.2	1823.9	1823.9	1823.8	1823.4	1823.4	1823.2	1823.1	1822.8	1822.3	1821.7	18:
_					_										
Raster Graphics \	/iew				25.1	1824.9	1824.7	1824.3	1824.3	1824.2	1824.2	1823.8	1823.2	1822.6	18;
Layer dtm_all					-										
Chow coll															-
Show cells	5				265	1826-2	1825.8	1825.4	1825.1	1825.0	1825.2	1824.5	1823.8	1823.2	18:
Labelling mo	de				1010	TOTOLE	101010	10101	101011	101010	TOTOL	TOT NO	TOTO	TOTOLE	10.
 raster va 	alues				_					57					_
🔾 cols and	rows				260	18270	1826.7	18266	1826.9	18261	1825.0	1825.0	18246	1824.0	19
🔿 raster va	 raster values + cols and rows 							1020.0	1020.5	1020:1	1025.0	1025.0	1024.0	1024.0	10.
🔿 no text															
						1000EP.4	000004	100274	100070	100070	10000	10000	100000	10010	10
Number form	nat 0.0				2/22	182//4	1827/4	1827:4	1827:4	1827:2	1826.6	1826.0	1825:6	1824.9	18.
Show stee	Show steepest direction														
27.7							1828.0	1828:0	1827.9	1827:8	1827:4	1826.8	1826.3	1825.6	182
	Clear														
					282	18283	1828 5	1828 4	1828 4	1828.2	18278	18273	1826.6	1826.1	18:
		-	_	-											

...or the cols/rows of the loaded raster file... or both.

View: Untitled					View: Untitled											- 5 ×
🗉 🗹 🎇 dtm_all					🕀 🗹 💱 dtm_all											
			1056/935	1057/935				1821.8 1056/935	1821.5 1057//935	1821.1 1058/935	1821.0 1059//935	1820.7 1060//935	1820.3 1061//935	1820.1 1062//935	1819.7 1063//935	1819.5 1064//9
	1054/936	1055/936	1056/936	1057/936		1822.7 1054/936	1822.5 1055 / 936	1822.3 1056/936	1822.0 1057/936	1821.8 1058/936	1821.6 1059/936	1821.3 1060/936	1821.0 1061//936	1820.6 1062//936	1820:2 1063//936	1819.9 1064//9
	1054/937	1055/937	1056/937	1057/937		1823.0 1054/937	1823.0 1055/937	1822.9 1056/937	1822.7 1057/937	1822.4 1058/937	1822.2 1059/937	1821.9 1060/937	1821.4 1061//937	1821.0 1062//937	1820,7 1063//937	1820.4 1064//9
	1054/938	1055/938	1056/938	1057//938		1823.6 1054/938	1823.6 1055/938	1823.5 1056/938	1823.2 1057/938	1823.0 1058/938	1822.6 1059/938	1822.4 1060/938	1822.2 1061/938	1821.9 1062/938	1821.5 1063//938	1821.0 1064//9
	1054/939	1055//939	1056/939	1057//939		1824.2 1054/939	1824.2 1055/939	1823.9 1056/939	1823.9 1057/939	1823.8 1058/939	1823.4 1059/939	1823.4 1060/939	1823.2 1061/939	1823.1 1062/939	1822.8 1063/939	1822.3 1064/9
Raster Graphics V	iew		- C	×	Raster Graphics Vi	ew		r 0,	×							
Layer dtm_all				57/940	Layer dtm_all ✓ Show cells				• 24.9 57/940	1824.7 1058//940	1824.3 1059/940	1824.3 1060/940	1824.2 1061/940	1824.2 1062/940	1823.8 1063/940	1823.2 1064/9
Labelling mod raster va ocols and raster va no text	de Ilues rows Ilues + cols and r	ows		57/941	Labelling mode raster value cols and r raster value no text	e ues ows ues + cols and r	ows		262 57//941	1825.8 1058//941	1825.4 1059//941	1825:1 1060//941	1825.0 1061//941	1825.2 1062//941	1824.5 1063//941	1823.8 1064/9
Number form	at 0.0			157//942	Number forma	t 0.0			27.0 57/942	1826.7 1058/942	1826.6 1059//942	1826:3 1060/942	1826.1 1061//942	1825.8 1062//942	1825.0 1063//942	1824.6 1064/9
Show stee	pest direction	Clear		57/943	Show steep	est direction	Clear		277.4) 157//943	1827,4 1058//943	1827.4) 1059//943	1827,4) 1060//943	1827-2 1061/943	1826.6 1062//943	1826.0 1063//943	1825.6 1064/9

It is also possible to have a look at the steepest direction of each cell. Pits are shown as red fat dots.

RASTER VALUES COPY

Have you ever needed to analyze small portions of large rasters? And maybe extract those portions to faster investigate them?

RASTER VALUES COPY

Once triggered, it copies the visible portion of the map into the system clipboard as an ascii raster map, ready to be copied into a file and be used:

THANKS FOR YOUR ATTENTION!

Homepage: http://www.hortonmachine.org

Need help? Join the Mailinglist. http://groups.google.com/group/jgrasstools **Useful links**:

https://www.slideshare.net/search/slideshow?q=jgrasstools http://jgrasstechtips.blogspot.it

Interview of the second se

HydroloGIS S.r.l. - Via Siemens, 19 - 39100 Bolzano www.hydrologis.com

