
The Tellus project. Remote GIS data editing
and sharing using Open Mobile IS and

gvSIG Mobile∗

Manuel Gomez1 Philippe Delrieu1 Juan Lucas Domı́nguez2

mgomez@ubikis.con pdelrieu@openmobileis.org jldominguez@prodevelop.es

1Ubikis/MD69 Solutions – CEI 3, 62 boulevard Niels Bohr
BP 2132 69603 Villeurbanne, France – http://www.ubikis.com

2Prodevelop SL – Plaza Don Juan de Villarrasa 14, 5
CP 46001 Valencia, Spain – http://www.prodevelop.es

November 2009

Abstract

This paper shows that Open Mobile IS is a valid option to effectively edit and share
remote GIS data in collaboration with gvSIG Mobile on a variety of mobile plat-
forms. Open Mobile IS provides a series of very interesting features (possibility to
work in disconnected mode, synchronization engine, encryption. . . ). Virtually any
type of database or storage system can be synchronized. In one of the tests, for
example, we have used the de facto standard for free open source GIS databases
(PostgreSQL/PostGIS).

Keywords: Open Mobile IS, gvSIG Mobile, synchronization, GPS, Java

1 Introduction

The Tellus project was born from a will to position in the mobile GIS market, in a com-
plementary way to the classic connected systems. The Tellus project is based on the
framework Open Mobile IS and the open source project gvSIG Mobile. It appears as an
alternative for professionals who need a guarantee of data access with or without network.

∗Visit its website: http://tellusproject.blogspot.com

1

mailto:mgomez@ubikis.con
mailto:pdelrieu@openmobileis.org
mailto:jldominguez@prodevelop.es
http://www.ubikis.com
http://www.prodevelop.es
http://tellusproject.blogspot.com


Indeed, the idea is to supply a set of layers and components allowing to solve problems
of mobile applications deployment in connected/disconnected mode binding cartographic
layers. Example: mobile maintenance application (list of interventions, report edition,
machine park. . . ) with a cartographic support (custumer/intervention visualization, prob-
lems, intervention request, unplanned incidents. . . )

Tellus has three main ways of development:

• A real mechanism of map synchronization based on the Open Mobile IS synchro-
nization engine to resolve the different types of conflicts which could occur. It also
provides optimized data transfers based on the BitTorrent protocol.

• Providing a framework of development to allow interactions and communications
between gvSIG Mobile and an Open Mobile IS application.

• Offering a real security for GIS data during the synchronization process and on the
mobile tool.

If Open Mobile IS allows companies to deploy mobile applications as an extension to
their Information System (IS), Tellus suggests completing this management by offering
the possibility of widening also its Geographical Information System (GIS) in mobility
situation.

For that purpose, Tellus bases itself on gvSIG Mobile.

2 Two independent projects for mobile devices: gvSIG

Mobile & Open Mobile IS

The two projects involved in this paper are briefly described in this section.

2.1 gvSIG Mobile

gvSIG Mobile1 is a JME CDC mobile GIS application that offers a reduced version of the
functionalities of gvSIG2. The results presented here are part of the R&D efforts made by
the author of this paper on a variety of mobile devices3.

2.2 Open Mobile IS

Open Mobile IS4 is an open-source project (GNU LGPL v. 2.1) that aims at providing
all the necessary tools, API, and documents which enable effective mobile applications

1Official website: http://www.gvsig.gva.es/eng/gvsig-mobile
2Official website: http://www.gvsig.gva.es
3Unofficial gvSIG Mobile for Linux-based handhelds: http://gvsigmobileonopenmoko.wordpress.com
4Complete details of the Open Mobile IS framework in its website: http://www.openmobileis.org

2

http://www.gvsig.gva.es/eng/gvsig-mobile
http://www.gvsig.gva.es
http://gvsigmobileonopenmoko.wordpress.com
http://www.openmobileis.org


development. It was written in Java by Philippe Delrieu (Ubikis5, Lyon, France) and is
mainly intended for JME CDC applications (pocket PCs and smartphones), though it’s
currently (Autumn 2009) been successfully adapted for CLDC devices (Java-enabled mobile
phones). It is based on the Open Mobile Alliance standards (also known as SyncML) for
synchronization purposes and is listed as a mature project in the OW2 Consortium6.

2.2.1 Outstanding components in Open Mobile IS

Among other components, the Open Mobile IS framework provides:

Embedded database Open Mobile IS embedded database is a simple object database
(FODB, Fast Object Database) optimized for low CPU and memory consumption.
It provides a simple API based on SODA7 to store and retrieve objects from the
database. The object storage capability makes it more Java-friendly because it avoids
mapping issues. The FODB consists of a series of collections stored as files. Each
collection is a set of objects of the same type. Several types of indices can be used
to improve performance.

Synchronization engine Synchronization is done between a table (or closely related
tables) in the remote database (in this case, a PostGIS DB containing geographic
data) and an object (or closely related objects) in the FODB located in the mobile
device. Each field in a row of the table (server side) corresponds to a field in an object
instance (client mobile side). Changes from the previous synchronization are applied
on the other side. Both sides need to know which features have been modified since
a certain moment in the past. To achieve this, incremental sync. numbers are used
instead of dates, so that both sides need not have consistent system clocks. After
each synchronization, the affected objects and rows on both sides are associated with
a new sync. number, which will be compared with the sync. number provided by
other clients in future synchronization requests. Objects or rows with a bigger sync.
number have been modified more recently and must be updated on the other side. If
there is a conflict (both sides have modified the same client-side object or server-side
row), a pre-defined conflict resolver will decide which side prevails.

5http://www.ubikis.com
6ObjectWeb2 is a global open-source software community which goal is the development of open-source

distributed middleware, in the form of flexible and adaptable components: http://www.ow2.org
7Simple Object Database Access: http://sourceforge.net/projects/sodaquery

3

http://www.ubikis.com
http://www.ow2.org
http://sourceforge.net/projects/sodaquery


3 Tellus or how to integrate Open Mobile IS in the

GIS sector

3.1 Sharing/synchronizing GIS data

This section describes how GIS data can be synchronized using the Open Mobile IS capa-
bilities. This architecture was created and tested8 by Manuel Gomez (Ubikis, France).

It offers a service of dialogue between both systems (Open Mobile IS and gvSIG Mobile)
based on the SOAP protocol, allowing a multitude of interactions between GIS projects
(automatic project load, distant edition, information recovery in the IS, remote location),
as well as an engine “of dressing” for gvSIG Mobile according the needs (IHM customi-
sation via an XML file). Also a synchronization engine of GIS maps coupled with the
synchronization engine of IS datas. The synchronization can have two modes:

• Via HTTP, cartographic files are exchanged in an express and global way (the car-
tographic project will be downloaded as an archive in one step).

• Via Bittorrent, cartographic files are given on a Tracker. Then the maps recovery is
realized by the PDA on the tracker. Bittorrent allows an indispensable management
of the connections/disconnections during a big data volume transfert (cartographic
files) and a multiple sharing of the information on the whole park of PDAs (a PDA
is in the same time customer and data server).

3.2 Several clients with write access: locking versus synchroniz-
ing

When several clients have write access to the same table in a database, it’s necessary to
deal with concurrency issues in one way or the other.

Synchronizing is especially convenient when we expect a small number of conflicts
among clients (optimistic approach). As we are doing row-oriented synchronization, a
conflict means concurrent access to the same row in the same table. The well-known
disadvantage of locking consists in the cost of waiting for locks held by other clients.

The Open Mobile IS approach is as follows:

• Optimistic approach (no locks). Database updates are performed as they come,
asking help from the conflict resolver when needed.

• Each synchronization request consists in a series of atomic updates of single rows.

• More than one synchronization request can be processed simultaneously, so the first
atomic update of request A can be followed by the first atomic update of request B,
then the second atomic update of request A, etc.

8See details and available demo: http://tellusproject.blogspot.com

4

http://tellusproject.blogspot.com


• This means that at the end of a synchronization request, both sides (client and server)
don’t necessarily hold the same information, but both sides are consistent. That
unlikely divergence will eventually disappear in another synchronization process.

3.3 Feature-oriented edition via synchronization & disconnected
mode

After defining an editable layer in the application based on the data available in the FODB,
we can use the synchronization to effectively edit a remote PostGIS database (see an overall
diagram in figure 1).

The FODB consists of a series of files stored in the mobile device file system, so the user
can work in disconnected mode or even turn off the device and perform the synchronization
whenever the internet connection is available.

Figure 2 illustrates how it works. Actions inside a red rectangle are started by the user
via the GUI. In point A, the layer data visible in the map and the content of the FODB
are equal. In point B application data and the remote database are the same, except for
the unlikely and temporary divergence commented before.

Of course, we’ll need to create a FODB driver to integrate it as a new data source in
gvSIG. Figure 5 shows how this is done.

As you can see in the left side of figure 5, an array of cached updates is kept by the
FODB wrapper, so each drawing of the layer does not need to query the files that make up
the FODB. The flush option consolidates the edits performed by the user into the FODB.

We can also see the data as available in three different layers, as seen in figure 3.

3.3.1 Server-side architecture

Figure 4 shows the interface used on both sides to map the PostGIS table as a Java object.
The geometry field is stored as a String in the object model. On the server side, the
mapping of these fields is done with simple SQL sentences as shown in figure 7. The
corresponding PostGIS table can be seen in figure 6. A small Java application runs on the
server side, listens to client requests, computes the needed updates on both sides, performs
the changes in the database and sends a response to the client telling which features need
to be updated.

3.3.2 Proposed use

This feature-oriented syncronization mightbe useful in a variety of sectors:

• Urban facilities management, road incident reports, etc.

• Rural area monitoring, forest guards, census of valuable species.

• Accurate transportation tracking.

5



4 Conclusions and future work

The synchronization capabilities of Open Mobile IS can be easily integrated in gvSIG
Mobile and allow the user to immediately perform remote GIS data edition. If the remote
geodatabase is used by some kind of map server, then those changes are instantly visible
world-wide.

Of course, those data can be managed and modified by other third-party applications,
but in that case they’ll have to take into account the management of the sync. numbers
commented before, so that the synchronization feature does not find inconsistencies.

This first test has been done with a simple point layer. Since we have used the WKT
format for geometries, it would be easy to do the same with line or polygon features.

Open Mobile IS also provides user authentication and management and encryption, as
it’s obviously intended for professional use.

Final results, software and videos can be found on-line9. Possible future work includes:

• Creating bundles for the upcoming version of gvSIG Mobile:

– a bundle to add a FODB driver and synchronization client.

– a bundle to allow interaction with gvSIG Mobile via SOAP by adding a small
webserver (also provided by the Open Mobile IS framework).

• Synchronizing objects and remote tables if you know their structure only at run time.

9http://gvsigmobileonopenmoko.wordpress.com
http://tellusproject.blogspot.com

6

http://gvsigmobileonopenmoko.wordpress.com/2009/11/02/test-the-new-geo-synchronization-feature-also-in-your-desktop-computer-unofficial-gvsig-mobile-0-1-5-is-out
http://tellusproject.blogspot.com


Figure 1: Overall diagram showing Open Mobile IS role.

7



Figure 2: Work-flow using the synchronization capabilities.

Figure 3: Data flow seen as a three-layer interaction.

Figure 4: Java interface used in the object model.

8



Figure 5: Simplified class dependency diagram.

9



Figure 6: PostGIS table containing some data. Each attribute corresponds to a field in
the object model

Figure 7: These SQL sentences map the fields from the object model into the table’s fields.

10


	Introduction
	Two independent projects for mobile devices: gvSIG Mobile & Open Mobile IS
	gvSIG Mobile
	Open Mobile IS
	Outstanding components in Open Mobile IS


	Tellus or how to integrate Open Mobile IS in the GIS sector
	Sharing/synchronizing GIS data
	Several clients with write access: locking versus synchronizing
	Feature-oriented edition via synchronization & disconnected mode
	Server-side architecture
	Proposed use


	Conclusions and future work

