THE EXPERT’S VOICE® IN ORACLE

Pro

Oracle Spatial

for Oracle Database 11g

The essential guide to developing spatially
enabled business applications using Oracle

Ravi Kothuri, Albert Godfrind,
and Euro Beinat

Apress-

www.freepdf-books.com

http://www.it-ebooks.info/

Pro Oracle Spatial for
Oracle Database 11g

Ravi Kothuri, Albert Godfrind, and Euro Beinat

www.freepdf-books.com APIESS

http://www.it-ebooks.info/

Pro Oracle Spatial for Oracle Database 11g
Copyright © 2007 by Ravi Kothuri, Albert Godfrind, Euro Beinat

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-899-3
ISBN-10: 1-59059-899-7
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick

Technical Reviewer: Carel-Jan Engel

Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick, Jason
Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Ben Renow-
Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston

Copy Editor: Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Production Editor: Ellie Fountain

Compositor: Kinetic Publishing Services, LLC

Proofreader: Linda Seifert

Indexer: Broccoli Information Management

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section.

www.freepdf-books.com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.it-ebooks.info/

Contents at a Glance

ADOUL the AUTNOIS. . .. Xix
About the Technical ReVIEWETo xxi
ACKNOWIBAMENES xxiii
IMtrOdUCTION . .. XXV
BN UD ..o xxxi
PART 1 Overview
CHAPTER 1 Spatial Information Management, 3
CHAPTER 2 Overview of Oracle Spatial ... 19
CHAPTER 3 Location-Enabling Your Applications. 37
PART 2 Basic Spatial
CHAPTER 4 The SDO_GEOMETRY DataTypeoooiiiii.. 55
CHAPTER 5 Loading, Transporting, and Validating Spatial Data................... 115
CHAPTER 6 GEOCOdING. ... 151
CHAPTER 7 Manipulating SDO_GEOMETRY in Application Programs. 207
PART 3 Spatial and Network Analysis
CHAPTER 8 Spatial Indexes and Operators 243
CHAPTER 9 Geometry Processing Functions. 305
CHAPTER 10 Network Modeling i ., 345
CHAPTER 11 TheRoutingEngine i ... 417
PART 4 Visualization
CHAPTER 12 Defining Maps Using MapViewer................................... 437
CHAPTER 13 Using Maps in Your Applications 503

www.freepdf-books.com

http://www.it-ebooks.info/

PART 5

CHAPTER 14
CHAPTER 15
CHAPTER 16

PART 6

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E

Spatial in Applications

www.freepdf-books.com

Sample Applications 581

Case StUdieSt 623

Tips, Common Mistakes, and Common Errors 663

Appendixes

Additional Spatial Analysis Functions............................... 689

Linear Referencing.......................l 701

Topology Data Model inOracle..................................... 713

Storing Raster DatainOracle...................................... 725

Three-Dimensional Modeling Using Point Clouds

andTINsinOracleo i, 743
.. 757

http://www.it-ebooks.info/

Contents

ADOUL the AUTNOIS. . .. Xix

About the Technical ReVIEWETo xxi

ACKNOWIBAMENES xxiii

INtrOdUCHION XXV

BN UD ..o xxxi
PART 1 Overview

CHAPTER 1 Spatial Information Management.............................. 3

Using Spatial Information in Various Industries. 5

Sources of Spatial Data................. oo 7

Managing and Analyzing Spatial Data...........................ooint. 7

Storing Spatial DatainaDatabase 1

Spatial Analysis 14

Benefits of Oracle Spatial o i i, 15

SUMMANY ... 18

REfBrENCES e 18

CHAPTER 2 Overview of Oracle Spatial 19

Technology and Architecture Qverviewcocoiviiiinin.n. 19

Getting Started with Oracle Spatial, 22

Data Model: Storing SpatialData.................................. 22

Location-Enabling 22

Query and Analysist 24

Visualizing Spatial Data.o i 27

Advanced Spatial Engine. 29

Oracle Spatial Technology Products.ccoiiii ., 30

Locator ... 30

Spatial Option. ... 32

What to Expect in an Oracle Spatial Install 33

Installing Oracle Spatial in the Database. 34

UDGrades. . ..ot 34

Understanding a Spatial Install. 35

Checking the Version of a Spatial Install 36

SUMMANY . . 36

www.freepdf-books.com

http://www.it-ebooks.info/

CONTENTS

CHAPTER 3

PART 2

CHAPTER 4

Location-Enabling Your Applications......................... 37
Adding Location InformationtoTables. 38
Application-SpecificData.................. .. i 38
GeographicDatat 42
Metadata for Spatial Tables. i 45
Dictionary View for Spatial Metadata. 45
Populating Spatial Metadata for Your Application.......................... 49
Additional Information for Visualization and Network Analysis.......... 50
SUMIMaAIY e 51

Basic Spatial

The SDO_GEOMETRY DataType............................... 55
Types of Spatial GeometriesinOracle..................ccoiiiiinn .. 56
POINtS ... 56
Line Strings ... 56
Polygonsand Surfaces 57
SOlidS .. 57
ColleCtions . ..o 58
Logical Implementation of SDO_GEOMETRY 58
Spatial Data in SQALUMM and OGCcoii... 59
SDO_GEOMETRY Type, Attributes,and Values 60
SDO_GTYPEAttribute ... 61
SDO_SRID Attribute 63
SDO_POINTAttribute. ... 72
SDO_ELEM_INFO and SDO_ORDINATES Attributes 74
Simple Two-Dimensional Geometry Examples............................ 76
PoINt . 76
Line String: Connected by StraightLines 78
Line String: Connected by Arcs ...t 79
Polygon: Ring (Boundary) Connected by Straight Lines................ 80
Polygon: Ring (Boundary) Connected by Arcs........................ 82
Rectangle Polygon. ... 82
Circle Polygon. 83
Complex Two-Dimensional Geometry Examples 84
Constructing Complex Geometries.cooviiiiiins, 85
SDO_ELEM_INFO for Compound Elements. 86
SDO_ELEM_INFO for Voided Polygon Element....................... 87
Compound Line String Example..............l 87
Compound PolygonExampleo il 88
Polygon withaVoidcco 89
COllBCIONS . .\, e et et e 91

http://www.it-ebooks.info/

CHAPTER 5

CHAPTER 6

CONTENTS

Three-Dimensional Examples. 95
Three-Dimensional Points, Lines, and Polygons. 97
Composite Surfaces. ... 102
Simple Solido i 105
Composite Solid. ... 110
ColleCtions 112

SUMMANY .. 114

Loading, Transporting, and Validating Spatial Data 115

Inserting Data into an SDO_GEOMETRY Column 116

Loading and Converting Spatial Data. 117
Loading from Text Files Using SQL*Loader......................... 117
Transporting Spatial Data Between Oracle Databases. 120
Loading from External Formats 122
Converting Between SDO_GEOMETRY and WKT/WKB. 124
Converting SDO_GEOMETRY DatainGML 124

Extruding a Two-Dimensional Geometry to Three Dimensions.............. 129

Validating Spatial Data i 132
Validation Functions. o 132
Validation Criteria. i 133
Composite Solids. 140
ColleCtionso 41

Debugging Spatial Data. i 142
REMOVE_DUPLICATE_VERTICES ..., 142
EXTRACT . . 143
APPEND. ... 146
GETNUMELEM, GETNUMVERTICES, and GETVERTICES 147
EXTRACTED ..o 147
Miscellaneous Functions., 149

SUMIMaAIY e e 149

Geocoding........................ . 151

What Is Geocoding?.t 151

Architecture of the Oracle Geocoder oii... 153
Parsing the Input Address.co i 153
Searching for the Address. 154
Computing the Spatial Coordinates............................... 154

Setting Up the Reference Data for the Geocoder 156
ParameterTables............ ... 156
DataTables.............co i 157

www.freepdf-books.com

vii

http://www.it-ebooks.info/

CONTENTS

CHAPTER 7

Using Geocoder Functions ...
GEOCODE_AS_GEOMETRYo
GEOCODEo
GEOCODE_ALL. ...

Geocoding Using Structured Addresses.ooovveieiiiieinnnns.
GEOCODE_ADDRo
GEOCODE_ADDR_ALL.o

Reverse GEOCOdINgovvniii e
REVERSE_GEOCODEt

Geocoding BusinessData................coii i
Adding the Spatial Column i,
Geocoding the Addresses: The “Naive” Approach
Address Verification and Correction.
Automatic Geocoding ...t

The GeoCOding SErVer. ... e
Architecture ...
Installation and Configuration.
Using the Geocoder: XML Queries and Responses.

SUMMANY ..

Manipulating SDO_GEOMETRY
in Application Programs

Manipulating Geometries Using PL/SQLo outt,
VARRAY Manipulation Primer
Reading and Writing SDO_GEOMETRY Objects
Creating New Geometries.co i
Extracting Information from Geometries...........................
Modifying Existing Geometries. ...,

Manipulating GeometriesinJava....................coiiiiiii i
Using the JGeometry Class.,
Using 3D Geometries: the J3D_Geometry Class
Extracting Elements from 3D Geometries: the

ElementExtractor Class,

Using Standard Notations: WKT, WKB,GML
Using ESRI Shapefiles. ...
SUMMANY ..

www.freepdf-books.com

—_
(2]
(o]

—_
[$2]
[e]

—_
»
it

—
~
IS}

—_
[e]
N

—_
[e]
N

—
co
~

-
oo
~

—
o
~

—_
[e]
[op]

—_
[e]
[op)

—
[e=]
by

—_
(o]
(o]

—_
[{e]
w

—_
©
[2]

—_
©
[o}

—_
[{=
[e)

N
o
o

N
o
[op]

N
\l

207

N
o
©

N
—_
—_

N
—
($)]

N
—
o

no
=
~

N
—_
©

N
N
w

N
N
w

N
N
©

N
[{=]

229
232
235
240

N
N

http://www.it-ebooks.info/

PART 3

CHAPTER 8

CHAPTER 9

CONTENTS

Spatial and Network Analysis

Spatial Indexes and Operators 243
Spatial Indexes. 245
Inserting Metadata for a Spatial Layer Prior to Indexing 246
Creatinga Spatial Indexo i 247
Spatial Indexing Concepts.t 247
Spatial Index Parameters ... 249
Spatial Operatorsot 253
Syntax of Spatial Operatorscc ... 253
Semantics of Spatial Operators 254
Evaluation of Spatial Operatorsooin.. 255
A Closer Look at Spatial Operatorsccoviiiiiiiin.n. 256
SDO_WITHIN_DISTANCE Operator................ccoivviiian.... 256
SDO_NNOperator ...t 261
Operators for Spatial Interactions (Relationships) 268
Hints for Spatial Operators it 280
Advanced Spatial Index Features..................l 287
Function-Based Spatial Indexes................................ 287
Local Partitioned Spatial Indexes....................oiiiini... 290
Parallel Indexing. ... 293
Online IndexRebuilds i 294
Spatial Joins. 295
Three-Dimensional Analysis., 298
SUMMANY . 303
Geometry Processing Functions 305
Buffering Functions 307
Relationship Analysis Functions. i 310
SDO_DISTANGE 310
SDO_CLOSEST _POINTS ... 313
RELATE 315
Geometry Combination Functions 320
SDO_INTERSECTIONo 321
SDO_UNION ... 323
SDO_DIFFERENCEo e 323
SDO_XOR .. 325
Geometric Analysis Functions. 326
Area, Length, and Volume Functions 326
MBRFUNCLIONS. 330
Miscellaneous Geometric Analysis Functions....................... 333

www.freepdf-books.com

ix

http://www.it-ebooks.info/

CONTENTS

CHAPTER 10

Aggregate Functions 337
Aggregate MBRFunction i 337
Other Aggregate Functions.o, 338

SUMIMaAIY e e 343

Network Modeling.. 345

General Network Modeling Concepts.cooviieiiiieinnns. 347
Examples of Networks. i 348
Oracle Network DataModeloiiiiiiii... 349

Data Structures: The Network Tables.cooiiiiiiin... 351
NodeTable ... 352
LinkTable 352
PathTable........... o 353
PathLinkTable................ . o 354
Network Metadata............... 354

Defining Networks 355
“Automatic” Network Definition.................................. 355
“Manual” Network Definition il 357
Defining Multiple Networks on the Same Tables 359
Droppinga Network. ... 363
Creating Spatial Indexes on Network Tables. 363
Getting Information About a Network. 364
Verifying Network Connectivity. 365
Example Network.o i 366

Analyzing and Managing Networks Using the JavaAPI.................... 370
Analyzing Networks: The NetworkManager Class 370
Limiting the Search Space: The SystemConstraintClass 384
Advanced Analysis: Network Constraints 385
Network Structures: The Network, Node, Link, and Path Classes. 391
Creating Networks: The NetworkFactory Class. 394

Debugging Network Structures ... 396

Analyzing Networks Using the PL/SQLAPI, 397
Using a Memory Object.co i 399
Analyzing Networks. 400
Creating and Updating Networks, 403
Using Network Constraints. ..., 405

The Network Editor 412
Startingthe Editor 412
Using the Loaded Networkt 414
Example Data: The Streets of San Francisco 415

SUMMANY . 416

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 11

PART 4

CHAPTER 12

CONTENTS

The Routing Engine ... 417
Architecture 418
Installation and Configuration.................o i 420
Data Structures 422
Example Data: The Streets of San Francisco 424
Partitioning 425
Using the Router: XML Queries and Responses 427
Routing Requests. ... 430
Routing Options 431
Pregeocoded Start and End Locations. 431
Geographic Start and End Locations 432
BatchRouting............ ... i 432
SUMMANY . 434
Visualization
Defining Maps Using MapViewer............................. 437
Why Use Maps in Location-Enabled Applications?........................ 437
Overview of MapViewer and Oracle Maps. 440
Oracle MapViewero 440
Oracle Maps.oe i 442
Getting Started 443
Loadthe Sample Data................... ..., 444
Location-Enable the ApplicationData 445
Load the Geographical Data.........................ooiiiii... 445
Load Maps, Themes, Style, and Map Cache Definitions
forMapViewer i 445
DefineaDataSource. ... 446
Install Example Applications. L. 446
Configuring MapViewerot e 448
Using the Administration Console 449
Configuration Parameters................. il 452
Defining Maps 457
Using Map Buildercoo i 458
UsSiNg StYlESo 461
USINg THEMES.o i 474
USiNg Maps.oo 484

www.freepdf-books.com

http://www.it-ebooks.info/

.

CONTENTS
DefiningMap Caches. ... i
The USER_SDO_CACHED_MAPSViewcccoiiviiin...
Managing Caches Using the MapViewer Console
CreatingaNewMap Cache, 493
Creating Map Caches UsingSQLcciiiiin.n.. 495
Cache Data Structuresc i 498
Exporting Cache Definitionsl 498
Purging and Refreshing Cache Contents........................... 498
Using External Data Sources ..., 499
SUMIMaAIY e e 502
CHAPTER 13 Using Maps in Your Applications............................. 503
Overview of MapViewer'sAPISt
XML, Java, JSPs,and PL/SQL. 503
JavaScript and Ajax: OracleMaps ..., 505
Choosing an APl 506
Anatomy of aMap Request................. 507
What: The Information That Should AppearontheMap 507
Where: The Geographical Area to Be CoveredbytheMap 508
How: The Format and Size of the ResultingMap 508
Interactingwith Maps o i
Controlling the Level of Detail: Zoom Inand Zoom Out...............
Controlling the Area Shown on the Map: Pan and Recenter 509
Selecting Features: Identify. 510
Choosing the Information to Appear on the Map: Layer Control.. 510
Oracle Maps: The JavaScript APl 510
DisplayingaMap. ...
Interacting with Maps: Zooming and Panning.
Adding Map Decorations. ...
Adding Generic Decorations. ...
Creatingan Overview Map ...t
Rectangular (Marquee) Zoomingcoooiiiiiiiin...
Adding Dynamic Information: Theme-Based FOIs
Adding Individual FOIs. i,
Controlling Styles.
Capturing User Input: Tools and Selectors.
RespondingtoEvents
Usingthe Java APl
Map Requests ...
Zoomingand Panning
Theme Control i
StyleControl. ...
Identification and Queries................... i

www.freepdf-books.com

http://www.it-ebooks.info/

CONTENTS Xiii

Dynamic Features i 543
LeOENAS ... 543
Map Decorationscoo i 545
Usingthe Map Cachec i, 546
Discovering Data Sources, Maps, Themes 547
USINgJSPTags.cooi e 547
Usingthe XML APL e 552
Simple Map Requests 553
Adding ThemestoaBaseMap............................oiiit. 555
Using Multiple Data Sources., 556
ConstructingaMap fromThemesccoiivni... 557
Dynamic Themes. ... 558
Dynamic Features o 561
LeOENAS ... 563
The XML Map RESPONSEo 565
Usingthe PL/SQLAPL.o e 566
Installingthe APl 566
ASimple Example 567
Using the Administrative API. i 568
Browsing Map Definitions.l 568
Managing the MapViewer Server....................cooiiini.n. 570
Restarting MapViewer. i 573
Web Map Service (OGCWMS) Interfaceooiiiin.... 573
The GetCapabilities Request. il 573
The GetMap Request............ ... i 575
The GetFeaturelnfo Request. o i, 576
Spatial Reference Systems (SRS) Mapping......................... 578
SUMIMaAIY e e 578

PART 5 Spatial in Applications

CHAPTER 14 Sample Applications .. 581
Data Preparationand Setup 582
Loading the Geographical Data 582
Location-Enabling the ApplicationData. 582
Loading Map, Theme, Style, and Map Cache Definitions
for MapViewer 583
Applications Setup. 583
The JavaScript Application 584
Application Walk-Through. i il 584
UndertheHood i 589

www.freepdf-books.com

http://www.it-ebooks.info/

Xiv CONTENTS

The Java (JSP) Application i 603
Application Walk-Through. i 603
UndertheHood i 610

SUMIMaAIY e e 622

CHAPTER15 CaseStudies... 623

Overview of the Case Studies. ... 623

Spatial Information for Managing the London Bus Network 624
BUuSNet o 625
Spatial Data and Oracle Spatial inBusNet 626
User Interface for Spatial Datain BusNet 628
BusNet ConcluSIONS.t 630

P-Info: A Mobile Application for Police Forces. 631
P-Info Functionality 632
P-Info Architecture. 633
Use of Oracle Spatial inP-Info................................... 635
Measurable Added Value of P-Info................................ 637

Risk Repository for Hazardous Substances. 638
RRGS Technology.ot 640
Use of Oracle Spatial inthe RRGS 642
From Hazardous Substances to Risk Management 643

USGS National Land Cover Visualization and AnalysisTool 644
The Architecture of USGS Visualization and Analysis Tool 647
Oracle Spatial in USGS Visualization and Analysis Tool 648
Benefits of USGS Visualization and Analysis Tool 651

U.S. Department of Defense MilitaryHOMEFRONT LBS 652
The Architecture of MilitaryHOMEFRONTLBS 654
Oracle Spatial in MilitaryHOMEFRONT. 657
Mobile MilitaryINSTALLATIONS. 660
Benefits of MilitaryHOMEFRONTLBS. 662

SUMIMaAIY et 662

CHAPTER 16 Tips, Common Mistakes, and Common Errors 663

TIPS e 663
Data Modelingand Loadingcooiiiiiiiii L 663
Performance of Spatial Operator Query............................ 666
Performance of Other Spatial Processing Functions 670
Performance of Inserts, Deletes,andUpdates 672
Best Practices for Scalability and Manageability of Spatial Indexes 673

Common Mistakes. ... 678
Bounds, Longitude and Latitude, and Tolerance for Geodetic Data 678
NULL Values for SDO_GEOMETRYccoviiiiiiannn., 678

www.freepdf-books.com

http://www.it-ebooks.info/

PART 6

APPENDIX A

CONTENTS

Use GEOCODE or GEOCODE_ALL.coviiiii e,
Specify “INDEXTYPE is mdsys.spatial_index” in CREATE INDEX
Always Use Spatial Operators in the WHERE Clause

Use Spatial Functions When No Spatial Index Is Available 679
Do Not Move, Import, or Replicate MDRT Tables 680
Network Metadata................. L. 680
MapMetadataco 681
CommMON EMors 681
ORA-13226: Interface Not Supported Without a Spatial Index 681
ORA-13203: Failed to Read USER_SDO_GEOM_METADATA View 681
ORA-13365: Layer SRID Does Not Match Geometry SRID. 681

0RA-13223: Duplicate Entry for <table_name, column_name> in

SDO_GEOM_METADATA
ORA-13249, ORA-02289: Cannot Drop Sequence/Table..............
ORA-13249: Multiple Entries in sdo_index_metadata Table...........
ORA-13207: Incorrect Use of the <operator-name> Operator.
ORA-13000: Dimension Number Is QutofRange....................
ORA-00904: .. . Invalid Identifier.................................
ORA-00939: Too Many Arguments for Function.....................
ORA-13030: Invalid Dimensionality for the SDO_GEOMETRY,

or ORA-13364: Layer Dimensionality Does Not Match Geometry

DIMenSioNSo

SUMIMaAIY e

Appendixes

Additional Spatial Analysis Functions....................... 689

Tiling-Based Analysis.
TILED_BINS

TILED_AGGREGATES 691
Neighborhood Analysis 694
AGGREGATES_FOR_GEOMETRY. 694
AGGREGATES_FOR_LAYER., 695
Clustering Analysis.ot e 696
SPATIAL_CLUSTERS 696
Refining the Candidates for Site Selection 697
Geometry Simplification for Speeding Up Analysis. 698
SUMMANY . . 699

www.freepdf-books.com

XV

http://www.it-ebooks.info/

Xvi CONTENTS

APPENDIXB LinearReferencing... 701
Concepts and Definitionso i 702
MeasuUre 702
Linear Referenced Segments.ccciiiiiiiiiii... 702
Direction 702
Shape Points. 702
OffSel. . o 703
Typical Application. i 703
Creating Linear Referenced Geometries ..., 705
SDO_GTYPE in LRS Geometries. 705
Constructing LRS Geometries. 706
Metadata. ... 707
Spatial Indexes and Spatial Operators on LRS Geometries............ 707
Dynamic Segmentation Operationsooiiiiiin.. 707
ClipaSegment. 707
LocateaPoint.......... 708
ProjectaPoint 709
Intersecting LRS Segments with Standard Geometries............... 710
Validation of LRS Segments 710
Dynamic Segmentation on 3D Geometries......................... m
OtherOperationsco i 711
SUMIMaAIY e 712
APPENDIX ¢ Topology Data ModelinOracle............................... 713
Sharing Boundaries 714
Benefits of the Topology DataModel, 715
Storing a Topology Data Model inOracle................................ 715
OperatingonaTopology inOracle................ccoviiiiiiiinan... 718
Creating aTopology oot 718
PopulatingaTopology ... 719
Associating a Feature Layer withaTopology 719
Inserting, Updating, and Populating Feature Layers.................. 720
Updating Topological Elements.cooiiiiitt. 721
Querying for Topological Relationships 723
Hierarchical Feature Model................ i 723
SUMIMaAIY et 724
APPENDIX D Storing Raster DatainOracle 725
The SDO_GEORASTER DataType............oiiriii it 726
Storage for SDO_GEORASTER Data..................cooiieiin... 728
Metadata in SDO_GEORASTERData 731

www.freepdf-books.com

http://www.it-ebooks.info/

APPENDIX E

CONTENTS

Populating SDO_GEORASTER Columns., 731
Manipulating Raster Objects.o 732
Generating Pyramids................. i 733
SUDSEHING. . ..o 734
GEOreferenCing.ot 734
Attaching Bitmap Masks............ 736
Registering NODATAValues ..., 737
Using Compression in GeoRaster.o, 738
Visualizing Raster Data in Oracle MapViewer............................ 739
SUMIMaAIY e e M

Three-Dimensional Modeling Using Point Clouds

andTINsinOracle.. 743
Storing Large Point Sets 744
The SDO_PCDataType.ovvii e 744
Populatinga PointCloud................. ... 745
QueryingaPointCloudcc i 748
Other Manipulation Functions for Point Clouds. 749
Storing Triangulated Irregular Networks 749
The SDO_TINDataTypeovee e 750
Populating@aTIN. 751
Querying aTINo 754
Other Manipulation FunctionsforTINS 755
SUMMANY .. 755
.. 757

www.freepdf-books.com

i

http://www.it-ebooks.info/

About the Authors

RAVI KOTHURI has a PhD in computer science from the University of California,
Santa Barbara, and has been an active researcher and developer in the spatial
and multimedia areas for the past 15 years. Currently, he serves as project lead
and software architect in the spatial development team of Oracle Corporation.
He has more than 20 patents on specific Oracle technology and has authored
numerous articles for database conferences and journals. Other activities
include teaching database courses (most recently at Boston University), pre-
senting at panel meetings and conferences, and reviewing of research articles
for spatial and database conferences. Ravi enjoys music, movies, and playing
with his children.

ALBERT GODFRIND has more than 25 years of experience in designing, devel-
oping, and deploying IT applications. His interest and enthusiasm for spatial
information and geographical information systems started at Oracle when he
discovered the spatial extensions of the Oracle database in 1998. Ever since,
Albert has been “evangelizing” the use of spatial information both to GIS and
IT communities across Europe, consulting with partners and customers, speak-
ing at conferences, and designing and delivering in-depth technical training.
Prior to joining Oracle Corporation, Albert held several positions in database
engineering at Digital Equipment Corporation (DEC), where he worked on
the development of the Rdb database system.

EURO BEINAT has a PhD in economics and a master’s degree in electronics
and systems engineering. He has been involved in consultancy for more than
10 years in evaluation and strategic advice in sectors ranging from IT, govern-
ment, the oil industry, and large corporations. Currently, he is the managing
director of Geodan Mobile Solutions and holds a chair on Location Services at
the Vrije Universiteit of Amsterdam and at the University of Salzburg. His main
skills combine geo-IT and the Internet, with an extensive competence in deci-
sion analysis and strategy.

www.freepdf-books.com xix

http://www.it-ebooks.info/

www.freepdf-books.com

http://www.it-ebooks.info/

About the Technical Reviewer

CAREL-JAN ENGEL is a member of the OakTable Network, lives in the Netherlands, and works as
a freelancer. He has been working in IT since 1982, and he started to work with Oracle version 4 in
1985. Fastforms (Forms 1.3) didn’'t meet the requirements of the software project he was on, and he
joined the team that was developing “better” programming tools and applications in C, based on the
HLI, now known as the OCIL. In 1992, he founded the Dutch software company Ease Automation,
which he headed for almost ten years. Some of his projects during this time related to airports and
had an important high-availability aspect to them, which inspired him to develop several techniques
for standby databases, often pushing Oracle technology to its limits. In 1998, he won the Chamber
of Commerce of Rotterdam’s Entrepreneur of the Year award. In 2002, he decided to continue his
career as a freelancer. He has been a regular author for several (Dutch) Oracle-related magazines
since 1998.

www.freepdf-books.com

XXi

http://www.it-ebooks.info/

Acknowledgments

M any people contributed to this book in numerous and important ways while remaining in the
background. Together they have made it possible for us to complete this project and we hope pub-
lish a good book.

We would like to thank the team at Apress, in particular Tony Davis for his role in initiating this
project and Jonathan Gennick for spearheading the revision. We also like to thank the project man-
ager, Kylie Johnston; the copyeditor, Kim Wimpsett; and the production editor, Ellie Fountain, for
their great job editing and proofreading the book as well as for their patience with shifting schedules,
flexible submission times, and above all their willingness to consider at any moment improvements,
changes, and adaptations that could make the book better.

We acknowledge the efforts of Daniel Abugov, Daniel Geringer, Siva Ravada, James Steiner, Jayant
Sharma, Steven Serra, Jay Banerjee, and Steven Hagan at Oracle Corporation for their help in getting this
book off the ground. Once we started writing the book, many other Oracle Spatial development team
members, including John Herring, Baris Kazar, Bruce Blackwell, Jeffrey Xie, Jack Wang, and Richard Pitts,
contributed with reviews of the chapters that fell in their respective areas of expertise. The reviews of
these multiple Oracle experts (in addition to those from Apress reviewers) had a tangible effect on the
quality of the text, its structure, and its completeness. Among these reviewers, special thanks go to
Daniel Abugov and Siva Ravada for their multiple reviews of a majority of the chapters. Dan’s compre-
hensive reviews and valuable suggestions have greatly enhanced the professional quality of the content.
Finally, this book would not have been a reality if it were not for the cooperation and flexibility in work
schedules extended by the Oracle Spatial management team (Siva Ravada and Steven Serra).

Consultants and application developers at Geodan Mobile Solutions provided a large amount
of material for the case studies and reviewed several sections of the book. We would like to thank in
particular Evert van Kootwijk and Valik Solorzano Barboza for their contributions regarding imple-
mentations of Oracle Spatial. We are also grateful for the contribution of Prof. Henk Scholten, who
advised us on a number of sections of the book.

The team of eSpatial has also provided major inputs for the case studies. We would like to thank
Matthew Bafford, Paul Baynham, David Miller, and Paul Saunders for their high-quality input, timely
revisions, and continuous support. The book has also been reviewed by several independent exter-
nal experts. We would like to thank in particular Carel-Jan Engel for his meticulous and sometimes
very critical comments. We wished, occasionally, to be given an easier ride, but his comments have
had a major impact on the book structure and content. They made a tangible and positive contribu-
tion to the overall quality of the book.

Several parties helped us collect the material necessary to compile the case studies. We would
like to thank all organizations involved for their willingness to share with us their experiences in
some important Oracle Spatial implementations. We are grateful to Transport for London (London
Buses), the Dutch Ministry of the Interior and the ISC (ICT service association for the Dutch police),
the Dutch Ministry of Environment and Spatial Planning and RIVM, the U.S. Department of Defense,
and the U.S. Geological Survey.

www.freepdf-books.com

XXxiii

http://www.it-ebooks.info/

XXiv

ACKNOWLEDGMENTS

Finally, we are indebted to our families for their patience and endurance during the book writ-
ing process. It is indeed difficult to understand why SQL, geometries, or long-distance conference
calls have priority over holidays, birthdays, or weekends. Nonetheless, we had a great time writing
this book, thanks to our families who managed to keep us on track while handling diverse priorities.

Ravi Kothuri
Albert Godfrind
Euro Beinat

www.freepdf-books.com

http://www.it-ebooks.info/

Introduction

Organizations are discovering with increasing frequency that the vast majority of their informa-
tion assets have a spatial component, for example, the location of customers, shipments, facilities,
personnel, competitors, and so on. The ability to use this information properly is fundamental to
reducing operational costs, optimizing production efficiency, and increasing the quality of service.
Evidence of the benefits that can be achieved by exploiting spatial information is plentiful, and
many organizations are looking at ways of harvesting these benefits.

We have been professionally involved in a variety of projects that introduced spatial informa-
tion management into public and private organizations. The idea of writing this book came from
these projects and from discussing spatial information management with the software developers
and architects involved in them. We noticed a clear gap between the knowledge and skills necessary
for successful spatial information management projects and the common background of the tech-
nical personnel usually involved in large IT and database developments.

The vast majority of these staff members had backgrounds in such diverse areas as database
technology, Java, C++, PL/SQL, data models, security, availability, and scalability. However, only
a small number had some experience with spatial data—for most, working with spatial data was
completely new. It was easy to discover that spatial objects, geocoding, and map projections, for
example, were foreign terms to most (and, of course, spatial information management is not about
processing signals from space probes). Tools such as Google Maps and Google Earth have introduced
few of these concepts to a large audience, but the majority of spatial technology still remains an
esoteric subject.

It appears that this lack of knowledge of spatial technology is a common situation. Even within
the extensive community of Oracle experts, Oracle Spatial skills are relatively new to many. For those
of us who work at the interface between ICT, spatial informatics, management, and the traditional
world of geography and mapping, the realization of this gap was especially revealing, and it presents
a clear barrier to the diffusion of spatial information management through private and government
organizations, where the demand for spatial applications is steadily growing. Furthermore, while
Geographical Information Systems (GIS) are extensively used to manage spatial data, often as
stand-alone systems, the vast majority of spatial data resides in corporate databases. It is by adding
spatial intelligence to these databases that we probably disclose one of the largest untapped reser-
voirs of added value to organizations.

Oracle Spatial has grown to be one of the most established solutions for providing spatial intel-
ligence to databases. Besides the extensive installed base of Oracle databases, Oracle Spatial manages
spatial data just like any other data type, making it in principle easy for experienced database devel-
opers and architects to extend their scope into spatial information management. Using MapViewer
technology, Oracle Spatial also makes it easy to create and integrate maps in business applications.

Despite the plethora of available books on spatial information management and GIS, we still
encounter a lack of suitable material for Oracle developers or architects who do not have any spatial
background. This leads to simplistic uses of Oracle Spatial and suboptimal implementations that
frequently ignore the extensive list of Oracle Spatial capabilities. Besides the reference user guides,
most knowledge about Oracle Spatial is scattered around in technical papers or—even worse—in
the heads of those who have developed expertise and mastered the tool.

Our motivation for writing this book was to provide developers and architects with a reference
source to master Oracle Spatial and take their skills to a professional level. This book does not replace

www.freepdf-books.com o

http://www.it-ebooks.info/

XXVi

INTRODUCTION

the technical references. Instead, it presents concepts, examples, case studies, and tips to guide you
toward a full understanding of the potential of Oracle Spatial and how to use it at an advanced level.
We do not want to just familiarize you with Oracle Spatial; we want you to become an expert in
Oracle Spatial.

What Does This Book Cover?

This book covers spatial information management in the Oracle database. In particular:

e Ttintroduces the main concepts of spatial information management and how they relate to
database concepts and tools.

It describes the tools provided by Oracle Spatial to store, retrieve, analyze, and visualize
spatial information.

It presents examples, applications, and case studies that will help you facilitate the incorpo-
ration of these concepts and tools into your applications.

While most conceptual discussions will be of general validity, this book is about Oracle Spatial
11g, the newest release of the Oracle database product.

The focus of the chapters in this book is the application of Oracle Spatial technology to general
e-business applications. All of the features that are relevant to such applications are discussed in full
detail, with working examples based on the sample data supplied with the book. In the appendixes,
we cover the topics that are more relevant to highly specialized GIS applications. These provide a more
general overview of each topic and reference the Oracle documentation for full details.

The following list contains a chapter-by-chapter breakdown summarizing the key topics
covered:

* Setting Up: The next section of this book, after this introduction, describes how to set up
Oracle Spatial and the example schema required to run the code examples in this book. It
then describes the specific e-business application and related dataset that are used for most
examples in this book. The data used includes mapping data (for example, state boundaries,
rivers, built-up areas), geocoding data (for example, lists of addresses with their x,y coordi-
nates), network data (for example, road networks for computing travel distance and providing
navigation instructions), and application-specific data (in this case, a set of tables with cus-
tomers, stores/branches, and competitors). The data covers parts of the United States, such
as the cities of Washington, D.C., and San Francisco, and uses typical U.S. terms and notations
(for example, counties, interstates, and so on). This does not imply any loss of generality—
the same examples can be made for any other similar dataset.

e Chapter 1: Spatial Information Management: In this chapter, we describe how spatial infor-
mation is used in different industry segments and cover the typical functionality required for
managing spatial/location information. We use a site-location example to illustrate different
aspects of spatial information management: representation and storage using appropriate
types, and analysis functionality for stored spatial data. We then discuss the systems that
enable spatial information management, such as GIS, and their evolution. We finally look at
the benefits of spatial information management using Oracle Spatial.

* Chapter 2: Overview of Oracle Spatial: The Oracle Spatial technology suite enables spatial
information management inside Oracle. This chapter provides an overview of this suite, its
architecture, and its functionality. The overview includes a concise description of the different
features of Oracle Spatial, including storage using SDO_GEOMETRY, analysis using spatial
operators, and visualization using Oracle MapViewer. We also illustrate how this functional-
ity is productized into the components that are shipped with different editions of Oracle.

Finally, we explain what to expect durin in a typical Qracle Spatial installation.
Y, Weexp AR 8B ArLB AR g Jracte Sp

http://www.it-ebooks.info/

INTRODUCTION

Chapter 3: Location-Enabling Your Applications: In this chapter, we consider how to augment
existing application tables with location information. We introduce an e-business application
for this purpose, which we use in examples throughout the rest of the book. We also describe
several design choices to consider while storing geographic data in Oracle tables. Location-
enabling an application requires populating appropriate metadata tables to enable spatial
processing on spatial tables. In the last part of the chapter, we look at the details of populating
such metadata.

Chapter 4: The SDO_GEOMETRY Data Type: This chapter focuses on the storage and modeling
of location information using the SDO_GEOMETRY data type in Oracle. The type can store
a wide variety of spatial data, including points, line strings, polygons, surfaces, and solid
geometries. We take a detailed look at the structure of SDO_GEOMETRY and at the different
attributes and the values it can take to store different types of geometric data. We then show
how to construct SDO_GEOMETRY objects for geometries to model roads, property bound-
aries, and city buildings.

Chapter 5: Loading, Transporting, and Validating Spatial Data: In this chapter, we describe
different ways to populate Oracle tables that contain SDO_GEOMETRY columns. These
tables could be part of an e-business application or could be tables in CAD/CAM, GIS, GPS,
wireless, or telematics applications. We explain how to import the data that comes with this
book using the Oracle Import utility. We also describe other utilities and functions/procedures
for transferring data between Oracle databases and/or external formats. Finally, we look at
how to validate the loaded SDO_GEOMETRY objects and how to correct some invalid objects.

Chapter 6: Geocoding: In this chapter, we cover the functionality of the geocoder in Oracle
Spatial. We first introduce geocoding concepts and the geocoding process to provide an
understanding of how the conversion from addresses to SDO_GEOMETRY objects takes
place. We then discuss how to set up a data catalog to enable geocoding in your application.
This catalog is used to determine and extrapolate the location for a specified address. Finally,
we describe how to add location columns to application data. We illustrate this using differ-
ent functions/APIs of the geocoder in Oracle that serve this purpose.

Chapter 7: Manipulating SDO_GEOMETRY in Application Programs: Advanced application
developers often need to access and manipulate spatial objects in their applications. In this
chapter, we look at how to manipulate SDO_GEOMETRY types in programming languages
such as PL/SQL and Java. We also briefly cover C and Pro*C. We examine how to read, decode,
construct, and write geometries, providing extensive code examples throughout.

Chapter 8: Spatial Indexes and Operators: In this chapter and in the next chapter, we describe
how to use spatial information to perform proximity analysis. In this chapter, we focus on spa-
tial indexes and spatial operators. Spatial indexes ensure effective response times for queries
that perform proximity analysis. The chapter introduces the concepts of spatial indexes and
their creation. We then describe different spatial operators that Oracle Spatial supports for per-
forming spatial analysis for indexed tables. We give an overview of their syntax and semantics
and describe in detail various operators. We also suggest tips that can ensure a faster evalua-
tion of spatial operators. In the final part of the chapter, we address some advanced spatial
indexing features that are useful for large spatial repositories.

Chapter 9: Geometry Processing Functions: In this chapter, we discuss geometry processing
functions, simply referred to as spatial functions. In contrast to the spatial operators, these
geometry processing functions do not require a spatial index, provide more detailed analy-
ses than the spatial operators associated with a spatial index, and can appear in the SELECT
list as well as in the WHERE clause of a SQL statement. We discuss each of the spatial func-
tions in turn, including tips for their use.

www.freepdf-books.com

Xxvii

http://www.it-ebooks.info/

XXviii

INTRODUCTION

Chapter 10: Network Modeling: In this chapter, we introduce another way of modeling spatial
data based on the concept of the network. A network is a useful way to model information
when we need to compute, for instance, routes, travel distances, or proximity based on travel
time. We describe the general concepts and terminology for setting up networks, and then we
discuss the Oracle Network Data Model and its data structures. We then specify how to set up
anetwork in Oracle and how to perform network analysis.

Chapter 11: The Routing Engine: In this chapter, we introduce Oracle’s Routing Engine. Among
other things, you'll learn how to use the Oracle Routing Engine to get turn-by-turn directions
from a starting address to a destination address.

Chapter 12: Defining Maps Using MapViewer: MapViewer is the tool available in Oracle to
visualize spatial information stored in a spatial database. The tool is part of Oracle Application
Server. In this chapter, we describe MapViewer and introduce the basic mapping concepts,
such as themes, style rules, and user controls. We look at how to install, deploy, and configure
MapViewer, as well as how to construct maps and store them in the database using the Map
Builder definition tool.

Chapter 13: Using Maps in Your Applications: In this chapter, we show how to integrate maps
created from spatial data in business applications. We also show how to support a seamless
browsing experience and improve the performance of mapping applications using the recently
introduced Oracle Maps technology.

Chapter 14: Sample Applications: In this chapter, we use most of the techniques and tools illus-
trated so far in the book to create a simple application that integrates spatial analysis and
visualization. This chapter presents and dissects such an application. The application includes
map and data display, map functionality (zoom, pan, and so on), geocoding, spatial analysis,
and routing. We look at how the application was designed and coded, and we review some of
the source code that implements the major features of the application. The complete source
code is provided for download from the Apress website (www.apress.com); see the upcoming
“Setting Up” section for more details.

Chapter 15: Case Studies: This chapter describes five case studies that illustrate how to use
Oracle Spatial for storing, analyzing, visualizing, and integrating spatial data in business
and government applications. The BusNet case study illustrates how to use Oracle Spatial
for managing the bus network of the city of London. The P-Info case study describes a sys-
tem to provide location-enabled information access to police officers operating in the field.
The case study on the Dutch Risk Repository for Hazardous Substances shows how to use
Oracle Spatial to spatially enable a repository for (bio)chemical risks and effects. The USGS
National Land Cover Visualization and Analysis Tool illustrates how to use Oracle Spatial to
provide access to the raster land-cover data of the United States. The MilitaryHOMEFRONT
case study illustrates how to use Oracle Spatial for storing and accessing points of interest,
geocoding, and routing.

Chapter 16: Tips, Common Mistakes, and Common Errors: In this chapter, we describe some
useful tips in location-enabling your application. We also discuss some of the mistakes most
application developers make that can be easily avoided. Finally, we address some common
errors that you may encounter in location-enabling your application and the actions to take
to sort out these errors.

e Appendix A: Additional Spatial Analysis Functions: In this appendix, we describe analysis

functions that are provided, in addition to those described in Chapters 8 and 9, to cater to
specific business analysis needs. These functions enable tiling-based analysis, neighborhood
analysis, and clustering analysis.

www.freepdf-books.com

http://www.apress.com
http://www.apress.com
http://www.it-ebooks.info/

INTRODUCTION

* Appendix B: Linear Referencing: Linear referencing is widely used in the transportation and
utility industries. It uses one parameter (measure) to identify an object position along a linear
feature with respect to some known point (such as its start point). This appendix introduces
the concept of linear referencing and its most common operations. It then discusses the
SDO_LRS package that contains all functions that manipulate linear-referenced geometries.

* Appendix C: Topology Data Model in Oracle: In some applications, such as land manage-
ment, sharing and updating of boundaries between multiple spatial objects is common. This
process may cause data inconsistency problems because of updates of underlying shared
boundaries. In this appendix, we describe an alternate model, the Topology Data Model, for
effective management of shared geometry features. We introduce topology modeling in Oracle
Spatial and the functionality to operate on the Topology Data Model.

e Appendix D: Storing Raster Data in Oracle: In this appendix, we briefly discuss how to store
raster objects in Oracle Spatial. This appendix introduces the SDO_GEORASTER data type and
explores how raster data is stored in an Oracle database. The chapter also describes how to
manipulate GeoRaster objects.

» Appendix E: Three-Dimensional Modeling Using Point Clouds and TINs in Oracle: In this
appendix, we briefly discuss how to store large point sets, which typically result from laser
scanning, in Oracle Spatial. The appendix introduces a new data type called SDO_POINT_CLOUD
for efficient storage and retrieval of such large point sets. Later, it describes the SDO_TIN data
type to create triangulated irregular networks for such point sets.

This book is not meant to repeat the content of user and installation guides. It is highly recom-
mended that you have those guides available when reading this book, and especially when running
the examples. In several cases, we refer you to the user or installation guide for details. The complete
documentation for Oracle Database and Oracle Application Server is available online on the Oracle
Technology Network website at www.oracle.com/technology/documentation. The Oracle 11g manu-
als relevant to this book are as follows:

e Oracle Spatial User’s Guide and Reference

* Oracle Application Server, MapViewer User’s Guide

* Oracle Spatial Topology and Network Data Models Developer’s Guide
* Oracle Spatial GeoRaster Developer’s Guide

e Oracle Spatial Java API Reference

Who Should Read This Book?

The primary audience for this book is application developers who are familiar with Oracle tech-
nologies and want to enhance their applications with spatial information. They typically know
about database design, PL/SQL, Java, and so on, but they do not know much (if anything) about
spatial data or geographical information systems.

The book will also appeal to the more general technical user of Oracle who is interested in the
advanced features of database technology. The book introduces the world of spatial information
gradually and guides the reader from the basic concepts to sophisticated analysis and case studies.
It has a hands-on style, with extensive examples and practical information.

The book should open up new application domains to developers and prompt them to incorpo-
rate spatial aspects to existing applications. However, the book should also attract GIS programmers
or users, if only because this is the first book that addresses Oracle Spatial in its entirety. In spite of its
title, this book does in fact cover the full spectrum of geospatial technologies at Oracle—that is, the

database (Oracle Spatial and Locator) and also Oracle Application Server (MapViewer and Router).
www.freepdf-books.com

XXix

http://www.oracle.com/technology/documentation
http://www.it-ebooks.info/

XXX

INTRODUCTION

If you're new to PL/SQL and database technology, then we suggest taking some time to get famil-
iar with the language and the main concepts of object-relational databases before tackling this book.
It's not intended for the total beginner. On the other hand, we do not assume any previous knowledge
of spatial information management.

Once you're up and running, we're certain that you'll find our book an invaluable guide for
creating robust spatially enhanced applications that perform well.

Copyrights and Disclaimer

Oracle is a registered trademark, and Oracle9i, 10g, 11g, Oracle iAS (Application Server), and Oracle
Spatial are trademarks of Oracle Corporation.

All other company and product names mentioned in the book are used for identification pur-
poses only and may be trademarks of their respective owners.

The data used in this book is provided exclusively to illustrate the concepts in this book and is
not authorized for use in any other way. The datasets cannot be transferred, changed, or modified in
full or in part without the written consent of the authors. In particular, we refer you to the End User
License Agreement for the sample data provided by NAVTEQ and used in this book. This agreement
is accessible at www.navteq.com/oracle-download/end_user_terms.pdf. By installing and using the
data provided with this book, you implicitly agree to the terms of this agreement.

The authors, the publishers, and the companies that originally sourced code and data cannot
be liable for any damages incurred by using the data shipped with this book. The authors and the
publishers do not guarantee that the data is complete, up to date, or accurate.

Most of the figures in the book were generated using Oracle MapViewer based on data from
NAVTEQ and DCW. The data is copyright of the respective owners.

www.freepdf-books.com

http://www.navteq.com/oracle-download/end_user_terms.pdf
http://www.it-ebooks.info/

Setting Up

-[) be able to work through all the content and examples of this book, you need to set up some
software and download some data and code. Specifically:
* You need to have Oracle Database 11g and Oracle Spatial installed and configured.

* You need to have Oracle MapViewer (part of Oracle Application Server) installed and config-
ured. The instructions for installing and configuring MapViewer are in Chapter 12.

* You need to download data and scripts for this book from the Apress website (www.apress.com).
The Oracle software (Database 11g, Application Server, and MapViewer) is available for download

from the Oracle Technology Network website at www.oracle.com/technology/products. Note that any
software you download from the Oracle Technology Network site is for evaluation purposes only.

Downloads

Data, code, and links to software are provided for this book in the Downloads section of the Apress
website (www.apress.com). Here you will find a compressed file that contains the following:
¢ An HTML file with a hierarchical folder structure that contain links to the following:
¢ The code and the examples shown in the book chapters
¢ The datasets used for these examples and described briefly
¢ The download areas of the software tools used in the book, such as OC4J

¢ The files containing the example code and the data files. You can access all files from the
hyperlinks in the HTML file.

¢ Areadme.txt file that contains all information needed to use this material.

Note Please read the readme. txt file. It contains the most relevant information regarding the code, data, and
links provided in support of this book. This information is not provided in the book itself.

Setting Up Oracle Spatial and MapViewer

If you already have a recent version of an Oracle database up and running, you most probably do
not need to do anything specific to set up Oracle Spatial. Oracle Spatial technology is automatically
installed with the Standard or Enterprise Edition of an Oracle database server. As long as you are
using version 10.1.0.2 or newer, you should be able to work through the examples in the book.

Note that the Database Server license includes only a few of the functions described in the book
(the so-called Locator suite). To be able to work through all examples and explore the entire func-
tionality of Oracle Spatial, you need to obtain a separate product license for the Spatial option.
Chapter 2 includes detailed information on how to set up Oracle Spatial for this book.

www.freepdf-books.com

XXXi

http://www.apress.com
http://www.oracle.com/technology/products
http://www.apress.com
http://www.it-ebooks.info/

XXXii

SETTING UP

MapViewer serves to create mapping applications. You can deploy MapViewer either within
a full Oracle Application Server environment or as a stand-alone installation of the Oracle Appli-
cation Server Containers for J2EE (OC4J). Both MapViewer and OC4]J are available for download
from the Oracle Technology Network website (see the links in the support material for this book).
The instructions to deploy MapViewer within Application Server are provided in Chapter 11, where
we use MapViewer for the first time.

The Example Data

Once you have your Oracle 11g database up and running, to run the examples in this book you first
need to do the following:

1. Create a user spatial with the password spatial.
2. Grant resource, connect, and unlimited tablespace privileges to the spatial user.

3. Create a tablespace called users, and make it the default tablespace for the spatial schema.
This tablespace should have at least 100MB of space.

For each chapter, you should re-create the spatial schema and import appropriate datasets listed
at the beginning of the chapter using the Oracle Import utility. Starting from Chapter 2, every chapter
that requires code or data to be downloaded from the Apress site will clearly specify this. You will find
a checklist of all data, scripts, and code that you need to download to be able to run the examples in the
chapter, as well as any particular operation that needs to be carried out to prepare for that.

We do not expect that you are using any specific tool for programming or for SQL, which means
you should be able to run all examples using your preferred tools.

The data used in the examples for this book comes from several sources. The detailed street-
level data is derived from a sample made available by NAVTEQ to Oracle users. (The original sample
is available for download at www.navteq.com/oracle-download.) This data includes detailed informa-
tion on San Francisco and Washington, D.C., as separate files. For the purposes of this book, we
merged the data and extracted a relevant subset.

The other sources of data are the U.S. Census Bureau and the GIS Data Depot. The GIS Data
Depot (http://data.geocomm.com) is a central distribution point for free and public domain data.

As noted, we provide the example data as a set of Oracle dump files, which you can import into
your database using the standard import (imp) tool. The following is a brief overview of what each
dump file contains.

app_data.dmp

Source: NAVTEQ

Size: 640KB

Tables: BRANCHES, CUSTOMERS, and COMPETITORS

Description: This file contains the definitions of our “application” tables: branches, customers, and
competitors.

app_data_with_loc.dmp

Source: NAVTEQ

Size: 640KB

Tables: BRANCHES, CUSTOMERS, and COMPETITORS

Description: This file is identical to the app_data.dmp file described earlier. The only difference is that
all the tables (branches, customers, and competitors) have an additional column called location of

type SDO_GEOMETRY to store the location of the corr?s ondjng entities.
www.freepdf-books.com

http://www.navteq.com/oracle-download
http://data.geocomm.com
http://www.it-ebooks.info/

SETTING UP

citybldgs.dmp

Source: Oracle synthetic data

Size: AMB

Tables: building footprints, city buildings, trip_route

Description: This file contains the three-dimensional structures of a few hypothetical buildings and
their two-dimensional footprints.

map_large.dmp

Source: Digital Chart of the World

Size: 34.2MB

Tables: US_STATES, US_COUNTIES, US_CITIES, US_INTERSTATES, US_PARKS, US RIVERS, WORLD CONTINENTS,
and WORLD_COUNTRIES

Description: This file contains the boundaries of states and counties in the United States, as well as
the locations of major cities, national parks, rivers, and interstates. It also contains the boundaries
of world continents and countries. In addition to the boundaries stored as SDO_GEOMETRY columns,
some of the tables have demographic information such as population density or area.

map_detailed.dmp

Source: NAVTEQ

Size: 3.1MB

Tables: MAP_MAJOR_HIGHWAYS, MAP_SEC_HIGHWAYS, MAP_MAJOR_ROADS, MAP_STREETS, MAP_PARKFACILITY
POINTS, and US_RESTAURANTS

Description: This file contains the detailed definition of streets for San Francisco and Washington, D.C.

gc.dmp

Source: NAVTEQ

Size: 9.2MB

Tables: GC_COUNTRY_PROFILE, GC_PARSER _PROFILEAFS, GC_PARSER PROFILES, GC_AREA US, GC_INTERSECTION
US, GC_POI_US, GC_POSTAL_CODE_US, GC_ROAD_SEGMENT _US, and GC_ROAD_US

Description: This file contains the geocoding data for two cities in the United States: Washington,
D.C,, and San Francisco.

net.dmp

Source: NAVTEQ

Size: 5.2MB

Tables: NET_LINKS_SF, NET_NODES_SF, and MY_NETWORK_ METADATA

Description: This file contains the description of the street network for San Francisco.

styles.dmp

Source: Oracle

Size: 400KB

Tables: MY_MAPS, MY _THEMES, and MY_STYLES

Description: This file contains a set of map, theme, and style definitions for use by MapViewer.

www.freepdf-books.com

XxXili

http://www.it-ebooks.info/

XXXiv SETTING UP

zip.dmp

Source: U.S. Census Bureau
Size: 24KB

Table: ZIP5 DC

Description: This file contains the boundaries of the zip codes areas in Washington, D.C., with some
attributes (area, perimeter, and population).

www.freepdf-books.com

http://www.it-ebooks.info/

PART 1

Overview

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 1

Spatial Information Management

Location is an inherent part of business data: organizations maintain customer address lists, own
property, ship goods from and to warehouses, manage transport flows among their workforce, and
perform many other activities. A majority of these activities entail managing locations of different
types of entities, including customers, property, goods, and employees. Those locations need not be
static—in fact, they may continually change over time. For instance, goods are manufactured, pack-
aged, and channeled to warehouses and retail/customer destinations. They may have different
locations at various stages of the distribution network.

Let’s consider an example of parcel services to illustrate how location is used. We have become
increasingly accustomed to monitoring the status of parcel deliveries on the Web by locating our
shipment within the distribution channel of our chosen service supplier. The simplicity and useful-
ness of this service is the result of a very complex underlying information system. The system relies
on the ability to locate the parcel as it moves across different stages of the distribution network.
Many information systems share location information in this process, which can be used to esti-
mate, for instance, transit or delivery times. Systems such as RFID! are used to automatically record
the movements of parcels along the distribution chain. Aircraft, trains, container ships, or trucks
that move goods between distribution hubs use systems such as Global Positioning System (GPS) to
locate their positions in real time. Even the “last mile”—that is, the delivery of an individual parcel
to the end customer—is based on the geographical optimization of the delivery schedule as well as
on the ability to locate the truck drivers in real time, to guide them to their destinations, and to esti-
mate delivery times.

All of this location information is stored, analyzed, and exchanged between multiple systems
and is the basis for making the entire operation cheaper, faster, and more reliable. Most of these sys-
tems are connected to each other through the Internet. The end user also uses the Internet to access
the system and to query the current status of his parcel. By analyzing the system in its entirety, you
can recognize that the added value is the result of the integration of various systems, of their inter-
operability, and of the pervasive role of spatial information across the entire process. Spatial information
plays a crucial role in enabling the systems and processes to run smoothly and efficiently.

This example illustrates the pervasiveness of location or spatial information in day-to-day business.
In fact, market research estimates that the majority of the data handled by organizations—perhaps as
much as 80 percent of all data—has a spatial dimension.? The ability to properly manage the “where,” or
the spatial information, is key to the efficiency of organizations and could translate to substantial costs
savings and commercial competitiveness. For instance, healthcare, telecommunications, and
local government organizations depend on spatial information to run their daily business. Other

1. RFID stands for Radio Frequency IDentification, a technology to exchange data between tags and readers
over a short range. See RFID Essentials (O'Reilly Media, 2006).

2. See Daratech Inc.’s analysis titled “Geographical Information Systems: Markets and Opportunities”
(www.daratech.com/research/index.php).

www.freepdf-books.com

http://www.daratech.com/research/index.php
http://www.it-ebooks.info/

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

organizations in the fields of retail, distribution, and marketing use spatial information for strategic
decision making—for example, choosing store locations, making investment decisions, examining mar-
ket segmentation, and supporting clients.

At one point in time, the Internet seemed to have made location irrelevant. The Web emerged
as a locationless cloud, where we could contact anybody around the world instantly and shop any-
where without the usual constraints of geography. It seemed that the worlds of transport, logistics,
and location received a critical blow. Of course, that thinking was naive. The Internet has made
geography even more relevant and has bound digital and physical worlds closer than ever. It is now
possible to do business over much farther distances, and tracking the locations of different compo-
nents of a business and analyzing them have become all the more important.

The emergence of wireless and location services promises to add location to every information
item that we use or process. Technologies such as RFID have the potential to radically alter the retail
and distribution worlds, making it possible to cheaply locate and track individual items, however
small they are. With these new developments, the relevance of location has grown, and this is why it
has become increasingly important to master the tools that handle spatial information.

Software tools for spatial information management have been traditionally known under the
name of Geographical Information Systems (GIS). These systems are specialized applications for
storing, processing, analyzing, and displaying spatial data. They have been used in a variety of
applications, such as land-use planning, geomarketing, logistics, distribution, network and utility
management, and transportation.® However, until recently GIS have employed specific spatial data
models and proprietary development languages, which held them separate from the main corpo-
rate databases. This has represented a barrier for the full deployment of the added value of spatial
data in organizations.

As the use of GIS in enterprises and in the public sector has grown in popularity, some of the
limitations of GIS have become apparent. Organizations often have to deal with multiple and incom-
patible standards for storing spatial data, and they have to use different languages and interfaces to
analyze the data. Furthermore, systems such as Customer Relationship Management (CRM) and
Enterprise Resource Planning (ERP) or the systems used in logistics increasingly rely on the integra-
tion of spatial information with all other types of information. This has often been an operational
and technical challenge that in some cases was solved by manually extracting information from one
system and loading it into another to perform the necessary spatial analysis.

Oracle Spatial has an important role in changing this situation. Once the spatial data is stored
in an Oracle database, it can be processed, retrieved, and related to all the other data stored in the
database: spatial information, or location, is just another attribute of a business object. This elimi-
nates both the need for coordinating multiple data sources because of an application’s dependence
on special data structures and using different languages to query the data. Relevant features of Oracle
Spatial are the ability to access spatial data through SQL statements, just like any other database
content, and support for industry standards for spatial information (SQL and Open Geospatial*).
Above all, Oracle Spatial facilitates leveraging the full added value of spatial information, which
becomes an integral part of the information assets of organizations.

Given this overview of what location information is and how it can be used, in this chapter we
will elaborate on the following topics:

3. For an introduction to GIS and its applications, see An Introduction to Geographical Information Systems,
Third Edition (Prentice Hall, 2006).

4. Seewww.opengeospatial.org.

www.freepdf-books.com

http://www.opengeospatial.org
http://www.it-ebooks.info/

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

* First, we describe how location information is used in different industry segments. Chances
are that this will relate to your application and give you a head start putting spatial informa-
tion to good use.

» Next, we describe different sources for spatial data. The data could be location information
from different applications, or it could be geographical data representing, for instance, polit-
ical boundaries.

* We then describe typical functionality required for managing spatial/location information.
This functionality involves storing and analyzing the spatial data. We look at a specific exam-
ple to illustrate the different components of such spatial processing.

* Finally, we discuss the systems that enable spatial information management, such as GIS,
and their evolution. We consider an out-of-the-box approach to spatial information and the
Oracle Spatial approach that integrates spatial data with other data in an Oracle database.
We elaborate on this comparison and highlight the benefits of using Oracle Spatial.

Using Spatial Information in Various Industries

Let’s now consider a simple business application example. The database for this application con-
tains data about available products (a Products table), customers (a Customers table), suppliers
(a Suppliers table), delivery sites (a Delivery table), and competitors (a Competitors table). The
tables for customers, suppliers, delivery sites, and competitors contain information on the location
of each item in the table. For instance, the Customers table contains the address of each customer
and also the x,y coordinates of the address.

Notice that only the address is usually known, but for many spatial analyses, such as the calcu-
lation of the distance between a customer’s location and delivery sites, you need to know the x,y
coordinates of this address. The conversion of address fields to x,y coordinates is one of the most
fundamental spatial operations described in this book, called geocoding. It serves to translate a text
string such as “Abbey Road, 3, London NW8” into something like “longitude = —0.1784; latitude =
51.5320,” which is the information used to relate spatial information items to each other.

With this information available, we might want to conduct valuable business analyses that can
help determine new marketing campaigns, opening of new stores, and discontinuation of poorly
located stores, as well as identify more efficient home-delivery schedules, changes in the stores’
product portfolios, and so on. Consider the following options:

* Identify customers that are close to a competitor store (say less than 5 kilometers). To pre-
vent them from switching stores, you could design a specific marketing campaign proposing
special discounts for these customers.

¢ Optimize the distribution network. By counting the number of customers who are located
within a certain distance from a distribution center, you could see whether some centers are
overloaded or underutilized. This may lead to a redesign of the distribution network.

¢ Identify routes from delivery sites to customer locations, and cluster goods in such a way
that the same delivery can serve multiple customers and save money. Note that this analysis
requires additional data, such as the road network.

» Superimpose the location of stores on a population map, and check whether the store loca-
tions are appropriate. If some areas are underserved, this would alert you to opportunities
for new outlets. Note that additional demographic data is often useful for this analysis.

e Visualize table data and analysis results as maps (such as customer maps, delivery site maps, and
so on) and produce rich visual material better suited for communication and decision making.

* Integrate these maps with existing applications, such as a CRM system, so that location

information and analysis can promote effective customer relations.
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

To perform these types of analyses, you need to store location information for customers,
delivery sites, and competitors. In practice, this will mean augmenting the corresponding tables
with additional columns for storing location information. You also need to store additional infor-
mation, such as street networks, rivers, city and state boundaries, and so on, to use in visualization
and analysis.

The preceding analyses are representative of a vast class of uses for spatial information. The
following list summarizes some of the main uses of spatial data, analysis, and visualization in vari-
ous industries:

Banking and finance: These industries use location data for analysis of retail networks and
for market intelligence. The customer database combined with demographics and wealth
information helps banks define an optimal retail network and define the best product mix to
offer at each branch.

Telecommunications: Location analysis helps telecom operators and carriers improve their
competitive position. Spatial data is used for network planning, site location, maintenance
organization, call-center and customer support, marketing, and engineering.

Local and central government: Spatial information is heavily used by all government agen-
cies, since they manage a multitude of assets distributed over large territories. Uses include
natural resource management or land-use planning, road maintenance, housing stock mainte-
nance, emergency management, and social services.

Law Enforcement: Spatial information helps officers in operational duties, as well as in crime
analysis and prevention. Location information is used by field officers to locate places and
other resources in the field in real time. Investigators use spatial data for crime analysis.
Spatial patterns of crime are used to better locate police resources and improve prevention.

Real estate and property management: Geographic data and demographics are used to iden-
tify and assess locations for outlets, housing, or facilities. Land-use, transport, and utility
networks are used to site industrial and production facilities.

Retail: Location data serves as a basis for operational and strategic decisions. It can be used
to identify the profile of the best customers and help reach similar prospects. Spatial data
can increase the relevance and focus of marketing campaigns and find the best layout of
a distribution network for maximum profit.

Utilities: Many different utility systems can be found under almost every street. Utility com-
panies use spatial information to design these underground systems, plan and monitor
groundwork, and maintain their cable and pipe networks.

Communications, media, and advertising: Location data are frequently used for increasing
the return of communications campaigns. Segmentation and location-based targeting help
companies finesse the timing and appropriateness of marketing campaigns, thereby increas-
ing their expectation of success.

Wireless data services: Wireless data services increasingly use location data to enrich the user
experience and provide valuable services. Uses include personal navigation systems, friend
finders, roadside emergency, location-based yellow page searches, and the like. Wireless
location services are necessary for fast returns on investments made on third-generation
telecom networks.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

Sources of Spatial Data

In the previous section we described the uses of spatial information in applications and in various
industries, and we introduced the distinction between application data and spatial data. The simplest
example is that of address lists collected as text items and subsequently enhanced by associating
geographical (longitude, latitude) coordinates to each address. This association makes it possible to
analyze the address information from the spatial perspective, an otherwise impossible operation
based on the original address list.

In general, the association between nonspatial objects and their corresponding geometry makes
it possible to relate the objects based on spatial concepts (close, far, overlap, joined, and so on). Very
often the tables derive their spatial dimension from some primarily spatial data sources. In the case
of address geocoding, for instance, postal data provides the locations of individual addresses in the
form of a reference address list with the associated coordinates.

This is only one of the multitudes of spatial datasets and sources used in practice. Some datasets,
such as cadastral data, land-use data, road network data, administrative boundary data, rivers and
lakes data, and so on, are almost always present in spatial analysis and visualization. This data is
collected, updated, and distributed by public bodies or by companies (the latter is the case, for
instance, for the road networks for car navigation). All these datasets are first of all spatial, because
the geographic component of the data content defines the usefulness and relevance of the entire
dataset, and they are often used as reference layers.

The vast majority of these datasets are dynamic, at least to some extent. However, there are several
cases in which the reason for using spatial data is specifically because of their dynamics. For example,
use of real-time location is increasingly common, thanks to the widespread use of GPS and the growing
use of location systems such as Wi-Fi location or RFID tagging, to locate people or objects.

GPS receivers can be located with high accuracy and can feed a database with the real-time
location of a moving person/object (a field engineer, a car, a truck, a container, and so on). Note
that there are also many commercial GPS applications, such as car navigators, that use real-time
location within closed applications that support a specific purpose (such as door-to-door naviga-
tion) without connection to corporate data infrastructures. However, in most cases, it is the ability
to feed the enterprise databases with the location of the mobile users or assets of an organization
that allows planning, scheduling, and logistics improvements.

This is increasingly becoming the case in the retail and distribution industries, where the use of
RFID, instead of bar codes, makes it possible to track vast amounts of goods automatically while they
travel through the distribution chain from supplier to end user. RFID tagging can be implemented
at the level of single items, products, or even documents. With RFID, goods can be followed precisely—
for instance, within a warehouse—and this information can be used to minimize inventory, optimize
supply schedules, and create a unique opportunity to link logistics with administrative, CRM, and
ERP systems. It is likely that these areas, often referred to as location-based or sensor-based systems
and services, will stimulate a rapid increase in the use of spatial information in the near future.

Managing and Analyzing Spatial Data

In this section, we will examine how to manage spatial data and what the typical analysis functions
on spatial data are. Note that a variety of spatial processing systems such as GIS and spatial-enabled
databases can provide this functionality using their own types and functions. We first describe
spatial processing using generic terminology without referring to any specific solution (such as
Oracle Spatial).

www.freepdf-books.com

http://www.it-ebooks.info/

8

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

Spatial operations typically include, but are not limited to, the following:

* Storage of spatial data: In most cases, this involves the following:

¢ Storing the data in an appropriate form in the database. For instance, the database sys-
tem could have a geometry type to store spatial information as points, lines, polygons,
and other types of vector representations. The system may also have a network type for
modeling road networks.’

¢ Inserting, deleting, and updating these types of spatial data in the database.
* Analysis of vector spatial data: This typically includes the following analysis functionality:

e Within-distance: This operation identifies all spatial data within a specified distance of
a query location.

» Contains: This operation identifies all spatial data that contain a specified query loca-
tion (geometry). Functions to detect other types of relationships may also be defined.

* Nearest-neighbor: This operation identifies all spatial data closest to a query location.
* Distance: This operation computes the distance between two spatial objects.

* Buffer: This operation constructs buffer zones around spatial data.

* Overlay: This operation overlays different layers of spatial data.

e Visualization: This operation presents spatial data using maps.

* Analysis of network data: Typically, most spatial data, such as road networks, can also be rep-
resented as network data (in addition to vector data). We can perform the preceding analysis
on such data using network proximity rather than spatial proximity.

The subjects of spatial analysis and management have filled dozens of books and hundreds of
university courses. Our goal here is not to repeat all this—the references at the end of this chapter
will provide you with a good background on these topics. Here, we will illustrate spatial analysis and
management by describing how you can apply them to solve a common problem in the retail industry:
site selection.

The consideration of location in Figure 1-1 streamlines the selection of candidate sites for
a shopping mall. The process involves limiting the choice to those locations that are the following:

¢ Included in areas where construction is allowed
¢ On sale and of a suitable size
¢ Not exposed to natural risks, such as floods

* Close to main roads to ensure good accessibility

5. Oracle Spatial includes an additional data type called raster, which is used for images and grid data. We cover
raster data and the raster data model in Appendix

WWW. eeplc)jf-books.com

http://www.it-ebooks.info/

M1

1-Select
commercial
areas

M5

5-Select
large sites in
commercial
areas

CHAPTER 1

M2

SPATIAL INFORMATION MANAGEMENT

M3

2-Select
large
sites

|

M6

M4

3-Identify
flood areas

4-Select
major
roads

M7 M8

K

N\

]
, 6-ldentify
¢ high-accessibility
7-Select sites areas
M9 outside of flood M10
areas
N
% 7
O
]
A
M11
: 8-Select
candidate
sites
M12

N7

Figure 1-1. Spatial data and spatial analysis for choosing a site for a shopping mall

For the selection of suitable sites, we use spatial information and spatial analysis. To keep the

example simple, however, we ignore demographic issues.
The main steps of the analysis are as follows:

1. From the land-use map (provided by a public organization), we first select areas for which
we can obtain permits to build commercial sites. These areas are labeled as “commercial”

and denote sites where new commercial activities can be located.

2. From a map that contains sites for sale (provided by a large real-estate agency), we restrict

the choice to sites that are sufficiently large for a shopping mall.

3. On the basis of a risk map, which indicates safety buffer areas around rivers, we eliminate

those sites that may be subject to floods.

4. Finally, of the remaining sites, only those close to main roads are deemed suitable for acces-
sibility reasons.

www.freepdf-books.com

http://www.it-ebooks.info/

10

CHAPTER 1

SPATIAL INFORMATION MANAGEMENT

Figure 1-1 shows the sequence of steps, the data used, and the spatial operations involved in
this process. Note that the maps are numbered M1-M12 and the steps are numbered 1-8.

The combination of the first two steps leads to five candidate sites. One of them is excluded
because of high flood risk, and two additional ones are excluded because they are located too far
away from the main roads. This narrows the results to two suitable candidate sites.

Table 1-1 details the steps in this process. Note that the usual way of representing the data used
in this example is through maps, as in Figure 1-1. Note also that the description can be easily trans-
lated into database and SQL terms. The various “maps” correspond to one or more database tables.
The data objects (points, polygons, lines, grids, and so on) and their attributes are table records, while
the analysis is performed with SQL statements. It is clear that some SQL extensions are needed to
handle spatial and nonspatial objects simultaneously. The rest of this book will essentially deal with
the models and tools available in Oracle Spatial for storing and processing this type of data for types

of analysis like this one.

Table 1-1. Steps, Data, and Analysis for Choosing a Site for a Shopping Mall

Step

Data

Analysis

Result

1. Select commercial
areas.

2. Select large sites.

3. Identify flood areas.

4. Select major roads.

5. Select large sites in
commercial areas.

6. Identify high-
accessibility zones.

7. Select sites outside
of flood areas.

8. Select candidate
sites.

M1: Land use map.
Collection of polygons,
described by an attribute
“land-use type.”

M2: Sites for sale.
Locations described by
price, plot size, etc.

M3: River map.

M4: Road network map.
Road segment attributes
are “road type,” “max
speed,” etc.

M5 and M6.

Ma8.

M9 and M7.

M10 and M11.

Select polygons
where the attribute
is “commercial.”

Select points where
the size is larger
than a certain value.

Create a buffer
around the riverbed
(e.g., 1 km) thatis at
risk of floods.

Select road
segments where the
attribute is “major
roads.”

Overlay M5 and M6.

Select “large” points
within “commercial”
polygons.

Create a buffer of
500 meters on each
side of a major road.

Overlay M9 and M7,
and eliminate sites
in the flood areas.

Select safe sites
within high-
accessibility zones.

M5: Commercial

areas. A set of

polygons with the
“commercial” attribute.

M6: Large sites. A
selection of points
corresponding to large
sites for sale.

M?7: Flood risk areas.

M8: Major roads.

MO9: A selection of
points corresponding
to large sites within
commercial areas.

M10: High
accessibility zones.

M11: Points
corresponding to large
siteswithin commercial
areas not subject to
flood risks.

M12: Large sites in
commercial areas
that are not subject to
floods and are highly
accessible.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

For simplicity, in the example we have assumed that a new map is created at the end of every
step. This is certainly a possibility, but it is not necessarily the best option. Later in this book, we will
discuss data modeling and how to optimize the sequence of operations. In particular, Chapters 8
and 9 cover spatial operators and functions that make it possible to cluster some of the steps in the
example into single queries, making the process much simpler and more efficient.

Storing Spatial Data in a Database
Looking at vector data, we usually distinguish between the following:
* Points (for example, the plots for sale in Figure 1-1), whose spatial description requires only
x,y coordinates (or x,y,z if 3D is considered)

* Lines (for example, roads), whose spatial description requires a start coordinate, an end
coordinate, and a certain number of intermediate coordinates

* Polygons (for example, a residential area), which are described by closed lines

Figure 1-2 shows an example containing point, line, and polygon data. The figure corresponds
to a small portion of the area used in the previous site selection example. The vector representation,
here simplified for convenience, shows a point (the stadium), three lines (the roads), and four poly-
gons (the built-up areas, clipped at the picture borders, and the sports complex).

Built Up (North Quarter)

Built Up
(South Quarter)

Figure 1-2. Vector representation of the spatial objects in the picture

The vector data in Figure 1-2 could be stored in one or multiple tables. The most natural way of
looking at this data is to identify data layers—sets of data that share common attributes—that become
data tables. Most spatial databases use a special data type to store spatial data in a database. Let’s
refer to this type as the geometry. Users can add columns of type geometry to a database table in
order to store spatial objects.

www.freepdf-books.com

http://www.it-ebooks.info/

12

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

In this case, the choice of tables would be rather simple with three main data layers present:
“Road infrastructures,” “Land use,” and “Points of interest.” These three layers contain objects that
share common attributes, as shown in the three tables later in this section. The same objects could
have been aggregated into different data layers, if desired. For instance, we could have stored major
and minor roads in different tables, or we could have put roads and land use in the same table. The
latter would make sense if the only attributes of relevance for roads and land-use areas were the same,
for instance, the province name and the city name. It is also worth stressing that every geometry
column can contain any mix of valid spatial object (points, lines, polygons) and also that every table
can contain one or more geometry columns.

Structuring spatial data into tables and defining the right table structure are the first logical
activities of any spatial analysis. Fortunately, in most cases there is an intuitive correspondence
between the data and the table structure used to store them. However, in several cases you may find
that the spatial database design can be a complex activity. Proper designs may facilitate analysis
enormously, while poor data structures may make the analysis complex and slow. These issues are
addressed in various places in the book but in particular in Chapter 3.

Table 1-2 shows the road infrastructure table of Figure 1-2. This table contains three records
corresponding to the east road, the west road, and the stadium road. All of them are represented as
lines using the geometry type. Each road is described by three types of attributes: the road type (one
column containing either “major,” “local,” or “access” road), the road name (a column containing
the name of the road as used in postal addresses), and the area attributes (two columns containing
the name of the province and city where the road is located).

Table 1-2. Road Infrastructure Table

ID Province City Road Name Road Type Road Geometry
1 Province name Cityname West road Major road
2 Province name City name East road Major road
3 Province name City name Stadium road Access road N
X
\\\

Table 1-3 shows the land-use table. It contains three records corresponding to the north quarter,
the south quarter, and the sports complex. In this case, all spatial objects are polygons. Each object
has three types of attributes: the surface of the area (in square meters), the name of the area, and
the area location (province and city names).

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

Table 1-3. Land Use Table

Surface (Square
ID Province City Area Name Meters) Area Geometry
1 Province name City name North quarter 10,000
2 Province name City name South quarter 24,000
3 Province name City name Sports complex 4,000

Table 1-4 shows the points of interest (POI) in the area. It contains two records: a point (in this
case, the center of the stadium complex) and a polygon (in this case, the contour of the stadium
complex). Attributes include the type of POI from a classification list, the POI name, and the
province and city where they are located.

Table 1-4. Points of Interest Table

ID Province City POI Name Type of POI POI Geometry
1 Province name City name Olympic Sports PY
stadium location
2 Province name City name Olympic Sports
stadium infrastructure

In the Table 1-4, we use two records to describe the same object with two different geometries.
Another option for storing the same information is presented in Table 1-5, where we use two columns of
type geometry to store two different spatial features of the same object. The first geometry column
stores the POI location, while the second stores the outline of the complex. Under the assumption
that all other nonspatial attributes are the same, Table 1-5 is a more efficient use of table space than
Table 1-4.

Table 1-5. Points of Interest Table: Two Geometry Columns

Location (POI) Infrastructure

ID Province City POl Name Geometry Geometry
1 Province name City name Olympic PY
stadium

www.freepdf-books.com

13

http://www.it-ebooks.info/

14

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

The objects in the preceding tables are represented with different line styles and fill patterns.
This information is added for clarity, but in practice it is not stored in the geometry object. In Oracle
Spatial, the geometry data are physically stored in a specific way (which we will describe in Chapters 3
and 4) that does not have a direct relationship to the visual representation of the data. Chapter 12,
which describes the Oracle Application Server MapViewer, shows how symbology and styling rules
are used for rendering geometry instances in Oracle.

Geometry models in the SQL/MM and Open Geospatial (OGC) specifications describe in detail
the technical features of the geometry type and how points, lines, and polygons are modeled using
this type.

Spatial Analysis
Once data is stored in the appropriate form in a database, spatial analysis makes it possible to
derive meaningful information from it. Let’s return to the site selection example and look again at
the three types of spatial operations that we used:
e Select, used in the following:
¢ Step 1 (to select areas where the attribute was a certain value)
* Step 2 (to select large sites from the sites for sale)
¢ Step 4 (to select major roads from the road network)
* OQverlay, used in the following:
¢ Step 5 (large sites in commercial areas)
* Step 7 (sites away from risk areas)
¢ Step 8 (sites within highly accessible areas)

* Buffer, used in the following:

 Step 3 (areas subject to flood risk)
¢ Step 6 (high accessibility areas)

Returning to our example, assuming we have the data stored in a database, we can use the follow-
ing eight pseudo-SQL statements to perform the eight operations listed previously. Please note that for
the sake of the example, we have assumed certain table structures and column names. For instance, we
have assumed that M1 contains the columns LAND_USE_TYPE, AREA_NAME, and AREA_GEOMETRY.

1. Use

SELECT AREA_NAME, AREA_GEOMETRY
FROM M1
WHERE LAND USE_TYPE='COMMERCIAL'

to identify available plots of land for which a construction permit can be obtained for
a shopping mall.

2. Use

SELECT SITE_NAME, SITE_GEOMETRY
FROM M2
WHERE SITE_PLOT_AREA > <some value>

to identify available sites whose size is larger than a certain value.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

3. Use

SELECT BUFFER(RIVER_GEOMETRY, 1, ‘'unit=km')
FROM M3
WHERE RIVER _NAME= <river in question>

to create a buffer of 1 kilometer around the named river.

4. Use

SELECT ROAD_NAME, ROAD_GEOMETRY
FROM M4
WHERE ROAD_TYPE='MAJOR ROAD'

to identify major roads.

5. Use the contains operator to identify the sites selected in step 2 that are within areas
selected in step 1. You could also achieve this in one step starting directly from M1 and M2:

SELECT SITE NAME, SITE_GEOMETRY

FROM M2 S, M1 L

WHERE CONTAINS(L.AREA GEOMETRY, S.SITE GEOMETRY)='TRUE'
AND L.LAND USE_TYPE= 'COMMERCIAL'
AND S.SITE_AREA > <some value>;.

6. Asin step 3, use the buffer function to create a buffer of a certain size around the major
roads.

7. Use contains to identify sites selected in step 5 that are outside the flood-prone areas identi-
fied in step 3.

8. Use contains to identify safe sites selected in step 7 that are within the zones of easy accessi-
bility created in step 6.

Oracle Spatial contains a much wider spectrum of SQL operators and functions (see Chapters 8
and 9). As you might also suspect, the preceding list of steps and choice of operators is not optimal.
By redesigning the query structures, changing operators, and nesting queries, it is possible to drasti-
cally reduce the number of intermediate tables and the queries. M11, for instance, could be created
starting from M9 and M3 directly by using the nearest-neighbor and distance operations together.
They would select the nearest neighbor and verify whether the distance is larger than a certain value.

Benefits of Oracle Spatial

The functionality described in the previous section has been the main bread and butter for GIS for
decades. In the past five to ten years, database vendors such as Oracle have also moved into this
space. Specifically, Oracle introduced the Oracle Spatial suite of technology to support spatial pro-
cessing inside an Oracle database.

Since GIS have been around for several years, you may wonder why Oracle has introduced yet
another tool for carrying out the same operations. After all, we can already do spatial analysis with
existing tools.

The answer lies in the evolution of spatial information technology and in the role of spatial
data in mainstream IT solutions. GIS have extensive capabilities for spatial analysis, but they have
historically developed as stand-alone information systems. Most systems still employ some form of
dual architecture, with some data storage dedicated to spatial objects (usually based on proprietary
formats) and some for their attributes (usually a database). This choice was legitimate when main-
stream databases were unable to efficiently handle the spatial data. However, it has resulted in the

proliferation of proprietary data Wsﬁl&éﬁawﬁ&a%%&me spatial information industry.

15

http://www.it-ebooks.info/

16

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

Undesired consequences were the isolation of GIS from mainstream IT and the creation of automa-
tion islands dedicated to spatial processing, frequently disconnected from the central IT function of
organizations. Although the capabilities of GIS are now very impressive, spatial data may still be
underutilized, inaccessible, or not shared.

Two main developments have changed this situation: the introduction of open standards for
spatial data and the availability of Oracle Spatial. Two of the most relevant open standards are the
Open Geospatial Simple Feature Specification® and SQL/MM Part 3.” The purpose of these specifi-
cations is to define a standard SQL schema that supports the storage, retrieval, query, and update of
spatial data via an application programming interface (API). Through these mechanisms, any other
Open Geospatial-compliant or SQL/MM-compliant system can retrieve data from a database based
on the specifications. Oracle Spatial provides an implementation for these standards® and offers
a simple and effective way of storing and analyzing spatial data from within the same database used
for any other data type.

The combination of these two developments means that spatial data can be processed, retrieved,
and related to all other data stored in corporate databases and across multiple sources. This removed
the isolation of spatial data from the mainstream information processes of an organization. It is now
easy to add location intelligence to applications, to relate location with other information, and to
manage all information assets in the same way. Figures 1-3 and 1-4 summarize this paradigm shift.

Figure 1-3 illustrates the industrywide shift from monolithic/proprietary GIS to open, univer-
sal, spatially enabled architectures.

>

Application Application Application
Proprietary Open
APIs APIs \ i
Monolithic + + ,ﬁ +
GIS Spatial Database

| Application Services |

Middleware
Proprietary + * A *
Databasg Universal
or Genetic Traditional Server(s)
DBMS DBMS (Spatially
Connection Enabled)

Source: UNIGIS-UNIPHORM project

Figure 1-3. From monolithic/proprietary GIS to universal, spatially enabled servers (Source:
UNIGIS-UNIPHORM project. See waw.unigis.org)

Figure 1-4 emphasizes the shift from geo-centric processing to information-centric processing,
where the added value is not in the sophistication of the spatial analysis but in the benefits it deliv-
ers. Traditional geoinformation management tools emphasize geodata processing while separating
geodata storage from attribute data storage (see the emphasis on Geography in “Gis” in the figure).

6. Seewww.opengeospatial.org for information on approved standards, for an overview of ongoing standardiza-
tion initiatives for spatial information data and systems, and for an up-to-date list of compliant products.

7. SeeISO/IEC 13249-3:2003, “Information technology - Database languages - SQL multimedia and application
packages - Part 3: Spatial” (www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail ?CSNUMBER=31369).

8. The ST _CGeometry of Oracle Spatial is fully compliant with the OGC Simple Feature specification for the object model.
www.freepdf-books.com

http://www.unigis.org
http://www.opengeospatial.org
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369
http://www.it-ebooks.info/

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

Oracle Spatial makes it possible to process geodata within the same information platform used for
all other data types (see the emphasis on Information Systems in “gIS” in the figure).

| Tel. no Sales per year Status
Gis A 76-4567891 545,000 units Partner
Spatial Database Attributes of Customers
gls | Tel.no Sales per year Status [Location

A 76-4567891 545,000 units Partner

Customers Database

Figure 1-4. From Gis to gIS

The benefits of using Oracle Spatial can be summarized as follows:

* It eliminates the need for dual architectures, because all data can be stored in the same way.
A unified data storage means that all types of data (text, maps, and multimedia) are stored
together, instead of each type being stored separately.

¢ Ttuses SQL, a standard language for accessing relational databases, thus removing the need
for specific languages to handle spatial data.

It defines the SDO_GEOMETRY data type, which is essentially equivalent to the spatial types in
the OGC and SQL/MM standards.

e Ttimplements SQL/MM “well-known” formats for specifying spatial data. This implies that
any solution that adheres to the SQL/MM specifications can easily store the data in Oracle
Spatial, and vice versa, without the need for third-party converters.

e TItis the de facto standard for storing and accessing data in Oracle and is fully supported by
the world’s leading geospatial data, tools, and applications vendors, including NAVTEQ, Tele
Atlas, Digital Globe, 1Spatial, Autodesk, Bentley, eSpatial, ESRI, GE Energy/Smallworld,
Intergraph, Leica Geosystems, Manifold, PCI Geomatics, Pitney/Bowes/MaplInfo, Safe Soft-
ware, Skyline, and many others.?

* Tt provides scalability, integrity, security, recoverability, and advanced user management fea-
tures for handling spatial data that are the norm in Oracle databases but are not necessarily
so in other spatial management tools.

¢ Tt removes the need for separate organizations to maintain a spatial data infrastructure
(hardware, software, support, and so on), and it eliminates the need for specific tools and
skills for operating spatial data.

¢ Through the application server, it allows almost any application to benefit from the availabil-
ity of spatial information and intelligence, reducing the costs and complexity of spatial
applications.

9. For alist of partners, visit http://otn.oracle.com/products/spatial/index.html, and click the Partners link

(in the Oracle Spatial and Locator Resources sectio:
P WWW reepaf-books.com

17

http://otn.oracle.com/products/spatial/index.html
http://www.it-ebooks.info/

18

CHAPTER 1 = SPATIAL INFORMATION MANAGEMENT

¢ Itintroduces the benefits of grid computing to spatial databases. For large organizations that
manage very large data assets, such as clearinghouses, cadastres, or utilities, the flexibility
and scalability of the grid can mean substantial cost savings and easier maintenance of the
database structures.

 Ttintroduces powerful visualization of spatial data, eliminating the need to rely on separate
visualization tools for many applications.

Summary

This first chapter provided an introduction to spatial information management, its importance in busi-
ness applications, and how it can be implemented in practice. The example of situating a shopping
mall illustrated the relationship between the logical operations necessary to make a proper choice and
the spatial data and analysis tools that can be used to support it.

After describing the example, we discussed how database vendors such as Oracle enable spatial
functionality. We enumerated the benefits of a database approach, specifically that of Oracle Spatial. We
observed that the most basic and essential feature of Oracle Spatial is that of eliminating the separation
between spatial and nonspatial information in a database. This separation was mainly the result of
technology choices and technology limitations, but it does not have any conceptual ground or practical
justification. On the contrary, all evidence points toward the need to integrate spatial and nonspatial
information to be able to use the spatial dimension in business operations and decision making.

We have also made the explicit choice of emphasizing the relevance of adding the spatial dimen-
sion to mainstream database technology, thereby introducing spatial information starting from the
database. A GIS specialist, a geographer, or an urban planner would have probably described the same
examples with a different emphasis—for instance, highlighting the features and specific nature of spa-
tial data and analysis. This would have been a perfectly legitimate standpoint and is one very common
in literature and well served by the selected titles in the “References” section.

In the next chapter, we will give a brief overview of the functionality of Oracle Spatial. The sub-
sequent chapters in the book present an in-depth tour of the different features and functionality of
Oracle Spatial and how you can implement them in applications.

References
Glover and Bhatt, RFID Essentials, Cambridge: O'Reilly Media, 2006.

Grimshaw, David J. Bringing Geographical Information Systems into Business, Second Edition. New
York: John Wiley & Sons, 1999.

Haining, Robert. Spatial Data Analysis: Theory and Practice. Cambridge: Cambridge University Press,
2003.

Heywood, Ian, Sarah Cornelius, and Steve Carver. An Introduction to Geographical Information
Systems. New Jersey: Prentice Hall, 2006.

Korte, George B. The GIS Book, 5th Edition. Clifton Park, NY: OnWord Press, 2000.

Longley, Paul A., Michael E Goodchild, David J. Maguire, and David W. Rhind, eds. Geographical
Information Systems and Science. New York: John Wiley & Sons, 2005.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 2

Overview of Oracle Spatial

To run the examples in this chapter, you need to load three datasets in the spatial
schema as follows. Please refer to the introduction for instructions on creating the spatial
schema and other setup details.

imp spatial/spatial file=gc.dmp ignore=y full=y

imp spatial/spatial file=map_large.dmp tables=us_interstates

imp spatial/spatial file=map detailed.dmp tables=us restaurants

In Chapter 1, you observed that spatial information can add value to a range of applications. You
examined the benefits of storing spatial information with other data in the database.

The Spatial technology suite in Oracle enables storage of spatial data in the database and facili-
tates different types of analyses on spatial data. This chapter provides an overview of the Spatial
technology suite and covers the following topics:

¢ An overview of the Oracle Spatial architecture and technology.

* An examination of the functionality of different components of this Spatial technology
suite in Oracle. This includes a brief introduction to the data type that stores spatial data
(SDO_GEOMETRY), the query predicates for performing spatial query and analysis, and addi-
tional functionality to perform visualization.

* A description of how this functionality is packaged into different products that are shipped
with different editions of Oracle software. We will discuss the relative merits of each product
in turn.

* What to expect in a typical install of Oracle Spatial. This knowledge should get you off to
a smooth start in spatially enabling your application.

Technology and Architecture Overview

Oracle Spatial technology is spread across two tiers: the Database Server and the Application Server.
Figure 2-1 depicts the various components that comprise Oracle’s Spatial technology stack and indi-
cates the distribution of the components across the Database Server and Application Server tiers.
Basic components that are provided as part of Oracle Database Server 11ginclude the storage model,
query and analysis tools, and location-enabling/loading utilities. The MapViewer component is
provided in Oracle Application Server 10g.

www.freepdf-books.com

19

http://www.it-ebooks.info/

20 CHAPTER 2

Visualization

Location Enabling

Data Model

Query and Analysis

Advanced Spatial
Engine

OVERVIEW OF ORACLE SPATIAL

Third-Party Tools/
Applications

Map Cache FOI \
Server Server

MapViewer
Rendering
Engine

Oracle Application
Server 11g

2

SQL, 0ocl, JDBC, ...

Interfaces

Oracle Database 11g

Oracle Utilites

Geocoder

D

Y

Styles, Maps, ...

T
-

[SDO_GEOMETRY Type

Spatial
Column

Other
Columns

i

Referencing IG;‘::Y:'
System g

A
Index Engine Geometry . '
Query Operators Engine Object-Relational Table
Routmg Linear (Typology, GeoRaster Types]

Network
Data Model

Topological
Data Model

\

Figure 2-1. Oracle Spatial technology components

The basic components from Figure 2-1 can be described as follows:

/

* Data model: Oracle Spatial uses a SQL data type, SDO_GEOMETRY, to store spatial data in an
Oracle database. Users can define tables containing columns of type SDO_GEOMETRY to store
the locations of customers, stores, restaurants, and so on, or the locations and spatial extents

of geographic entities such as roads, interstates, parks, and land parcels. We describe this
data type in detail in Chapter 4.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 2 " OVERVIEW OF ORACLE SPATIAL

* Location-enabling: Users can add SDO_GEOMETRY columns to application tables. We describe
this process in detail in Chapter 3. Users can populate the tables with SDO_GEOMETRY data
using standard Oracle utilities such as SQL*Loader, Import, and Export. We describe this
process in Chapter 5. Alternatively, users can convert implicit spatial information, such as
street addresses, into SDO_GEOMETRY columns using the geocoder component of Oracle Spatial,
as described in Chapter 6.

* Spatial query and analysis: Users can query and manipulate the SDO_GEOMETRY data using the
query and analysis component, comprising the Index Engine and Geometry Engine. We give
full details of this process in Chapters 8 and 9.

* Advanced Spatial Engine: This component comprises several components that cater to
sophisticated spatial applications, such as Geographical Information Systems (GIS) and
bioinformatics. This includes the network analysis and the Routing Engine, which are cov-
ered in detail in Chapters 10 and 11. The Advanced Spatial Engine also consists of other
specialized components such as the GeoRaster that allows storage of spatial objects using
images (groups of pixels) rather than points, lines, and vertices. We cover these components
in Appendixes A through E.

e Visualization: The Application Server components of Oracle’s Spatial technology include the
means to visualize spatial data via the MapViewer tool. MapViewer renders the spatial data
that is stored in SDO_GEOMETRY columns of Oracle tables as displayable maps. In recent releases,
Oracle also provides the Oracle Maps suite of technologies to enhance the functionality of
the MapViewer. The Oracle Maps suite enables fast map-browsing experience using a map
cache server that pregenerates and caches image tiles for a map and a feature-of-interest
(FOI) server that renders dynamic application content using a combination of images and
geometric themes. We describe these features in detail in Chapters 12 and 13.

In Figure 2-1, observe that third-party tools can access spatial data through the Application
Server, directly from the database using SQL, or via programmatic interfaces such as OCI and JDBC.
We describe how to program with spatial data via these APIs in Chapter 7. Recent additions to the
list of interfaces to Oracle Spatial are the Spatial Web Services. Using the Spatial Web Services infra-
structure, users can perform the following spatial functions: geocoding, routing, and feature selection
using spatial and nonspatial predicates. Spatial Web Services will not be covered in much detail in
this book, but you can find all necessary information in the Oracle Spatial User’s Guide.

Note The core subset of this functionality (known as the Locator component) is included for free in all editions
of the database (essentially, the SDO_GEOMETRY data type and the Index Engine). The rest of the components, along
with the data type and the Index Engine, are packaged in a priced option of the Enterprise Edition of the database
(known as the Spatial option). We discuss this in more detail later in this chapter.

In the following sections, we'll preview these components and introduce you to some (very
basic) SQL to create a table that stores spatial data, to populate that data, and to perform simple
proximity analysis. We cover all of these topics in full detail in subsequent chapters, as described
previously, but this should serve as a useful introduction to the technology and help you to get
started.

www.freepdf-books.com

21

http://www.it-ebooks.info/

22

CHAPTER 2 © OVERVIEW OF ORACLE SPATIAL

Getting Started with Oracle Spatial

Oracle Spatial technology is automatically installed with the Standard or Enterprise Edition of an
Oracle database server. So, as long as you have one of these editions of version 10.1.0.2 or newer,
you should be able to work through the simple examples in the coming sections. If you encounter
any problems, you can refer to the “What to Expect in an Oracle Spatial Install” section later in this
chapter. Note that the Database Server license includes only a few of the functions described in this
section. To use the rest of the functionality, you should obtain a separate product license for the
Spatial option.

Data Model: Storing Spatial Data

In Chapter 1, we briefly discussed the idea that spatial information is specified using two compo-
nents: a location with respect to some origin and a geometric shape.

* Location specifies where the data is located with respect to a two-, three-, or four-dimensional
coordinate space. For instance, the center of San Francisco is located at coordinates (-122.436,
37.719) in the two-dimensional “latitude, longitude” space.

» Shape specifies the geometric structure of the data. Point, line, and polygon are examples of
possible shapes. For instance, the center of San Francisco is located at coordinates (-122.436,
.37.719) in the two-dimensional “latitude, longitude” space and is a point shape. Note that
point specifies both a location and a default shape. Alternately, shape could specity a line or
a polygon connecting multiple points (specified by their locations). For instance, the city
boundary of San Francisco could be a polygon connecting multiple points.

In some applications, the shapes could be more complex and could have multiple polygons

and/or polygons containing holes. For instance, the state boundaries for Texas and California
include multiple polygons and some with islands. In general, spatial information, occurring
in GIS, CAD/CAM, or simple location-enabled applications, could be arbitrarily complex.

The SDO_GEOMETRY data type captures the location and shape information of data rows in
a table. This data type is internally represented as an Oracle object data type. It can model different
shapes such as points, lines, polygons, and appropriate combinations of each of these. In short, it
can model spatial data occurring in most spatial applications and is conformant with the Open GIS
Consortium (OGC) Geometry model.!

Chapter 4 provides details about what types of spatial data SDO_GEOMETRY can model and what
it cannot, and it also covers the structure of SDO_GEOMETRY and the tools to construct, validate, and
debug SDO_GEOMETRY objects. For now, it is sufficient to understand that you can create tables with
SDO_GEOMETRY columns to store the locations of objects.

Location-Enabling

You can create tables with the SDO_GEOMETRY columns to store locations. For instance, you can create
the us_restaurants_new? table as shown in Listing 2-1.

1. Open GIS Consortium, Inc., "OpenGIS Simple Features Specification for SQL, Revision 1.1,"
http://www.opengis.org/docs/99-049.pdf, May 5, 1999.

2. Note that the us_restaurants table already exists. So, name this new table as us_restaurants_new.

www.freepdf-books.com

http://www.opengis.org/docs/99-049.pdf
http://www.it-ebooks.info/

CHAPTER 2 " OVERVIEW OF ORACLE SPATIAL

Listing 2-1. Creating the us_restaurants_new Table
SQL> CREATE TABLE us restaurants new

(
id NUMBER,
poi name VARCHAR2(32),
location SDO_GEOMETRY -- New column to store locations

);

Now that you know basically how to create tables to store locations, we'll briefly cover the tools
to populate such tables. Since SDO_GEOMETRY is an object type, just like any other object type, you can
populate an SDO_GEOMETRY column using the corresponding object constructor. For example, you
can insert a location of (-87, 38) for a Pizza Hut restaurant into the us_restaurants table, as shown
in Listing 2-2.

Listing 2-2. Inserting a Value for the SDO_GEOMETRY Column in an Oracle Table

SOL> INSERT INTO wus_restaurants_new VALUES
(

1,
'"PIZZA HUT',
SDO_GEOMETRY
(
2001, -- SDO_GTYPE attribute: "2" in 2001 specifies dimensionality is 2.
NULL, -- other fields are set to NULL.
SDO_POINT_TYPE -- Specifies the coordinates of the point
(
-87, -- first ordinate, i.e., value in longitude dimension
38, -- second ordinate, i.e., value in latitude dimension
NULL -- third ordinate, if any
)s
NULL,
NULL
)

);

The SDO_GEOMETRY object is instantiated using the object constructor. In this constructor, the
first argument, 2001, specifies that it is a two-dimensional point geometry (a line would be repre-
sented by 2002, a polygon by 2003, and a collection by 2004).

The fourth argument stores the location of this point in the SDO_POINT attribute using the
SDO_POINT TYPE constructor. Here, we store the geographic coordinates (-87, 38). In this example,
the remaining arguments are set to NULL.

Note In Chapter 4, we examine the structure of the SDO_GEOMETRY type in detail and describe how to choose
appropriate values for each field of the SDO_GEOMETRY type.

Note that the preceding example shows a single SQL INSERT statement. Data loading can also
be performed in bulk using Oracle utilities such as SQL*Loader and Import/Export or using pro-
grammatic interfaces such as OCI, OCCI, and JDBC. These utilities and interfaces come in handy
when populating data from GIS vendors or data suppliers.

In some applications, spatial information is not explicitly available as coordinates. Instead, the
address data of objects is usually the only spatial information available. You can convert such address
data into an SDO_GEOMETRY object using the geocoder component (provided with the Spatial option).
The geocoder takes a postal address, consults an internal countrywide database of addresses and

locations, and computes the longltude anchl%tlé%ia]p%)rdulgtsescfgr the specified address. This process

23

http://www.it-ebooks.info/

24

CHAPTER 2 © OVERVIEW OF ORACLE SPATIAL

is referred to as geocoding in spatial terminology. The address/location database is usually provided
by third-party data vendors. For the United States, Canada, and Europe, NAVTEQ and Tele Atlas
provide such data.

Listing 2-3 shows how to use the geocoder to obtain the coordinates in the form of an SDO_GEOMETRY
object for the address '3746 CONNECTICUT AVE NW' in Washington, D.C.

Listing 2-3. Converting Address Data (Implicit Spatial Information) to the SDO_GEOMETRY (Explicit
Spatial Information) Object

SQL> SELECT
SDO_GCDR.GEOCODE_AS_GEOMETRY

(
'SPATIAL', -- Spatial schema storing the geocoder data
SDO_KEYWORDARRAY -- Object combining different address components
3746 CONNECTICUT AVE NW',
"WASHINGTON, DC 20008'
)s
'us' -- Name of the country
) geom
FROM DUAL ;

GEOM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

SDO_GEOMETRY

(
2001,
8307,
SDO_POINT TYPE(-77.060283, 38.9387083, NULL),
NULL,
NULL
)

This geocoding function, geocode_as_geometry, takes three arguments. The first argument is the
schema. This example uses the 'spatial' schema. The second argument specifies an SDO_KEYWORDARRAY
object, composed from different components of an address. In this example, SDO_KEYWORDARRAY is con-
structed out of the street component '3746 Connecticut Ave NW' and the city/ZIP code component
"Washington, DC 20008'.The third argument to the geocoding function specifies the 'US' dataset that
is being used to geocode the specified street address. The function returns an SDO_GEOMETRY type with
the longitude set to —77.060283 and the latitude set to 38.9387083.

The geocoder can also perform fuzzy matching (via tolerance parameters, which we’ll cover in
the next chapter). In the same way that search engines can search on related words as well as exact
words, Oracle can perform fuzzy matching on the street names and so on. So, for example, suppose
the address field in the preceding example was misspelled as 'CONNETICUT AVE'.The geocoder could
perform approximate matching to match the misspelled fields with those in the database.

Note that the SDO_GEOMETRY data type is just like any other object type in the database. Users
can view the data and examine and modify the attributes. In contrast, several GIS data vendors and
partners have their own proprietary binary formats for representing spatial information. These ven-
dors usually provide tools for loading the data or converting the data into standard Oracle formats.
Discussion of these tools, however, is beyond the scope of this book.

Query and Analysis

Now that you've seen how to define SDO_GEOMETRY for storing spatial data in Oracle and how to populate
Spatial tables with data, the next topic to look at is how to query and analyze this SDO_GEOMETRY data.
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 2 " OVERVIEW OF ORACLE SPATIAL

The query and analysis component provides the core functionality for querying and analyzing
spatial geometries. This component has two subcomponents: a Geometry Engine and an Index Engine.
It is via these components that you perform your spatial queries and analysis, for example, to identify
the five nearest restaurants along Interstate 795 or the five nearest hospitals to a construction site.

The Geometry Engine

The Geometry Engine provides functions to analyze, compare, and manipulate geometries. For
instance, you could use the Geometry Engine functionality to identify the nearest five restaurants
on I-795 in the greater Washington, D.C., area. This involves computing the distance between I-795
and all the restaurants in the us_restaurants table, sorting them in order of increasing distance, and
returning the top five restaurants. The SQL in Listing 2-4 illustrates this operation.

Listing 2-4. Finding the Five Nearest Restaurants on I-795

SOL> SELECT poi_name
FROM

SELECT poi_name,
SDO_GEOM.SDO_DISTANCE(P.location, I.geom, 0.5) distance
FROM us_interstates I, us_restaurants P
WHERE I.interstate = 'I795'
ORDER BY distance
)

WHERE ROWNUM <= 5;

POI_NAME

PIZZA BOLI'S

BLAIR MANSION INN DINNER THEATER
KFC

CHINA HUT

PIZZA HUT

5 rows selected.

Observe that the inner SELECT clause computes the distance between I-795 (which is not a major
highway) and each restaurant row of the us_restaurants table using the Geometry Engine function
SDO_GEOM.SDO_DISTANCE. Also, note that the ORDER BY clause sorts the results in ascending order of
distance. The outer SELECT statement selects the first five rows, or the five nearest restaurants.

In the preceding query, the location of the I-795 highway is compared with every restaurant
row of the table, irrespective of how far the restaurant is from I-795. This could mean considerable
time is spent processing rows for restaurants that are too far from the I-795 highway and hence are
irrelevant to the query. To speed up query processing by minimizing the processing overhead, you
need to create indexes on the location of the restaurants.

The Index Engine

Oracle Spatial provides the spatial Index Engine for this purpose. Listing 2-5 shows an example of
how to create an index on the locations of restaurants.

Listing 2-5. Creating an Index on Locations (SDO_GEOMETRY Column) of Restaurants

SOL> DROP INDEX us_restaurants_sidx;
SOL> CREATE INDEX us_restaurants_sidx ON us_restaurants(location)

INDEXTYPE IS mdsys.spatial_indw\,‘NW freepdf—books com

25

http://www.it-ebooks.info/

26

CHAPTER 2 © OVERVIEW OF ORACLE SPATIAL

Listing 2-5 first drops the index that exists. In the second and third lines, it shows the SQL for creat-
ing the spatial index. Note that the clause INDEXTYPE tells the database to create a spatial index on the
location (SDO_GEOMETRY) column of the us_restaurants table. This index is a specialized index to cater to
the SDO_GEOMETRY data. Using such an index, the Index Engine in Oracle Spatial prunes faraway rows
from query processing and thus speeds up the query for most applications. The Index Engine provides
equivalent functions, referred to as operators, for identifying rows of the table that satisfy a specified
proximity predicate such as closeness to I-795. You can rewrite the preceding query to find the five near-
est restaurants to I-795 using such index-based operators. Listing 2-6 shows the resulting query.

Listing 2-6. Finding the Five Nearest Restaurants on I-795 Using the Spatial Index

SOL> SELECT poi_name
FROM us_interstates I, us_restaurants P
WHERE I.interstate = 'I795'
AND SDO_NN(P.location, I.geom) ='TRUE'
AND ROWNUM <= 5;
POI_NAME

PIZZA BOLI'S

BLAIR MANSION INN DINNER THEATER
KFC

CHINA HUT

PIZZA HUT

5 rows selected.

Note that this query returns the same five rows as Listing 2-4. However, this query has a simpler
structure with no subqueries. It uses only a new index-based operator called SDO_NN, with NN being short
for nearest neighbor. This index-based operator returns rows of the us_restaurants table whenever the
location column is close to the I-795 highway geometry. The SDO_NN operator returns these rows in order
of proximity to the I-795 geometry. So, the row with the closest location is returned first, the next closest
next, and so on. The ROWNUM predicate determines how many close restaurants need to be returned in the
query. The query uses a spatial index and examines only those rows that are likely to be close to the loca-
tion of I-795. Consequently, it is likely to execute faster than the query in Listing 2-4.

As a variation on this, suppose that instead of having to find the five nearest restaurants on
1-795, you want to identify all restaurants within 50 kilometers of I-795. One way to accomplish this
is to construct a buffer around the I-795 highway and determine all businesses inside this buffer
geometry. Figure 2-2 shows an example: I-795 appears in black, the 50 km buffer is shown with the
gray oval around it, and the restaurants inside this buffer are shown by x marks.

50 km Buffer Around I-795

£

N
%

Restaurants Inside Buffer

X X
Xx XXx

Figure 2-2. Restaurants in the 50 kWWeﬁ‘@@ﬁldf{-_%OkS com

http://www.it-ebooks.info/

CHAPTER 2 " OVERVIEW OF ORACLE SPATIAL

Listing 2-7 shows the corresponding SQL query and the results.

Listing 2-7. Identifying All Restaurants in a 50 km Radius Around I-795

SOL> SELECT POI_NAME
FROM us_interstates I, us restaurants P
WHERE

SDO_ANYINTERACT

P.location,
SDO_GEOM.SDO_BUFFER(I.geom, 50, 0.5, "UNIT=KM')
) ='TRUE'
AND I.interstate='I795" ;
POI_NAME

SPICY DELIGHT

PHILLY'S STEAK EXPRESS

EL TAMARINDO

MCDONALD'S

PIZZA HUT

CHINA HUT

KFC

BLAIR MANSION INN DINNER THEATER
PIZZA BOLI'S

9 rows selected.

The function SDO_ANYINTERACT is an index-based operator just like the SDO_NN operator in
Listing 2-6. This operator identifies all rows of us_restaurants where the locations intersect with
the geometry passed in as the second parameter. The second parameter, in this case, is the result
returned by an SDO_BUFFER function. The SDO_BUFFER function generates and returns a 50 km buffer
around the I-795 geometry. This SDO_BUFFER function is part of the Geometry Engine, which also
provides additional functions to facilitate more complex analysis and manipulation of spatial
information.

Note that the number of restaurants returned in Listing 2-7 is nine, as opposed to five in Listings 2-4
and 2-6. This means you may not know the cardinality of the result set when you use a query buffer.
With an SDO_ANYINTERACT operator, you may get more answers than you expect, or fewer answers. The
cardinality of the result set depends on distribution of the data (in other words, the restaurants). In
general, when you know how far to search (for example, a 50 km radius, as in Listing 2-7), you can
use the SDO_BUFFER and SDO_ANYINTERACT functions.® Alternatively, if you know how many results you
want to return, then you should use the SDO_NN function, as described in Listing 2-6. In Chapters 8
and 9, we will describe in greater detail the different operators and functions in the Index Engine
and Geometry Engine.

Visualizing Spatial Data

How do you visualize the results of spatial queries? Oracle technology includes the MapViewer
component to facilitate the generation of maps from spatial data. Each map is associated with a set
of themes. Each theme denotes spatial data from a specific table and is associated with a rendering
style. For instance, you can specify that the interstates theme (data from the INTERSTATES table)
should be rendered as thick blue lines. Oracle Spatial provides appropriate dictionary views—
USER_SDO_MAPS, USER_SDO_THEMES, and USER_SDO_STYLES—to define new maps, to associate them with
themes, and to specify rendering styles for the themes in the database, respectively.

3. In Chapter 8, we will describe a b%Wewgiéepuaiﬁ%lbe 8%)SWEB%DISTANCE operator.

27

http://www.it-ebooks.info/

28

CHAPTER 2 © OVERVIEW OF ORACLE SPATIAL

In addition, MapViewer renders the map for a specified map name. Basically, a servlet consults
the database views and retrieves the themes and associated styling rules for a specified map name.
Using this information, the MapViewer servlet generates an image of the constructed map. Figure 2-3
shows an image of such a map constructed using MapViewer (constructed entirely using Spatial
technology and the data provided in this book). This map shows I-795 along with the larger interstates.

Figure 2-3. Sample map with multiple themes generated using MapViewer

The map consists of multiple themes: cities, county boundaries, rivers, interstates, and parks.
The cities, D.C. and Baltimore, are rendered as points in black color. The counties, Howard, Fairfax,
Charles, Frederick, and so on, are shown as white polygons. The river in the right side of the map is
shown in a dark gray color. The interstates, such as I-795, are rendered as line strings in black, and
the parks are rendered as polygons in light gray.

Onto this map, you can also superimpose the locations of the five closest restaurants to I-795.
In addition to rendering predefined themes/base maps, the MapViewer request can specify a pre-
defined base map (such as the map in Figure 2-3) and a dynamic theme, such as a SQL/JDBC query
retrieving the locations of the five nearest restaurants. MapViewer will then generate a new map
that contains the locations of the five restaurants superimposed on the predefined base map.

Note that the map in Figure 2-3 displays vector data stored as SDO_GEOMETRY columns in different
(theme) tables. In addition to vector data, MapViewer can display spatial data stored in the raster
(or image) format. Such data is stored in Oracle tables using the SDO_GEORASTER data type. Chapters 12
and 13 provide full details of how to construct maps and display the results of queries on such maps
using MapViewer technology.

The basic functionality of MapViewer provides APIs only for generating maps from vector, raster,
or network data stored in an Oracle database. If a user “pans to the south” of a rendered image,
MapViewer has to fetch the corresponding data from the database, which could result in a notice-
able delay in the map-browsing experience. To make the browsing experience seamless for a user,
an efficient strategy is to cache adjacent regions of a displayed map in the Application Server cache.
To support a seamless browsing experience and improve the performance of mapping applications,
Oracle enhanced the basic MapViewer functionality with additional features; the full functionality

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 2 " OVERVIEW OF ORACLE SPATIAL

is now called Oracle Maps. In addition to a rendering engine, Oracle Maps consists of a map cache
server that pregenerates and caches neighboring tiled images of a displayed base map image. Oracle
Maps also consists of an FOI server that renders dynamic content for spatially enabled tables (cus-
tomers, for example) detailing their geographic locations and associated (nonspatial) attribute
information. Together, the cached base maps (from the map cache server) and the dynamic FOIs
(from the FOI server) enable users to build efficient mapping applications.

Advanced Spatial Engine

The Advanced Spatial Engine has several subcomponents that cater to the complex analysis and
manipulation of spatial data that is required in traditional GIS applications.

Note Our focus in this book is the applicability of Oracle Spatial to Oracle business applications, so we do not
cover most of these advanced options, with the exception of the Network Data Model and the Routing Engine, in great
detail. However, we provide a good overview of these topics in the appendixes, with references for further details.

Internally, each of these additional components uses the underlying geometry data type and
Index Engine and Geometry Engine functionality.

* The Network Data Model provides a data model for storing networks in the Oracle database.
Network elements (links and nodes) can be associated with costs and limits, for example, to
model speed limits for road segments. Other functionality includes computation of the shortest
path between two locations given a network of road segments, finding the N nearest nodes,
and so on. The Network Data Model is useful in routing applications. Typical routing appli-
cations include web services such as MapQuest and Yahoo! Maps or navigation applications
for roaming users using Global Positioning System (GPS) technology. We cover more details
about this component in Chapters 10 and 11.

* The Linear Referencing System (LRS) facilitates the translation of mile markers on a highway
(or any other linear feature) to geographic coordinate space, and vice versa. This component
allows users to address different segments of a linear geometry, such as a highway, without
actually referring to the coordinates of the segment. This functionality is useful in transporta-
tion and utility applications, such as gas pipeline management.

* The Spatial Analysis and Mining Engine provides basic functionality for combining demo-
graphic and spatial analysis. This functionality is useful in identifying prospective sites for
starting new stores based on customer density and income. These tools can also be used to
materialize the influence of the neighborhood, which in turn can be used in improving the
efficacy and predictive power of the Oracle Data Mining Engine.

* GeoRaster facilitates the storage and retrieval of georeferenced images using their spatial
footprints and the associated metadata. GeoRaster defines a new data type for storing raster
images of geographically referenced objects. This functionality is useful in the management
of satellite imagery.

* The Topology Data Model supports detailed analysis and manipulation of spatial geometry
data using finer topological elements such as nodes and edges. In some land management
applications, geometries share boundaries, as in the case of a property boundary and the
road on which the property is situated. Oracle Spatial defines a new data type to represent
topological elements (such as the shared “road segment”) that can be shared between differ-
ent spatial objects. Updates to shared elements implicitly define updates to the sharing
geometry objects. In general, this component allows for the editing and manipulation of

nodes and edges without dlsturblng the to dl%ologlcal semantics of the application.
www.freepdf-books.com

29

http://www.it-ebooks.info/

30

CHAPTER 2 © OVERVIEW OF ORACLE SPATIAL

Oracle Spatial Technology Products

In the previous sections, we briefly described the functionality that Oracle Spatial provides to sup-
port the following operations on spatial data:

» Storage data model using the SDO_GEOMETRY data type

* Query and analysis using the Index Engine and Geometry Engine

* Location-enabling using the geocoder by converting address data into SD0O_GEOMETRY data
* Visualization using MapViewer and Oracle Maps

* Advanced Spatial Engine functionality such as network analysis and routing

Let’s next look at how this functionality is productized or licensed in Oracle Database 11g
version 1.0.6 and Oracle Application Server 10g version 1.0.3. (Note, though, that this packaging
may change with later versions of Oracle.)

MapViewer, the visualization tool of Spatial, is included as part of the Oracle Application Server.
You can also deploy MapViewer by just installing the Oracle Containers for Java (OC4]J) without
installing the entire Application Server. We will look at these details in Chapter 12. The remainder of
the spatial functionality is included, sometimes optionally, with the Database Server. Let’s look
at these details next.

In the Lite edition of Oracle Database Server, none of the spatial functionality is included. As
mentioned in an earlier note, in the Personal Edition, Standard Edition,* Express Edition, and Enter-
prise Edition, a subset of the spatial functionality is included for free with the database. This subset
is referred to as the Locator. In the Personal Edition and the Enterprise Edition, the full functionality
of Spatial technology is available as a priced option, called Spatial. We’ll now cover each of these
versions of Oracle Spatial and what you can do with them.

Locator

Locator provides a core subset of spatial functionality to cater to specific applications. Specifically, it
includes the following functionality:

* The data model for storing spatial data using the SDO_GEOMETRY data type: This includes storing
all types of geometries (points, lines, polygons, and so on).

* Query and analysis using the Index Engine: This includes creating spatial indexes and querying
using associated spatial operators such as SDO_NN. In Locator, this functionality is restricted to
only two-dimensional data.

e The SDO_GEOM.SDO_DISTANCE and the SDO_GEOM.VALIDATE GEOMETRY XXX functions: These
functions are also part of Locator.

Figure 2-4 shows the functionality provided in Locator. The Locator components are highlighted
in black. The non-Locator components of Spatial technology are shown in solid gray.

4. Standard implies both Standard Edition One and Standard Edition.

www.freepdf-books.com

http://www.it-ebooks.info/

Visualization

Location Enabling

Data Model

Query and Analysis

Advanced Spatial
Engine

CHAPTER 2 " OVERVIEW OF ORACLE SPATIAL

Third-Party Tools/
Applications

Map Cache Fol \
Server Server

Oracle Application
Server 11g

MapViewer

Rendering
Engine

Y

Y

U

SQL, OCl, JDBC, ... Interfaces

Oracle Database 11g

T
R

Oracle Utilites

Geocoder

)

SDO_GEOMETRY Type

Styles, Maps, ...

Other
Columns

Spatial
Column

Index Engine
Query Operators

Geometry
Engine

Object-Relational Table

A

C Typology, GeoRaster Types]

Analysis

Topological

tiear
Referencing Minin
Network System g
Data Model

() o

Data Model

\

/

Figure 2-4. The functionality of Locator, the free part of Spatial technology, is shown in black.

Applications that use Locator may need to use third-party geocoding services to convert addresses
in application tables. After storing the spatial locations as SDO_GEOMETRY columns, Locator enables
a variety of spatial queries, such as identification of customers within a specified sales territory or
the nearest ATM to a specific location. Locator is typically used in the following applications:

www.freepdf-books.com

31

http://www.it-ebooks.info/

32

CHAPTER 2 © OVERVIEW OF ORACLE SPATIAL

e Simple GIS applications, which may just work with geographic data such as state, city, or
property boundaries and index-based query using associated spatial operators. Typically,
though, most GIS applications may need the Geometry Engine functionality (which is not
supported in Locator).

» Simple business applications, where the spatial data is obtained from third-party vendors.
As you will see in Chapter 8, the index-based operators supported in Locator can perform
a great deal of analysis in business applications.

* CAD/CAM and similar applications, where the spatial data does not refer to locations on the
surface of the earth. For instance, in CAD/CAM applications, the data represents the structure/
shapes of different parts of an automobile. In this case, the data is inherently in the two- or
three-dimensional coordinate space—that is, there is no need to convert nonspatial columns
(such as addresses) to obtain spatial information. Typical examples include printed circuit
board layouts that are two-dimensional layout mappings. Another example is the storage of
city models where three-dimensional building representations are managed. The query oper-
ations that are needed for such applications are the index-based proximity analysis operators
such as identifying all circuits within specified region in the PCB-layout examples and iden-
tifying all buildings within a specified distance of a point or a building or a helicopter trajectory
in the city model example.

To summarize, Locator offers a core subset of Spatial technology. If you want to exploit the full
feature set of Spatial technology, you will need to purchase the Spatial option in the Enterprise
Edition of Oracle Database.

Spatial Option

The Spatial option is a priced option of the Enterprise Edition of Oracle Database Server. This option
includes all the components of the Spatial technology referred to in Figure 2-4 and is a superset of
Locator. Figure 2-5 shows the functionality of the Spatial option in gray. Note that the Spatial option
does not include the MapViewer component (shown in black) of Spatial technology. The Spatial
option consists of the following:

* Storage data model using SDO_GEOMETRY data type: This includes the storing of all types of
geometries (points, lines, polygons, and so on).

* Query and analysis using the Index Engine: This includes creating spatial indexes and querying
using associated spatial operators such as SDO_NN. The functionality also supports three-
dimensional geometries such as surfaces and solids that model buildings and other architectural
elements in three-dimensional city-modeling applications.

* Query and analysis using the Geometry Engine: This supports different analysis functions for
individual geometries, pairs of geometries, or a set of geometries. Typical operations include
length, area for two-dimensional geometries and length, and area and volume for three-
dimensional geometries.

* Location-enabling using the geocoder: This facilitates the conversion of address data into
SDO_GEOMETRY data.

* Advanced Spatial Engine functionality: This includes routing and network analysis.

A wide variety of applications can use the full set of functionality provided in the Spatial option.

By now, you should have a good idea of how Oracle Spatial functionality is packaged. This
understanding is helpful when determining whether your application needs to license the full set of
spatial functionality using the Spatial option. For the remainder of this book, we will not differenti-
ate or explicitly refer to Locator and Spatial option products. Instead, we will refer to the entire set

of functionality as Oracle Spatial technol or simply as Oracle Spatial.
Y P Www. TR pdi-booKs.co

http://www.it-ebooks.info/

CHAPTER 2 " OVERVIEW OF ORACLE SPATIAL 33

Third-Party Tools/
Applications

v

Map Cache FOI
Server Server

] Oracle Application
L] server 11g

Visualization Rendering
Engine

v 2

T
Oracle Database 11g /

SQL, OCl, JDBC, ... Interfaces

Oracle Utilites

_J

Location Enabling Styles, Maps, ...
-
Spatial Other
Y Column Columns
Data Model [SDO_GEOMETRY Type]—)
i Index Engine Geometry]]
Query and Analysis [Qu ery Operators Engine]] A Object-Relational Table

Routlng Linear (Typology, GeoRaster Types]
Advanced Spatial Analysis
Engine Network Re;erincmg Mining Topological *
ystem
Data Model

Data Model

\ /

Figure 2-5. The functionality of the Spatial option is shown in gray.

What to Expect in an Oracle Spatial Install

In the following sections, we discuss what to expect during or after you install Oracle Spatial tech-
nology inside the Oracle Database Server. We describe how to install the MapViewer component,
which is part of Oracle Application Server 10g, in Chapter 12.

www.freepdf-books.com

http://www.it-ebooks.info/

34

CHAPTER 2 © OVERVIEW OF ORACLE SPATIAL

Installing Oracle Spatial in the Database

As noted previously, Oracle Spatial is automatically installed with the Standard Edition or Enterprise
Edition of an Oracle Database Server. All Spatial data types, views, packages, and functions are
installed as part of a schema called MDSYS.

To verify that Spatial has been installed properly, you first have to check that the MDSYS account
exists. If it does not, then Spatial is not installed. Otherwise, you can execute the SQL in Listing 2-8
after connecting through your SYS (SYSDBA) account.

Listing 2-8. Verifying That a Spatial Install Is Successful

SQL> SELECT COMP_NAME, STATUS

FROM DBA REGISTRY

WHERE COMP_NAME = ‘Spatial’;

COMP_NAME STATUS

Spatial VALID
After a successful installation, the status will be set to VALID or LOADED.

Upgrades

To understand upgrades properly, let’s look at how Spatial technology evolved between different
versions of Oracle. Figure 2-6 shows the progression from Oracle 7.2 to Oracle 11g.5 Note that the
figure shows the evolution only of the Spatial components in Oracle Database Server (MapViewer
and Oracle Maps, which are part of Oracle Application Server, are not shown).

Oracle 7 Oracle 8 Oracle 8/ Oracle 9i, Oracle 10g Oracle 11g
1 1 Oracle 10g 1
1 1 1 1
1 1 1 EPSG '
: \ Coordinate , Coordinate |
' ' Systems ! Systems ,
: 1 Support : (10g Release 2) :
1

1
1
1
1
1
1
1
1
1
1
1
] 1
+ 1 1
] 1
1 . 1
Spatial Data 1y Spatial > Oracle > Oracle » Oracle Ly, Oracle
1

1
- . .
ocator ocator ocator ocator
MultiDimension Locat Locat Locat Locat
1 1
1
1
1
1
1

Option Cartridge |, Spatial | , Spatial | , Spatial . Spatial
: Spatial | : GeoRaster | 3D Geometry,
Spatial Geometry + (Domain) | : Network, 1 TIN, Point Cloud,
Stored As Multiple 1 Indexing 1 Router, 1 Web Services
Rows in a : , , Topology, |
Relational Table ! ! ! Spatial-Analysis- !
(Relational Model) i i i Mining i

SDO_GEOMETRY Data Model

Figure 2-6. Evolution of Spatial technology in Oracle

5. Unless otherwise mentioned, Oracle 11g means the Oracle Database 11g in the rest of the book.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 2 " OVERVIEW OF ORACLE SPATIAL

Spatial technology was first introduced in Oracle 7.2 under the name Oracle MultiDimension
(MD). Later, the product name changed to Oracle Spatial Data Option (SDO) and to Spatial Data
Cartridge in Oracle 8. Since objects were not supported in these releases, the coordinates of a geom-
etry were stored as multiple rows in an associated table. Managing spatial (geometry) data in these
prior versions was inefficient and cumbersome.

Starting with Oracle 8i, the SDO_GEOMETRY data type was introduced to store spatial data. Even in
the latest versions (Oracle 11g, Oracle 10g, and Oracle 9i), the same SDO_GEOMETRY model is used to
store spatial data in Oracle. In Oracle 9i (and Oracle 10g), the geometry data also included support
for coordinate systems information specified using the SRID attribute in the SDO_GEOMETRY data type.
In Oracle 10g, additional functionality (that exists in the Advanced Spatial Engine) such as the Net-
work Data Model is introduced in the Spatial option of Oracle. In Oracle 10g Release 2, the EPSG
Coordinate Systems model was added to the Locator option. In Oracle 11g, several new features
such as 3D geometry support and Spatial Web Services were introduced. You will learn about each
of these features in subsequent chapters and appendixes.

Since the prior versions are named MD and SDO, you will see the prefixes MD and SDO for the
files and schemas that install Spatial technology. The name of the spatial install schema is MDSYS in
all versions of Oracle.

Despite the evolution of Spatial technology with each release, upgrading to the latest version,
Oracle 10g, is not difficult. Spatial technology is automatically upgraded with the upgrade of Oracle
Database Server. The upgrade may not need your intervention at all.® However, if you are upgrading
from pre-8i releases, you need to additionally migrate your geometry data from the pre-8i format to
the SDO_GEOMETRY data model. Oracle Spatial provides the SDO_MIGRATE package to migrate the data
from pre-8i models to the current SDO_GEOMETRY data model. We discuss this migration package’s
functionality in Chapter 5.

Understanding a Spatial Install

In this section, we cover where to find appropriate spatial files and how to perform some prelimi-
nary investigation when an installation or upgrade fails.

To view all the spatial files, you can go to the $ORACLE_HOME/md/admin directory. In this directory,
you will find all files relevant to Oracle Spatial. You will observe that a majority of the files have
a prefix of either SDO or PRVT. In other words, the files are of the form sdoxxxx.sql or prvtxxxx.plb.
The SDO files, in most cases, contain package definitions for different components of Spatial tech-
nology. The PRVT files, on the other hand, are binary files and define the package bodies and so on.”
You should not tamper with these SDO and PRVT files at any time.

During the creation of the database,® the MDSYS account is created with appropriate privileges
(see scripts mdinst.sql and mdprivs.sql for more details), and the catmd.sql file is loaded into the
MDSYS schema. This file loads all the SDO and PRVT files in an appropriate order that resolves all depend-
encies between all the Spatial packages. In the case of Locator, catmdloc.sql (instead of catmd.sql)
is loaded. Likewise, appropriate files in this directory such as sdodbmig. sql (upgrades), sdopatch.sql
(patches), and sdoe*.sql (downgrades) are loaded/executed at the time of upgrades, patches, and
downgrades.

During some installations or upgrades, you may find that several package dependencies are
unresolved and hence invalid. You can check for such invalid packages or other objects in your
Spatial installation by running the SQL in Listing 2-9.

6. Note that some spatial components such as GeoRaster have dependencies on other Oracle components such
as interMedia and XML. You need to ensure that these components are also upgraded properly or installed if
they do not exist in a custom install.

7. Most functions in these package bodies are linked to C/Java libraries that are included with the Oracle kernel.

8. The database can be created either at install time o, Fsgléa \ﬁrie of Qracle tools such as DBCA.
www.Treepdf-books.com

35

http://www.it-ebooks.info/

36

CHAPTER 2 © OVERVIEW OF ORACLE SPATIAL

Listing 2-9. Checking for Invalid Objects in a Spatial Installation

SQL> SELECT OBJECT_NAME, OBJECT_TYPE, STATUS
FROM ALL_OBJECTS

WHERE OWNER="MDSYS' AND STATUS <> 'VALID'
ORDER BY OBJECT_NAME;

If Listing 2-9 returns any rows, you should contact Oracle Support for troubleshooting help.

Checking the Version of a Spatial Install

If you have paid for Oracle’s Spatial option, you can get the version of the Spatial install by executing
the query shown in Listing 2-10. For a Locator install, which is the free functionality of Spatial found
in all editions of Oracle, the query returns NULL.

Listing 2-10. Checking for the Version of a Spatial Install
SQL> SELECT SDO_VERSION FROM DUAL;

Summary

This chapter provided a brief overview of the various components of Oracle Spatial technology. First
you examined the functionality provided in Oracle Spatial. This functionality included a SQL-level
data type for storing spatial data, new operators and functions to perform spatial query and analy-
sis, MapViewer and Oracle Maps technology for visualizing spatial data, and advanced components
to perform more sophisticated analysis such as routing or network analysis. We then described how
this functionality is packaged in the Database Server and Application Server. Finally, we described
what to expect in a typical Spatial installation and where to find appropriate Spatial files.

Starting with the next chapter, we will cover Oracle Spatial functionality in more detail. Specifi-
cally in Chapter 3, we describe how to location-enable your application.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 3

Location-Enabling Your Applications

To run the examples in this chapter, you need to import a dataset in the spatial schema as
follows. Please refer to the “Setting Up” section in the introduction of this book for instruc-
tions on creating the spatial schema and other setup details.

imp spatial/spatial file=gc.dmp ignore=y full=y

COIlsider a business application that stores information about its branches (or stores), customers,
competitors, suppliers, and so on. If you location-enable such a business application, you can per-
form the following types of analysis:

* Spatial query and analysis: Identify the number of customers in different sales territories of
a branch of this business or a competitor.

» Network/routing analysis: Compute the route between a branch and the nearest customer or
supplier.

e Visualization: Display the results of spatial query or network analysis on a map and integrate
this map in other components of the business application.

To exploit the benefits of these types of analysis in a business application, you will first need to
location-enable your application. In this chapter, we describe how to augment existing application
tables with location information. This location information is usually derived from the address com-
ponents in application tables such as customers, branches, and competitors and is stored as point
locations in these tables. Such location-enabling of the application tables allows simple spatial
analysis. We describe such analysis in Chapter 8.

You can augment this analysis, as described in Chapters 8 and 9, by combining the application
data with geographic data such as street networks, city boundaries, and so on. The street networks
and city boundaries are more complex than the location information in application tables. Such
street networks and city boundaries (that is, the geographic data) need to be stored as lines, poly-
gons, and other complex geometry types. We describe several design choices to consider while storing
such geographic data in Oracle tables. This geographic data will aid in a more comprehensive analy-
sis for a business application.

After setting up the application and geographic data tables, we show how to insert spatial-specific
metadata to location-enable these tables for subsequent analysis. Finally, we discuss how to popu-
late this metadata into appropriate dictionary views for each table that contains spatial data.

www.freepdf-books.com

37

http://www.it-ebooks.info/

38

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

Adding Location Information to Tables

Most application data can be categorized into two sets of tables:

* Application-specific tables: These contain information that is specific to the application
(product and customer information, and so on). Application tables will use standard nor-
malization techniques to arrive at an appropriate set of tables to store the data. These tables
might not contain explicit spatial data. However, these tables may have implicit spatial infor-
mation in the form of addresses.

* Geographic tables: Geographic data is independent of the application and contains columns
to store explicit spatial information for street networks, city boundaries, and so on. This data
may be used as a value-add in the application.

Figure 3-1 shows an example of these two sets of tables for a sample business application. We
will use this application along with the associated tables to illustrate all the concepts in this book.
Appendix D has appropriate instructions for loading these data.

Oracle Database 11g

(Products Customers Stores)
Application-Specific Business
Data Analysis

_ _J
Delivery
. (Streets Interstates Cities) Routing

Geographic
Data
_)

¥/

Figure 3-1. Data for the sample application

Application-Specific Data

As discussed eatlier, for application-specific data, you can employ standard normalization rules to
design a set of application tables best suited to the needs of the application. Let’s assume that, via
this design process, you arrive at the following set of tables for the application layer:

* Aproducts table to hold information about all available products
* Acustomers table to hold information about customers
e Asuppliers table to hold information about suppliers

e Abranches table to hold information about different branch locations of a business franchise
(corresponding to the business application)

* A competitors table to hold information about competitors of the business franchise

These tables can be created with appropriate attributes. Listing 3-1 shows the sample SQL for
creating the customers table. Other tables such as branches, competitors, and products may likewise
be created. Note that the customers table does not, at this stage, have an explicit column that stores
spatial information. The same may apply to other tables in the application that store application-

specific data.
P www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 3

Listing 3-1. Creating the customers Table

SQL> CREATE TABLE customers
(

id NUMBER,
datasrc_id NUMBER,

name VARCHAR2(35),
category VARCHAR2(30),
street_number VARCHAR2(5),
street _name VARCHAR2(60),
city VARCHAR2(32),
postal code VARCHAR2(16),
state VARCHAR2(32),
phone_number VARCHAR2(15),
customer grade VARCHAR2(15)

LOCATION-ENABLING YOUR APPLICATIONS

)s
These tables can be populated using SQL INSERT statements or other loading tools such as
SQL*Loader. Listing 3-2 shows an example.

Listing 3-2. Populating the customers Table
SQL> INSERT INTO customers VALUES

(
1, -- id
1, -- datasrc_id
'Pizza Hut' , -- name
'Restaurant’, -- restaurant
'134", -- street number
'12TH STREET', -- street name
"WASHINGTON', -- city
'20003", -- postal code
'DC’, -- state
NULL, -- phone_number
'GOLD! -- customer_grade

)s

Adding Location to Application-Specific Data

At a fundamental level, to location-enable the previous business application, you need to store
location information for customers, branches, competitors, and so on. This means you need to aug-
ment the corresponding tables with an additional column for the storing location. This basic location
information is stored as a point using the SDO_GEOMETRY type.

For example, to add location information to the customers table, you simply alter it as shown in
Listing 3-3.

Listing 3-3. Adding a location Column to the customers Table
SQL> ALTER TABLE customers ADD (location SDO GEOMETRY);

This, by itself, does not populate the location column. If you select the location column in the
table, you will observe that it contains only NULL values.

The most common way to populate the location columns in the application tables is by geocod-
ing the appropriate address columns. Figure 3-2 illustrates the geocoding process. A variety of tools
from different vendors support this geocoding.

www.freepdf-books.com

39

http://www.it-ebooks.info/

40

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

Address . Address SDO_GEOMETRY
Columns Geocoding Columns Column
Geocoder | PN
< T
N
Geocoding
Data
Customers Table Customers Table

Figure 3-2. Geocoding application data to populate SDO_GEOMETRY columns

As shown in Figure 3-2, these tools consult an internal database to determine the longitude
and latitude values for a specified address. These <longitude, latitude> pairs can then be stored as
a point geometry using the SDO_GEOMETRY data type. Oracle Spatial provides a built-in geocoding tool
for translating addresses (implicit spatial information) into SDO_GEOMETRY objects.

For instance, let’s say the customers, suppliers, branches, and competitors tables store address
information. This address is typically stored using the attributes street_number (or Apt#), street name,
city, and postal_code, all of the VARCHAR2 data type. Listing 3-4 shows the address information from
the customers table for a specific customer.

Listing 3-4. Sample Address for a Specific Customer in the customers Table

SOL> SELECT street number, street name, city, state, postal code
FROM customers

WHERE id = 1;

134 12TH ST SE WASHINGTON DC 20003

Oracle Spatial allows you to convert this address (street_number, street name, city, and
postal code) into a two-dimensional point location on the surface of the earth. The specific function
you need is called sdo_gcdr.geocode_as_geometry. This function takes the schema name and the
geocoding dataset name as the first and last arguments. The second argument is an sdo_keywordarray
object constructed out of the address components street_number, street name, city, and postal code.
You will learn more about the details of this function in Chapter 6. For now, it is sufficient to note that
the simple SQL statement in Listing 3-5 will do the trick. Notice that the sdo_keywordarray object con-
catenates the street_number and street name components. Additional whitespace helps in easy
identification of the two components.

Listing 3-5. Geocoding Addresses to Obtain Explicit Spatial Information

SQL> UPDATE customers
SET location =
SDO_GCDR.GEOCODE_AS_GEOMETRY

'SPATIAL',

SDO_KEYWORDARRAY

street number || ~ ° || street_name,

-- add whitespace to separate out street number and street name
city || 7, || state || © ° || postal code

)

s

)

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

You can now examine what the location information looks like. We will simply select the location
column from the customers table. Listing 3-6 shows the SQL to do this.

Listing 3-6. Geocoded location Column in the customers Table

SQL> SELECT location
FROM customers
WHERE id=1;

LOCATION(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM INFO, SDO_ORDINATES)

SDO_GEOMETRY (2001, 8307, SDO_POINT TYPE(-76.99022, 38.888654, NULL), NULL, NULL)

Notice that the specified address (street_number='134", street name='12th ST SE',
city="WASHINGTON', and postal code="'20003") translates to an SDO_GEOMETRY object with longitude
and latitude values of —76.99022 and 38.888654 in the sdo_point attribute (instantiated using the
SDO_POINT_TYPE object). The sdo_gtype value of 2001 indicates that the location is a fwo-dimensional
(21in 2001) point (I in 2001) location. You will look at other attributes of the location column in the
next chapter.

Caution Coordinate positions are commonly referred to as /atitude/longitude. However, in Oracle Spatial, the
coordinates are stored as longitude followed by latitude.

Once an SDO_GEOMETRY object is constructed, you can insert it, update it, and query it just like
any other column in an Oracle table. For instance, you can update the location column directly by
constructing a geometry object using an SDO_GEOMETRY constructor, as shown in Listing 3-7.

Listing 3-7. Updating a location Column Using an SDO_GEOMETRY Constructor

SQL> UPDATE customers
SET location =
SDO_GEOMETRY

(
2001, -- Specify that location is a point
8307, -- Specify coordinate system id
SDO_POINT TYPE(-77.06, 38.94, NULL), -- Specify coordinates here
NULL,
NULL
WHERE id=1;

Once you have basic location data for the application tables, such as customers, branches, and
suppliers, you can perform some basic proximity analysis (using SQL-level queries on SDO_GEOMETRY
columns; this is covered in Chapters 8 and 9). For instance, you can identify the following:

¢ Customers close to (for example, within a quarter mile of) a competitor store. For all such
customers, you can do some promotion to wean them from your competitor or retain them.

* How many customers are within a quarter-mile of each store or delivery site. Some store
sites may be overloaded, and you need to start new store sites at appropriate places.

www.freepdf-books.com

41

http://www.it-ebooks.info/

42

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

Design Considerations for Application-Specific Data

As noted, the organization of application-specific data into appropriate tables will be application
dependent and will probably involve standard design techniques such as normalization, entity-
relationship (ER) diagram-based modeling, and so on. Oracle Spatial does not have any specific
recommendations or restrictions for how the application data is to be organized.

One point we can emphasize here, though, is that you should strongly consider table partitioning
when table data runs into millions of rows. Consider, for example, the customers data for an entire
country. These customers share the same attributes. As a result, normalization and other modeling
techniques may recommend storing all customers in a single table. However, for spatial applications,
the number of customers may be high, running into tens of millions or billions.

In such cases, where the access patterns for the table in question can be tied to a nonspatial
attribute (such as city or postal_code), then partitioning the customers table based on the city or
postal code attribute can ensure good performance and at the same time present a single table on
which to operate.

Note Table partitioning in Oracle is a priced option in the Enterprise Edition of Oracle; it is not available in the
Standard Edition.

Partitioning may help in effective and efficient management of large tables. Users can add,
split, or modify partitions while continuing to query other unrelated partitions. Partitioning is
a convenient mechanism to minimize the impact due to maintenance operations on a table. When-
ever possible, partitioned tables are also processed in parallel leading to better create, query, and
update times. In addition, partitioning may also improve the efficiency of spatial analysis opera-
tions by using partition pruning whenever the partition key is specified in the SQL query. You will
look at such analysis examples with partitioned tables in Chapter 8.

Geographic Data

To perform more sophisticated analysis such as routing between two locations or visualization
using regional maps, you need to store more than just locations of customers and branches. You
may need geographic data such as street networks, city boundaries, and so on. For example, to
identify routes from delivery sites to customer locations, you need to store additional information
that describes the street network. Likewise, if you want to be able to accurately visualize the loca-
tions stored in application tables on a map, then you need to display the boundaries of not just
streets and cities but also of rivers, national parks, and so on.

Obtaining the Geographic Data

Geographic data is usually available from a variety of sources, including commercial Geographical
Information Systems (GIS) vendors and national mapping agencies. NAVTEQ and Tele Atlas are two
such vendors, and both sell geographic data for the United States and Europe. The Ordnance Survey
is the national mapping agency for Great Britain: it supplies a highly detailed coverage of Great Britain
called MapsterMap. The U.S. Census Bureau is a similar organization serving the United States.
Appendix D has details for loading different components of this geographic data to enable network
analysis, geocoding, and map-based visualization. In the following sections, we describe the general
guidelines for storing and modeling the geographic data in the database.

To enable effective integration and analysis, the geographic data, just like the application-specific
data, needs to be stored in the database. This means you need to be able to store a range of different
types of data. For example, a street network might be represented by a set of lines connecting differ-

ent two-dimensional points. leeww\ﬂl?fplebgﬁ&qggdlgRlét_l%eorﬁ;iresented by a polygon connected

http://www.it-ebooks.info/

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

by lines. You can represent these types of spatial data using the same SDO_GEOMETRY data type that is
also used to represent the customer locations (point data) in the application-specific tables. Using
a single data type to store all sorts of spatial data ensures a seamless integration and analysis of spa-
tial data in business applications.

Design Considerations for Geographic Data

The next question that arises is how to best store the geographic data. We will illustrate the concepts
using typical geographic data (the actual tables used in the book will be directly loaded by importing
the appropriate .dmp files as discussed in the “Setting Up” section in the introduction of this book).
Each type of geographic data can have the following attributes:

States: Attributes can include the state name, the abbreviation of the state name, the popula-
tion of the state, the average household income, and the boundary of the state (the latter of
these being stored in an SDO_GEOMETRY object).

Counties: Attributes can include the county name, the state name in which the county
belongs, the land area, the population per square mile, and an SDO_GEOMETRY object to store
the boundary of the county.

Interstates: Attributes can include the name and an SDO_GEOMETRY object to store the linear
shape of the interstate.

Streets: Attributes can include the name, the city, the state, and an SDO_GEOMETRY object to
store the linear shape of the street.

Storing streets, interstates, counties, and states in a single table is likely to be inefficient (it may
slow down subsequent analysis) and should be avoided. You should store this data in different tables,
based on the following general criteria:

Separate spatial data that does not share the same attributes: This is similar to normalization
techniques used for regular data. For instance, the states data will have different attributes
from the counties, streets, or interstates data.

Separate coarser data from finer data: Streets and interstates both represent linear shapes.
Sometimes they may even share the same set of attributes. But interstates tend to go across
multiple states, whereas streets tend to be localized to a specific city or region. Since the
number of streets is likely to be much larger than the number of interstates, storing streets
and interstates in the same table may cause performance problems when you want to access
just the interstate data. Conversely, the large size of the interstates may pose performance
problems when you query for the street data.

Separate based on the shape of the geometry: If you separate spatial data based on the geo-
metric shape—in other words, based on whether it is a point, a line, or a polygon—then you
can use the type-checking mechanisms provided by Oracle Spatial indexes at insertion time.
For example, if you created a spatial index and specified that a table had only points, the
index would raise an error if it encountered nonpoint geometry in the table. Spatial indexes
can perform better if they know what type of geometry to expect in a table. We will discuss
these features of spatial indexes in Chapter 5.

Partition localized data: Consider the street data for an entire country. The streets share the
same attributes and are also at the same resolution level. Based on the previous three crite-
ria, we might store all the streets in the same table. However, because of the large number of
the rows in this table, the application may benefit from partitioning this table. We discuss the
actual benefits in Chapter 8.

www.freepdf-books.com

43

http://www.it-ebooks.info/

44

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

Based on the preceding criteria, you can divide the geographic data, discussed at the beginning
of this section, into multiple tables. First, since states have different attributes from other geometries
(the first criterion), you can create a separate us_states table as shown in Listing 3-8.

Listing 3-8. Creating the us_states Table
SQL> CREATE TABLE us_states

(
state VARCHAR2(26),
state_abrv VARCHAR2(2),
totpop NUMBER,
landsqmi NUMBER,
poppssqmi NUMBER,
medage NUMBER,
medhhinc NUMBER,
avghhinc NUMBER,
geon SDO_GEOMETRY
)s

Likewise, you can separate the county data from the rest, as shown in Listing 3-9.

Listing 3-9. Creating the us_counties Table
SQL> CREATE TABLE us_counties

(
id NUMBER NOT NULL,
county VARCHAR2(31),
state VARCHAR2(30),
state_abrv VARCHAR2(2),
landsqmi NUMBER,
totpop NUMBER,
poppsqmi NUMBER,
geon SDO_GEOMETRY

);

Now you have the streets and the interstates, both of which have the same attributes. However,
based on the second criterion, you can store them as separate tables, as shown in Listing 3-10.

Listing 3-10. Creating the us_interstates Table
SOL> CREATE TABLE us_interstates

(
id NUMBER,
interstate VARCHAR2(35),
geom SDO_GEOMETRY

);

SQL> CREATE TABLE us_streets

(
id NUMBER,
street_name VARCHAR2(35),
city VARCHAR2(32),
state VARCHAR2(32),
geom SDO_GEOMETRY

);

Until now, we have described how to location-enable the application-specific tables. We have
also discussed how to set up geographic data as regular Oracle tables. This involved creating

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

appropriate tables with a column of the SDO_GEOMETRY type to store associated spatial information.
We can populate these tables by either geocoding address data, as we will discuss in Chapter 6, or
by using appropriate loading tools, as we will discuss in Chapter 5.

In addition to separating the application-specific data and geographic data into appropriate
tables, we also need to specify additional information called metadata to location-enable the appli-
cation. This metadata is used in a variety of spatial functions, such as validation, indexing, and
querying of spatial data (as you will see in subsequent chapters).

Metadata for Spatial Tables

Spatial treats all the objects in a single SDO_GEOMETRY column of a table as a spatial layer. For instance,
the geometry objects stored in the location column of the customers table are treated as a spatial
layer.

To perform validation, index creation, and querying with respect to each spatial layer (in other
words, all the geometry objects in a specific SDO_GEOMETRY column of a table), you need to specify
the appropriate metadata for each layer. This will include the following information:

e The number of dimensions

* The bounds for each dimension

¢ The tolerance for each dimension (which will be explained later)

¢ The coordinate system (which will also be explained later)

This information for each spatial layer is populated in the USER_SDO_GEOM_METADATA dictionary
view.

Dictionary View for Spatial Metadata

Oracle Spatial provides the USER_SDO_GEOM_METADATA updatable view to store metadata for spatial
layers. This metadata view has the structure shown in Listing 3-11.

Listing 3-11. The USER_SDO_GEOM_METADATA View
SQL> DESCRIBE USER_SDO_GEOM METADATA;

Name Null? Type

TABLE_NAME NOT NULL VARCHAR2(32)
COLUMN_NAME NOT NULL VARCHAR2(1024)
DIMINFO MDSYS.SDO_DIM ARRAY
SRID NUMBER

Together, the TABLE_NAME and COLUMN_NAME columns uniquely identify each spatial layer. For the
identified layer, the metadata stores information about the individual dimensions for the layer in
the DIMINFO attribute. The information about the coordinate system of the geometry data is stored
in the SRID attribute. We will discuss how to choose the SRID attribute in more detail in Chapter 4,
but we will briefly describe it here before moving on to examine the DIMINFO attribute.

Note The TABLE_NAME and COLUMN_NAME values are always converted to uppercase when you insert them into
the USER_SDO_GEOM_METADATA view.

www.freepdf-books.com

45

http://www.it-ebooks.info/

46

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

SRID Attribute

This attribute specifies the coordinate system in which the data in the spatial layer is stored. The
coordinate system could be one of the following:

* Geodetic: Angular coordinates, expressed in terms of “longitude, latitude” with respect to the
earth’s surface.

* Projected: Cartesian coordinates that result from performing a mathematical mapping from
an area on the earth’s surface to a plane.

¢ Local: Cartesian coordinate systems with no link to the earth’s surface and sometimes spe-
cific to an application. These are used in CAD/CAM and other applications where the spatial
data does not pertain to locations on the earth.

Different geodetic and projected coordinate systems are devised to maximize the accuracy (of
distances and other spatial relationship calculations) for different parts/regions of the world. We
will describe coordinate systems in detail in Chapter 4.

In the case of geodetic coordinate systems, you can consult the CS_SRS! table for possible val-
ues by selecting rows where the WKTEXT column? starts with a prefix of 'GEOGCS'. Listing 3-12 shows
the SQL.

Listing 3-12. Selecting SRIDs of Geodetic Coordinate Systems

SQL> SELECT SRID
FROM MDSYS.CS_SRS
WHERE WKTEXT LIKE 'GEOGCS%';

As shown in Listing 3-13, you can select the SRIDs for the projected coordinate system from the
MDSYS.CS_SRS table by searching for rows where the WKTEXT column starts with 'PROICS'. Analogously,
you can find the SRIDs for local coordinate systems by searching for the prefix 'LOCAL_CS' in the
WKTEXT column of the MDSYS.CS_SRS table.

Listing 3-13. Selecting SRIDs of Projected Coordinate Systems

SQL> SELECT SRID
FROM MDSYS.CS_SRS
WHERE WKTEXT LIKE 'PROJCS%';

In most cases, you don’t have to choose the coordinate system. Instead, you obtain the geome-
try data from a third-party vendor, and the SRID is already populated in these geometries.

Gaution If the coordinate system is geodetic (in other words, the SRID corresponds to one of the values in the
MDSYS.GEODETIC_SRIDS table), then the dimensions in the DIMINFO atiribute are always longitude and latitude.
The first element in the DIMINFO attribute should always specify the dimension information for the longitude col-
umn, and the second element should always specify the information for the latitude dimension.

Starting in Oracle 10g Release 2, coordinate systems in Oracle are based on, but not entirely
identical to, the European Petroleum Standards Group (EPSG) data model and data set. The EPSG

1. The actual table is MDSYS.CS_SRS. In Oracle 10g and Oracle 11g, a synonym is created so that you can access
the CS_SRS table in the MDSYS schema directly by referring to CS_SRS. In prior versions of Oracle, you may need
to access the table explicitly as MDSYS.CS_SRS.

2. The wktext column stores the "well-known text" for 8%0 rdinate system. This is explained in detail in Chapter 4.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

model is a widely accepted standard for coordinate system data representation and provides flexi-
bility in specifying transformations between different coordinate systems. This model extends
support to vertical, two-dimensional, and three-dimensional coordinate systems. Users can browse
coordinate system information by selecting from the SDO_COORD_REF_SYSTEM table. Oracle has addi-
tional tables, views, and functions to support the various operations in the EPSG model. We will
cover the EPSG model in more detail in Chapter 4.

DIMINFO Attribute

Spatial data is multidimensional in nature. For example, the location column in the customers table
of our business application has two dimensions: longitude and latitude (see Listing 3-3). The DIMINFO
attribute in USER_SDO_GEOM_METADATA specifies information about each dimension of the specified

layer. The DIMINFO attribute is of type MDSYS.SDO_DIM_ARRAY. Listing 3-14 shows this structure.

Listing 3-14. The SDO_DIM_ARRAY Structure

SQL> DESCRIBE SDO_DIM_ARRAY;
SDO_DIM_ARRAY VARRAY(4) OF MDSYS.SDO DIM ELEMENT

Name Null? Type
SDO_DIMNAME VARCHAR2(64)
SDO_LB NUMBER
SDO_UB NUMBER
SDO_TOLERANCE NUMBER

Note that SDO_DIM ARRAY is a variable-length array (VARRAY) of type SDO_DIM ELEMENT. Each
SDO_DIM_ARRAY is sized according to the number of dimensions (so for a two-dimensional geometry,
the DIMINFO attribute will contain two SDO_DIM ELEMENT types, and so on).

Each SDO_DIM_ELEMENT type stores information for a specific dimension and consists of the fol-
lowing fields:

e SDO_DIMNAME: This field stores the name of dimension. For instance, you can setit to ' Longitude’
or 'Latitude' to indicate that the dimension represents the longitude or latitude dimension.
The name you specify here is not interpreted by Spatial. You can specify 'X' for the longitude
dimension and 'Y"' for the latitude dimension.

* SDO_LB and SDO_UB: These two numbers define the lower bound and the upper bound limits
for the values in a specific dimension. For instance, values in the longitude dimension range
from -180 to 180. So, you can set SDO_LB to —180 and SDO_UB to 180. Likewise, for the latitude
dimension, you can set SDO_LB and SDO_UB to —90 and 90, respectively. Note that these bounds
are application specific. For instance, in a CAD/CAM application, the values in a specific
dimension may range from 0 to 100, and the bounds will be set accordingly.

e SDO_TOLERANCE: An SDO_TOLERANCE value, or simply a tolerance value, is used to specify a degree
of precision for spatial data. It essentially specifies the distance that two values must be apart
to be considered different. For example, if the tolerance is specified as 0.5 and the distance
between two points A and B is less than 0.5, then points A and B are considered to be at the
same location.

By default, the tolerance value is in the same units as the SDO_LB and SDO_UB values (in other
words, in the same units as the ordinates in a dimension). However, in geodetic coordinate
systems, the tolerance value is always in meters (whereas the SDO_LB, SDO_UB bounds are in
degrees). Oracle additionally requires that the tolerance be the same value in all dimensions
(thatis, in all SDO_DIM_ELEMENTS).

www.freepdf-books.com

47

http://www.it-ebooks.info/

48

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

In the following sections, we will describe the tolerance field in more detail and examine its
potential impact on different spatial functions and how to set the tolerance appropriately in an
application.

Understanding Tolerance

As discussed, tolerance is specified as a field of the DIMINFO attribute in the USER_SDO_GEOM_METADATA
view. The spatial indexes and other spatial layer-level operations use the DIMINFO attribute and the
associated tolerance from this view.

A second usage of tolerance is in spatial functions described in Chapters 5, 8, and 9. The major-
ity of these spatial functions do not read the USER_SDO_GEOM_METADATA view and instead expect the
tolerance to be passed in as an input parameter. You will see such uses of tolerance in spatial valida-
tion or the analysis functions that are described in Chapters 5, 8, and 9. In this section, we will first
discuss what tolerance is and then how to set it properly for your application.

Setting incorrect tolerance values can cause incorrect and unexpected results in a variety of
functions. Let’s illustrate this with an example, as shown in Figure 3-3.

a(x1,y2) r(x2,y2)
L J
A <——>0 B
Distance d
[
p(x1, y1) s(x2, y1)

Figure 3-3. Tolerance and its impact on the validity and relationship of two objects, A and B

Figure 3-3 shows two objects, A and B. Object A is a rectangle with four vertices: p, g, r, and s.
The lower-left vertex p is at coordinates (x1, y1), and the upper-right vertex r is at coordinates (x2, y2).
The distance between objects A and B is d. The spatial relationship between objects A and B, and
whether object A is considered a valid or invalid geometry, will vary depending on how you set the
tolerance value.

* Relationship between A and B: If the distance d < tolerance, then B is considered to be on the
outer boundary of A. In other words, object A is considered to be intersecting object B.

If the distance d >= tolerance, then A and B are considered to be disjoint or, in other words,
nonintersecting.

* Validation check for object A: If the distance between p and s is less than the tolerance
value—that is, (x2 — x1) < tolerance—then p and s are considered duplicate points/vertices.
Likewise, g and r will be considered duplicate vertices. Oracle Spatial does not allow dupli-
cate points in the specification of a geometry, so geometry object A would be considered
invalid. The same holds true if the distance (y2 —y1) between p and g is less than the tolerance.

If the preceding distances are greater than or equal to the tolerance, then the vertices are
considered distinct and geometry object A is considered a valid Oracle Spatial geometry.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

From this example, you can understand that tolerance plays an important role in your applica-
tion. Setting it appropriately is an important step in location-enabling your application.

Choosing the Tolerance Value

As a general rule, the folerance value should be set to the smallest distinguishable distance in your
application. In most applications, this distance corresponds to half the difference between two
individual coordinate values. For example, if the closest points in your application have the values
0.1 and 0.2 in a specific dimension, you can set the tolerance to (0.2 - 0.1)/2 = 0.05. This will ensure
that the two points (and all other points in the application data) are treated as distinct. Note that
the tolerance is specified in the same units as the coordinate values.

This technique can be applied directly when the geometry data refers to local coordinate sys-
tems (as in CAD/CAM and other applications) or for projected coordinate systems. However, for
locations on the surface of the earth modeled using geodetic coordinate systems, the difference in
the longitude or latitude values of two locations does not correspond to the actual distance between
them. In these cases (that is, in a geodetic coordinate system), the ordinates are interpreted to be in
degrees and the tolerance in meters.

From this discussion, it is clear that specifying an appropriate value for the tolerance depends
on the coordinate system (that is, the SRID attribute that specifies the coordinate system). In Table 3-1,

we describe some recommendations for different coordinate systems.

Table 3-1. Suggested Values for Tolerance Based on SRID for Applications

Coordinate System

SRID Values

Tolerance

Units

Geodetic
coordinate system
(such as 8265, 8307)

Projected
coordinate system
(such as 32774)

Local coordinate
system

No specific
coordinate syst

Select SRID from
MDSYS.CS_SRS, where
WKTEXT is like ' GEOGCS% ' .

Select SRID from
MDSYS.CS_SRS, where
WKTEXT is like ' PROJCS%".

Select SRID from
MDSYS.CS SRS, where

WKTEXT is like ' LOCAL_CS%".

NULL.

0.5 (should not be
less than 0.05)

Half of the smallest
difference between
any two values in a
dimension

Half of the smallest
difference between
any two values in a
dimension

Half of the smallest
difference between
any two values in a
dimension

Meters for

tolerance; degrees
for longitude, latitude
dimensions.

Units for tolerance
are the same as the
units for the ordinates
in the dimensions.

Units for tolerance
are the same as the
units for the ordinates
in the dimensions.

Units for tolerance
are the same as the
units for the ordinates
in the dimensions.

Populating Spatial Metadata for Your Application

Given this background on the different attributes in the USER_SDO_GEOM_METADATA view, we can now
populate the tables in our sample application with metadata.
Since we are dealing with locations on the earth and mostly for the continental United States,
we choose the SRID of 8307. This SRID is used in a majority of navigation systems that use Global
Positioning Systems (GPS). The tolerance value for this geodetic coordinate system can be set to
0.5 meters. Using this value, we insert a row in the USER_SDO_GEOM METADATA view for the spatial layer
corresponding to the location column of the customers table. Listing 3-15 shows the correspon-

ding SQL.

www.freepdf-books.com

49

http://www.it-ebooks.info/

50 CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

Listing 3-15. Inserting Metadata for the Spatial Layer Corresponding to the location Column of the
customers Table

SQL> INSERT INTO USER SDO GEOM METADATA VALUES

"CUSTOMERS ", -- TABLE_NAME
"LOCATION', -- COLUMN_NAME
SDO_DIM ARRAY -- DIMINFO attribute for storing dimension bounds, tolerance
(
SDO_DIM ELEMENT
(
"LONGITUDE', -- DIMENSION NAME for first dimension
-180, -- SDO_LB for the dimension
180, -- SDO_UB for the dimension
0.5 -- Tolerance of 0.5 meters

)
SDO_DIM_ELEMENT

(
"LATITUDE', -- DIMENSION NAME for second dimension
-90, -- SDO_LB for the dimension
90, -- SDO_UB for the dimension
0.5 -- Tolerance of 0.5 meters
)
)s
8307 -- SRID value for specifying a geodetic coordinate system

)s

Note that the SRID of 8307 specifies that the data in the corresponding spatial layer are in a geo-
detic coordinate system. There are specific restrictions when specifying the metadata for geodetic
coordinate systems:

* The first dimension in SDO_DIM_ARRAY should correspond to the longitude dimension. The
bounds should always be set to -180 and 180.

* The second dimension in SDO_DIM_ARRAY should correspond to the latitude dimension. The
bounds should always be set to -90 and 90.

* The tolerance for the dimensions must always be specified in meters. Meters are the “units”
of distance in all geodetic coordinate systems in Oracle.

Inserting incorrect metadata that does not conform to the preceding guidelines for geodetic
coordinate systems is one of the most common mistakes that Oracle developers make. To ensure
accurate distance calculations, you are advised to memorize the preceding three rules, because in
most applications you will use a geodetic coordinate system (specified by your data vendor).

In the earlier example, we constructed the metadata for the spatial layer corresponding to the
location column of the customers table and inserted it into the USER_SDO_GEOM_METADATA view. Likewise,
you have to insert rows into USER_SDO_GEOM_METADATA for other spatial layers such as the location
column in the branches table and the geom column in the us_interstates table.

Additional Information for Visualization and Network Analysis

In the preceding sections, we discussed how to insert metadata for a spatial layer. This metadata
will enable validation, spatial indexing, and spatial query and analysis operations, which are dis-
cussed in Chapters 5, 8, and 9.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 3 " LOCATION-ENABLING YOUR APPLICATIONS

In addition to such spatial analysis, you may want to enable your application with additional
functionality such as map-based visualization and network/routing analysis. To enable these types
of functionality, you will need to specify additional information in appropriate updatable dictionary
views. We discuss the details of this process in Chapters 10 and 11.

Summary

In this chapter, we covered the main steps required to location-enable your business applications,
namely, the following:

¢ Designing and creating tables to store application-specific data
* Designing and creating tables to store geographic data

¢ Defining metadata for each spatial layer both in the application-specific and the geographic
tables

Both the spatial application data and the geographic data are stored using an SDO_GEOMETRY
object. It is time to move on and discuss this object in detail.

www.freepdf-books.com

51

http://www.it-ebooks.info/

www.freepdf-books.com

http://www.it-ebooks.info/

PART 2

Basic Spatial

www.freepdf-books.com

http://www.it-ebooks.info/

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4

The SDO_GEOMETRY Data Type

In the previous chapter, we discussed how to location-enable application data and how to organize
geographic data into multiple tables, each containing SDO_GEOMETRY columns. In this chapter, we focus
on storing and modeling different types of location information using the SD0O_GEOMETRY data type in
Oracle. The SDO_GEOMETRY type can store a wide variety of spatial data, including the following:

* A point, which can be used to store the coordinate location of, for example, a customer site,
a store location, a delivery address, and so on

* A line string, which can be used to store the location and shape of a road segment
* A polygon, which can be used to store city boundaries, business regions, and so on

¢ Complex geometries, such as multiple polygons, which can be used to store boundaries for
states such as Texas, Hawaii, and California

First, we explain the structure of SDO_GEOMETRY, including the different attributes and the values
it can take to store the different types of geometric data listed.

After this, we cover how to actually construct SDO_GEOMETRY objects for simple geometries such
as points, lines, and polygons (as an application developer, you'll mostly be working with such sim-
ple geometries).

Finally, we show how to construct more complex geometries, such as multipolygons. This
knowledge is useful in defining spatial regions of interest on the fly. In Chapters 8 and 9, you'll see
how to use such constructed geometries to perform spatial analysis in an application. Throughout
this chapter, we illustrate potential uses for these different SDO_GEOMETRY data objects with examples
applicable to a typical business application.

The SDO_GEOMETRY examples that are constructed in this chapter are stored in the geometry
examples table. You can create this table as shown in Listing 4-1.

Listing 4-1. Creating a Table to Store All Geometry Examples
SQL> CREATE TABLE geometry_ examples

(
name VARCHAR2(100),
description VARCHAR2(100),
geom SDO_GEOMETRY

)s

The geometry_examples table contains a description of the name and a description of the
geometry and the corresponding SDO_GEOMETRY object. You can use this table as a quick reference to
construct geometries of appropriate types on the fly. For simple types, you may just have to modify
the ordinates in the geom column.

www.freepdf-books.com %

http://www.it-ebooks.info/

56

CHAPTER 4 © THE SDO_GEOMETRY DATA TYPE

Types of Spatial Geometries in Oracle

Let’s take a closer look at the types of spatial data that SDO_GEOMETRY can store. Figure 4-1 illustrates
some of these types, categorizing them into both types supported in two and three dimensions and
types supported in only three dimensions.

A o Point E . ,¢. Collection
Supported

T :
. Line Strin
Types in o e ‘
2D. and 3D ./j Compound
H C F H :
(F,G not "' Polygon (Area) N Line String
)
supported
. D .
30| oy rorm : o
with a Hole yo
H Composite K - Composite
3D-only Surface Solid
Types)
J Simple L [window | Collection
Solid

Figure 4-1. Examples of spatial data that SDO_GEOMETRY can represent

In the sections that follow, we’ll take a closer look at the geometry types in Figure 4-1.

Points

The simplest geometry is a point, which you have used in previous chapters. A point can represent
the location of a customer, a delivery site, or a competitor store. Object A in Figure 4-1 is an example
of a point geometry.

Line Strings

A line string connects multiple points (or vertices as they are sometimes called). In general, roads, trans-
portation networks, utility lines, and pipelines are represented as a line string type of SDO_GEOMETRY. If
the line string is closed, then it is a ring. Otherwise, it is just a line. A line string connects two or more
points by the following:

e Straight lines: We refer to this simply as a straight-line line string or as a line string when
there is no ambiguity. Object B in Figure 4-1 is an example of straight-line line string.
e Circular arcs: We refer to this as an arc string.!

* A combination of straight lines and circular arcs: We refer to this as a compound line string
(curve). Object F in Figure 4-1 is an example of such a compound line string.

1. Oracle supports only circular arcs. From ngw on, we refer to circular arcs simply as arcs.
www.?ree péf-hoo S.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE 57

Polygons and Surfaces

A polygon is specified by one or more rings (closed line strings) and is associated with an area. Object C
in Figure 4-1 is a polygonal area bounded by straight lines connecting four points (the shaded area in
Figure 4-1). In this example, object C is shaped like a diamond, but in general a polygon can have
any arbitrary shape. A polygon could represent a city boundary, a ZIP code area, or a buffer zone
around a store site. A polygon has the following properties:

* The boundary of a polygon consists of one or more rings (a closed line string). Special cases for
the polygon boundary that can be specified easily in SD0_GEOMETRY include rectangles and circles.

* Apolygon, unlike a line string, is associated with an area enclosed by the boundary. The area
has to be contiguous—that is, you should be able to travel in the interior of the polygon with-
out crossing the boundary. This means the digit 8 cannot be a valid polygon. (However, the
digit 8 can be modeled as a multipolygon or collection geometry, as described later.) Object C
in Figure 4-1 is an example of a (valid) polygon. In Chapter 5, you will learn the criterion for
determining the validity of polygons.

* The ring specifying the boundary or collection of a polygon can be composed of straight
lines, arcs, or a combination of arcs and lines. If it is a combination of arcs and lines, we refer
to the polygon as a compound polygon. Object G in Figure 4-1 is an example of such a com-
pound polygon, because its boundary is connected by straight lines and arcs.

* The area covered by a polygon can be expressed using one outer ring and any number (zero
or more) of inner rings. The inner rings are referred to as holes or voids because they void out
(subtract) the area covered by the outer ring. Object D in Figure 4-1 shows a polygon with
one outer ring and one inner ring (void). The inner ring in this example is a rectangle. The
area covered by this polygon is the shaded region between the two rings.

Until now we were assuming the example data is in a two-dimensional space. For three-
dimensional data, the polygons are in three-dimensional planes and hence are referred to as (planar)
polygonal surfaces, or surfaces when there is no ambiguity. Note that all vertices of a polygonal sur-
face have to be in a single plane. You can “stitch” one or more polygonal surfaces (each being in
a different plane) to constitute an arbitrary three-dimensional (but contiguous) composite surface.
Object H in Figure 4-1 is an example of such a composite surface. A surface geometry in general can
be a single polygonal surface or a composite surface consisting of contiguous polygonal surfaces.
Note that a surface can have still have an associated area but is not associated with a volume even if
the surface forming the boundary is closed, that is, defines a solid. Examples of three-dimensional
surfaces include the exteriors of buildings and soil surfaces.

Solids

A simple solid is specified by one outer surface and zero or more inner composite surfaces. Together,
the outer and inner composite surfaces define the boundary (or limits) of the simple solid. Unlike
a surface, a solid has both an area and a volume. Object J in Figure 4-1 is an example of a simple
solid. You can use the solid type to model buildings and other architectural entities in a city-modeling
application.

In some cases, buildings may consist of one or more attached components. You can model
such buildings either as a simple solid or as a composite solid consisting of multiple simple solids
that have a single volume. If it is represented as a combination, then it is referred to as a composite
solid. Object K in Figure 4-1 is an example of a composite solid. Storing different components as
components of a composite solid is advantageous if your application intends to access each com-
ponent of the solid separately. (We will look at functions for accessing components of a surface or
a solid in Chapter 7.) Such composite solids come in handy in CAD-type applications, where you

may attach a nut to a bolt to make a single com 8?1 e solid.
WWW. reeﬁ’ -DOOKSs.com

http://www.it-ebooks.info/

58

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Collections

A collection has multiple geometry elements. A collection could be heterogeneous—that is, it could be
any combination of points, lines, and polygons. Alternatively, a collection could be homogeneous—
that is, it could consist of elements of a single type. Specific types of such homogeneous collections
are multipoint, multiline, multipolygon/multisurface, or multisolid collections.

Object E in Figure 4-1 has two polygons, a pentagon-shaped polygon and a polygon with a void,
and is an example of a multipolygon collection. The shaded regions in the figure show the area cov-
ered by this geometry. The boundaries for some states, such as Texas and California, are represented
as collections of polygons, where noncontiguous elements (islands) are stored as separate polygons.
Likewise, the digit 8 can also be stored as a collection geometry with two polygons. Object L in Figure 4-1
models a building as a collection of a solid and a surface, with the solid representing the actual building
and the surface representing the window.

Logical Implementation of SDO_GEOMETRY

In general, the shape of spatial objects can be quite complex, requiring a large number of connected
points (or vertices). For instance, the Amazon River may have thousands of vertices. State bound-
aries, which are modeled as polygons, could also have a large number of vertices. Any data type that
models spatial data should be able to represent the wide variety of shapes—from complex road seg-
ments to an arbitrarily shaped city and property boundaries.

To represent such complex geometric shapes, the SD0_GEOMETRY type is logically implemented
using an array of elements, as shown in Figure 4-2.

| SDOfGeometryl—' Spatial Reference System |

ElementArray

[Point > inestring] [Csurface] [Csolid]
T+ ‘

1+ 1+ 1+ AN
Polygon |

O [Muttisolid | Muttisurface | | Mutticurve || Muttipoint |

Notation: & denotes is-a relationship
<> denotes many-to-1 relationship

CSurface is short for Composite Surface
CSolid is short for Composite Solid
SSolid is short for Simple Solid

Figure 4-2. Conceptual class diagram of the SDO_GEOMETRY data type

The SDO_GEOMETRY data type has two logical components: the spatial reference system (also
called the coordinate system) of the geometry and the ElementArray.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Note The coordinate system specifies the reference frame in which the coordinates of the geometry are repre-
sented. Different coordinate systems exist to model the surface of the earth. Alternatively, a coordinate system may
refer to a nonearth surface. You will learn more about different coordinate systems in the next section.

The ElementArray, or the array of elements, describes the shape and location of the SDO_GEOMETRY
object (with reference to the specified coordinate system). This array of elements constitutes (or makes
up) the SDO_GEOMETRY object. The array of elements represents any of the different types of spatial
data represented in Figure 4-1: point, line string, polygon, or collection-type geometry. This is depicted
in Figure 4-2 by the is-a relationship, illustrated by the triangle symbol between these types and the
ElementArray. Note that the diamond symbol shows a many-to-one relationship between different
types. For instance, a diamond between a point and a line string indicates that “many” points make
up “one” line string. Note that the “2+” next to the diamond symbol indicates the minimum number.
For example, at least two or more points make up a line string. Likewise, observe that one or more
rings constitute a polygon, and note that one or more polygons constitute a composite surface (called
a composite if more than one polygon and the surface are connected). One outer composite surface
and zero or more inner composite surfaces (represented as one or more in Figure 4-2) form a simple
solid (SSolid in Figure 4-2) if the surfaces are closed. One or more adjacent (sharing a face) simple solids
form a composite solid (referred to as CSolid in Figure 4-2). The collection types are formed as one
or more elements of the appropriate type (for example, one or more points form a multipoint,
one or more solids form a multisolid, and so on).

Spatial Data in SQL/MM and OGC

SQL/MM is the ISO/IEC international standard for “Text, Spatial, Still Images, and Data Mining.”
SQL/MM Part 32 specifically deals with spatial user-defined types and associated routines to store,
manage, and retrieve two-dimensional spatial data. This standard specifies the ST_Geometry type to
store two-dimensional spatial data. This type has subtypes such as ST_Point, ST_LineString, and
ST_Polygon to model different types of spatial geometries. This standard also includes a well-known
text format for specifying geometries. For instance, the string 'POINT(1 1)' indicates a point geom-
etry with coordinates at (1, 1).

The Open GIS Consortium (OGC) has the Simple Features Specification? for storing, retrieving,
querying, and updating simple geospatial (two-dimensional) features. This specification defines
a Geometry type with appropriate subtypes to model two-dimensional points, line strings, polygons,
and so on. The types represented are a subset of those defined by SQL/MM. For three-dimensional
data, the GML 3.0 specification of OGC defines an extensive set of three-dimensional types.

Oracle Spatial explicitly supports ST_Geometry and its specific subtypes (ST_CircularString,
ST_CompoundCuzrve, ST_Curve, ST CurvePolygon, ST GeomCollection, ST LineString, ST MultiCurve,
ST MultiLineString, ST MultiPoint, ST MultiPolygon, ST MultiSurface, ST Point, and ST_Polygon)
that are defined in the SQL/MM standard. These types and Oracle Spatial’s SDO_GEOMETRY data type
are essentially interoperable. In other words, you can create ST_Geometry from an SDO_Geometry
type, and vice versa. In addition, Oracle also implements relationship functions defined on
ST_Geometry and its subtypes in the SQL/MM standard (these are discussed in Chapter 8). In short,
Oracle Spatial conforms to the OGC Simple Features Specification (the ST_Geometry implementa-
tion is compliant with the OGC Simple Features Specification for Object Model) and the equivalent

2. ISO/IEC 13249-3:2003, “Information technology — Database languages — SQL multimedia and application
packages — Part 3: Spatial,” http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail ?CSNUMBER=31369.

3. Open GIS Consortium, “OpenGIS Simple Features Specification for SQL Revision 1.1,” http://www.opengis.org/
docs/99-049.pdf, May 5, 1999.
P www.freepdf-books.com

59

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369
http://www.opengis.org
http://www.it-ebooks.info/

60

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

sections of SQL/MM Part 3. In this chapter, we illustrate how to construct various types of
geometries using the native SDO_GEOMETRY data type. For the construction of these geometries using
an ST_Geometry type, you can consult the Oracle Spatial’s User Guide and Reference or use the
SDO_GEOMETRY-ST_GEOMETRY conversion functions described in Chapter 5.

For three-dimensional data, Oracle can store and model the majority of the types in the GML
3.0 specification with the exception of parametric curve types (arcs, splines, and so on). In addition,
Oracle Spatial provides constructors for converting data between the SDO_GEOMETRY data type and
the well-known text (WKT) and well-known binary (WKB) notations of SQL/MM for two-dimensional
data and between SDO_GEOMETRY and GML 3.0 types for three-dimensional data. We describe these
converters in Chapter 5.

In the next section, we take a closer look at the SDO_GEOMETRY data type. In the subsequent sec-
tions, we describe how to construct SDO_GEOMETRY objects to store different types of spatial data.

SDO_GEOMETRY Type, Attributes, and Values

Now that you know what an SDO_GEOMETRY can represent and how it is internally constituted, let’s
examine its structure in Oracle. Listing 4-2 describes the SDO_GEOMETRY data type.

Listing 4-2. SDO_GEOMETRY Data Type in Oracle
SQL> DESCRIBE SDO_GEOMETRY

Name Null? Type

SDO_GTYPE NUMBER

SDO_SRID NUMBER

SDO_POINT SDO_POINT_TYPE
SDO_ELEM_INFO SDO_ELEM_INFO_ARRAY
SDO_ORDINATES SDO_ORDINATE_ARRAY

Let’s look at the purpose served by each attribute of SDO_GEOMETRY:

* The SDO_GTYPE attribute specifies the type of shape (point, line, polygon, collection, multi-
point, multiline, or multipolygon) that the geometry actually represents. Although the
SDO_GTYPE attribute captures what type of geometry is being represented, it does not specify
the actual coordinates.

e The SDO_SRID attribute specifies the ID of the spatial reference system (coordinate system) in
which the location/shape of the geometry is specified.

In Figure 4-2, we noted that a geometry consists of an element array (that is, one or more ele-
ments make up a geometry). How do you specify the coordinates of the elements? You can do it in
one of the following ways:

 If the geometry is a point (for example, the location of customers), then you can store the
coordinates in the SDO_POINT attribute of SDO_GEOMETRY.
 If the geometry is an arbitrary shape (for example, a street network or city boundaries), then
you can store the coordinates using the SDO_ORDINATES and SDO_ELEM_INFO array attributes:
e The SDO_ORDINATES attribute stores the coordinates of all elements of the geometry.

e The SDO_ELEM_INFO attribute specifies where in the SDO_ORDINATES array a new element
starts, how it is connected (by straight lines or arcs), and whether it is a point (although
we recommend you use SDO_POINT for the storage and performance reasons listed later
in the chapter), a line, or a polygon.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Let’s look at each of these attributes in more detail.

SDO_GTYPE Attribute

This attribute describes the type of geometric shape modeled in the object. It reflects roughly the
top levels in the class hierarchy of Figure 4-2. Specifically, it has a distinct value to indicate whether
the geometry is a point, a line string, a polygon, a multipoint, a multipolygon, a multiline, or an arbi-
trary collection. You can think of this attribute as a high-level description of the geometry object.
The geometry object may itself be a combination of multiple elements, each of a different shape.
But this attribute specifies the general type for the entire object (with all elements it is composed of).

The SDO_GTYPE attribute is a four-digit number structured as follows: DOOT. The first and the last
digits take different values based on the dimensionality and shape of the geometry, as described in
Table 4-1. The second and third digits are always set to 0.

Note For a linear-referenced geometry, SDO_GTYPE is structured as DLOT. The second digit, L, in that case
refers to the dimension number (3 or 4) to use for the measure values in a linear-referenced geometry. In Oracle 11g
Release 1, linear referenced geometries can have only x,y and measure dimensions and not x,y,z and measure
dimensions. You will learn about linear-referenced geometries in Appendix C.

Table 4-1. Values forD and T in the DOOT Format of the SDO_GTYPE Attribute of SDO_GEOMETRY

Digit Values
D (dimension of the geometry) 2 =Two-dimensional, 3 = Three-dimensional,
4 = Four-dimensional
T (shape/type of the geometry) 0 = Uninterpreted type, 1 = Point, 5 = Multipoint, 2 = Line,

6 = Multiline, 3 = Polygon/surface, 7 = Multipolygon/
multisurface, 4 = Collection, 8 = Solid, 9 = Multisolid

The D in the DOOT representation of the SDO_GTYPE is used to store the dimensionality of (each
vertex in the shape of) the geometry object. Spatial can work with two- to four-dimensional geome-
tries. If the geometry is two-dimensional, then it has two ordinates for each vertex in the geometric
shape. If the geometry is three-dimensional, then each vertex has three ordinates, and so on. These
ordinates for vertices of the geometry are stored in the SDO_ORDINATES (or SDO_POINT) attribute, which
we discuss later.

The T in the SDO_GTYPE specifies the type/shape of the geometry. Let’s go over the values. For
simple types, such as points, lines, and polygons, T is in the range of 1 to 3. For multiple-item
geometries, T is simple_type + 4. For instance, T for a point is 1, and for a multipointitis 1 + 4 =5.
Likewise, T for a line is 2, and for multiline string it is 2 + 4 = 6, and so on.

The value of T (in SDO_GTYPE) is 1 if the geometry consists of a single point, and it is 5 if the geome-
try has multiple points. For example, for object A in Figure 4-1, the value of T is 1, and the SDO_GTYPE
value is 2001. Listing 4-3 shows the SDO_GTYPE for a point geometry from the customers table. Note
that to retrieve the SDO_GTYPE attribute of the location column, you need a table alias.

Listing 4-3. Example of the SDO_GTYPE in the location Column of the customers Table

SQL> SELECT ct.location.sdo_gtype FROM customers ct WHERE id=1;
SDO_GTYPE

www.freepdf-books.com

61

http://www.it-ebooks.info/

62

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

The value of T is 2 if the geometry represents a line string. This line could be a simple line con-
necting any number of points by straight lines or arcs. Alternatively, this line could be a combination
of multiple parts specifying straight-line segments and arc segments. Note that the line is still con-
tiguous. If the geometry consists of multiple line segments that are not connected, then the type is 6
(multiline). For objects B and F in Figure 4-1, the value of T is 2, and SDO_GTYPE is 2002. Listing 4-4
shows an example.

Listing 4-4. Example of SDO_GTYPE in the geom Column of the us_interstates Table

SOL> SELECT i.geom.sdo_gtype FROM us_interstates i WHERE rownum=1;
SDO_GTYPE

The type T is 3 if the geometry represents an area bounded by a closed line string (also referred
to as ring) of edges. Listing 4-5 shows an example. The boundary may be connected by lines, arcs, or
a combination of both. The polygon can contain one or more inner rings called voids. In such cases,
the area of the polygon is computed by subtracting the areas of the voids. The area covered by
a geometry that has T equal to 3 should be contiguous. Objects C, D, and G are examples. Note that
object D has one outer ring and one inner ring (rectangle), but there is still only one single “contigu-
ous” area shown by the shaded region. So, this is considered a single polygon with type T set to 3.

Listing 4-56. Example of SDO_GTYPE in the location Column of the us_states Table

SOL> SELECT s.geom.sdo_gtype FROM us_states s WHERE state abrv="NH';
SDO_GTYPE

If there is more than one (nonvoid) polygon in the geometry (that is, if the area of the geometry
is not contiguous), then it is a multipolygon geometry and the type is 7. Object E in Figure 4-1 is an
example of this.

If the geometry is a collection of points, lines, and/or polygons, the geometry is a collection
geometry. The value of T for this geometry is 4. For object E, which has two polygons (one with a void),
you can set the type to 7, a multipolygon. Alternatively, you can set it to the more generic description
of a collection. The type T in this case will be 4. Listing 4-6 shows an example when T is 7.

Listing 4-6. Example of SDO_GTYPE in the location Column of the us_states Table

SQL> SELECT c.geom.sdo_gtype FROM us_cities ¢ WHERE state abrv="TX';
SDO_GTYPE

Note that most of the shapes represent only two-dimensional geometries. How do you specify
three-dimensional (or four-dimensional) geometries? Just set the D in Do0T for SDO_GTYPE to 3 (or 4).
Oracle Spatial then allows you to store three (or four) ordinates for each vertex of the geometry. So if
you have two points, (1, 1, 4) and (2, 2, 5), you have to specify the SDO_GTYPE to be 3002 (line).

In some applications, the third or fourth dimension holds additional information that can be
stored with each vertex of the geometry. This additional dimension may not pertain to the shape of
the geometry but may specify a “measure value” that is application-related. For example, the third
dimension could model the height of each vertex point in the geometry. In transportation applica-
tions, the third ordinate for each vertex in a road segment is used to store the mile marker. To denote
that a dimension as a measure dimension, you can use the L digit in SDO_GTYPE. If L is set to 3, then
the third dimension is the measure dimension; if L is set to 4, then the fourth dimension is treated

as the measure dimension. www.free pdf—books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Tip Since the geometry has a provision to store four-dimensional ordinates (as specified by D in SDO_GTYPE),
even if you model a two- or three-dimensional geometry, you can store additional information such as the eleva-
tion, mile marker, time stamp, or speed limit as the third or fourth dimension.

So, Oracle Spatial does not interpret the measure dimension values by default. Oracle Spatial
does provide some functions to operate on the measure dimension for specific applications. You
will learn about one such application in Appendix B.

SDO_SRID Attribute

This attribute specifies the spatial reference system, or coordinate system, for the geometry. To
understand what a coordinate system is, consider the example in Figure 4-3. Recall that we briefly
discussed coordinate systems in Chapter 3. Here, we continue that discussion in more detail.

Y-axis
A
Line String A
(Xa+1, Ya+1)
Line String B
(Xa, Ya) (Xa+2, Ya) (Xb+1, Yb+1)
B
(Xb, Yb) (Xb+2, Yb)
Origin (0, 0) X-axis

Figure 4-3. Coordinate systems example

Note that in Figure 4-3, the locations of two line string objects, A and B, are specified with
respect to the origin and using the coordinates in the orthogonal x- and y-axes. Note that both
A and B have the same shape; however, their positioning (in other words, location) with respect to
the origin is different. If you change the origin, the absolute locations (coordinates) of the two line
string objects change. Such a frame of reference using the x- and y-axes is termed the Cartesian system.
This system is popular in representing two-dimensional data in CAD/CAM applications. But how
good is it for representing customer locations and delivery sites on the surface of the earth?

To answer this question, let’s examine the surface of the earth. The earth is approximately ellip-
soidal in shape. Location has traditionally been specified using the longitude and latitude lines on
the earth. Flattening the surface of the earth to a two-dimensional plane loses spatial proximity and
distorts the shape. Figure 4-4 shows a map of the countries of the world. In Figure 4-4, by dividing the
surface of the earth at the dateline meridian, California and Japan appear to be farther apart than
they actually are. Also, countries at the North and South Poles, such as Antarctica and Greenland,
are distorted in shape.

www.freepdf-books.com

63

http://www.it-ebooks.info/

64

CHAPTER 4 © THE SDO_GEOMETRY DATA TYPE

Figure 4-4. Example map of the world, with countries and distances distorted

How do you represent locations on the surface of the earth without inaccuracies and distor-
tions? This has been a challenge to many geographers, mathematicians, and inventors for centuries.
Several books have dealt with this topic in great detail.* There are two general techniques to model
the data on the earth’s surface. The first is to model the earth using three-dimensional ellipsoidal
surfaces. The second is to project the data into a two-dimensional plane. Let’s look at each of these
in turn. Note that in most cases, an application developer may not need to know much about differ-
ent coordinate systems. All that is required is to choose an appropriate coordinate system as described
in the section “Choosing an Appropriate Coordinate System.” The casual reader may skip the dis-
cussion in the next three sections.

Geodetic Coordinate Systems

If you model the surface of the earth as a regular three-dimensional ellipsoid, you can measure dis-
tance relationships between objects by computing the distances of the locations on the corresponding
ellipsoid. Unfortunately, the earth is not a perfect ellipsoid, and therefore a single ellipsoid cannot
accurately model the earth in all areas. This led geographers to define multiple ellipsoids to suit their
needs. Oracle Spatial supplies commonly used reference ellipsoids in the MDSYS.SDO_ELLIPSOIDS table.

Sometimes in your model, you will need to shift the center of the earth and rotate the axes to
better suit the curvature at the local region. For this, you can create models referred to as datums by
shifting and rotating specific ellipsoids to better suit the earth’s curvature at different regions. You can
examine the different three-dimensional models by looking at the datums in the MDSYS. SDO_DATUMS
table. Positioning data on the surface of the earth by referring to the coordinates (longitude and
latitude) on a specific datum is known as a geodetic coordinate system (or geodetic spatial reference
system).

4. For example, refer to John P. Snyder’s Flattening the Earth: Two Thousand Years of Map Projections (University

of Chicago Press, 1997).
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Projected Coordinate Systems

In most applications, data are concentrated within a small region of the earth. Projecting such data
to a two-dimensional plane may be a simpler representation and may also be more accurate for the
application needs. How do you project data on the earth’s surface to a two-dimensional flat plane?
First, you start with a three-dimensional model (datum) of the earth. Then, using one of a variety of
projection techniques, the three-dimensional data on the reference model is transformed to two-
dimensional data on a flat plane.

Why have different projection techniques? Well, there is no single technique that can project
from three-dimensional to two-dimensional while preserving the distances between objects, the
areas of large objects, the directions, and so on. For example, in the Mercator cylindrical projection,
data are projected from the sphere to a cylindrical surface, and the cylindrical surface is unwrapped
to result in a two-dimensional plane. It preserves direction and has been used in marine navigation
for centuries. However, it does not preserve the area of objects. So, the Mercator cylindrical projec-
tion would not be useful in applications that need to compute land area (spatial object area, in
other words).

Alternate types of projections include conic projections (projecting to a conic surface) and
azimuthal projections (projecting from the center of a region to a tangential plane). Examples of
these projections include Lambert Azimuthal Equal-Area, Azimuthal Equidistant, Albers Equal-Area
Conic, and Equidistant Conic projections.

The equal-area projections preserve areas of the objects (unlike the Mercator) but distort direc-
tion and distance. The equidistant projections are good for measuring the distance from the center
of the projection area (say, New York City) to distant locations, such as San Diego, California, and
Seattle, Washington. However, such a projection cannot be used to compute distances between San
Diego and Seattle, two locations that are far off from the center of the projection. In short, the spe-
cific projection that is to be used depends on which of the following parameters are to be preserved:
direction, distance, and area. You can examine the different projections that can be applied to a spe-
cific datum by looking at the table MDSYS.SDO_PROJECTIONS.

To summarize, by choosing a projection and a three-dimensional reference datum, locations
on the surface of the earth can be represented in a two-dimensional plane. Such referencing using
a specific datum and an appropriate projection is referred to as a projected coordinate system or
a projected spatial reference system.

Georeferenced, Local Coordinate Systems

Coordinate systems pertaining to locations on the earth (that is, projected and geodetic coordinate
systems) are called georeferenced. All other coordinate systems, such as those in CAD/CAM, are
referred to as local or nongeoreferenced.

Choosing an Appropriate Coordinate System

You choose the coordinate system by setting an appropriate value for the SDO_SRID attribute. Next,
we will describe how to determine the appropriate values for projected, geodetic, and local coordi-
nate systems.

If the geometry does not refer to a location on the earth’s surface but instead refers to layout in
CAD/CAM or other applications, then you can set it either to NULL or to a value specified by your
data vendor.

Otherwise, if the geometry refers to a location on the earth’s surface, you can set SDO_SRID to
avalue corresponding to either a projected coordinate system or a geodetic coordinate system. Pro-
jected coordinate systems are used whenever all the data are located in a small region of the earth.
Projected coordinate systems are useful to suit application needs such as preserving the distances
between locations, shapes, or areas of geometry objects (such as city boundaries) and other

www.freepdf-books.com

65

http://www.it-ebooks.info/

66

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

appropriate geometric properties. Geodetic coordinate systems are useful if the data are located in
a much larger portion on the surface of the earth and slight inaccuracies in some geometric proper-
ties such as distances, areas, and so on, can be tolerated. For example, when dealing with data fully
concentrated in southern Texas, you can use a state-plane projection appropriate for southern Texas.
However, when dealing with the United States as a whole, you can use a geodetic coordinate system.
You can look up the SDO_SRIDs for the geodetic or projected coordinate systems in the MDSYS.CS_SRS
table. Listing 4-7 shows the columns in this table.

Listing 4-7. MDSYS.CS_SRS Table
SOL> DESCRIBE MDSYS.CS_SRS

Name Null? Type

CS_NAME VARCHAR2(68)
SRID NOT NULL NUMBER(38)
AUTH_SRID NUMBER(38)
AUTH_NAME VARCHAR2(256)
WKTEXT VARCHAR2(2046)
CS_BOUNDS SDO_GEOMETRY

The MDSYS.CS_SRS table has the following columns:

e CS_NAME: This specifies the name of the coordinate system.

e SRID: This is short for spatial reference system ID. This is a unique ID for the spatial reference
or coordinate system.

* AUTH_SRID and AUTH_NAME: These refer to the values assigned by the originator of this coordi-
nate system.

e WKTEXT: This is short for well-known text. This field provides a detailed description of the
coordinate system. For geodetic coordinate systems, the WKTEXT field starts with a prefix of
GEOGCS For projected systems, it starts with 'PROICS'. You can use this information to search
for an appropriate coordinate system for your application’s needs.

e (S_BOUNDS: This specifies a geometry where the coordinate system is valid. Storing data
beyond the bounds may lead to inaccurate results. Currently, set to NULL.

As an application developer, chances are you will be interested only in how to choose the
coordinate system (you are not likely to have to populate these rows in the MDSYS.CS_SRS table). You
might be able to do this by examining the coordinate system description in the WKTEXT field. For
example, to identify a projected coordinate system for southern Texas, you can execute the SQL in
Listing 4-8. Note that the ROWNUM=1 predicate displays only one out of three rows for southern Texas.

Listing 4-8. Selecting an SRID for the Southern Texas Region from the MDSYS.CS_SRS Table

SOL> SELECT cs_name, srid, wktext
FROM MDSYS.CS_SRS
WHERE WKTEXT LIKE 'PROJCS%'
AND CS_NAME LIKE 'Z%Texas%Southern%’
AND ROWNUM=1;

CS_NAME

Texas 4205, Southern Zone (1927)

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

PROJCS
[
"Texas 4205, Southern Zone (1927)",
GEOGCS

"NAD 27 (Continental US)",
DATUM
[
"NAD 27 (Continental US)",
SPHEROID ["Clarke 1866", 6378206.4, 294.9786982]
1,
PRIMEM ["Greenwich", 0.000000],
UNIT ["Decimal Degree", 0.01745329251994330]

PROJECTION ["Lambert Conformal Conic"],

PARAMETER ["Standard Parallel 1", 26.166667],
PARAMETER ["Standard Parallel 2", 27.833333],
PARAMETER ["Central Meridian", -98.500000],

PARAMETER ["Latitude Of Origin", 25.666667],
PARAMETER ["False Easting", 2000000.0000],

UNIT ["U.S. Foot", 0.3048006096012]

The query returns a projected coordinate system for southern Texas. This coordinate system is
formed using the Lambert Conformal Conic projection technique on a datum formed using the
NAD 27 (continental United States) reference ellipsoid. You can use the corresponding SRID of
41155 to specify a geometry in this coordinate system.

For most business applications that have location data spread over the entire United States, you
can choose one of the widely used geodetic systems for North America, such as WGS84 (SRID=8307) or
NADS83 (SRID=8265). For applications in other countries, you can choose either an appropriate geo-
detic system or a projected system, depending on how widely distributed the location data are. Note
that Oracle supports approximately 1,000 coordinate systems that cover almost all countries/regions
of the world. These coordinate systems are all described in the MDSYS.CS_SRS table. All you have to do
is choose one of them (the SRID field) by searching for the region/country in the WKTEXT field.

Note All geometries in a specific column of a table (for example, the location column of the customers table)
should have the same SDO_SRID value.

Note that the previous coordinate systems may or may not be suited for all applications. To
obtain more accurate coordinate systems, users can define new coordinate reference systems by
appropriately defining new entries in the MDSYS.CS_SRS table.

Coordinate systems enable accurate representation of the data based on the user’s region as well
as more accurate transformations when converting from data in one coordinate system to another
(using the SDO_CS.TRANSFORM function call). Starting in Oracle 10g Release 2, Spatial supports the EPSG
model for coordinate systems. We'll briefly describe this model because of its popularity. The more
casual reader can skip the next section.

www.freepdf-books.com

67

http://www.it-ebooks.info/

68

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

The EPSG Coordinate System Model for Two-Dimensional and Three-Dimensional Data in
Oracle Spatial

The European Petroleum Standards Group (EPSG) model supports a rich set of predefined one-
dimensional, two-dimensional (projected, geodetic, or local), and three-dimensional coordinate
systems in addition to providing more flexibility in transformations across coordinate systems. We'll
first cover the different types of coordinate systems.

Types of EPSG Coordinate Systems

You can determine the different types of supported two-dimensional and three-dimensional coor-
dinate systems by querying the SDO_COORD_REF_SYS table, as shown in Listing 4-9.

Listing 4-9. Determining the Different Kinds of EPSG Coordinate Systems

SQL> SELECT DISTINCT coord ref sys kind FROM SDO_COORD REF SYS;
COORD_REF_SYS_KIND

PROJECTED
GEOCENTRIC
GEOGRAPHIC2D
VERTICAL
ENGINEERING
COMPOUND
GEOGRAPHIC3D

7 rows selected.

Which one of these systems should you use for your data? The answer will depend on your specific
application. You can classify the previous seven types of EPSG coordinate systems into one-dimensional
(1D), two-dimensional (2D), three-dimensional (3D), or local coordinate systems, as described here:

* 1D coordinate systems:

o Vertical: These coordinate systems are typically used to model height information
above the earth’s surface. The height can be either geoidal height, which is the height
above the earth’s geoid (the geoid represents the physical surface of the earth and is
highly irregular), or ellipsoidal height, which is the height above the ellipsoid that is
used to approximate the surface of the earth in a reference coordinate system.

* 2D coordinate systems:

e Geographic2D: This type of coordinate system specifies the longitude and latitude on
the surface of the earth approximated by a reference ellipsoid (usually referred to as
datum). This type is also referred to as the Geodetic coordinate systems (as in earlier
sections).

¢ Projected: This type of coordinate system specifies how to project longitude and latitude
values on a reference Geographic2D system to a two-dimensional Euclidean coordinate
system. As discussed in the prior section “Projected Coordinate Systems,” you can use
various types of projection techniques such as equal-area (to preserve areas of projected
geometries) or equidistant projections (to preserve distances to objects from projec-
tion center).

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

* 3D coordinate systems:

e Geographic3D: This type of coordinate system specifies latitude and longitude and
ellipsoidal height based on a geodetic datum (ellipsoid).

* Geocentric: This type of coordinate system specifies the x,y,z values with reference to
the center of the earth (as opposed to the surface ellipsoid as in a Geographic3D).

e Compound: This type of coordinate system combines either a Geographic2D (latitude,
longitude) or a Projected (2D) coordinate system with a vertical coordinate system
specifying height based on gravity, above a mean sea level, and so on.

¢ Local coordinate systems:

» Engineering: These coordinate systems are application-specific coordinate systems.
They may or may not refer to data on earth’s surface, but the data are usually treated as
if they are in Euclidean coordinate axes.

As mentioned in the previous section, you can obtain all relevant information about 2D coordi-
nate systems from the CS_SRS table. However, for 3D coordinate systems, the CS_SRS table contains
only partial information (this is likely to change in versions after Oracle 11g5; after such changes,
you may be able to get all relevant information in the CS_SRS table itself). In Oracle 11g, you have to
consult other tables such as SDO_COORD_REF_SYS and SDO_CRS_VERTICAL to obtain detailed information
about 3D or 1D coordinate systems. For instance, assume you want to identify the 3D compound
coordinate system for the Texas region. You can select the coordinate system ID (SRID), its name
(COORD_REF_SYS NAME), and the horizontal (CMPD_HORIZ SRID) and vertical coordinate systems
(CMPD_VERT_SRID) that make up the compound system from the SDO_COORD_REF_SYS table by specify-
ing the COORD_REF_SYS_KIND to be 'COMPOUND"'. Listing 4-10 shows how to find this information about
a compound coordinate system for the Texas region.

Listing 4-10. Searching for a Compound Coordinate System for the Texas Region

SQL> SELECT srid, coord ref sys name name,
cmpd_horiz srid hsrid, cmpd vert srid vsrid
FROM sdo_coord ref sys
WHERE coord ref sys name like 'Z%Texas%'
AND coord_ref sys_kind="'COMPOUND';

SRID NAME HSRID VSRID

7407 NAD27 / Texas North + NGVD29 32037 5702

Observe that the SQL returns the SRID of the compound coordinate system as 7407 and that
the compound system is made up of a horizontal coordinate system whose SRID is 32037 and a ver-
tical coordinate system whose SRID is 5702. The horizontal coordinate system typically pertains to
the x,y or longitude/latitude dimensions, and the vertical coordinate system usually refers to the
height from the surface of the earth. As shown in Listing 4-11, you can look up information on the
horizontal coordinate system using the CS_SRS table. From the wktext string returned in Listing 4-11,
you can notice that this (SRID=32037) horizontal coordinate system is a Lambert-Conformal Conic
projection using the NAD27 (North American Datum 1927) datum, and the default UNIT in this
coordinate system is U.S. FOOT (search for PROJECTION and UNIT substrings in the wktext value that
is returned).

5. Unless otherwise mentioned, all references to Oracée lbg in the book mean Oracle Database 11g.
www.freepdf-books.com

69

http://www.it-ebooks.info/

70

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Listing 4-11. Looking Up Details for Horizontal Coordinate System ID 32037
SOL> SELECT cs_name, wktext FROM CS_SRS WHERE SRID=32037;

CS_NAME WKTEXT

NAD27 / Texas North

PROICS[
"NAD27 / Texas North",
GEOGCS [
"NAD27",
DATUM [
"North American Datum 1927 (EPSG ID 6267)",
SPHEROID ["Clarke 1866 (EPSG ID 7008)", 6378206.4,
294.978698213905820761610537123195175418] N
-3, 142, 1831 0, 0, O, O])
PRIMEM ["Greenwich", 0.000000],
UNIT ["Decimal Degree", 0.01745329251994328]
1,
PROJECTION ["Lambert Conformal Conic"], PARAMETER ["Latitude Of Origin", 34],
PARAMETER ["Central Meridian", -101.5],
PARAMETER ["Standard Parallel 1", 34.65],
PARAMETER ["Standard Parallel 2", 36.18333333333333333333333333333333333333],
PARAMETER ["False Easting", 2000000], PARAMETER ["False Northing", o],
UNIT ["U.S. Foot", .3048006096012192024384048768097536195072]

Next you want to look up the details of the vertical coordinate system whose SRID is 5702. You
can try the CS_SRS table, as shown in Listing 4-12.

Listing 4-12. Looking Up Details for Vertical Coordinate System ID 5702 in the CS_SRS Table®
SOL> SELECT cs_name, wktext FROM CS SRS WHERE SRID=5702;

CS_NAME WKTEXT

National Geodetic Vertical Datum of 1929

The query returns the name as “National Geodetic Vertical Datum of 1929.” The query, how-
ever, does not return any value for the wktext field. In that case, how do you identify the reference
datum on which this vertical coordinate system is based or what the default units for this vertical
coordinate system are? You can query the SDO_CRS_VERTICAL and SDO_COORD_SYS tables as in Listing 4-13.
You can observe from the value for the COORD_SYS_NAME that the unit of measure (UoM) is ftUS (in
other words, the same as U.S. Foot).

Listing 4-13. Looking Up Details for Vertical Coordinate System ID 5702 in Appropriate Tables

SOL> SELECT cs.COORD_SYS_NAME
FROM SDO_CRS VERTICAL v, SDO COORD SYS cs
WHERE v.SRID=5702 and cs.COORD_SYS ID = v.COORD_SYS ID;

COORD_SYS_NAME

Gravity-related CS. Axis: height (H). Orientation: up. UoM: ftUS.

6. National Geodetic Vertical Datum of 1929
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Now that you understand how to look up information about the rich set of 1D, 2D, 3D, or local
coordinate systems in EPSG, you’ll now focus on the second salient feature of the EPSG model:
specifying a user-preferred transformation between two coordinate systems.

Specifying a Preferred Transformation Path Between Coordinate Systems

The EPSG model defines more diverse transformation methods and allows chained concatenations
of these methods in transformations. Here is an example of defining a transformation from, say, the
projected SRID 41155 (obtained in Listing 4-8) to SRID 4269 (NAD83). For this you need to perform
the following steps:

1. First, determine the EPSG-equivalent coordinate system (SRID) for SRID 41155 using the
SQL in Listing 4-14.

Listing 4-14. Finding an EPSG Equivalent for SRID 41155

SQL > SELECT sdo_cs.find _proj crs(41155, 'FALSE') epsg srid FROM DUAL;
EPSG_SRID

2. Since SRID 41155 is equivalent to the EPSG SRID 32041, you can identify the source geo-
graphic coordinate system on which this projected coordinate system is based on by
querying the SDO_COORD_REF_SYS table as in Listing 4-15.

Listing 4-15. Finding the Source Geographic SRID and the projection_conversion ID for SRID
41155 (EPSG 32041)

SQL> SELECT projection_conv_id cid, source_geog srid src_srid FROM
SDO_COORD_REF_SYS

WHERE srid=32041;

cid src_srid

3. Now you can define a preferred transformation from 41155 to 4269 by entering the trans-
formation using the SQL in Listing 4-16. The transformation from the source SRID 41155
(projected) to target SRID 4269 (NAD83) is accomplished as a concatenation of two conver-
sions using the SDO_TFM_CHAIN procedure call. The first conversion is from source SRID 41155
to the geog_srid 4267 using conversion_id 14205. The second conversion is from SRID 4267 to
target SRID 4269 using the NADCON conversion (the corresponding conversion_id ID 1241
can be obtained by querying the SDO_COORD_OPS table).

Listing 4-16. Creating a Preferred Transformation Path Between 41155 (Projection-Based on

NADZ27) and 4269 (NAD83)
SOL > call sdo cs.create pref concatenated op(
10000, -- any unique id of the operation,
TFM_PLAN(
SDO_TFM_CHAIN(
41155, -- source srid
14205, 4267, -- convid 14205 from srid 41155 (32041) to srid 4267
1241, 4269 -- convid 1241 from 4267 to 4269
)5
NULL);

www.freepdf-books.com

7

http://www.it-ebooks.info/

72

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

After you specify the previous transformation path between coordinate system 41155 and coor-
dinate system 4267, whenever you explicitly (or implicitly) invoke the SDO_CS.TRANSFORM function to
transform an SDO_GEOMETRY in the coordinate system 41155 to the coordinate system 4267, Oracle
Spatial will implicitly invoke your preferred transformation path defined in Listings 4-14 to 4-16.

In addition to defining preferred transformation paths, you can also define your own coordinate
systems by inserting appropriate information into the SDO_COORD REF_SYSTEM” and other appropriate
tables. For more details, you will have to refer to the Spatial User’s Guide and Documentation.

SDO_POINT Attribute

Now that we have finished discussing the SDO_SRID attribute of the SDO_GEOMETRY, let’'s move on to
the next attribute: SDO_POINT. This attribute specifies the location of a point geometry, such as the
location of a customer. Notice that this attribute is of type SDO_POINT TYPE, which is another object
type. Listing 4-17 shows the structure of this type.

Listing 4-17. SDO_POINT TYPE Data Type
SOL> DESCRIBE SDO_POINT TYPE

Name Null? Type

X NUMBER
Y NUMBER
z NUMBER

The SDO_GTYPE for a point geometry is set to D001. Consider point A in Figure 4-5, identified by
coordinates X, and Y, representing a customer location.

Ae
(Xa, Yn)
Figure 4-5. Example of a point at coordinates X, andY,

Listing 4-18 shows how to populate the SDO_GEOMETRY object in the geometry examples table to
represent point A (substitute (=79, 37) with actual coordinates).

Listing 4-18. Point Data in geometry examples
SQL> INSERT INTO geometry examples (name, description, geom) VALUES
"POINT',

'2-dimensional Point at coordinates (-79,37) with srid set to 8307',
SDO_GEOMETRY

(
2001, -- SDO_GTYPE format: DOOT. Set to 2001 for a 2-dimensional point
8307, -- SDO_SRID (geodetic)
SDO_POINT_TYPE
(

7. Note that this is different from the SDO_COORD_REF_SYS table.
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

-79, -- ordinate value for Longitude

37, -- ordinate value Latitude

NULL -- no third dimension (only 2 dimensions)
)s
NULL,
NULL

)
)s

Caution Oracle Spatial requires that the longitude ordinates be entered as the first dimension and that the
latitude ordinates be entered as the second dimension.

The notation for specifying the geometry column may seem obscure, but it is logical. Objects in
Oracle are instantiated using the corresponding object constructors. The geom column is an object
of type SDO_GEOMETRY and is instantiated as shown. The fields of this object are populated as follows:

* SDO_GTYPE: The format is DOOT, where D is 2 and T is 1 for two-dimensional POINT.

* SDO_SRID: This is set to 8307.

e SDO_POINT: This sets the x,y coordinates in SDO_POINT TYPE to (-79, 37) in the example. The
z coordinate is set to NULL.

e SDO_ELEM_INFO: This is not used; it is set to NULL.
* SDO_ORDINATES: This is not used; it is set to NULL.

An alternate mechanism to construct a point geometry is by using the well-known text (WKT)
description of the point geometry as referenced in SQL/MM Part 3. Oracle Spatial provides an
SDO_GEOMETRY constructor that takes the WKT and an SRID as arguments to construct an SDO_GEOMETRY
object. Listing 4-19 shows an example.

Listing 4-19. Constructing a Point Geometry Using Well-Known Text (SQL/MM)

SQL> SELECT SDO_GEOMETRY(' POINT(-79 37) ', 8307) geom FROM DUAL;
GEOM

SDO_GEOMETRY (2001, 8307, SDO POINT TYPE(-79, 37, NULL), NULL, NULL)

CGaution The ordinates of a vertex are separated by a space rather than by a comma in a WKT. Commas sepa-
rate multiple vertices, if any, in the WKT. Refer to ISO IEC 12349 (www.iso.org/iso/en/CatalogueDetailPage.
CatalogueDetail?CSNUMBER=31369) for details on how to construct the well-known text for different types of
geometries.

The constructed SDO_GEOMETRY object can be passed in anywhere an SDO_GEOMETRY object can be
used—to insert into the geom column of geometry examples as in Listing 4-18, to update the geom
column value, or in spatial query operators and functions (you will see examples of these in later
chapters).

Note that the SDO_POINT can store only three ordinates (x, y, and z). This representation is suit-
able if your data have three or fewer dimensions. For four-dimensional points, you have to use the
SDO_ELEM INFO and SDO_ORDINATES attributes.

www.freepdf-books.com

73

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369
http://www.it-ebooks.info/

74

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

SDO_ELEM_INFO and SDO_ORDINATES Attributes

In the previous example, you saw how to store a point element in the SDO_GEOMETRY using the SDO_POINT
attribute. Obviously, you may want to store elements more complex than points; you may also want
to store lines and polygons, which may need a large number of vertices. To store such complex elements,
you will use the other two structures in the SDO_GEOMETRY type, the SDO_ORDINATES and SDO_ELEM_INFO
attributes. Together these attributes allow you to specify different elements that compose a geometry:
SDO_ORDINATES stores the coordinates of the vertices in all elements of a geometry, and SDO_ELEM_INFO
specifies the type of elements and where they start in the SDO_ORDINATES.

First you should understand how to represent elements using the SDO_ELEM INFO and SDO_ORDINATES
attributes. You will learn about the different element-types that are supported in Oracle in subsequent
sections.

SDO_ORDINATES Attribute

We'll start with the SDO_ORDINATES attribute. This attribute stores the ordinates in all dimensions of
all elements of a geometry. The SDO_ORDINATES attribute is of type SDO_ORDINATE_ARRAY, which, as
you can see in the following snippet, is a collection of type VARRAY (variable-length array) of num-
bers. The VARRAY is useful for storing the points that describe a geometric shape in the proper order
so that no explicit processing is needed when fetching that shape. If the data dimensionality is D,
then every consecutive D number in the SDO_ORDINATES specifies the coordinates of a vertex. For
example, if you want to model a line connecting point A that has coordinates (Xa, Ya) with point B
that has coordinates (Xb, Yb), then the SDO_ORDINATES will contain the numbers Xa, Ya, Xb, and Yb, in
that order. The size of this array attribute is set to 1048576. This large size limit provides enough room
to store the vertices of large and complex geometries.

SQL> DESCRIBE SDO ORDINATE_ ARRAY
SDO_ORDINATE_ARRAY VARRAY(1048576) OF NUMBER

If the SDO_ORDINATES attribute specifies the ordinates (in all dimensions) of all elements of
a geometry object, how are these ordinates interpreted and separated to represent different ele-
ments that make up the geometry? The information that is needed to interpret and separate the
ordinates into elements is specified in the SDO_ELEM_INFO attribute. We will look at that next.

VARRAYS

A VARRAY is an ordered set of data elements, all of the same data type. It can vary in size up to a specified maxi-
mum number of elements. Each element in the array has an index, which is a number corresponding to the
element’s position in the array and can be fetched directly using the index. The index starts at 1.

A VARRAY requires only the exact? storage space needed to store the required number of elements, and it can
be expanded to accommodate new elements at the end of the array. Note that VARRAYs can be made of complex
types (that is, object types), which themselves can contain other VARRAYs. This is a powerful mechanism that
enables you to construct complex structures.

8. This is excluding the additional overhead t‘f) store iaff)r atioR such as the size of the VARRAY.
Www . freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

SDO_ELEM_INFO Attribute

The SDO_ELEM_INFO attribute is of type SDO_ELEM_INFO_ARRAY, which is also a VARRAY of numbers with
a maximum size of 1,048,576 numbers. Every three consecutive numbers in the SDO_ELEM INFO are
grouped into a descriptor triplet, describing an element or a part of an element. So, logically, the
SDO_ELEM_INFO attribute is an array of triplets (three numbers). This means the size of this array
attribute is always a multiple of 3.

Each descriptor triplet is associated with an element of the geometry. The triplet is of the form
<offset, element-type, interpretation>.The offset specifies the starting index in the SDO_ORDINATES
array where the ordinates of the element are stored. The other two numbers, element-type (etype for
short) and interpretation, take different values depending on whether the associated element repre-
sents a point, a line, or a polygon and whether the boundaries are connected by straight lines, arcs,
or both.

Let’s first look at SDO_ELEM INFO values for the data that application developers are most likely to con-
struct. For instance, in our business application, the geometries that we construct could be as follows:

* Points representing location of customers, competitors, and so on
¢ Line strings representing streets and highways

* Polygons representing city boundaries

In most cases, these geometries have at most one element descriptor triplet and represent at most
one element of a point, line string, or polygon type. We refer to such elements and geometries as sim-
ple elements and simple geometries. In those cases, the descriptor triplet has the following values:

* Offset: This is always set to 1, because there is only one element in the SDO_ORDINATES field.

* Element-type: This has a direct correspondence with the type T value in the SDO_GTYPE for the
geometry.

* For points, the element-typeis 1 (the T value in SDO_GTYPE is 1).
e For lines, the element-typeis 2 (the T value in SDO_GTYPE is also 2).
* For polygons, the element-type is 1003 (the T value in SDO_GTYPE is 3).

e Interpretation: This is the only subtle information an element contains.
* For a point, interpretation is 1.

¢ For line strings and polygons, the interpretation is 1 if the connectivity is by straight
lines, and the interpretation is 2 if the connectivity is by arcs. For instance, a line string
connected by straight lines has the SDO_ELEM_INFO set to (1, 2, 1), in other words, a start-
ing offset of 1, an element-type of 2, and an interpretation of 1.

¢ For polygons, you could have interpretation set to 3 to indicate that the polygon is
arectangle.

» Likewise, for polygons you could have interpretation set to 4 to indicate that the poly-
gon is a circle.

Table 4-2 summarizes the possible values for the SDO_ELEM_INFO array (and the SDO_ORDINATES
array) based on the type of the element. Using these values, you can construct an SDO_GEOMETRY by
additionally populating the SDO_GTYPE and SDO_SRID fields appropriately. In the next section, we
present detailed examples for such simple two-dimensional geometries. In the subsequent section,
we describe more complex two-dimensional geometries with more than one element descriptor
triplet. Examples of such data would be a street that has both straight lines and arcs. Such geome-
tries are referred to as complex geometries. Note that the majority of the 3D types such as composite
surfaces and solids need more than one element descriptor triplet. We describe the three-dimensional

elements separately in the “Three-Dimensional Geometry Examples” section.
www.freepdf-books.com

75

http://www.it-ebooks.info/

76 CHAPTER 4

THE SDO_GEOMETRY DATA TYPE

Table 4-2. Values for SDO_ELEM_INFO (and SDO_ORDINATES) for Simple Geometries

Element- SDO_ELEM_INFO:
Type (1, Etype,
Name (Etype) Interpretation Interpretation) SDO_ORDINATES lllustration
Point (for example, 1 N, where Nis (1,1,1) (Xa, Ya) Ao
customer location) the number of %Y
points. 1is for a
single point; >1 is
for a point cluster.
Line string 2 1 = Connected (1,2,1) (Xa, Ya, Xb, B o
(for example, by straight lines Yb, Xc, Yc) /\
streets, highways) 2 = Connected 1,2,2) (Xa, Ya, Xb, R 6 Yo
by arcs Yb, Xc, Yc) ¢
Polygon 1003 1 = Polygon (1,1003, 1) (Xa, Ya, Xb,Yb, D pavo
(for example, boundary Xc, Yc, Xd, Yd,
city boundary, connected by Xa, Ya) s
buffer zone) straight lines A c
B o v0)
3 =Rectangle (1, 1003, 3) (Xa, Ya, Xc, Yc) o S o
polygon (only
specify lower-left pava o1t
and upper- A B
right corners)
4 = Circle polygon (1, 1003, 4) (Xa, Ya, Xb, ¢ gev)
(specity three Yb, Xc, Yc)
points on A 1
boundary of vaa
circle)

Simple Two-Dimensional Geometry Examples

A simple geometry consists of only one element descriptor triplet and represents a point, line string,
or polygon. The ordinates for the geometry are always stored at a starting offset of 1 (because there
is only one element). This means the SDO_ELEM INFO is always of the form (1, x, y). Let’s look at each
simple geometry type next.

Point

In Listing 4-19, you saw how to represent a two-dimensional point using the SDO_POINT attribute of
SDO_GEOMETRY. An alternate (but not recommended) mechanism is to store the point coordinates in
the SDO_ORDINATES array. Listing 4-20 shows the example.

Listing 4-20. Storing the Point Coordinates in the SDO_ORDINATES Array Instead of SDO_POINT
SOL> INSERT INTO geometry examples VALUES

'2-D POINT stored in SDO_ORDINATES',
'2-dimensional Point at coordinates (-79, 37) with srid set to 8307',
SDO_GEOMETRY

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

(
2001, -- SDO_GTYPE format: DOOT. Set to 2001 for as a 2-dimensional point
8307, -- SDO_SRID
NULL, -- SDO_POINT attribute set to NULL

SDO_ELEM_INFO_ARRAY -- SDO ELEM INFO attribute (see Table 4-2 for values)
(

1, -- Offset is 1
1, -- Element-type is 1 for a point
1 -- Interpretation specifies # of points. In this case 1.
)
SDO_ORDINATE_ARRAY -- SDO_ORDINATES attribute
(
-79, -- Ordinate value for Longitude
37 -- Ordinate value for Latitude
)
)

)s

In Listing 4-20, note that the SDO_GEOMETRY object is instantiated using the object constructor
with all the appropriate attributes for this type. Likewise, the SDO_ORDINATES and SDO_ELEM_INFO
attributes are VARRAYs, and they are instantiated using the corresponding types, SDO_ELEM_INFO_ARRAY
and SDO_ORDINATE_ARRAY, respectively.

Tip Never store the coordinates of a two- or three-dimensional point in the SDO_ORDINATES attribute (as in
Listing 4-20). Always store them in the SDO_POINT attribute (as in Listing 4-19). The latter representation is stor-
age efficient as well as better performing during fetches.

Since SDO_POINT can store only three numbers, this attribute cannot store four-dimensional
points. Examples of such points include locations that store temperature and height. For such four-
dimensional points, you need to use the SDO_ELEM INFO and SDO_ORDINATES attributes of SDO_GEOMETRY.
Let (Xa, Ya, Za, La) be the ordinates of the four-dimensional point. The SDO_GEOMETRY is populated as
shown in Listing 4-21. Note that the only change in the geom column, as compared to Listing 4-21, is
that the SDO_ORDINATES attribute has four numbers (corresponding to the four dimensions), as opposed
to two in Listing 4-20.

Listing 4-21. Four-Dimensional Point Example

INSERT INTO geometry examples VALUES
(
'4-D POINT',
'4-dimensional Point at (Xa=>2, Ya=»2, Za=>2, La=>2) with srid set to NULL',
SDO_GEOMETRY
(
4001, -- SDO_GTYPE: DOOT. Set to 4001 as it is a 4-dimensional point
NULL, -- SDO_SRID
NULL, -- SDO_POINT TYPE is null
SDO_ELEM INFO ARRAY(1,1,1), -- Indicates a point element
SDO_ORDINATE_ARRAY(2,2,2,2) -- Store the four ordinates here

)s

www.freepdf-books.com

77

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Line String: Connected by Straight Lines

Let’s return to two-dimensional data again and look at line geometries that could represent streets
and highways. Consider the three points A, B, and C shown in Figure 4-6. How do you represent

a line connecting these three points? Will the connection be using straight lines or arcs? First, let’s
consider straight lines.

(Xb, Yb)

(Xa, Ya) (Xc, Yc)

A
Figure 4-6. Example of a line string connected by straight lines
The SDO_GEOMETRY object can be populated as shown in Listing 4-22.

Listing 4-22. Two-Dimensional Line String Example

SQL> INSERT INTO geometry examples VALUES

(
'"LINE STRING',
'2-D line string connecting A(Xa=>1,Ya=>1),B(Xb=>2, Yb=>2), C(Xc=>2,Yc=>1)",
SDO_GEOMETRY

(
2002, -- SDO_GTYPE: DOOT. Set to 2002 as it is a 2-dimensional line string
32774, -- SDO_SRID
NULL, -- SDO_POINT TYPE is null
SDO_ELEM_INFO_ARRAY -- SDO_ELEM INFO attribute (see Table 4-2 for values)
(
1, -- Offset is 1
2, -- Element-type is 2 for a LINE STRING
1 -- Interpretation is 1 if line string is connected by straight lines.
)
SDO_ORDINATE ARRAY -- SDO _ORDINATES attribute
(
1,1, -- Xa, Ya values
2,2, -- Xb, Yb values
2,1 -- Xc, Yc values
)
)

)s

Since the geometry is a line string connected by straight lines, the SDO_ELEM_INFO attribute is set
to the triplet (1, 2, 1), as described in Table 4-2. The SDO_ORDINATES attribute is then populated with
the ordinates of each of the three vertices A, B, and C in the order they appear in the line string.

Observe that all the line segments are contiguous (in other words, they share vertices). If you
want to store lines that do not share vertices, you can model them using multiline string geometries.
We discuss these later in the chapter.

What happens if there are not just three points but N points with coordinates (X1, Y1) ... (XN, YN)
and all of them need to be connected by straight lines in the order (X1, Y1), (X2,Y2), ..., XN, YN)? All
you have to do is store these vertices in the SDO_ORDINATES attribute (in the order in which they need to
be connected). Nothing else needs to change. The geometry constructor looks as follows:

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

SDO_GEOMETRY
(
2002, 32774, NULL,
SDO_ELEM_INFO ARRAY(1,2,1),
SDO_ORDINATE_ARRAY(X1, Y1, X2, Y2,, XN, YN)
)

Note Al lines joining successive vertices in a simple (that is, noncompound) element use the same interpretation—
that is, they are connected by straight lines (or by arcs).

Line String: Connected by Arcs

The example in Figure 4-7 stores a line string composed of three points. However, those same three
points could actually represent a very different shape: a circular arc that passes through those three
points.

B (xb, o)

A®a,va) C xc,vo)

Figure 4-7. Example of a line string connected by arcs

How do you do that? Simply change the interpretation in SDO_ELEM_INFO to 2 (arc). SDO_ELEM_INFO
then changes from (1, 2, 1) to (1, 2, 2), as shown in Listing 4-23.

Listing 4-23. Two-Dimensional Line String Connected by Arcs

SOL> INSERT INTO geometry examples VALUES
(
"ARCSTRING',
'2-D arc connecting A(Xa=>1,Ya=>1),B(Xb=>2, Yb=>2), C(Xc=>2,Yc=>1)",
SDO_GEOMETRY
(
2002, -- SDO GTYPE: D0OT. Set to 2002 as it is a 2-dimensional line string
32774, -- SDO_SRID
NULL, -- SDO_POINT TYPE is null
SDO_ELEM_INFO_ARRAY -- SDO_ELEM INFO attribute (see Table 4-2 for values)
(

1, -- Offset is 1
2, -- Element-type is 2 for a LINE STRING
2 -- Interpretation is 2 if line string is connected by ARCs.
)
SDO_ORDINATE_ARRAY -- SDO_ORDINATES attribute
(
1,1, -- Xa, Ya values
2,2, -- Xb, Yb values
2,1 -- Xc, Yc values
)

)
);
www.freepdf-books.com

79

http://www.it-ebooks.info/

80

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

If you compare this representation with that of the example in Listing 4-22, you will notice that
the only difference is the interpretation (the third argument in SDO_ELEM_INFO_ARRAY), which is now
set to 2. The result is a line string formed using a circular arc instead of a straight line.

Again, what if the line string has more than three points? Since an arc is defined by three points
at a time, the line string should have an odd number of vertices. An arc is constructed with the three
points starting at every odd vertex (except the last vertex). So if there are the five points A, B, C, D,
and E, there will be two arcs: arc ABC at vertex A and arc CDE at vertex C, as shown in Figure 4-8.

B (xv, Yb)

(Xa, Ya) C xc vo)
D (Xd, Yd)

k (Xe, Ye)

Figure 4-8. Example of a line string with multiple arcs

The constructor for this geometry is as follows:

SDO_GEOMETRY
(

2002, 32774, null,

SDO_ELEM_INFO ARRAY(1,2,2),

SDO_ORDINATE_ARRAY(Xa, Ya, Xb, Yb, Xc, Yc, Xd, Yd, Xe, Ye)
)

Note In Oracle Spatial, every arc is specified by three points: a starting vertex, any distinct middle vertex, and
an ending vertex (for example, A, B, C). As a consequence, an arc-based line string (arc string) should always have
an odd number of vertices. The individual arcs are always contiguous and always start at the odd-numbered vertices.

If you want to model arcs that are not contiguous, these are considered multiline/curve
geometries. We describe them later.

What happens if the line string ends at the starting vertex? This causes a loop or a ring. Can it
be considered a polygon? The answer is no. To be considered a polygon, the element-type in the
SDO_ELEM_INFO attribute needs to be 1003 (or 2003).

Polygon: Ring (Boundary) Connected by Straight Lines

Next let’s look at another type of geometry: the polygon. The polygon boundary (ring) can be con-
nected by lines, connected by arcs, or specified as a rectangle or as a circle. Let’s look at examples
for each of these in turn.

In this section, we will consider simple geometries. We will consider more complex polygons
(those with voids and so on) later in the “Complex Geometry Examples” section. Figure 4-9 shows
an example polygon where the boundary is connected by lines.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

D x4, va)

(Xc, Yc)

(Xa, Ya)

B (Xb, Yb)

Figure 4-9. Example of a polygon boundary connected by lines
Listing 4-24 shows how to insert the polygon into the geometry examples table.

Listing 4-24. Example of a Simple Polygon Connected by Lines

SOL> INSERT INTO geometry examples VALUES

(
"POLYGON",
'2-D polygon connecting A(Xa, Ya), B(Xb, Yb), C(Xc, Yc), D(Xd, vd)',
SDO_GEOMETRY

(
2003, -- SDO_GTYPE: DOOT. Set to 2003 as it is a 2-dimensional polygon
32774, -- SDO_SRID
NULL, -- SDO_POINT TYPE is null

SDO_ELEM_INFO_ARRAY -- SDO_ELEM INFO attribute (see Table 4-2 for values)
(

1, -- Offset is 1
1003, -- Element-type is 1003 for an outer POLYGON element
1 -- Interpretation is 1 if boundary is connected by straight lines.
)
SDO_ORDINATE _ARRAY -- SDO_ORDINATES attribute
(
1,1, -- Xa, Ya values
2,-1, -- Xb, Yb values
3,1, -- Xc, Yc values
2,2, -- Xd, Yd values
1,1 -- Xa, Ya values : Repeat first vertex to close the ring
)
)

Compared to the previous examples, the main points to note in this example are as follows:

e The SDO_GTYPE is set to 2003 (two-dimensional polygon).

* The element-type in the SDO_ELEM_INFO attribute is set to 1003 to indicate it is an outer poly-
gon, and the interpretation is set to 1 to indicate a polygon element connected by straight
lines (see Table 4-2 for reference).

* The ordinates of the polygon are stored in the SDO_ORDINATES attribute. Note that the first
vertex (Xa, Ya) is repeated as the last vertex (to close the boundary). Also note that the ver-
tices are specified in counterclockwise order. This is a requirement in Oracle Spatial.

www.freepdf-books.com

81

http://www.it-ebooks.info/

82

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Gaution The vertices in an outer ring of a polygon need to be specified in counterclockwise order. The vertices
for the inner rings, if any, are specified in clockwise order. This is a convention of Oracle Spatial.

Polygon: Ring (Boundary) Connected by Arcs

The previous example can be easily modified to model a polygon where every three consecutive
vertices are connected by an arc by simply changing the interpretation in the SDO_ELEM_INFO attribute
to 2. For this to be valid, you need an odd number of vertices. However, such circular polygons are
rarely used in representing spatial data.

Rectangle Polygon

Another popular shape to consider is the rectangle. A rectangle can be modeled as a polygon with
four vertices connected by straight lines as in the previous example. However, a simplified represen-
tation is possible by specifying 3 instead of 1 for the interpretation in SDO_ELEM_INFO. Figure 4-10
shows an example rectangle.

D » C
(Xd, Yd) (Xc, Yc)
(Xa, Ya) (Xb, Yb)
A

Figure 4-10. Example of a rectangular polygon

How is this rectangle different from the polygon in Figure 4-9? The rectangle needs only two
vertices to be specified instead of all four (that is, a much more compact representation); Oracle
Spatial uses the lower-left and upper-right corner vertices (that is, it specifies only the correspon-
ding ordinates).

* The lower-left corner vertex has the minimum values for the ordinates in x- and y-dimensions.
In Figure 4-10, A is the lower-left corner vertex.

* The upper-right corner vertex has the maximum values for the ordinates in x- and y-dimensions.
In Figure 4-10, C is the upper-right corner vertex.

Note Always specify the lower-left corner before the upper-right corner for a two-dimensional rectangle poly-
gon. This holds true even if the rectangle polygon is an inner ring (void) of an outer two-dimensional polygon (see
Figure 4-16 later in this chapter).

Listing 4-25 shows how to insert the rectangular polygon into the geometry examples table
using the lower-left and upper-right vertices.

Listing 4-25. Rectangular Polygon Example
SOL> INSERT INTO geometry examples VALUES

'"RECTANGLE POLYGON',
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

'2-D rectangle polygon with corner points A(Xa, Ya), C (Xc, Yc)',
SDO_GEOMETRY

(
2003, -- SDO_GTYPE: DoOT. Set to 2003 as it is a 2-dimensional polygon
32774, -- SDO_SRID
null, -- SDO_POINT TYPE is null

SDO_ELEM_INFO_ARRAY -- SDO_ELEM INFO attribute (see Table 4-2 for values)
(

1, -- Offset is 1
1003, -- Element-type is 1003 for (an outer) POLYGON
3 -- Interpretation is 3 if polygon is a RECTANGLE
)
SDO_ORDINATE_ARRAY -- SDO_ORDINATES attribute
(
1,1, -- Xa, Ya values
2,2 -- Xc, Yc values
)

)
)5

Once again, note that the interpretation is set to 3 in the SDO_ELEM_INFO attribute. Listing 4-25
specifies only two corner vertices in the SDO_ORDINATES attribute. You can appropriately modify
these ordinates to store your own rectangle.

What is a rectangle in three dimensions? A cuboid. Can the same values for SDO_ELEM_INFO be
used to represent a three-dimensional cuboid (or its four-dimensional equivalent)? Yes. If you have
a cuboid with the lower-left corner vertex at (Xa, Ya, Za) (the minimum value ordinates in x-, y-,
and z-dimensions) and the upper-right corner vertex (the maximum value ordinates in x-, y-, and
z-dimensions) at (Xc, Yc, Zc), then the geometry looks like the following. Note the SDO_GTYPE has
changed to 3003 from 2003. The changes from the two-dimensional rectangle are in bold. You can
construct the SDO_GEOMETRY for the rectangle equivalent in four dimensions analogously.

SDO_GEOMETRY

(
3003, -- SDO_GTYPE set 3003 to indicate 3-dimensional polygon.
32774,
NULL,
SDO_ELEM_INFO ARRAY(1, 1003,3),
SDO_ORDINATE_ARRAY(Xa, Ya, Za, Xc, Yc, Zc)
)
Circle Polygon

Next, let’s look at another regular structure: the circle. Figure 4-11 shows an example. Just like rectangles,
circles are different from linear polygons/arc polygons only in the interpretation in the SDO_ELEM_INFO
attribute and the number of ordinates in the SDO_ORDINATES array. The interpretation is set to 4, and
the ordinate array stores any three distinct points on the circumference of the circle.

c (Xc, Yc)

(Xb, Yb)
A B
(Xa, Ya)

Figure 4-11. Example of a circular polygon
www.freepdf-books.com

83

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Listing 4-26 shows how to insert the circular polygon into the geometry examples table.

Listing 4-26. Circular Polygon Example
SOL> INSERT INTO geometry examples VALUES
"CIRCLE POLYGON',

'2-D circle polygon with 3 boundary points A(Xa,Ya), B(Xb,Yb), C(Xc,Yc)',
SDO_GEOMETRY

(
2003, -- SDO_GTYPE: DoOT. Set to 2003 as it is a 2-dimensional polygon
32774, -- SDO_SRID
NULL, -- SDO_POINT TYPE is null

SDO_ELEM_INFO ARRAY -- SDO_ELEM INFO attribute (see Table 4-2 for values)
(

1, -- Offset is 1
1003, -- Element-type is 1003 for (an outer) POLYGON
4 -- Interpretation is 4 if polygon is a CIRCLE
)5
SDO_ORDINATE ARRAY -- SDO_ORDINATES attribute
(
1,1, -- Xa, Ya values
3,1, -- Xb, Yb values
2,2 -- Xc, Yc values
)

)
)s

Caution You cannot specify circles and arcs if the SRID corresponds to a geodetic coordinate system. Circles
and arcs are valid only in projected and local coordinate systems. In geodetic coordinate systems, “densify” the
circumference of the circle with many points and represent the points a linear polygon using the sdo_util.arc_
densify function.

Can you specify a circle by its center and radius? Yes. In Chapter 7, we will look at some func-
tions that take the x and y ordinates of the center and a radius and return an SDO_GEOMETRY.

Complex Two-Dimensional Geometry Examples

So far, we have described how to represent simple geometries. These geometries are composed of a sim-
ple element—an element with just one descriptor triplet. In contrast, complex geometries have more
than one element descriptor triplet for an element. A complex geometry can be any of the following:

e A compound line string or a compound polygon: In such a geometry, the boundary is connected
by both straight lines and circular arcs. For instance, streets that have both straight-line
segments and arcs (to denote connecting roads) can be stored as a compound line string
geometry. Objects F and G in Figure 4-1 are examples of such a compound line string ele-
ment and a compound polygon geometry, respectively.

* Avoided polygon: This geometry has an outer ring and one or more inner rings. The outer
and inner ring polygon elements are specified as simple polygon elements. Object D in
Figure 4-1 is an example of a voided polygon geometry. Lakes and other bodies of water that
have islands can be stored as voided polygons. Note that the area of the interior rings is not
considered part of these geometries.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

* A collection: This geometry is a collection of multiple elements such as points, lines, and/or
polygons. Object E in Figure 4-1 is an example of such a collection. The state boundaries for
Texas and California have one or more islands and can be stored as collection geometries.

Constructing Complex Geometries

You can construct complex geometries using the following steps:

1. The SDO_ELEM INFO triplets of the simple elements constituting the complex geometry are
concatenated in the appropriate order.

2. The SDO_ORDINATES values are also concatenated. (Duplication of any shared vertices in
contiguous elements is removed.)

3. As aresult of the concatenation of the SDO_ORDINATES, the offsets in the SDO_ELEM_INFO
attribute for each simple element are adjusted to reflect the correct start of the element in
the SDO_ORDINATES array.

4. For compound (line string or polygon) elements, additional triplets are added to SDO_ELEM INFO
to specify the combination of subsequent simple elements. Table 4-3 presents the possible
values for the element-type for these additional triplets.

5. The SDO_GTYPE is set to reflect the resulting geometry.

Let’s examine the compound geometries and voided-polygon geometries. We will consider collec-
tion geometries in the last part of the section. First we will illustrate how to construct the SDO_ELEM_INFO
attributes (that is, the corresponding element descriptor triplets) for these geometries. Table 4-3 shows
the SDO_ELEM_INFO values for the compound geometries and the voided-polygon geometries.

Table 4-3. Values for <Element-Type, Interpretation> in an Element Descriptor Triplet for Compound/
Voided-Polygon Geometries

Name Element-Type (Etype) Interpretation

Voided polygon 1003 = Outer polygon 1 = Polygon boundary connected by
2003 = Interior polygon (hole) straight lines.

2 = Polygon boundary connected by
circular arcs.
3 = Rectangle polygon. The
lower left and upper right corner
vertices of the rectangle are specified
in the SDO_ORDINATES array.
4 = Circular polygon. Any three
vertices on the boundary of the circle
are specified in the SDO_ORDINATES array.

Compound line string 4 N = Specifies the number of
subelements that constitute the
compound line string. The N triplets
for these N subelements follow the
current (header) triplet.

Compound polygon 1005 = Outer polygon N = Specifies the number of straight-
2005 = Interior polygon line and circular-arc subelements
that constitute the polygon boundary.
The N triplets for these N subelements
follow this triplet.

www.freepdf-books.com

85

http://www.it-ebooks.info/

86

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

SDO_ELEM_INFO for Compound Elements

If the compound element has N subelements, then there will be N + 1 descriptor triplets: one header
triplet specifying that it is a compound element, followed by N triplets, one for each subelement. The
N subelements have to be simple elements, and their descriptor triplets will be constructed as speci-
fied previously for simple elements. The header triplet has the following form:

* The offset specifies the starting offset for the compound element in the SDO_ORDINATES array.
¢ The element-type specifies one of the following:
¢ A compound line string (element-type = 4).

¢ A compound polygon (element-type = 1005 or 2005). The element-type will be 1005 if the
compound element is used an outer polygon ring, and it will be 2005 if it is used an
inner ring (void).

* The interpretation for the header triplet specifies the number of subelements that make up
this compound element.

For example, for the compound line string object F in Figure 4-1, the element-type for the
header triplet will be 4, and interpretation will be 2 since it has two subelements. The next two
triplets in the SDO_ELEM_INFO array will have the description for these subelements. Both elements
are lines and have an element-type of 2, but one subelement will have an interpretation of 1, indicating
straight-line connectivity, and another element will have an interpretation of 2, indicating arc-based
connectivity.? The SDO_ELEM_INFO will have the triplets in the following order:

* (1,4, 2) for the header triplet specifying the compound line string

* (1, 2, 1) for the first subelement triplet connected by straight lines

¢ (5,2, 2) for the next subelement triplet representing the arc

Listing 4-27 shows the full SQL for constructing a compound line string corresponding to
object F in Figure 4-1. The first subelement connects vertices A, B, and C by a line, whereas the sec-

ond subelement connects C, D, and E by a circular arc. Note that the shared vertex C is represented
only once. Since the second subelement starts at C, the offset for that subelement is set to 5.

Listing 4-27. Compound Line String Example
SOL> INSERT INTO geometry examples VALUES
'COMPOUND LINE STRING',

'2-D Compound Line String connecting A,B, C by a line and C, D, E by an arc
SDO_GEOMETRY

(

2002, -- SDO_GTYPE: DOOT. Set to 2002 as it is a 2-dimensional Line String
32774, -- SDO_SRID
NULL, -- SDO_POINT TYPE is null
SDO_ELEM_INFO_ARRAY -- SDO_ELEM INFO attribute (see Table 4-2 for values)
(

1, -- Offset is 1

4, -- Element-type is 4 for Compound Line String

2, -- Interpretation is 2 representing number of subelements

1, 2, 1 -- Triplet for first subelement connected by line

5, 2, 2 - Triplet for second subelement connected by arc; offset is 5

9. Recall that Oracle supports only circular arcs. Arcs in this chapter always refers to circular arcs.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

)

SDO_ORDINATE_ARRAY -- SDO_ORDINATES attribute
(
1,1, -- Xa, Ya values for vertex A
2,3, -- Xb, Yb values for vertex B
3,1, -- Xc, Yc values for vertex C
4,2, -- Xd, Yd values for vertex D
5, 3 -- Xe, Ye values for vertex E
)
)

)s

SDO_ELEM_INFO for Voided Polygon Element

If the voided polygon has N void (inner ring) subelements and one outer ring subelement, then
there will be atleast N + 1 descriptor triplets. The first triplet will specify the descriptor triplet for the
outer ring. This will be followed by descriptor triplets for each of the N void subelements. If all
the subelements are simple elements, then there will be exactly N + 1 descriptor triplets. Otherwise, the
size will reflect the descriptors for any compound subelements.

For example, the voided-polygon object D in Figure 4-1 has two descriptor triplets. The first
triplet represents the outer polygon ring and has an element-type of 1003. The second triplet repre-
sents the rectangular void and has an element-type of 2003.

Next let’s look at some examples of such complex shapes and how to represent them using the
SDO_GEOMETRY data type in Oracle.

Compound Line String Example

Most road segments are connected by straight lines. However, there are some segments where the
road takes a sharp circular turn. How do you model roads that have a combination of straight-line
segments and circular segments? Figure 4-12 shows an example.

E xe,ve)

(Xa, Ya) D oxd, Yoy

BXb Yb
(Xb, Yb) c(Xc,Yc)

Figure 4-12. Example of a compound line string connected by lines and arcs

Line segment ABC is connected by straight lines, and CDE is connected by arcs. How do you
represent this compound line? The answer is to construct a compound element by specifying a header
triplet followed by simple element triplets for the SDO_ELEM_INFO attribute, as described in Table 4-3.

* Header triplet: The number of subelements is 2 and the starting offset is 1, so the header
triplet is (1, 4, 2). The 4 specifies that it is a header triplet for a compound line string, and the
2 specifies that the number of simple elements is two.

* The triplet for line ABC: Since this is the first simple element in the compound, the offset in
SDO_ORDINATES will still be 1. The element-type is set to 2 (line string), and the interpretation is
set to 1 to indicate straight-line connectivity. This triplet is thus (1, 2, 1). The six ordinates for
this element are the first to be stored in the SDO_ORDINATES array.

www.freepdf-books.com

87

http://www.it-ebooks.info/

88

CHAPTER 4 © THE SDO_GEOMETRY DATA TYPE

 The triplet for arc CDE: Also, this element shares the vertex C with the previous element ABC,
so the ordinates for vertex C need not be repeated. Since this element (CDE) starts at vertex C,
which is stored at offset 5, the starting offset is set to 5. The element-typeis set to 2 (line string),
and the interpretation is set to 2 to indicate arc-based connectivity. The triplet therefore is
(5,2,2).

Since the geometry has only two-dimensional lines, the SDO_GTYPE is set to 2002.
This representation is described using the SDO_GEOMETRY elements in Figure 4-13.

SDO_GEOMETRY
(

SDO_GTYPE: 2002
SDO_SRID: 32774
SDO_POINT: NULL

SDO_ELEM_INFO: (1,4,2, -- Compound Element (2 subelements)
———————— [T]2,1 -- First Subelement Descriptor
|§r:|2, 2 -- Second Subelement Descriptor

SDO1 ORDINATES:
1

Oﬁset--1Q 2 3 4 S5y 6 7 8 9 10
|)‘(a|Ya|Xb|Yb|Xc|Y.c|Xd|Yd|Xe|Ye|

’ N /
First Subelement
Ordinates Second Subelement

Ordinates

Figure 4-13. Storing a compound line string as an SDO_GEOMETRY

Note Compound line strings should be contiguous (that is, they should share a vertex). In Figure 4-13, the ver-
tex (Xc, Yc) is shared by both the first and second elements. Also, note that a compound line string (or elements
with the element-type set to 4) can have only line string subelements (that is, subelements of element-type = 2).

Compound Polygon Example

If you connect vertex E to vertex A in Figure 4-12, it becomes a closed line as shown in Figure 4-14.
E (xe, Ye)

D xd, va)

A

B
(Xa, Ya) 00,0 T ¢ vy

Figure 4-14. Example of a “closed” compound line string connected by lines and arcs

You can use this closed compound line string to be the boundary of a polygon by appropriately
modifying the SDO_GTYPE (and the element-types). Figure 4-15 shows the elements for SDO_GEOMETRY.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE 89

SDO_GEOMETRY

SDO_GTYPE: 2003
SDO_SRID: 32774
SDO_POINT: NULL

SDO_ELEM_INFO: 1, 1005, 3, -- Compound Element (3 Subelements)
------- -1J]2,1 --First Subelement Descriptor
A5]2,2 -- Second Subelement Descriptor
: [9]2, 1 -- Third Subelement Descriptor
)i

SDO: ORDINATES: ¢ - - - - - - -
1

0ffset--1¢ 2 3 4 5* 6 7 8 QV 10 11 12
|)l(a|Ya|Xb|Yb|Xc|Y_c|Xd|Yd|Xe|Ye|Xa|Ya|

Y ./ N IY /
First Subel t Y Third Subel t
irst Subelemen ird Subelemen
Ordinates Second Subelement Ordinates
Ordinates

)

Figure 4-15. Storing a compound polygon as SDO_GEOMETRY

Here we note the following changes:

* SDO_GTYPE is set to 2003.

¢ For the compound element header triplet, the element-type is set to 1005 (compound poly-
gon) instead of 4, and the number of subelements changes to three from two.

* A new subelement represents the straight line connecting E to A. This subelement has
SDO_ELEM_INFOset to (9, 2, 1) where 9 represents the starting offset for the ordinates of E, 2
indicates it is a line, and 1 indicates connectivity by straight line.

* The ordinates of vertex A are repeated at the end in the SDO_ORDINATES array.
Remember that except for the header triplet, all other subelement triplets still have an element-

type of 2 (line), because these elements are representing only lines. The header triplet that signifies
the compound has an element-type of 1005.

Caution A compound polygon (or elements of element-type = 5) can be made up only of line string subele-
ments (that is, subelements of element-type = 2).

Polygon with a Void

What about oceans that have islands? How do you represent the area occupied by such large bodies
of water? Polygons with voids will help here. Figure 4-16 shows a diamond-shaped polygon with
vertices A, B, C, and D. Inside this polygon is a rectangle polygon with corners at E and E This rec-
tangle polygon serves as a void—that is, an area not covered by the outer ABCD polygon. How do
you represent this polygon with the void?

www.freepdf-books.com

http://www.it-ebooks.info/

90

CHAPTER 4 © THE SDO_GEOMETRY DATA TYPE

(Xa, Ya)

B xv, Yb)

Figure 4-16. Example of a polygon with a void

First let’s examine the constructors for the two polygons in Figure 4-16 separately. Polygon
ABCD (without the void) is a simple polygon whose boundary is connected by straight lines. The
constructor looks like this:

SDO_GEOMETRY
(

2003, 32774, NULL,

SDO_ELEM_INFO(1, 1003,1),

SDO_ORDINATE_ARRAY(Xa, Ya, Xb, Yb, Xc, Yc, Xd, Yd, Xa, Ya)
)

Assuming that the rectangular polygon EF is not inside ABCD, the constructor looks as follows:

SDO_GEOMETRY
(
2003, 32774, NULL,
SDO_ELEM INFO(1, 1003, 3),
SDO_ORDINATE_ARRAY(Xe, Ye, Xf, Yf)
)

Using these two constructors, you can combine the two polygons to represent a polygon with
avoid as shown in Figure 4-17. In this figure, the outer element descriptor describes the outer poly-
gon, and the inner element descriptor describes the inner polygon.

SDO_GEOMETRY
(
SDO_GTYPE: 2003
SDO_SRID: 32774
SDO_POINT: NULL
SDO_ELEM_INFO: ([{.}11003,1, -- Outer Ring Element Descriptor
i|1"‘|_',]2003, 3 -- Inner Ring Element Descriptor
1

) 1

SDO_ORDINAJES:
1
1

i

1
Offset -- 1% 2 3 4 5 6 7 8 9 10 %11 12 13 14
| Xa | Ya | Xb | Yb | Xc | Yc | Xd | Yd | Xa | Ya |

) g 2N /)
Y Yo
Outer Ring Inner Ring
Ordinates Ordinates

Figure 4-17. Storing a polygon wztwwwm_(g%@ com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

In this example, the combined polygon has two elements: an outer polygon and an inner polygon.
You need to specify these elements as follows:

* The element triplets for the outer polygon are specified first, followed by that for the inner
polygon (that is, the void). The outer polygon ring should have the element-type set to 1003,
and the inner polygon ring should have the element-type set to 2003. (If there is more than
one inner polygon, these are specified in any order after the outer polygon is specified.)

» Likewise, the ordinates of the outer polygon are specified first, followed by those of the inner
polygon.

» The starting offset for the ordinates of the inner polygon are adjusted from 1 to 11 (because
they are preceded by the ordinates of the outer polygon).

Note Unlike in a compound (line or polygon) geometry (see Figures 4-13 and 4-15), there is no header triplet
for constructing a polygon with a void. All inner elements (that is, triplets with an element-type of 2003 or 2005)
that follow an outer element (that is, triplets with an element-type of 1003 or 1005) are considered to be voids of
(that is, inside) the outer element.

Can you have a polygon inside the void (that is, inside the inner ring)? Yes, you can, but that
will be treated as a multipolygon geometry (the SDO_GTYPE is 7). The reason is that the area repre-
sented by the resulting polygon is not contiguous.

Collections

Next, we come to the last geometry type: the collection. Collections can be homogeneous, as in
a multipoint, multiline, multipolygon collection. Or they can be heterogeneous, containing a combi-
nation of point, line, and/or polygon geometries. In Table 4-1 you saw that multipoint, multiline,
multipolygon, and heterogeneous collections each have a different SDO_GTYPE. Now you will see how
to represent these geometries using the SDO_GEOEMTRY data type. At the end of this section, you will
learn about a function that appends two geometries. A collection of N geometries can be constructed
simply by calling this function N - 1 times.

Note that collections are created in much the same way as other “complex” geometries. See
“Guidelines for Constructing Complex Geometries” later in this chapter.

Multipoint Collection Example

Earlier in the chapter, you learned how to model a single point using the SDO_POINT attribute in the
SDO_GEOMETRY type. Here we will model multiple points as a single collection geometry—that is, we
will store all three points A, B, and C in Figure 4-18 as subelements of a single multipoint geometry.

B (xb, Yb)
[)

A
0ava) * Coo

Figure 4-18. Example of a multipoint collection

www.freepdf-books.com

91

http://www.it-ebooks.info/

92

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

How do you store this geometry? You first construct SDO_GEOMETRY objects for the individual
points and combine them using the guidelines described in the beginning of this section:

1. Set SDO_GTYPE to 5 (multipoint).

2. Combine the SDO_ORDINATES attributes of the three point SDO_GEOMETRY objects.

3. Combine the corresponding SDO_ELEM_INFO attributes of the three point objects. The offset
in the resulting SDO_ELEM_INFO is adjusted to reflect the offset in the SDO_ORDINATES attribute
for each point.

The resulting SDO_GEOMETRY will look like this:

SDO_GEOMETRY
(
2005, 32774, NULL,
SDO_ELEM INFO ARRAY -- SDO ELEM INFO: multiple elements each with 1 pt

1,1,1, -- triplet for first "point" element
3,1,1, -- triplet for second "point" element
5,1,1 -- triplet for third "point" element
)s

SDO_ORDINATE_ARRAY

(
Xa, Ya, -- coordinates of first point
Xb, Yb, -- coordinates of second point
Xc, Yc -- coordinates of third point

)

)

In this example, the three points are represented as three elements. Oracle, however, has
amuch simpler representation: you can represent the three points as a single element (and store all
the ordinates in the SDO_ORDINATES attribute). The element will have a descriptor triplet of the form
(1, 1, N) where N represents the number of points (if N= 1, then the element has just one point).
The corresponding constructor is as follows, and the changes are in bold:

SDO_GEOMETRY

(
2005, 32774, NULL,
SDO_ELEM_INFO ARRAY -- SDO_ELEM_INFO attribute

(

1, 1, 3 -- "Point cluster" element with 3 points

)
SDO_ORDINATE_ARRAY

(
Xa, Ya, -- coordinates of first point
Xb, Yb, -- coordinates of second point
Xc, Yc -- coordinates of third point
)
)

We recommend using a single element of N points instead of an array of point elements. This
representation is more storage efficient and helps in performance.

Multiline String

Multiline string geometry consists of multiple line strings. Figure 4-19 shows an example. The
triplets in SDO_ELEM_INFO are used to denote and demarcate each line segment.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

B xv, vb)
(Xa ca) ¢ teYo
D F ot v
(Xd, Yd)
E (xe ve)

Figure 4-19. Example of a multiline string

We will use one triplet in the SDO_ELEM_INFO array to represent each of the elements in our
geometry. The offset in each triplet points to the first element in the SDO_ORDINATES array where the
first point of the geometric primitive starts. Figure 4-20 shows the resulting SDO_GEOMETRY construc-
tor for a multiline string.

¢ The first line string (ABC) starts at offset 1 and ends at offset 6 (that is, there are two ordinates
for each of the three points).

* The second line string (DEF) starts at offset 7 and ends at offset 12 (that is, there are two
ordinates for each of the three points).

SDO_GEOMETRY
(
SDO_GTYPE: 2003

SDO_SRID: 32774

SDO_POINT: NULL

SDO_ELEM_INFO: (.12, 1, -- First Element Descriptor
1[7]2,1 -- Second Element Descriptor
LI |

P
1

SDO_ORDINAJES:
1

i

1
0ffset--1wly 2 3 4 5 6 ¢7 8 9 10 11 12
[xa [va [x0 [w [x [y [xa |va [% || x]|wn|

) N < 2N ~ _
First Element Second Element
Ordinates Ordinates

Figure 4-20. Storing a multiline string in SDO_GEOMETRY

Note that the two geometry elements could have different interpretations: one could be a straight
line, and the other could be a circular arc. Note also that if the geometry were three-dimensional, the
offsets (other than the first) would be different.

www.freepdf-books.com

93

http://www.it-ebooks.info/

94

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Multipolygon and Heterogenous Collections

Just as in the case of multipoint and multiline string geometry collections, the triplets in the
SDO_ELEM_INFO structure are used to describe each element of the collection. SDO_GTYPE is set to
the appropriate value for the collection. The ordinates of each collection element are stored in the
SDO_ORDINATES array, and the starting offsets are recorded in the corresponding SDO_ELEM INFO triplet
for each collection element. We leave it as an exercise to the reader to come up with examples of
multipolygon and heterogeneous collections by consulting Tables 4-2 and 4-3 and previous exam-
ples. You can compare your answers with the collections created using an alternate mechanism.
This mechanism is described next.

Creating Collections: The Easy Way

The function SDO_UTIL.APPEND takes in two nonoverlapping geometries and returns an appended
geometry. For example, if you invoke APPEND using two polygons, you get a multipolygon geometry
as the result. Listing 4-28 shows an example.

Listing 4-28. Appending Two Geometries

SQL> SELECT SDO_UTIL.APPEND
(
SDO_GEOMETRY
(
2003, 32774, null,
SDO_ELEM_INFO_ARRAY(1,1003, 3),
SDO_ORDINATE ARRAY(1,1, 2,2)
)s
SDO_GEOMETRY
(
2003, 32774, NULL,
SDO_ELEM_INFO_ARRAY(1, 1003, 3),
SDO_ORDINATE ARRAY(2,3, 4,5)

)

FROM dual;

SDO_UTIL.APPEND(SDO GEOMETRY(2003,32774,NULL, ...
SDO_GEOMETRY
(
2007, -- SDO_GTYPE= Multi-polygon
32774, NULL,
SDO_ELEM_INFO_ARRAY(1, 1003, 3, 5, 1003, 3),
SDO_ORDINATE ARRAY(1, 1, 2, 2, 2, 3, 4, 5)

Caution If the input geometries in an APPEND function are polygons that overlap or touch each other, this func-
tion will return an invalid geometry.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE 95

If you pass in a line and a polygon, you get a heterogeneous collection (SDO_GTYPE =2007)
geometry, as shown in Listing 4-29.

Listing 4-29. Creating a Heterogenous Collection Using SDO_UTIL.APPEND
SQL> SELECT SDO_UTIL.APPEND

SDO_GEOMETRY
(

2003, 32774, null,
SDO_ELEM INFO ARRAY(1,1003, 3),
SDO_ORDINATE_ARRAY(1,1, 2,2)

)s

SDO_GEOMETRY

(
2002, 32774, NULL,

SDO_ELEM_INFO_ARRAY(1, 2, 2),
SDO_ORDINATE_ARRAY(2,3, 3,3,4,2)
)

FROM dual;

SDO_UTIL.APPEND(SDO_GEOMETRY(2003,32774,NULL, ...

SDO_GEOMETRY

(
2004, -- SDO_GTYPE =(Heterogenous) Collection

32774, NULL,
SDO_ELEM_INFO_ARRAY(1, 1003, 3, 5, 2, 2),
SDO_ORDINATE ARRAY(1, 1, 2, 2, 2, 3, 3, 3, 4, 2)

Three-Dimensional Examples

So far, you've seen examples of geometries in two-dimensional spaces. In Oracle Database 11g,'°
you can store in the SDO_GEOMETRY type different three-dimensional shapes that appear in a variety
of applications such as city modeling, CAD/CAM, virtual reality, and medical imaging. In Chapter 5,
you will learn about importing directly from emerging standard formats such as CityGML into an
SDO_GEOMETRY format. In this section, you will learn about how to construct three-dimensional
geometries manually.

Table 4-4 shows the list of three-dimensional types (SDO_GTYPEs) supported in Oracle and the
corresponding three-dimensional objects. You can trivially extend two-dimensional points, line
strings, and polygons to three-dimensional by adding the third dimensional ordinates as shown in
Figures 4-21 to 4-23. In addition to these basic types, you can also store in an SDO_GEOMETRY the fol-
lowing additional types:

10. Unless otherwise mentioned, Oracle 11g refers to the Oracle Database Server 11g (because the majority of
Spatial functionality is part of Oracle Database Server).

www.freepdf-books.com

http://www.it-ebooks.info/

96

CHAPTER 4

THE SDO_GEOMETRY DATA TYPE

» Surface geometry, represented by a composite surface element. A composite surface is com-
posed of nonoverlapping polygons as shown in Figure 4-25. All surfaces, whether they are
simple or composite, define a single contiguous area in three-dimensional space.

* Solid geometry, represented using either a simple solid element or a composite solid element.
The boundary of a simple solid is specified using one outer composite surface and zero or
more inner composite surfaces. A composite solid element is an array of nonoverlapping
simple solids. Figure 4-29 shows an example of a composite solid. All solids, whether they are
simple or composite, define a single contiguous volume in three-dimensional space.

* Collections of either heterogeneous types or homogenous types (multipoint, multiline, multi-
surface, or multisolid). Figure 4-31 shows an example of a typical building modeled as a hetero-
geneous collection of solids (for building structure) and surfaces (for windows and doors).

Table 4-4. Types of Three-Dimensional Data That Can Be Stored in Oracle’s SDO_GEOMETRY

Type of Three-
Dimensional Data

SDO_GTYPE Value

Type Description

Top-Level Elements
of the Geometry

Point

Line string

Surface (can be
either a polygon or
a composite surface)

Solid (can be either
a simple solid or
a composite solid)

Collection

3001

3002

3003

3008

3005: Multipoint
3006: Multiline

3007: Multisurface
3009: Multisolid

3004: Heterogenous

Point specified
in 3D domain.

Line string connects

two or more distinct
points. Connectivity is

by straight lines (no arcs).
The line string is contiguous
(no gaps). Does not have
any area or volume.

Surface geometry bounds
a single contiguous area.
Does not have any volume.

Solid geometry defines a
single contiguous volume.

All elements of the
collection are line strings.

All elements of the
collection are surfaces.
All elements of the
collection are solids.
Elements can be any of the
previous geometry types.
All elements of the
collection are points.

The top-level element for a
point-type geometry is a point.
Figure 4-21 shows an example.

The top-level element for a line
string is a straight-line connected
line. Figure 4-22 shows an example.

The top-level element for a surface
geometry can be either a polygon
or a composite surface. The
composite surface is an array of
nonoverlapping polygons.
Figures 4-23 and 4-24 give
examples of a surface geometry
constructed with a polygon
element or a composite surface
element, respectively.

The top-level element for a solid
geometry can be either a

simple solid or a composite solid.
A composite solid is an array of
nonoverlapping simple solids.
Figures 4-25 and 4-26 show
examples.

The top-level elements can be any
element type for heterogeneous
collection.

For homogenous collections of

a specific type (for example,
multipoint, multiline,
multisurface, multisolid), the
top-level elements have to be of
the specified type. Figure 4-30
shows an example of a multi-solid.

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Note that the supported list of three-dimensional types matches closely the three-dimensional
types in the GML 3 specification with the exception of parametric types (such as circular arcs).

Caution Al the lines joining three-dimensional objects (line strings, polygons, surfaces, solids) are assumed to
be straight-line segments. Circular arcs and other parametric curves are not supported.

Let’s next examine how to construct each of the three-dimensional objects in Table 4-4 as an
SDO_GEOMETRY. First we will start with the simple ones: the points, lines, and polygons that are trivial
extensions of the 2D counterparts. Then we will move on to more complex types.

Three-Dimensional Points, Lines, and Polygons

In what way do the three-dimensional points, lines, and polygons differ from the two-dimensional
counterparts? The only differences are the specification of the dimensionality D as 3 (instead of 2)
in the SDO_GTYPE and the specification of the third ordinate for each point. Listings 4-21 to 4-23 show the
SQL for storing the three-dimensional point, a three-dimensional line string, and a three-dimensional
polygon by highlighting just these differences.

Three-Dimensional Point

Figure 4-21 shows an example of a three-dimensional point. Listing 4-30 shows how to populate the
SDO_GEOMETRY object in the geometry examples table to represent three-dimensional point in Figure 4-21
(substitute (2,0,2) with actual coordinates). Note that compared to the two-dimensional point of
Listing 4-18, the three-dimensional point is specified by three ordinate values, one for each of the
three dimensions.

Y

(2.0.2)
z

Figure 4-21. Three-dimensional point example

Listing 4-30. Three-Dimensional Point Geometry Example
SOL> INSERT INTO geometry examples (name, description, geom) VALUES
'3-D POINT',

'3-dimensional Point at coordinates (2,0,2) ',
SDO_GEOMETRY

(
3001, -- SDO_GTYPE format: DOOT. Set to 3001 for a 3-dimensional point
NULL, -- No coordinate system
SDO_POINT_TYPE
(

www.freepdf-books.com

97

http://www.it-ebooks.info/

98 CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

2, -- ordinate value for first dimension
0 -- ordinate value for second dimension
2 -- ordinate value for third dimension

)s
NULL, -- SDO_ELEM INFO is not needed as SDO_POINT field is populated
NULL ~ -- SDO_ORDINATES is not needed as SDO_POINT field is populated
)
);

Three-Dimensional Line String

You can construct a three-dimensional line string by connecting distinct three-dimensional points
by straight lines (no arcs). Figure 4-22 shows an example. Listing 4-31 shows how to populate the
SDO_GEOMETRY object in the geometry examples table to represent the three-dimensional line string in
Figure 4-22.

(4,2,4)
o

./ X

(2,0,2)

z

Figure 4-22. Three-dimensional line string example

Listing 4-31. Three-Dimensional Line String Geometry Example
SQL> INSERT INTO geometry examples (name, description, geom) VALUES
'3-D LineString,

'3-dimensional LineString from coordinates (2,0,2) to (4,2,4) ',
SDO_GEOMETRY

(
3002, -- SDO_GTYPE format: DOOT. Set to 3002 for a 3-dimensional line
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(
1, -- Offset for ordinates in SDO_ORDINATE_ ARRAY

2, -- Line String typ
1, -- Connected by straight lines
)s
SDO_ORDINATES_ARRAY
(
2, -- ordinate value for first dimension for first point
0, -- ordinate value for second dimension for first point
2, -- ordinate value for third dimension for first point
4, -- ordinate value for first dimension for second point
2, -- ordinate value for second dimension for second point
-- ordinate value for third dimension for second point
)

)5
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Caution The connectivity between two adjacent three-dimensional points should always be set to straight
lines (interpretation value of 1 in the SDO_ELEM_INFO atiribute). Oracle Spatial does not support three-dimensional
arcs or any other three-dimensional parametric curves.

Note that Listing 4-31 shows a line string connecting just two points. You can extend the exam-
ple to a line string of an arbitrary number of points by simply adding the ordinates of the points to
the SDO_ORDINATES array.

Three-Dimensional Polygon

You can construct a three-dimensional polygon by creating an outer ring followed by 0 or more
inner rings. Vertices of the rings have to be coplanar (that is, all vertices on the same plane). Figure 4-23
shows an example of a three-dimensional polygon with and without an inner ring. Note that the
edges on the ring are always connected by straight lines (Oracle Spatial does not support connectiv-
ity by arcs in Oracle 11g).

4,2,2)

X
4,0,2) 10,2)

& y -4

(4,0,4)

@) (b)

Figure 4-23. Examples of a (a) three-dimensional polygon and (b) three-dimensional polygon with
inner ring (hole)

Consider the polygon in Figure 4-23 (a). This polygon has one exterior ring specified by the
points A, B, C, and D. Listing 4-32 shows the constructor for such a simple polygon geometry.

Listing 4-32. SQL for Three-Dimensional Polygon in Figure 4-23 (a)
SOL> INSERT INTO geometry examples (name, description, geom) VALUES

'3-D Polygon’,
'3-dimensional Polygon from coordinates (2,0,2) to (4,0, 4) ',
SDO_GEOMETRY
(
3003, -- SDO_GTYPE format: DOOT. Set to 3003 for a 3-dimensional line
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute
SDO_ELEM_INFO_ARRAY(
1, -- Offset for ordinates in SDO_ORDINATE_ ARRAY
3, -- Polygon type
1, -- Connected by straight lines

)
www.freepdf-books.com

99

http://www.it-ebooks.info/

100

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

SDO_ORDINATES_ARRAY

(
2, 0, 2, -- coordinate values for first point
2, 0, 4 -- coordinate values for second point
4, 0, 4, -- coordinate values for third point
4, 0, 2, -- coordinate values for fourth point
2, 0, 2 -- coordinate values for first point
)

)
)

Recall that for two-dimensional data, we had rules that the order of the vertices should be
specified in counterclockwise order for exterior rings and clockwise for interior rings. Do you need
any such restrictions for three-dimensional polygons? It’s nothing that Oracle stipulates. But the
order of the vertices specified implicitly defines the surface normal using the “right-hand thumb”
rule. If the fingers curl along the order of the specification of the vertices, the outward thumb is the
direction of the surface normal for the polygon. Figure 4-24 shows the direction of the surface nor-
mal (along the positive Y-axis) for the polygon specification in Listing 4-32.

Y
Direction of

I Surface Normal

(402) : B@/

Figure 4-24. Direction of surface normal for a polygon

Note that although Oracle does not stipulate a specific order for vertices of a three-dimensional
polygon (that is, no restrictions on the direction for a surface normal for the polygon), the surface
normal is needed for properly specifying solids. For solids, Oracle stipulates that the surface normals
for all the composing polygons have to point outward from the solid.

The polygon in Figure 4-23 (a) is aligned with the x-, y-, and z-axes. Instead of specifying all the
vertices, it can be represented as a rectangle by specifying just the two corners corresponding to the
minimum ordinate values and the maximum ordinate values for the x-, y-, and z-dimensions. We
refer to these corners as min-corner and max-corner, respectively. The interpretation value in the
element descriptor triplet (in the SDO_ELEM_INFO attribute) for the polygon element is set to 3 (rectangle).
Listing 4-33 shows the corresponding SQL.

Listing 4-33. Three-Dimensional Rectangle Representation for Polygon of Figure 4-23 (a)
SQL> INSERT INTO geometry examples (name, description, geom) VALUES

'3-D Rectangle Polygon’,
'3-dimensional Polygon from coordinates (2,0,2) to (4,0, 4) ',
SDO_GEOMETRY

(

3003, -- SDO_GTYPE format: DOOT. Set to 3003 for a 3-dimensional polygon
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute
SDO_ELEM_INFO_ARRAY(
1, -- Offset for ordinates of the Exterior Ring in SDO_ORDINATE_ARRAY

1003, -- ETYPE for Exterior ring
3, -- Connected by straight lines
)5
SDO_ORDINATES_ARRAY
(
2, 0, 2, -- coordinates for min-corner of Exterior ring
4, 0, 4 -- coordinates for max-corner of Exterior ring
)

What is the direction of the surface normal for the previous rectangle? It depends on whether
the rectangle is parallel to the XY, YZ, or XZ plane and the order of specification of the min-corner
and max-corner in SDO_ORDINATES_ARRAY. Table 4-5 lists all the possible combinations along with the
direction of the surface normal. Note that with the <min-corner, max-corner> order for a rectangle
parallel to the XY, YZ, or XZ plane, the surface normal is along the positive perpendicular third dimen-
sion (Z-, X-, or Y-axis). On the other hand, if the rectangle is specified as < max-corner, min-corner>,
the surface normal is along the negative perpendicular third dimension.

Table 4-5. Direction of Surface Normal for a Rectangle Polygon Parallel to One of XY, YZ, or XZ Plane

Plane to Which Order of Specification of Direction of the Surface
Rectangle Is Parallel (Coordinates of) the Corners Normal

XY Min-corner, max-corner Positive Z-axis

YZ Min-corner, max-corner Positive X-axis

X7 Min-corner, max-corner Positive Y-axis

XY Max-corner, min-corner Negative Z-axis

YZ Max-corner, min-corner Negative X-axis

X7 Max-corner, min-corner Negative Y-axis

Using the information in Table 4-5, you can now determine the direction of the surface normal
for the rectangle in Listing 4-33. Since min-corner (2,0,2) is specified before max-corner (4,0,4) and
the rectangle is parallel to the XZ plane, the surface normal will be in the direction of the positive
Y-axis.

Note that the previous polygons have only one exterior ring and no inner rings. Just as in the
case of two-dimensional data, three-dimensional polygons can have zero or more inner rings. This
is illustrated in Figure 4-23 (b). Interior rings have an ETYPE of 2003 in contrast to exterior rings that
have an ETYPE of 1003. Interior rings should be oriented in the reverse order as the exterior ring. If
the outer and inner rings are rectangles and the outer ring is specified as <min-corner, max-corner>,
the inner ring should be specified in reverse order, as in <max-corner, min-corner> (and vice versa).
(Note that this is a deviation from the two-dimensional rectangle where the vertices are specified
always as <min-corner, max-corner> irrespective of whether the ring is inner or outer.) Using this
information, you can construct SDO_GEOMETRY for Figure 4-23 (b), as shown in Listing 4-34.

www.freepdf-books.com

101

http://www.it-ebooks.info/

102

CHAPTER 4 © THE SDO_GEOMETRY DATA TYPE

Listing 4-34. SQL for Polygon with Hole in Figure 4-23 (b)
SOL> INSERT INTO geometry examples (name, description, geom) VALUES

'3-D Rectangle Polygon with Hole’,

'3-dimensional Polygon ',
SDO_GEOMETRY

(
3003, -- SDO_GTYPE format: DOOT. Set to 3003 for a 3-dimensional polygon
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(
1, -- Offset for ordinates in SDO_ORDINATE_ARRAY

1003, -- Exterior ring etype
3, -- Rectangle
7, -- Offset for interior ring ordinates in SDO_ORDINATE_ARRAY
2003, -- ETYPE for Interior ring
3, -- Rectangle
)s
SDO_ORDINATES ARRAY
(
2, 0, 2, -- coordinates for min-corner of Exterior ring
4, 0, 4, -- coordinates for max-corner of Exterior ring
3.5, 0, 3.5, -- coordinates of max-corner of Interior ring
3, 0, 3 -- coordinates of min-corner of Interior ring
)

)
);

Caution For a three-dimensional rectangle modeling an inner ring of a three-dimensional polygon, the order of
vertex specification should always be the reverse of the order in the outer polygon.

Composite Surfaces

Note that a polygon can have only one exterior ring. What if you want multiple rings composing

a contiguous surface? Such a geometry that is constituted from multiple three-dimensional polygons
but still constitutes a single contiguous area is referred to as a composite surface. Figure 4-25 (a) shows
some examples. Observe that in Figure 4-25 (a), the composite surface is composed of two polygons,
with one in the XY plane and another in the XZ plane.

@ (b)

Figure 4-25. Examples of (@) a COWW{X/SW@@?)W 6[)6 8%§s%docl%nposite surface

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

You can store that as a composite surface. Let’s look at how to construct the SDO_ELEM INFO and
SDO_ORDINATES attributes because they are no longer trivial.

A composite surface element is specified by a header triplet of the form <offset, etype=1006,
N> where offset specifies the offset of the element in the SDO_ORDINATES array and N specifies the
number of polygonal surfaces that make up the composite surface. The element specification for
each of the planar polygonal surfaces follows this header triplet. Listing 4-35 shows the SQL for the
composite surface in Figure 4-25 (a). Note that SDO_GTYPE is 3003, the same for a three-dimensional
polygon and a three-dimensional surface.

Listing 4-35. SQL for Composite Surface in Figure 4-25 (a)

SQL> INSERT INTO geometry examples (name, description, geom) VALUES
(

'3-D Composite Surface’,

'3-dimensional Composite with 2 rectangle polygons ',

SDO_GEOMETRY
(
3003, -- SDO_GTYPE format: DOOT. Set to 3003 for a 3-dimensional Surface
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute
SDO_ELEM INFO ARRAY(
1, -- Offset of composite element
1006, --- Etype for composite surface element
2, -- Number of composing polygons
1, -- Offset for ordinates in SDO_ORDINATE_ARRAY
1003, -- Etype for Exterior (outer) ring of FIRST polygon
3, -- Polygon is an axis-aligned rectangle
7, -- Offset for second exterior polygon
1003, -- Etype for exterior Ring of SECOND polygon
3 -- Polygon is an axis-aligned rectangle

)
SDO_ORDINATES ARRAY

(
2, 0,2, -- min-corner for exterior ring of first polygon,
4,2,2, -- max-corner for exterior ring of first polygon
2,0, 2, -- min-corner for second element rectangle
4,0,4 -- max-corner for second element rectangle

)

)
);

Note that the polygon elements are in different planes (the first in z=2 plane and the second in
the y=0 plane). You can also construct composite surfaces that are on the same plane. The only
restriction is that all the elements together should constitute a single “contiguous” area (that is, the
interiors of all the elements of a composite surface are connected). The polygons can also have
holes, that is, inner (or interior) rings. For example, in Figure 4-25 (b) the polygon in the XY plane
has not only an outer (or exterior) ring but also an inner ring. The composite surface then represents
the gray area in the polygons in the XY and XZ planes. Listing 4-36 shows the SQL for specifying
such a composite surface.

www.freepdf-books.com

103

http://www.it-ebooks.info/

104 CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Listing 4-36. SQL for Composite Surface in Figure 4-25 (b)
SQL> INSERT INTO geometry examples (name, description, geom) VALUES

'3-D Composite Surface with hole polygons’,
'3-dimensional Composite with 2 rectangle polygons one of which has a hole ',
SDO_GEOMETRY
(
3003, -- SDO_GTYPE format: DOOT. Set to 3003 for a 3-dimensional Surface
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute
SDO_ELEM_INFO_ARRAY(
1, -- Offset of composite element
1006, --- Etype for composite surface element
2, -- Number of composing Polygons
1, -- Offset for ordinates in SDO_ORDINATE_ARRAY
1003, -- Etype for Exterior (outer) ring of FIRST polygon
3, -- Polygon is an axis-aligned rectangle
7, -- Offset for ordinates in SDO_ORDINATE_ARRAY
2003, -- Etype for Interior (inner) ring of FIRST polygon
3, ~-- Polygon is an axis-aligned rectangle
13, -- Offset for second exterior polygon
1003, -- Etype for exterior Ring of SECOND polygon
3 -- Polygon is an axis-aligned rectangle

)

SDO_ORDINATES_ARRAY

2, -- min-corner for exterior ring of first polygon,

2, -- max-corner for exterior ring of first polygon

3, 1, 2, -- min-corner for interior ring of first polygon
3 1.5, 2, -- max-corner for interior ring of first polygon
, 2, -- min-corner for second element rectangle

,4 -- max-corner for second element rectangle

Note that a surface geometry only has an area but never a volume. This is true even if the sur-
face is closed, as shown in Figure 4-26. The composite surface consists of the six sides of the cube
(note that the faces are not shown in gray). Listing 4-37 shows the SQL for such a surface geometry.

v (4,2,4)

Figure 4-26. Example of a closed composite surface

Listing 4-37. SQL for Composite Surface in Figure 4-26
SOL> INSERT INTO geometry examples (name, description, geom) VALUES

'3-D Composite Surface2’,

'3-dimensional Composite with 6 rectangle polygons ',
SDO_GEOMETRY

(

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

3003, -- SDO_GTYPE format: DOOT. Set to 3003 for a 3-dimensional Surface
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute
SDO_ELEM INFO_ARRAY(
1, -- Offset of composite element
1006, --- Etype for composite surface element
6, -- Number of composing polygons; element triplets for each follow

1, 1003,3 --Axis-aligned Rectangle element descriptor
7, 1003,3, --Axis-aligned Rectangle element descriptor
13,1003,3 , --Axis-aligned Rectangle element descriptor
19, 1003,3, -- Axis-aligned Rectangle element descriptor
25, 1003,3, --Axis-aligned Rectangle element descriptor
31,1003,3 --Axis-aligned Rectangle element descriptor

)s

SDO_ORDINATES ARRAY

(
2, 0,2, 4,2,2, -- min-, max- corners for Back face,
2,0,4, 4,2,4, -- min-, max- corners for Front face,
4,0,2, 4,2,4, -- min-, max- corners for Right side face,
2.0.2, 2,2,4, -- min-, max- corners for Left side face,
4,0,4, 2,0,2, -- min-, max- corners for Bottom face,
4,2,4, 2,2,2 -- min-, max- corners for Top face

)

)
)s

CGaution The composing elements of a composite surface element can only be polygonal surface elements
(i.e., cannot be composite surfaces themselves). Together, the composing polygonal elements should define a single
contiguous area.

Caution A surface-type geometry (that is, SDO_GTYPE=3003) can have at most only one composite surface as
the exterior (that is, ETYPE=1006). You cannot have any inner composite surfaces (that is, ETYPE=2006). The indi-
vidual polygon elements in the surface, however, can have both exterior (ETYPE=1003) and inner (ETYPE=2003) rings.

To associate a volume with the object of Figure 4-26, you need to denote it as a solid. How do
you make the surface geometry in Figure 4-26 a solid? You need to specify additional information in
the SDO_ELEM_INFO attribute as described next.

Simple Solid

A simple solid has one exterior composite surface and zero or more inner composite surfaces. A simple
solid element is denoted by the ETYPE of 1007. A simple solid is described using the following sequence
of descriptor triplets in the SDO_ELEM_INFO attribute:

¢ Aheader triplet for the solid element with an ETYPE of 1007

¢ Aheader triplet for exterior composite surface (with an ETYPE of 1006)

* Element descriptor triplets for each composing element of exterior surface
* Zero or more occurrences of the following:

¢ Header triplet for an inner composite surface (with Etype=2006)

¢ Element descriptor tr\lﬁ{ﬁt\%f%gaélﬁ 8‘?516’88{%%65816{“ of the inner surface

105

http://www.it-ebooks.info/

106 CHAPTER 4 © THE SDO_GEOMETRY DATA TYPE

Gaution For all solids, simple or composite (described in the next section), the following two restrictions hold
in Oracle: First, the surface normal for each polygon in the solid specification should always point outside from the
solid. The surface normal is implicitly derived from the order of the vertex specification using the “right-hand thumb”
rule as illustrated in Figure 4-24. Second, the polygons in the composite surfaces (of a solid) cannot have any inner
rings; that is, polygons cannot be like the polygon in the XY plane in Figure 4-25 (b) that has an inner ring.

Consider the simple solids in Figure 4-27. Both of them are bounded by one exterior composite
surface. The solid in Figure 4-27 (b) has an additional interior surface to represent the hole.

@) (b)
Figure 4-27. Examples of (a) simple solid and (b) a simple solid with a hole inside

You can construct the SQL for the simple solid of Figure 4-27 (a), as shown in Listing 4-38. The
changes from Listing 4-39 are in bold. Observe that the only differences compared to Listing 4-27
are the addition of the solid element triplet <1, 1007, 1>, the rearranging of the vertices orders for
the rectangles so that their surface normals point outside from the solid, and the changing the
SDO_GTYPE to 3008.

Listing 4-38. SQL for Simple Solid in Figure 4-27 (a)
SOL> INSERT INTO geometry examples (name, description, geom) VALUES
'3-D Simple Solid’,

'3-dimensional Solid with 6 rectangle polygons as its boundary ',
SDO_GEOMETRY

(
3008, -- SDO_GTYPE format: DOOT. Set to 3008 for a 3-dimensional Solid
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute
SDO_ELEM_INFO_ARRAY(
1, -- Offset of a Simple solid element
1007, --- Etype for a Simple solid
1, -- Indicates all surfaces are specified explicitly
1, -- Offset of composite element
1006, --- Etype for composite surface element
6, -- Number of composing elements;

-- element triplets for each element follow
1, 1003,3, --Axis-aligned Rectangle element descriptor
7, 1003,3, --Axis-aligned Rectangle element descriptor

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

13, 1003,3 , --Axis-aligned Rectangle element descriptor
19, 1003,3, -- Axis-aligned Rectangle element descriptor
25, 1003,3, -Axis-aligned Rectangle element descriptor
31, 1003,3 --Axis-aligned Rectangle element descriptor

)

SDO_ORDINATES_ARRAY

(
4,2,2, 2,0,2, -- max-, min- corners for Back face (normal: -ve Z-axis)
2,0,4, 4,2,4, -- min-, max- corners for Front face (normal: +ve Z axis)
4,0,2, 4,2,4, -- min-, max- corners for Right face (normal: +ve X axis)
2,2,4, 2,0,2, -- min-, max- corners for Left face (normal: -ve X axis)
4,0,4, 2,0,2, -- max-, min- for Bottom face (normal: -ve Y axis)
2,2,2, 4,2,4 -- min-, max- corners for Top face (normal: +ve Y axis)

)

)
)s

Caution The polygons (in the composite surface) of a simple solid cannot have inner rings.

Since the solid in Figure 4-27 (a) is aligned with the X-, Y-, Z-axes, you can simplify the SQL by
specifying it as a solid box with a specific etype of 3 and using only the min-corner (the minimum
ordinate values in x-, y-, z-dimensions) and the max-corner (the maximum ordinate value in x-, y-,
z-dimensions). Listing 4-39 shows the SQL, using a box element and only two corners for the solid.

Listing 4-39. SQL for Simple Solid in Figure 4-27 (a)
SQL> INSERT INTO geometry examples (name, description, geom) VALUES
'3-D Simple Solid as a Solid Box’,

'3-dimensional Solid with just the 2 corner vertices ',
SDO_GEOMETRY

(
3008, -- SDO_GTYPE format: DOOT. Set to 3008 for a 3-dimensional Solid
NULL, -- No coordinate system
NULL, --- No data in SDO POINT attribute
SDO_ELEM_INFO_ARRAY(
1, -- Offset of a Simple solid element
1007, --- Etype for a Simple solid
3 -- Solid Box type: only two corner vertices are specified

)
SDO_ORDINATES_ARRAY
(

2,0,2, 4,2,4 -- min-corner and max-corner for the solid

)
)s

The solid object in Figure 4-27 (a) could represent a typical building in a city-modeling applica-
tion. What if you want to model the open atrium inside the building? Let’s say this open atrium
is completely inside the building (does not touch any walls, ceiling, or ground) and by opening it, or
voiding it, you do not want it to be modeled as part of the building geometry (you might model it as
a separate structure). You can create the void in the building model by modeling this “open atrium”
as an inner composite surface as shown in Figure 4-27 (b). Note that you have to represent the poly-
gons of the inner composite surface such that their normals point outward from the entire solid.

www.freepdf-books.com

107

http://www.it-ebooks.info/

108

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

(For determining the surface normal for a polygon, please refer to Figure 4-24 and to Table 4-5 if the
polygon happens to be a rectangle.) The corresponding SQL is shown in Listing 4-40!}; changes
from Listing 4-38 are in bold.

Listing 4-40. Simple Solid with an Inner Hole as in Figure 4-27 (b)
SQL> INSERT INTO geometry examples (name, description, geom) VALUES
'3-D Simple Solid with inner hole’,

'3-dimensional Solid with 6 rectangle polygons as its boundary ',
SDO_GEOMETRY

(
3008, -- SDO_GTYPE format: DOOT. Set to 3008 for a 3-dimensional Solid
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute
SDO_ELEM_INFO_ARRAY(
1, -- Offset of a Simple solid element
1007, --- Etype for a Simple solid
1, -- Indicates all surfaces are specified explicitly
1, -- Offset of composite element
1006, --- Etype for composite surface element
6, -- # of composing elements; element triplets for each element follow

1,1003,3, --Axis-aligned Rectangle element descriptor
7, 1003,3,--Axis-aligned Rectangle element descriptor
13,1003,3 , --Axis-aligned Rectangle element descriptor
19, 1003,3, -- Axis-aligned Rectangle element descriptor
25, 1003,3, --Axis-aligned Rectangle element descriptor
31,1003,3, --Axis-aligned Rectangle element descriptor
37, 2006, 6, -- Inner composite surface
37, 2003,3, -- Axis-aligned Rectangle element ; note etype is 2003
43, 2003,3, --Axis-aligned Rectangle element descriptor
49, 2003,3 , --Axis-aligned Rectangle element descriptor
55, 2003,3, -- Axis-aligned Rectangle element descriptor
61, 2003,3, --Axis-aligned Rectangle element descriptor
67, 2003,3 --Axis-aligned Rectangle element descriptor

)

SDO_ORDINATE_ARRAY
--- All polygons oriented such that normals point outward from solid

------- Ordinates for the rectangles of the outer composite surface

4,2,2, 2,0,2, -- Back face
2,0,4, 4,2,4, -- Front face
4,0,2, 4,2,4, -- Right face
2,2,4, 2,0,2, -- Left face
4,0,4, 2,0,2, -- Bottom face
2,2,2, 4,2,4, -- Top face

——————— Ordinates for the rectangles of inner/hole composite surface
-------- representing the atrium

2.5, 0.5, 2.5, 3.5, 1.5, 2.5, -- Back face

3.5, 1.5, 3.5, 2.5, 0.5, 3.5, -- Front face

11. If you validate this geometry using functions discussed in Chapter 5, Oracle incorrectly raises an error. This

behavior is reported and resolved as bug 6357707.
wwv%/.?reepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

3.5, 1.5, 3.5, 3.5, 0.5, 2.5, -- Right face
2.5, 0.5, 2.5, 2.5, 1.5, 3.5, -- Left face
2.5, 0.5, 2.5, 3.5, 0.5, 3.5, -- Bottom face
3.5, 1.5, 3.5, 2.5, 1.5, 2.5 -- Top face

)
)
)s

Note An inner composite surface of a solid cannot topologically overlap with an outer composite surface of the
same solid.

Note that the atrium, that is, the interior solid, is modeled as the inner surface of the outer solid.
There is a notable exception to this modeling. If the inner solid touches the boundary of the outer solid
as in Figure 4-28, then it can no longer be modeled as an inner surface (the sdo_geom.validate geometry
described in Chapter 5 will return an error on such a geometry). Instead, you can model it as a simple
solid with just the exterior surfaces. Figure 4-28 shows the example. Observe that you can represent the
side faces as a single polygon.

For the top face (likewise the bottom one too) that has a hole in it, Oracle does not allow you to
represent them as a polygon with an inner ring. So, you need to break it into the two polygon rings
ABCDEF and AGEDHB, as shown in Figure 4-28. Listing 4-41 shows the example SQL.

North Wing

East Wing

South Wing

Figure 4-28. Examples of a solid with the hole where the hole cannot be modeled as an inner surface
(due to topological overlap of inner and outer composite surfaces)

Listing 4-41. Simple Solid with an Inner Hole That Touches Both Top and Bottom Faces

SOL> INSERT INTO geometry examples (name, description, geom) VALUES
(
'3-D Simple Solid with inner hole touching top/bottom faces’,
'3-dimensional Solid with 8 rectangle polygons as its boundary ',
SDO_GEOMETRY

(
www.freepdf-books.com

109

http://www.it-ebooks.info/

110 CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

3008, -- SDO_GTYPE format: DOOT. Set to 3008 for a 3-dimensional Solid
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute
SDO_ELEM INFO_ARRAY(
1, -- Offset of a Simple solid element
1007,--- Etype for a Simple solid
1, -- Indicates all surfaces are specified explicitly
1, -- Offset of composite element
1006, --- Etype for composite surface element
8, -- # of composing elements; element triplets for each element follow

1, 1003,3, --Axis-aligned Rectangle element descriptor for left face
7, 1003,3, --Axis-aligned Rectangle element descriptor for right face
13,1003,3, --Axis-aligned Rectangle element descriptor for back face
19,1003,3, -- Axis-aligned Rectangle element descriptor for front face
25,1003,1, -- Element descriptor for ABCDEFA on Top Face

46,1003,1, -- Element descriptor for AGEDHBA on Top Face

67,1003,1, -- Element descriptor for equivalent ABCDEFA on Bottom Face

88,1003,1 -- Element descriptor for equivalent AGEDHBA on Bottom Face
)
SDO_ORDINATE_ARRAY
(
-- Outer side walls
4,2,2, 2,0,2, -- Back face
2,0,4, 4,2,4, -- Front face
4,0,2, 4,2,4, -- Right side face
2,2,4, 2,0,2, -- Left side face
-- Inner side walls
2.5,0,2.5, 3.5,2,2.5, -- Back Face
3.5,2,3.5, 2.5,0,3.5, -- Front Face
2.5,0,2.5, 2.5,2,3.5, -- Left Face
3.5,2,3.5, 3.5,0,3.5, -- Right Face
-- Coordinates for vertices A,B,C,D,E,F,A on top face
2,2,4, 2.5,2,3.5, 2.5,2,2.5, 3.5,2,2.5, 4,2,2, 2,2,2, 2,2,4,
-- Coordinates for vertices A,G,E,D,H,B,A on top face
2,2,4, 4,2,4, 4,2,2, 3.5,2,2.5, 3.5,2,3.5, 2.5,2,3.5, 2,2,4,
-- Coordinates for polygon equivalent to ABCDEFA on bottom face

2,0,4, 2,0,2, 4,0,2, 3.5,0,2.5, 2.5,0,2.5, 2.5,0,3.5, 2,0,4,
-- Coordinates for polygon equivalent to AGEDHBA on bottom face
2,0,4, 2.5,0,3.5, 3.5,0,3.5, 3.5,2,2.5, 4,0,2, 4,0,4, 2,0,4
)
)
)s

Composite Solid

An alternate representation for the object in Figure 4-28 is a composite solid composed of four dif-
ferent simple solids, one each for the north wing, the south wing, the east wing, and the west wing,
as shown in Figure 4-29. You can denote the solid element as a composite element by specifying the
ETYPE as 1008. SDO_ELEM_INFO for this element will have a header triplet of the form <offset,
ETYPE=1008, N> where N is the number of components. This triplet is followed by the triplets for the
composing simple solid elements. Listing 4-42 shows the SQL for the solid object in Figure 4-29.
Note that we use the solid box representation (just the two corner vertices) for each of the simple
solids constituting the composite solid.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

North Wing
|
West Wing

East Wing

South Wing
Figure 4-29. Modeling the simple solid of Figure 4-28 as a composite solid

Listing 4-42. Example SQL for Composite Solid of Figure 4-29
SQL> INSERT INTO geometry examples (name, description, geom) VALUES

(
'3-D Composite Solid of 4 simple solids’,
'3-dimensional composite solid ',
SDO_GEOMETRY
(
3008, -- SDO_GTYPE format: DOOT. Set to 3008 for a 3-dimensional Solid
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute
SDO_ELEM_INFO_ARRAY(
1, -- Offset of the composite solid element
1008, --- Etype for a composite solid
4, --Number of cimple solids making up the composite.
--The simple solid descriptors next.
1, 1007, 3, -- Simple solid as a solid Box
7, 1007, 3, -- Simple solid as a solid box
13, 1007, 3, -- Simple solid as a solid box
19, 1007, 3 -- Simple solid as a solid box
)s
SDO_ORDINATE_ARRAY
(
-- min-corner and max-corner for the West wing
2,0,2, 2.5,2,4,
-- min-corner and max-corner for the East wing,
3.5, 0,2, 4,2,3.5,
-- min-corner and max-corner for the North wing,
2.5,0,2, 3.5,2,2.5,
-- min-corner and max-corner for the South wing,
2.5,0,3.5, 4,2,4

)
);

Note Every composite solid can also be represented as a simple solid. The composite solid type is provided
only for natural and easier modeling of solids such as those in Figure 4-29.

www.freepdf-books.com

111

http://www.it-ebooks.info/

112

CHAPTER 4 © THE SDO_GEOMETRY DATA TYPE

Gaution The composing elements of a composite solid element should be solid elements and should define
a contiguous volume.

Collections

In the previous example, the south wing is attached to the west, the west wing to the north, the
north to east, and so on. Because of the connected nature of these components, they are modeled
as a composite solid. But what if the different parts of the building are not connected to each other
as in Figure 4-30? You can model the components as a multisolid. Listing 4-43 shows the correspon-
ding SQL for constructing this object.

West Wing

East Wing

Figure 4-30. Modeling different disjoint parts of a building as a multisolid

Listing 4-43. Example SQL for Multisolid of Figure 4-30
SQL> INSERT INTO geometry examples (name, description, geom) VALUES
'3-D Multi Solid’,

'3-dimensional Multisolid with 2 solid boxes ',
SDO_GEOMETRY

(
3009, -- SDO_GTYPE format: DOOT. Set to 3009 for a 3-dimensional MultiSolid
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute
SDO_ELEM_INFO_ARRAY(
1, -- Offset of a simple solid element
1007, --- Etype for a simple solid
3, -- Solid box type: only two corner vertices are specified

7, 1007, 3 - Solid Box for second solid),
SDO_ORDINATES_ARRAY
(
-- min-corner and max-corner for first solid
0)0)0) 4)4)4J
-- min-corner and max-corner for second solid.
5,0,0, 9,4,4

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

Until now, we have described how to create buildings as solid and multisolid geometries. As
shown in Figure 4-31, the windows and doors, however, are surface-type geometries that need to be
associated with a building. How do you store the solid structure of the building along with the asso-
ciated windows and doors as a single entity? The answer is to model it as a (heterogeneous) collection
geometry. One element of this collection can be the composite solid representing the different wings
of the building, and the other elements can be surfaces representing the windows.

North Wing

West Wing

East Wing

South Wing

Figure 4-31. Modeling the entire building (with windows, doors) as a (heterogeneous) collection

Listing 4-44 shows the SQL for the building in Figure 4-31. You can observe that SDO_GTYPE is set
to 3004 (heterogeneous collection). Elements of the collection are specified one after the other. First
the composite solid element (along with its constituting solid elements) is specified. Then the window
is specified as a polygon element, followed by the door as another polygon element.

Listing 4-44. Example SQL for Buildings Modeled As a Collection
SOL> INSERT INTO geometry examples (name, description, geom) VALUES
'3-D Building as a Collection’,

'3-dimensional collection as combination of a composite solid and 2 surfaces',
SDO_GEOMETRY

(

3004, -- SDO_GTYPE format: DOOT. Set to 3004 for a 3-dimensional Collection

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM INFO_ARRAY(

1, 1008, 4, --- Descriptor for a composite solid of 4 simple solids

1, 1007, 3, --Simple solid as a solid Box
7, 1007, 3, -- Simple solid as a solid box
13, 1007, 3, -- Simple solid as a solid box
19, 1007, 3, -- Simple solid as a solid box,
25, 1003, 3, -- Descriptor for Door as a polygon

31, 1003, 3 -- Descriptor for Window as a polygon

)s

www.freepdf-books.com

113

http://www.it-ebooks.info/

114 CHAPTER 4 ©" THE SDO_GEOMETRY DATA TYPE

SDO_ORDINATE_ARRAY
(

-- min-corner and max-corner for the West wing
2)0121 2'51214)

-- min-corner and max-corner for the East wing,
3-51 0)2) 4)2)3-5)

-- min-corner and max-corner for the North wing,
2.5,0,2, 3.5,2,2.5,

-- min-corner and max-corner for the South wing,
2.5,0,3.5, 4,2,4,

-- min-corner and max-corner for the door,
2.75, 0, 4, 3.25, 1, 4,

-- min-corner and max-corner for the window,
2.5, 2, 4, 3.5,3,4

)
)s

Summary

This chapter demonstrated that the SDO_GEOMETRY data type is a powerful structure in Oracle. You
can use this data type to store point, line, polygon, surface, and solid geometries, as well as homog-
enous and heterogeneous collections of such geometries. The SDO_GTYPE attribute of SDO_GEOMETRY
specifies the type (shape), and the SDO_ELEM INFO and SDO_ORDINATES attributes together specify the
ordinate information and connectivity for the shape object. The SDO_POINT attribute stores the loca-
tion for two- or three-dimensional points. In short, you can store as an SDO_GEOMETRY any of the
various two-dimensional types mentioned in OGC Simple Features Specification'? or a major subset
of the three-dimensional types (excluding parametric curves and surfaces) mentioned in the OGC
GML 2.0 and 3.0 specifications.

In addition to the geometric structure, you can associate spatial referencing using appropriate
coordinate systems with SDO_GEOMETRY objects. If the coordinate systems are based on the EPSG
model, you can define your own transformation paths between different coordinate systems.

In your applications, you can utilize the SDO_GEOMETRY data type to model locations of customers,
delivery sites, and competitors as two-dimensional points. You can model locations and the shapes
of streets and highways as line strings, and you can model the shapes of city boundaries as poly-
gons. For city-modeling or asset management applications, you can store not only the location but
the exact structure of buildings as three-dimensional solids or collections using SDO_GEOMETRY type
columns.

Having covered how to construct SDO_GEOMETRY objects for different types of spatial data, in the
next chapter we will explain how to insert and load such objects into an Oracle table.

12. The native SDO_GEOMETRY type conforms to the OGC Simple Feature Specification. The ST_GEOMETRY type that

is also supported in Oracle is come\lli\'?\rll\tN w1ﬁ_1 ethéa 88? %ra%&lgzaé%e%eciﬁcation Object Model.

http://www.it-ebooks.info/

CHAPTER 5

Loading, Transporting, and Validating
Spatial Data

To run the examples in this chapter, you need to import a dataset as shown in the following
spatial schema. Please refer to the introduction for instructions on creating the spatial
schema and other setup details.

imp spatial/spatial FILE=app with loc.dmp FULL=Y INDEXES=N
imp spatial/spatial FILE=city.dmp FULL=Y INDEXES=N

In the previous chapter, we introduced a new data type called SDO_GEOMETRY to store spatial data.
This data type can store a variety of spatial objects: points (including those obtained by geocoding
address strings), line strings, polygons, or more complex shapes. Points primarily represent the
locations of application-specific entities such as businesses, customers, or suppliers. Line strings
and polygons, on the other hand, represent the boundaries of geographical entities such as roads,
cities, or states. In CAD/CAM-type applications, line strings and polygons can represent different
entities such as the layouts of buildings, printed circuit boards, or shapes of different parts of an
automobile.

In Chapter 3, we described how to add SDO_GEOMETRY columns to existing (application-specific)
tables such as customers. We also described how to create tables with SDO_GEOMETRY columns to store
geographic data such as states, counties, and interstates. These tables could be part of an e-business
application or a variety of other spatial applications such as CAD/CAM, GIS, GPS, wireless, or telematics.

In this chapter, we work with our example business application, the tables for which we created
in Chapter 3, and we move on to describe how to populate these tables with data and how to ensure
that the data are valid and free of bugs. Specifically, we cover the following topics:

e Inserting into a table with SDO_GEOMETRY columns. We cover how to insert a single geometry
into a table with SDO_GEOMETRY. This may not be the right approach to populate the application-
specific and geographic tables because inserting geometries one by one may be time-consuming
and error-prone. A better approach is to bulk load the data.

* Loading and converting spatial data to and from Oracle databases. We describe how to use
Oracle utilities to bulk load spatial data into Oracle tables from operating system files or
Oracle Import/Export (.dmp) files. We also describe a utility to convert third-party formats
such as Environmental Systems Research Institute’s (ESRI’s) shapefiles to SQL*Loader files
and load the resulting files into Oracle.

www.freepdf-books.com

115

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

 Validating spatial data. We describe functions available to check whether the loaded spatial
data are in a valid Oracle Spatial format.

* Debugging spatial data. We explain how to identify and correct any invalid spatial data in
a table.

The functions that we describe in this chapter are part of two packages: SDO_GEOM and SDO_UTIL.
The SDO_GEOM functions that we use in this chapter are part of the Locator product (shipped for free
with Oracle Database Server). The SDO_UTIL package and the associated functions, however, are
included only in the priced option of Spatial.

Inserting Data into an SDO_GEOMETRY Column

Let’s create a table to model the sales regions of a business franchise. Listing 5-1 shows the SQL.

Listing 5-1. Creating the sales_regions Table

SOL> CREATE TABLE sales_regions
(

id NUMBER,

geom SDO_GEOMETRY

)

You can insert polygons representing sales regions into the geom column of this table.
Listing 5-2 shows an example.

Listing 5-2. Inserting a Polygon Geometry into the sales_regions Table

SQL> INSERT INTO sales_regions VALUES
(
10000, -- SALES REGIONS ID
SDO_GEOMETRY -- wuse the SDO_GEOMETRY constructor
(
2003, -- A two-dimensional Polygon
8307, -- SRID is GEODETIC
NULL, -- SDO_POINT TYPE is null as it is not a point
SDO_ELEM_INFO_ARRAY (1, 1003, 1), -- A polygon with just one ring
SDO_ORDINATE_ARRAY -- SDO_ORDINATES field
(
-77.04487, 38.9043742, -- coordinates of first vertex
-77.046645, 38.9040983, -- other vertices
-77.04815, 38.9033127, -77.049155, 38.9021368,
-77.049508, 38.9007499, -77.049155, 38.899363, -77.048149, 38.8981873,
-77.046645, 38.8974017, -77.04487, 38.8971258, -77.043095, 38.8974017,
-77.041591, 38.8981873, -77.040585, 38.899363, -77.040232, 38.9007499,
-77.040585, 38.9021368, -77.04159, 38.9033127, -77.043095, 38.9040983,
-77.04487, 38.9043742 -- coordinates of last vertex same as first vertex
)
)
)5
Note that the second argument is the SDO_GEOMETRY constructor presented in the previous
chapter. You can insert any type of geometry into this column, be it a point, a line, a polygon, and so
on. In this example, the geometry is a two-dimensional polygon geometry. The vertices of this poly-
gon are stored in the SDO_ORDINATES attribute instantiated using the SDO_ORDINATE_ARRAY type. In

Chapter 4, we noted that for a polygon the first and last vertex coordinates should be same. Accordingly,
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

in Listing 5-2, the coordinates for the first and last vertices (shown in the first and the last lines of
the SDO_ORDINATE_ARRAY object) are identical.

Caution INSERT statements with an SDO_GEOMETRY constructor cannot take more than 1,000 numbers in the
SDO_ORDINATES array. One alternative is to create an SDO_GEOMETRY object in PL/SQL and bind this object in the
INSERT statement (refer to Chapter 14 for details).

Populating tables by inserting the data rows one by one (as in Listing 5-2) is very time-consuming.
In this chapter, we discuss how to load the data in bulk and how to check that the populated data
are in the required Oracle Spatial format.

Loading and Converting Spatial Data

Spatial data can be loaded from different formats, including text files, Oracle export formats, or
third-party proprietary formats. In the following sections, we describe each of these formats in
sequence.

Loading from Text Files Using SQL*Loader

SQL*Loader is an Oracle utility to load data from files into Oracle tables. This utility performs bulk
loading—that is, it can load more than one row into a table in one attempt.

Tip Always drop any associated spatial indexes before bulk loading into a table. Otherwise, spatial indexes may
slow down the loading process.

SQL*Loader takes a control file that specifies how to break the file data into Oracle rows and
how to separate these records into individual columns. We do not discuss all the details of SQL*Loader
here. Instead, we highlight the object-specific issues that come into play when loading SDO_GEOMETRY
columns.

Loading Point Data

First, let’s look at how to insert data into the sales_regions table. Say the sales regions are point
data. You can directly insert the regions into the x,y components of the geom column (SDO_GEOMETRY
object) as described in the control file in Listing 5-3.

Listing 5-3. Control File for Loading “Point” sales_regions Data

LOAD DATA

INFILE *

INTO TABLE sales_regions
APPEND

FIELDS TERMINATED BY '|'
TRAILING NULLCOLS

id NULLIF ID = BLANKS,
geom COLUMN OBJECT
(

www.freepdf-books.com

117

http://www.it-ebooks.info/

118 CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

SDO_GTYPE INTEGER EXTERNAL,
SDO_POINT COLUMN OBJECT
(
X FLOAT EXTERNAL,
Y FLOAT EXTERNAL
)
)
)
BEGINDATA

1|2001|-76.99022|38.888654|
2]2001|-77.41575|38.924753

Notice that there is no need to specify the SDO_SRID, the SDO_ELEM INFO_ARRAY, and the
SDO_ORDINATE_ARRAY components. These are automatically set to NULL. The control file in Listing 5-3
has two records, one with an ID of 1 and another with an ID of 2. Both records have the x,y compo-
nents specified as the last two fields. Just as in other SQL*Loader control files, the fields in each
record are terminated by the pipe symbol (because we specified fields terminated by |). We will use
this “control” file to load the sales_regions data as shown in Listing 5-4. A log of the operation that
records which rows are loaded and which are rejected is available in sales_regions.log.

Listing 5-4. Using SQL*Loader to Load Data into the sales_regions Table
SOLLDR spatial/spatial CONTROL=sales_regions.ctl

Note that the format for the data is specified in the initial part of the control file. The data are
specified in the same control file right after the BEGINDATA keyword. Instead of specifying the data in
the control file, you can store the data in a separate file, say sales_regions.dat. You can then specify
the data file at the command line, as shown in Listing 5-5.

Listing 5-5. Using SQL*Loader with a Data File
SOLLDR spatial/spatial CONTROL=sales regions.ctl DATA=sales regions.dat

Alternatively, you can specify the data file name in the control file (and load the data, as in
Listing 5-5). In the control file, you have to modify INFILE * to INFILE sales_regions.dat. The
modified control file is shown in Listing 5-6, and the corresponding data file is shown in Listing 5-7.
You can run the SQL*Loader command as in Listing 5-4 to load the data.

Listing 5-6. sales regions.ctl File

LOAD DATA

INFILE sales_regions.dat
INTO TABLE sales_regions
APPEND

FIELDS TERMINATED BY '|'
TRAILING NULLCOLS

id NULLIF ID = BLANKS,
geom COLUMN OBJECT

(
SDO_GTYPE INTEGER EXTERNAL,
SDO_POINT COLUMN OBJECT
(
X FLOAT EXTERNAL,
Y FLOAT EXTERNAL

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Listing 5-7. sales_regions.dat File

1|2001|-76.99022|38.888654|
2]2001|-77.41575|38.924753

Loading Nonpoint Data

What if the data you want to load contains nonpoint data? In that case, you need to populate the
SDO_ELEM_INFO and SDO_ORDINATES fields of the SDO_GEOMETRY column. The control file in Listing 5-8
shows an example of how to do this for the sales_regions table, where most of the sales_regions
are nonpoint geometries.

Listing 5-8. Control File for Loading Nonpoint SDO_GEOMETRY Data

LOAD DATA

INFILE *

CONTINUEIF NEXT(1:1)="#'
INTO TABLE sales regions
APPEND

FIELDS TERMINATED BY '|'
TRAILING NULLCOLS

id CHAR(6),
geom COLUMN OBJECT
(
SDO_GTYPE INTEGER EXTERNAL,
SDO_SRID INTEGER EXTERNAL,
SDO_ELEM_INFO VARRAY terminated by '/' (E FLOAT EXTERNAL),
SDO_ORDINATES VARRAY terminated by '/' (O FLOAT EXTERNAL)

)

BEGINDATA

10000| 2003| 8307|
#1| 1003| 1]/
#-77.04487| 38.9043742| -77.046645| 38.9040983| -77.04815| 38.9033127|-77.049155]
#38.9021368| -77.049508| 38.9007499| -77.049155| 38.899363| -77.048149]
1#38.8981873| -77.046645| 38.8974017| -77.04487| 38.8971258| -77.043095 |
#38.8974017| -77.041591| 38.8981873| -77.040585| 38.899363| -77.040232|
#38.9007499| -77.040585| 38.9021368| -77.04159| 38.9033127| -77.043095|
#38.9040983| -77.04487| 38.9043742| -77.04487| 38.9043742|/

Note that SQL*Loader cannot process records that are more than 64KB in size if the data are
included in the control file (as in Listing 5-3). (If the data are in a separate data file, the default limit for
arecord is IMB, which can be increased up to 20MB by overriding the default using the READSIZE
parameter.) To work around this restriction, the record is split into multiple lines. The line CONTINUEIF
NEXT(1:1)="#" specifies that the record is continued if a hash mark (#) is the first character of each
line. Note that the SDO_ORDINATES field could contain up to 1 million numbers. This means SQL*Loader
will need to concatenate multiple records of a size less than 64KB to create one SDO_ORDINATE_ARRAY
containing up to 1 million numbers.

www.freepdf-books.com

119

http://www.it-ebooks.info/

120

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Gaution In direct path mode for SQL*Loader, spatial indexes that are associated with the tables being loaded
are not maintained. You need to rebuild or drop and re-create such spatial indexes (see Chapter 8 for details on
rebuilding/re-creating spatial indexes).

Transporting Spatial Data Between Oracle Databases

In the following sections, we discuss how to exchange spatial data between different Oracle databases.
Oracle provides a variety of ways to perform such exchanges. These include the Import/Export utilities

and the transportable tablespace mechanisms. In addition, Oracle Spatial provides a mechanism to
migrate some of the pre-10g spatial formats to current formats using the SDO_MIGRATE function.

Import/Export Utilities

The easiest method to load data is through the use of Oracle’s platform-independent . dmp files.
These files are used by Oracle’s Import/Export utilities. For instance, you can export the customers
table from the spatial schema as shown in Listing 5-9.

Listing 5-9. Exporting the customers Table into the customers.dmp File
EXP spatial/spatial FILE=customers.dmp TABLES=customers

You can later import this data (that is, the .dmp file) into another schema, say the scott schema,
using Oracle’s Import utility. Listing 5-10 shows an example.

Listing 5-10. Importing the customers Table into the scott Schema
IMP scott/tiger FILE=customers.dmp IGNORE=Y INDEXES=N TABLES=CUSTOMERS

ignore=y ignores any warnings if objects already exist in the schema. If you do not specify any
command-line arguments, the Import utility will prompt you to specify the import file name and
the tables you want to import. You can then choose only a subset of the tables in sample data.dmp to
be imported.

Note that if the location column in the customers table had a spatial index before it was
exported, then after the import, the spatial index will be automatically created on this table. The
user scott in Listing 5-10 does not have to do anything specific in this instance to create the index.
In addition, the spatial index will also populate the spatial metadata for the corresponding spatial
layer (that is, the location column in the customers table) in the USER_SDO_GEOM_METADATA view. It
uses the metadata from the exported database.

You can also import data into the scott schema using the fromuser and touser command-line
arguments. The import command is run as a system account (system/manager). Listing 5-11 shows
an example.

Listing 5-11. Importing Using the fromuser and touser Arguments

IMP SYSTEM/MANAGER FROMUSER=spatial TOUSER=scott FILE=customers.dmp

If the customers table has a spatial index, this will be re-created on import (as in Listing 5-10).
Note that to re-create the index when you import with the touser argument, scott needs to have
the CREATE TABLE and CREATE SEQUENCE privileges. You can use the following SQL to grant these priv-
ileges to scott:

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

SQL> CONNECT SYSTEM/MANAGER
SQL> GRANT create table to SCOTT;
SQL> GRANT create sequence to SCOTT;

You want to import just the table data without any indexes. You can then import the data by
specifying indexes=n on the command line.

The Oracle Data Pump component provides alternate and more efficient mechanisms for
transferring data between databases. It provides the EXPDP and IMPDP utilities, which are equivalent
to the Export (EXP) and Import (IMP) utilities of Oracle.

Transportable Tablespaces

An alternate mechanism to transfer data between different Oracle databases is the use of trans-
portable tablespaces. In this case, you can transport an entire tablespace (along with its contents)
between two Oracle databases (10g or higher). For instance, if the customers table is part of a table-
space, TBS, then you can transport this tablespace. To ensure that any spatial indexes existing on the
customers table are also transported, you need to perform the following steps:

1. Execute SDO_UTIL.PREPARE_FOR_TTS('TBS') before transporting the tablespace TBS.
2. Execute SDO_UTIL.INITIALIZE INDEXES FOR_TTS after transporting the tablespace TBS.

Listing 5-12 shows how to create the . dmp file for transporting the tablespace TBS from a source
database.

Listing 5-12. Transporting the Tablespace TBS from a Source Database

SOLPLUS spatial/spatial

EXECUTE SDO_UTIL.PREPARE FOR _TTS('TBS');

CONNECT SYSTEM/MANAGER AS SYSDBA

EXECUTE DBMS_TTS.TRANSPORT SET CHECK('TBS', TRUE);
ALTER TABLESPACE TBS READ ONLY;

EXIT;

EXP USERID = "'SYS/<password>'" TRANSPORT TABLESPACE=Y TABLESPACES=TBS
FILE=trans_ts.dmp

This will create the tablespace metadata in the file trans_ts.dmp. Copy this file and sdo_tts.dbf
(the data file for the tablespace) to the target database system. You should create the spatial schema
into which this data needs to be populated and then import the contents of trans_ts.dmp as shown
in Listing 5-13.

Listing 5-13. Creating the Transported Tablespace in the Target Database

<copy the file to new system with user spatial created>
IMP USERID = "'SYS/<password>'" TRANSPORT TABLESPACE=Y FILE=trans_ts.dmp
DATAFILES="sdo_tts.dbf' TABLESPACES=tbs

This will create the tablespace and populate the contents in the target database. Note that the
tablespace should not already exist in the target database. This restricts the import operation to
being performed only once (as it creates the tablespace) in the target database.

After importing, you should alter the tablespace TBS to allow read/write operations and execute
the SDO_UTIL.INITIALIZE INDEXES FOR_TTS procedure to enable spatial indexes. Listing 5-14 shows
the corresponding SQL.

www.freepdf-books.com

121

http://www.it-ebooks.info/

122

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Listing 5-14. Enabling Spatial Indexes for the Tables in the Transported Tablespace

SOLPLUS SYS/<password>

ALTER TABLESPACE TBS READ WRITE;

CONNECT spatial/spatial;

EXEC SDO_UTIL.INITIALIZE INDEXES FOR_TTS;

The INITIALIZE INDEXES FOR_TTS function re-enables the spatial indexes that exist on the
tables in the transported tablespace. Spatial indexes, however, will work only if the endian format of
the source and the target databases remains the same. If the endian format is different, then the spa-
tial indexes need to be rebuilt using the ALTER INDEX REBUILD command. Listing 5-15 shows an
example for the customers_sidx index on the location column of the customers table. (Chapter 8
provides details on creating and rebuilding indexes.)

Listing 5-15. Rebuilding a Spatial Index After Transporting Across Endian Platforms
SOL> ALTER INDEX customers_sidx REBUILD;

Migrating from Prior Versions of Oracle Spatial

The SDO_GEOMETRY data type has evolved significantly over past releases of Oracle (see Chapter 2 for
details), and it may continue to change in future releases. The SDO_MIGRATE package has functions,
such as TO_CURRENT, to migrate spatial data from prior versions to the “current” version, whatever
that is. Listing 5-16 shows an example to migrate the geometry data in the location column data of
the customers table to Oracle10g (format). Note the third parameter specifies the commit interval as
100, which tells the database to commit after migration of every 100 rows of the customers table.

Listing 5-16. Migrating location Column Data in the customers Table to the Current Format (10g)
SQL> EXECUTE SDO_MIGRATE.TO CURRENT('customers', 'location', 100);

This function has other signatures to accommodate migration of a single geometry instead of
a set of geometries in a table. You can refer to the Oracle Spatial User’s Guide for more details on this
package. These migration functions work in only one direction—that is, they migrate data from
older versions to the current version.

Loading from External Formats

Several GIS vendors have their own formats to store spatial data. The ESRI shapefile format is one
such example. Oracle Spatial does not understand these formats. A variety of third-party converters
are available to perform conversion between other formats and the Oracle Spatial format. A full dis-
cussion of these formats and the converters is beyond the scope of this book; however, to illustrate
the concept, we will use the free but unsupported Oracle utility called SHP2SDO, which reads ESRI
shapefiles and outputs SQL*Loader control and data files (see Listing 5-17). These files can then be
used to populate the SDO_GEOMETRY column in an Oracle table.

Listing 5-17. Using shp2sdo to Convert from ESRI Shapefiles
SHP2SDO customers -g location -x(-180,180) -y(-90,90) -s 8307 -t 0.5

Note that the command-line argument customers in Listing 5-17 indicates three different files as
input: customers. shp, customers.shx, and customers.dbf. These three files contain different compo-
nents of an ESRI shapefile named customers. The -x and -y arguments specify the extent of the data in
x- and y-dimensions. The -t argument specifies the tolerance for the dimensions. The -s argument

specifies the SRID (coordinate systmw W&%ﬁf—b ooks.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

The SHP2SDO utility outputs three files:

e customers.sql: This file creates the customers table and loads spatial metadata for the
customers table (associated spatial layers). Listing 5-18 shows an example.

e customers.ctl: This file is the control file for SQL*Loader.

e customers.dat: This file contains the data for loading using SQL*Loader.

Listing 5-18. customers.sql File

DROPTABLE customers;
CREATE TABLE customers

(
id NUMBER,
datasrc_id NUMBER,
name VARCHAR2(35),
category VARCHAR2(30),
street_number VARCHAR2(5),
street_name VARCHAR2(60),
city VARCHAR2(32),
postal code VARCHAR2(16),
state VARCHAR2(32),
phone_number VARCHAR2(15),
customer grade VARCHAR2(15)

)5

INSERT INTO USER_SDO_GEOM METADATA VALUES

(
'CUSTOMERS ', -- Table name
'LOCATION', -- Column name
MDSYS.SDO DIM INFO_ARRAY -- Diminfo

MDSYS.SDO _DIM ELEMENT('Longitude', -180, 180, 0.5), --Longitude dimension
MDSYS.SDO DIM ELEMENT('Latitude', -90, 90, 0.5) --Latitude dimension

)s
8307 -- Geodetic SRID

);

Note See Chapter 3 for more information on different values in the SQL INSERT statement in Listing 5-18.

The customers.ctl and customers.dat files will be similar to those shown in Listings 5-6 and 5-7,
respectively.

You can then load the data into the customers table in Oracle using SQL*Loader, as shown in
Listing 5-19. This will create the table in Oracle and load the data into the table.

Listing 5-19. Executing the Output Files from SHP2SDO to Load Data into Oracle

SOLPLUS spatial/spatial @customers.sql
SQLLDR spatial/spatial CONTROL=customers.ctl

For more details on this utility, you can run SHP2SD0O -h.

www.freepdf-books.com

123

mailto:@customers.sql
http://www.it-ebooks.info/

124

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Converting Between SDO_GEOMETRY and WKT/WKB

SQL/MM is the ISO/IEC international standard for “Text, Spatial, Still Images, and Data Mining.”
SQL/MM specifies the well-known text (WKT) and the well-known binary (WKB) formats for specifying
geometries (see Chapter 4 for details). You can convert these formats to an SDO_GEOMETRY (and store
the data in Oracle Spatial), and vice versa. For instance, Listing 4-11 shows how to convert WKT to
an SDO GEOMETRY by taking the WKT and an SRID as parameters (you can also pass WKB and SRID as
parameters in that example). Listing 5-20 shows how to do the reverse—that is, how to convert an
SDO_GEOMETRY object to WKT format. This example uses the GET_WKT method of the SDO_GEOMETRY data
type and returns the well-known text as a character large object (CLOB). Listing 5-21 shows an alter-
native to get the same result using the SDO_UTIL.TO WKTGEOMETRY function.

Listing 5-20. Converting from an SDO_GEOMETRY to WKT Format

SQL> SELECT a.location.GET_WKT() wkt FROM customers a WHERE id=1;
WKT

POINT (-76.9773898 38.8886508)
SQL> SELECT SDO_UTIL.TO WKTGEOMETRY(a.location) wkt FROM customers a WHERE id=1;
WKT

POINT (-76.9773898 38.8886508)

Listing 5-21. Using TO_WKTGEOMETRY to Convert from an SDO_GEOMETRY fo WKT Format

SQL> SELECT SDO_UTIL.TO WKTGEOMETRY(a.location) wkt FROM customers a WHERE id=1;
WKT

POINT (-76.9773898 38.8886508)
SQL> SELECT SDO_UTIL.TO WKTGEOMETRY(a.location) wkt FROM customers a WHERE id=1;
WKT

POINT (-76.9773898 38.8886508)

Analogously, the GET_WKB method of the SDO_GEOMETRY data type (or the equivalent SDO_UTIL.
TO_WKBGEOMETRY function) converts an SDO_GEOMETRY object to WKB format. This method returns the
result as a binary large object (BLOB).

Since WKT and WKB are standard formats for spatial data supported by many external spatial ven-
dors, the preceding conversion methods enable the easy exchange of spatial data between Oracle
Spatial (SDO_GEOMETRY) format and other external formats.

Converting SDO_GEOMETRY Data in GML

Geographic Markup Language (GML) is an XML-based encoding standard for spatial information.
You can convert SDO_GEOMETRY data to/from GML format using various functions in the SDO_UTIL
package. Note that the GML Specification (www.opengeospatial.org) has two major versions: GML 2.0
and GML 3.1.1. GML2.0 supports only two-dimensional data types. In contrast, GML 3.1.1 is quite
rich and supports three-dimensional data types. Oracle Spatial has different functions to cater to
each version of GML.

Converting to GML

To convert to GML 2.0, you can use the SDO_UTIL.TO GMLGEOMETRY function. This function takes
a single argument of type SDO_GEOMETRY and returns a GML-encoded document fragment in the

www.freepdf-books.com

http://www.opengeospatial.org
http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

form of a CLOB. This returned object contains information about the type of the geometry, the SRID,
and the coordinates specified using appropriate GML tags.

Listing 5-22 shows an example of converting a customer location into a GML document fragment.
The geometry information is specified between the <gml> and </gml> tags. The type is specified as
a POINT, and coordinates are included between the <gml:coordinates> and </gml:coordinates> tags.
Note that although we’re using the point locations in the customers table for illustration, this func-
tion can work with arbitrary types of geometries (for example, polygons in the sales_regions or
us_states table).

Listing 5-22. Converting an SDO_GEOMETRY fo a GML Document

SQL> SELECT TO_CHAR(SDO_UTIL.TO GMLGEOMETRY(location)) gml location
FROM customers

WHERE id=1;

GML_LOCATION

<gml:Point srsName="SD0:8307" xmlns:gml="http://www.opengis.net/gml">
<gml:coordinates decimal="." cs="," ts=" ">
-76.99022,38.888654
</gml:coordinates>

</gml:Point>

To convert to GML 3.1.1, you can utilize the TO_GMLGEOMETRY311 function in the SDO_UTIL package.
Note the suffix 311 to indicate the GML version. Listing 5-23 shows how to convert an axis-aligned
solid box into GML311. Observe that the solid box is expanded, and all the six surfaces are repre-
sented as polygons of the exterior composite surface bounding the specified solid.

Listing 5-23. Converting a Three-Dimensional Solid SDO_GEOMETRY fo GML311

SQL> SELECT TO_CHAR(SDO_UTIL.TO_ GML311GEOMETRY/(
SDO_GEOMETRY

(
3008, -- SDO_GTYPE format: DOOT. Set to 3008 for a 3-dimensional Solid
NULL, -- No coordinate system
NULL, --- No data in SDO_POINT attribute
SDO_ELEM_INFO_ARRAY(
1, -- Offset of a Simple solid element
1007, --- Etype for a Simple solid
3 -- Indicates an axis-aligned box

)
SDO_ORDINATE_ARRAY

(
0,0,0, --min-corners for box
4,4,4 --min-corners for box
)
)
)) AS GML_GEOMETRY FROM DUAL;
GML_GEOMETRY
<gml:Solid srsName="SDO:" xmlns:gml="http://www.opengis.net/gml">
<gml:exterior>
<gml:CompositeSurface>
<gml:surfaceMember>
<gml:Polygon><gml:exterior>
<gml:LinearRing><gml:posList srsDimension="3">
0.0 0.0 0.0 0.0 4.0 0.0 4.0 4.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0

www.freepdf-books.com

125

http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.it-ebooks.info/

126 CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>
</gml:surfaceMember>
<gml:surfaceMember><gml:Polygon><gml:exterior><gml:LinearRing>
<gml:poslist srsDimension="3">
4.0 4.0 4.0 0.0 4.0 4.0 0.0 0.0 4.0 4.0 0.0 4.0 4.0 4.0 4.0
</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>
</gml:surfaceMember>
<gml:surfaceMember><gml:Polygon><gml:exterior><gml:LinearRing>
<gml:posList srsDimension="3">
0.0 0.0 0.0 4.0 0.0 0.0 4.0 0.0 4.0 0.0 0.0 4.0 0.0 0.0 0.0
</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>
</gml:surfaceMember>
<gml:poslList srsDimension="3">
0.0 0.0 0.0 0.0 0.0 4.0 0.0 4.0 4.0 0.0 4.0 0.0 0.0 0.0 0.0
</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>
</gml:surfaceMember>
</gml:surfaceMember>
<gml:poslList srsDimension="3">
4.0 4.0 4.0 4.0 4.0 0.0 0.0 4.0 0.0 0.0 4.0 4.0 4.0 4.0 4.0
</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>
</gml:surfaceMember>
</gml:surfaceMember>
<gml:poslist srsDimension="3">
4.0 4.0 4.0 4.0 0.0 4.0 4.0 0.0 0.0 4.0 4.0 0.0 4.0 4.0 4.0
</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>
</gml:surfaceMember>
</gml:CompositeSurface>
</gml:exterior>
</gml:Solid>

Listings 5-21 and 5-22 convert each SDO_GEOMETRY to a GML geometry. You can encode multiple
geometries in a GML document using the XMLFOREST function and other SQLX functions. Listing 5-24
shows an example using the XMLFOREST function. We refer interested readers to Oracle XML Database
Developer’s Guide or Oracle XML API Reference Guide for details on these functions.

Listing 5-24. Converting Multiple Geometries to a GML Document Fragment

SQL> SELECT xmlelement("State", xmlattributes(
"http://www.opengis.net/gml' as "xmlns:gml"),
xmlforest(state as "Name", totpop as "Population”,

xmltype(sdo_util.to gmlgeometry(geom)) as
"gml:geometryProperty"))
AS theXMLElements

FROM spatial.us_states

WHERE state abrv in ('DE', 'UT');

THEXMLELEMENTS

<State xmlns:gml="http://www.opengis.net/gml">

<Name>Delaware</Name> <Population>666168</Population>
<gml:geometryProperty><gml:Polygon srsName="SD0:8307"
xmlns:gml="http://www.opengis.net/gml">
<gml:outerBoundaryIs> <gml:LinearRing>
<gml:coordinates decimal="." cs="," ts=" ">
-75.788704,39.721699 ...

www.freepdf-books.com

http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Converting GML to SDO_GEOMETRY

Listings 5-21 to 5-23 illustrated how to convert an SD0_GEOMETRY to GML. Now, we'll show how to per-
form the reverse operation: converting GML geometry fragments to SDO_GEOMETRY. You can find two
functions in the SDO_UTIL package for this purpose: FROM_GMLGEOMETRY and FROM_GML311GEOMETRY.
Listing 5-25 shows the SQL for converting the GML_GEOMETRY output of Listing 5-23 back to an SDO_
GEOMETRY.

Listing 5-25. Converting a GML Solid Geometry into an SDO_GEOMETRY

SQL> SELECT SDO_UTIL.FROM_GML311GEOMETRY(
TO_CLOB(
'<gml:Solid srsName="SDO:" xmlns:gml="http://www.opengis.net/gml">
<gml:exterior>
<gml:CompositeSurface>
<gml:surfaceMember>
<gml:Polygon>
<gml:exterior>
<gml:LinearRing>
<gml:poslList srsDimension="3">
0.0 0.0 0.0 0.0 4.0 0.0 4.0 4.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0
</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</gml:surfaceMember>
<gml:surfaceMember>
<gml:Polygon>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">
4.0 4.0 4.0 0.0 4.0 4.0 0.0 0.0 4.0 4.0 0.0 4.0 4.0 4.0 4.0
</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</gml:surfaceMember>
<gml:surfaceMember>
<gml:Polygon>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">
0.0 0.0 0.0 4.0 0.0 0.0 4.0 0.0 4.0 0.0 0.0 4.0 0.0 0.0 0.0
</gml:poslList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</gml:surfaceMember>
<gml:surfaceMember>
<gml:Polygon>
<gml:exterior>
<gml:LinearRing>
<gml:poslList srsDimension="3">
0.0 0.0 0.0 0.0 0.0 4.0 0.0 4.0 4.0 0.0 4.0 0.0 0.0 0.0 0.0
</gml:posList>
</gml:LinearRing>
</gml:exterior>
www.freepdf-books.com

127

http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.it-ebooks.info/

128 CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

</gml:Polygon>
</gml:surfaceMember>
<gml:surfaceMember>
<gml:Polygon>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">
4.0 4.0 4.0 4.0 4.0 0.0 0.0 4.0 0.0 0.0 4.0 4.0 4.0 4.0 4.0
</gml:poslList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</gml:surfaceMember>
<gml:surfaceMember>
<gml:Polygon>
<gml:exterior>
<gml:LinearRing>
<gml:posList srsDimension="3">
4.0 4.0 4.0 4.0 0.0 4.0 4.0 0.0 0.0 4.0 4.0 0.0 4.0 4.0 4.0
</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</gml:surfaceMember>
</gml:CompositeSurface>
</gml:exterior>
</gml:Solid>"
)) GEOM FROM DUAL;

GEOM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM INFO, SDO_ORDINATES)

SDO_GEOMETRY (3008, NULL, NULL,
SDO_ELEM_INFO_ARRAY(

1, 1007, 1, -- 1 Exterior Composite Surface (with explicit surfaces;
not a box representation)
1, 1006, 6, -- Composite surface with 6 polygons

1, 1003,1 16, 1003, 1, 31, 1003, 1, 46, 1003, 1, 61, 1003, 1, 76, 1003, 1

)
SDO_ORDINATE_ARRAY(
0, 0, 0,0, 4,0, 4, 4,0,4,0,0,0,0,0,
4, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 4, 4, 4, 4,
0) 0) 0) 4) OJ OJ 4) O) 4‘) 0) 0) 4) OJ OJ OI
0, 0,0,0,0,4,0,4,4,0,4,0,0,0,0,
4, 4, 4, 4, 4,0, 0, 4, 0, 0, 4, 4, 4, 4, 4,
4‘) 4) 4) 4) O) 4) 4) O) o) 4) 4) 0’ 4) 4) 4

Note that although we started off in Listing 5-23 with a simple axis-aligned box solid format,
what we got in Listing 5-25 from the GML fragment is the explicit representation of the solid by its
six faces. This will be the behavior always: when a three-dimensional geometry is output as a result
of a function in Oracle, it will be output in the full representation using all the components (no axis-
aligned rectangles and no solid boxes will be used in the output).

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

For three-dimensional city models, the CityGML specification! describes an explicit set of
entities to model the buildings, parks, vegetation, city furniture (lamp posts, and so on), and other
architectural elements. Oracle provides a simple conversion tool for storing CityGML documents
in the demo directory ($0ORACLE_HOME/md/demo/CityGML/examples). You can compile and run the
CGMLToSDO Java class to scan an input CityGML.gml file and store the geometry components as
SDO_GEOMETRY columns in the database.

Extruding a Two-Dimensional Geometry to Three
Dimensions

Many applications store the two-dimensional footprints of buildings and other three-dimensional
objects. You can use the EXTRUDE function in the SDO_UTIL package to erect a building on the two-
dimensional footprint. What you need to do is specify the ground height and the top height for each
vertex of the two-dimensional geometry. Figure 5-1 shows an example of a two-dimensional geom-
etry and how it looks when each vertex is extruded along the z-dimension by specifying a ground
height of -1 and top height of 1.

A topheights 4 (0,0,1) 0,2,1)
A A (2,0,1) @22,1)
, 2 00 027 Y
iy et
: H 20:1) @2-1)
¥ groundheights

@) (b)

Figure 5-1. (a) Example of a two-dimensional solid with the top heights and ground heights specified,
and (b) the extruded solid

The EXTRUDE function has the signature shown in Listing 5-26.

Listing 5-26. Signature of the EXTRUDE Function
SDO_UTIL.EXTRUDE

(
geometry IN SDO_GEOMETRY,
groundheights IN SDO_NUMBER_ARRAY,
topheights IN SDO_NUMBER_ARRAY,

1. www.citygml.org. The specification is still under review by the Open Geospatial Consortium (OGC). It could

be accepted as a standard for city models in the futyte,
P Ywww freepdfibooks.com

129

http://www.citygml.org
http://www.it-ebooks.info/

130

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

result to be validated IN VARCHAR2
tolerance IN NUMBER

) RETURN SDO_GEOMETRY

The arguments are as follows:

» geometry: This specifies the input two-dimensional SDO_GEOMETRY object that needs to be
extruded.

» groundheights: This is an array of numbers, one each for each vertex for use as the ground
height (minimum z value). If only one number is specified, then all vertices get the same
value (that is specified here).

* topheights: This is an array of numbers, one each for each vertex for use as the top height
(minimum z value). If only one number is specified, then all vertices get the same value (that
is specified here).

e result to be validated: This is a character string that can be set to either ' TRUE' or 'FALSE".
This string informs Oracle whether to validate the resulting geometry.

* tolerance: This specifies the tolerance to use to validate the geometry (see Chapter 3 for
details on tolerance).

A simple example is to specify a ground height and a top height for all the vertices. Listing 5-27

shows an example of how to extrude the two-dimensional polygon of Figure 5-1 (a) by specifying
the ground height as -1 and top height as 1. You can observe that the solid returned corresponds to
the one in Figure 5-1 (b).

Listing 5-27. Extruding a Polygon to a Three-Dimensional Solid
SELECT SDO_UTIL.EXTRUDE(

SDO_GEOMETRY -- first argument to validate is geometry
(
2003, -- 2-D Polygon
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1, 1003, 1 -- A polygon element
)s

SDO_ORDINATE_ARRAY (0,0, 2,0, 2,2, 0,2, 0,0) -- vertices of polygon

)
SDO_NUMBER_ARRAY(-1), -- Just 1 ground height value applied to all vertices

SDO_NUMBER_ARRAY(1), -- Just 1 top height value applied to all vertices
'"FALSE', -- No need to validate
0.5 -- Tolerance value

) EXTRUDED GEOM FROM DUAL;

EXTRUDED_GEOM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO ORDINA

SDO_GEOMETRY(

3008, -- 3-Dimensional Solid Type
NULL, NULL,
SDO_ELEM_INFO_ARRAY(

1, 1007, 1, ~-- Solid Element

1, 1006, 6, -- 1 Outer Composite Surface made up of 6 polygons

1, 1003, 1, -- First polygon element starts at offset 1 in SDO_ORDINATES array
16, 1003, 1, -- second polygon element starts at offset 16

31, 1003, 1, -- third polygon element starts at offset 31

46, 1003, 1, -- fourth polygon element starts at offset 46
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

61, 1003, 1, -- fifth polygon element starts at offset 61
76, 1003, 1), -- sixth polygon element starts at offset 76
SDO_ORDINATE_ARRAY(-- ordinates storing the vertices of the polygons
OI O) _11 OI 2) _11 2) 2) _1) 2) 0) _1) 0, 0) _1)
0,0,1,20,1,221,02,1,0,0, 1,00,
-1, 2, 0, -1, 2, 0, 1, 0, 0, 1, 0, O, -1, 2, O,
-1, 2) 2: -1, 2: 2) 1, 2,0, 1, 2, O,- -1, 2,
-1, 0, 2, -1, 0, 2, 1, 2, 2, 1,2, 2, -1, O,
-1, 0, 0, -1, 0, 0, 1, 0, 2, 1, O, 2, '1))
The SQL script in Listing 5-28 uses the SDO_UTIL.EXTRUDE function to populate the GEOM column
of the buildings table. As shown in the listing, you use the footprints in the building footprints

table and appropriate groundheight and topheight values for different groups of buildings. You can
utilize this city buildings data for indexing and analysis in Chapters 8 and 9.

2,
2,

Listing 5-28. Script for Extruding Three-Dimensional Buildings from Their Footprints

-- For buildings 4,5,9,13,16,17, set topheight to 500
insert into city buildings select id, type,
sdo_util.extrude(footprint,

SDO_NUMBER_ARRAY(0),

SDO_NUMBER_ARRAY (500),

'TRUE', 0.05) from building footprints
where id in (4,5, 9, 13, 16, 17);

-- For buildings 3,10,15, set topheight to 400

insert into city buildings select id, type,
sdo_util.extrude(footprint,

SDO_NUMBER_ARRAY(0),

SDO_NUMBER_ARRAY (400),

"TRUE', 0.05) from building footprints
where id in (3, 10, 15);

-- For buildings 14, set topheight to 900

insert into city buildings select id, type,
sdo_util.extrude(footprint,

SDO_NUMBER_ARRAY(0),

SDO_NUMBER_ARRAY (900),

"TRUE', 0.05) from building footprints
where id=14 ;

-- For buildings 6,7,8,11,12, set topheight to 650

insert into city buildings select id, type,
sdo_util.extrude(footprint,

SDO_NUMBER_ARRAY(0),

SDO_NUMBER_ARRAY(650),

"TRUE', 0.05) from building footprints
where id in (6, 7, 8, 11, 12) ;

-- For rest of buildings set topheight to 600

www.freepdf-books.com

131

http://www.it-ebooks.info/

132 CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

insert into city buildings select id, type,
sdo_util.extrude(footprint,

SDO_NUMBER_ARRAY(0),

SDO_NUMBER_ARRAY (600),

'TRUE', 0.05) from building footprints
where id in (17, 18, 19) ;

-- Update the srid to 7407 and commit

update city buildings a set a.geom.sdo srid=7407;
commit;

Validating Spatial Data

Since the beginning of this chapter, you have seen numerous ways to populate the SDO_GEOMETRY
columns in Oracle tables. Once the SDO_GEOMETRY data are in Oracle tables, you need to check
whether they are in valid Spatial format. Otherwise, you may get wrong results, errors, or failures
when performing spatial queries (discussed in Chapters 8 and 9).2

Validation Functions

Oracle Spatial provides two validation functions: VALIDATE_GEOMETRY_WITH_CONTEXT, which operates
on a single geometry, and VALIDATE LAYER _WITH CONTEXT, which operates on a table of geometries.
Both functions operate on two-dimensional as well as three-dimensional data and return an error
string if the input geometry is invalid. These validation functions (and also the debugging functions
described in next section) utilize a user-specified numeric value called tolerance to determine
whether a geometry is valid. In Chapter 3, we described the significance of this parameter and how
to set it. As explained there, this tolerance parameter is also stored in the DIMINFO column of the
USER_SDO_GEOM_METADATA view. We'll cover the signature of these functions next.

VALIDATE_GEOMETRY_WITH_CONTEXT

This function is part of the SDO_GEOM package. It checks that a single specified geometry is in valid
(Oracle Spatial) format. It has the two signatures, as shown in Listing 5-29, both of which return
a VARCHAR? string.

Listing 5-29. Signatures of the VALIDATE_GEOMETRY_WITH_CONTEXT Function

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
(
geometry IN SDO_GEOMETRY,
tolerance IN NUMBER
) RETURN VARCHAR2;

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
(
geometry IN SDO GEOMETRY,
diminfo IN SDO_DIM_ARRAY
) RETURN VARCHAR2;

2. Oracle does not perform a full validation in spatial queries (Chapters 8 and 9) as such validation substantially
increases the execution time for s atiaWufries.
WW.

reepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

The arguments are as follows:

» geometry: This specifies the input SDO_GEOMETRY object that needs to be validated.

¢ tolerance: This specifies the tolerance to use to validate the geometry (see Chapter 3 for
details on tolerance).

* diminfo: This specifies dimension (bounds) information and tolerance information.

The function returns the string 'TRUE" if the geometry is valid. If it is invalid, it returns the Ora-
cle error number if it is known; otherwise, it returns ' FALSE".

VALIDATE_LAYER_WITH_CONTEXT

Instead of validating geometries one by one, you can validate the geometries in an entire table using
the VALIDATE_LAYER_WITH CONTEXT procedure. This procedure is also part of the SDO_GEOM package
and has the signature in Listing 5-30.

Listing 5-30. Signature of the VALIDATE _LAYER WITH CONTEXT Procedure

SDO_GEOM.VALIDATE LAYER WITH CONTEXT

(
table_name IN VARCHAR2,
column_name IN VARCHAR2,
result table IN VARCHAR2

[
commit_interval IN NUMBER

]
)

The arguments are as follows:

e table name and column_name: These specify the names of the table and column storing the
SDO_GEOMETRY data.

e result table: This specifies the table where the validation results, specifically the ROWIDs of
invalid geometries, will be stored. This table should have been created with the following
fields prior to the execution of this function. The SDO_ROWID field stores the ROWID, and STATUS
stores either a specific validation error or the string 'FALSE" (to indicate that the row is invalid).

SDO_ROWID ROWID
STATUS VARCHAR2 (2000)

e commit_interval: This optional argument specifies the frequency at which the updates to the
results table are to be committed. If this argument is set to 100, then the validation results
are committed to result table after validating every 100 geometries.

Validation Criteria

How does Oracle determine whether a geometry is valid or invalid? First, Oracle looks at the
SDO_GTYPE of the geometry for validation. For various elements in a geometry, the SDO_ETYPE is used
as a guide. From the class diagram in Figure 4-2, recall that an SDO_GEOMETRY can store a wide variety
of geometry types—points, line strings, rings, surfaces (polygons and composite surfaces), and
solids (simple and composite). Next, we’ll go over the different validation rules for each of these
types based on the topology of the geometry with some specific examples.

www.freepdf-books.com

133

http://www.it-ebooks.info/

134

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Point

Note that the second signature to the VALIDATE_GEOMETRY_WITH_ CONTEXT function specifies diminfo
instead of tolerance as a second parameter. This signature/usage has an advantage: in addition to
basic validation, the function checks whether all the coordinates are within the bounds specified in
the diminfo attribute. This is the only validation rule for a point geometry. Consider the point geom-
etry with longitude=-80 and latitude=20. If the diminfo is set to (0, 50) for both dimensions, then
the point will be invalid, as shown in Listing 5-31. The SQL returns the ORA-13011 error. This error
implies that the longitude value of —-80 is out of range (0 to 50) for that dimension.

Listing 5-31. Using the diminfo Parameter in the VALIDATE_GEOMETRY_WITH_CONTEXT Function
SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

SDO_GEOMETRY -- first argument to validate is geometry
(
2001, -- point type
NULL,
SDO_POINT TYPE(-80,20,NULL), -- point is <-80,20> and is out of range.
NULL,
NULL
)s
SDO_DIM_ARRAY -- second argument is diminfo (of type SDO DIM_ARRAY)
(
SDO_DIM ELEMENT('X', 0, 50, 0.5), -- lower, upper bound range is 0 to 50
SDO_DIM ELEMENT('Y', 0, 50, 0.5) -- lower, upper bound range is 0 to 50
)
) is_valid FROM DUAL;
IS VALID

13011 -- Coordinate value out of dimension range

If you don't specify the SDO_DIM ARRAY argument as second parameter and specify just the toler-
ance, the previous point will be returned as “valid.” Listing 5-32 shows the corresponding SQL.

Listing 5-32. Using the tolerance Parameter in the VALIDATE_GEOMETRY WITH_CONTEXT Function

SQL> SELECT SDO_GEOM.VALIDATE GEOMETRY WITH CONTEXT
(
SDO_GEOMETRY -- first argument to validate is geometry
(
2001, -- point type
NULL,
SDO_POINT TYPE(-80,20,NULL), --point not out of range as no range specified
NULL,
NULL
)5
0.5
) is_valid FROM DUAL;

IS VALID

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Line String
A line string should satisfy the following validation rules. Listing 5-33 shows the result of validating
a line string with duplicate points:

* All points in the line are distinct.

¢ Aline should have two or more points.

Listing 5-33. Validating a Line String with Duplicate Points
SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(
SDO_GEOMETRY -- first argument to validate is geometry
(
2002, -- Line String type
NULL,
NULL,
SDO_ELEM_INFO ARRAY(1,2,1), -- Line String
SDO_ORDINATE_ARRAY (
1,1, -- first vertex
2,2, -- second vertex
2,2 -- third vertex: same as second
)
)
0.5 -- second argument: tolerance

) is_valid FROM DUAL;
2 3 4 5 6 7 8 9 10 11 12
IS_VALID

13356 [Element <1>] [Coordinate <2>]

The return string '13356' corresponds to ORA-13356 (adjacent points in a geometry are redun-
dant). The return string also indicates which element has the error and the vertex (coordinate) that
has this error. In this case, the error is on the second vertex (or coordinate).

Polygons

Polygons define a contiguous area bounded by one outer ring on the exterior and by zero or
more inner rings on the interior. A ring is a planar closed line string. Polygons have the following
characteristics:

e Validity of rings: The rings in a polygon are valid. This means each satisfies the following
rules:
* Closedness: The first and last vertices of the ring are identical.

* Planarity: All vertices of the ring are on the same plane (within a planarity-tolerance
error).

* Nonintersection of edges: If edge e, connects vertices <V,, V., > and edge e, connects

<V, V> then e, and € have the following properties:

¢ If j=i+1 mod n), where n is the number of distinct vertices, then e, and e; touch
only at verteij.

* Otherwise, e, and € do not intersect.

www.freepdf-books.com

135

http://www.it-ebooks.info/

136

CHAPTER 5 "' LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Linestring: The ring is a valid line string (that is, adjacent vertices V,, V, , should not represent
the same point in space. V, V, , are considered to duplicates of the same point if the distance
betweenV, and V., is less than a tolerance error).

Co-planarity of rings: Since the polygon defines an area in a plane, all rings are on the same

plane (within the specified tolerance).

Proper orientation: The inner rings (if any) must have the opposite orientation compared to
the outer ring.

Single contiguous area: Together the outer ring and the interior rings define a single area.
This means the inner rings cannot partition the polygon into disjoint areas.

Nonoverlapping rings: No two rings can overlap (tolerance) with each other, but the rings
can touch at a point (without violating the single contiguous area condition).

Inner-outer disjointedness: Every inner ring must be inside the outer ring and can touch
(tolerance) at only a single point (under the single contiguous area condition).

For two-dimensional polygons, the outer ring should be specified in a counterclockwise
manner, and inner rings should be specified in a clockwise manner. For three-dimensional
polygons, there is no such restriction.

Figure 5-2 shows examples of invalid polygons. Listing 5-34 illustrates what happens when the

geometry in Figure 5-2 (a) is validated.

@)

=

(b) (O]

Figure 5-2. Invalid polygons: invalid due to (a) edges of the ring of the polygon cross each other,
(b) inner-outer ring intersect more than at one point, and (c) inner rings overlap

Listing 5-34. Validation on a Self-Crossing Geometry in Figure 5-2 (a)
SQL> SELECT SDO_GEOM.VALIDATE GEOMETRY WITH CONTEXT

SDO_GEOMETRY

(

2003, -- 2-D Polygon
NULL,
NULL,
SDO_ELEM INFO_ARRAY
(
1, 1003,1 -- Polygonal ring connected by lines
)s
SDO_ORDINATE_ARRAY
(
2,2, -- first vertex
3,3.5, -- second vertex. Edge 1 is between previous and this vertex.
2,5,

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

5
3.5, -- fifth vertex. Edge 4 is between previous and this vertex.
2
2

)
)s

0.000005
)
FROM dual;

SDO_GEOM.VALIDATE_GEOMETRY WITH_CONTEXT(MDSYS.SDO_GEOMETRY(200
3,NULL,NULL,MDSYS.

13349 [Element <1>] [Ring <1>][Edge <1>][Edge <4>]

The result indicates that element 1 is invalid. For this element, edge 1 connecting (2, 2) with (3, 3.5)
and edge 4 connecting (5, 5) and (3, 3.5) are self-crossing (in other words, the polygon boundary crosses
itself).

Composite Surfaces
A composite surface defines a single contiguous area formed by 1 or more adjacent planar polygons.
The validation rules are defined as follows:

* Validity of polygons: Each of the polygons has to be a valid polygon.

* Nonoverlapping but edge-sharing nature: Any two polygons P, and P, should not overlap. In
other words, if P, and P. are in the same plane, the area of intersection of the two polygons
has to be zero. However, two polygons may touch (tolerance) in a (part of a) line/edge.

e Contiguous area: Every polygon in the composite should be reachable from any other poly-
gon by appropriate tracing of the shared (parts of) edges.

Figure 5-3 shows examples of invalid composite surfaces. Listing 5-35 shows the result of vali-
dating the geometry in Figure 5-3 (a).

B30 (2,2,0) (5,2,0)
(2,2,0)

(B (0,0,0 (3,0,0

(0,0,0)

@ (b)

Figure 5-3. Invalid composite surfaces: invalid due to violation of (a) nonoverlapping polygon rule
and (b) single contiguous area rule

www.freepdf-books.com

137

http://www.it-ebooks.info/

138 CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Listing 5-35. Validation on the Composite Surface in Figure 5-3 (a)
SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

SDO_GEOMETRY -- first argument to validate is geometry
(
3003, -- 3-D Polygon/Surface type
NULL,
NULL,
SDO_ELEM_INFO_ARRAY(1, 1006, 2, -- Composite Surface with 2 Polygons
1, 1003, 1, -- 1st polygon
16, 1003, 1 -- 2nd polygon
)5
SDO_ORDINATE_ARRAY (
0,0,0, 2,0,0, 2,2,0, 0,2,0, 0,0,0, -- vertices of first polygon
1,1,0, 3,1,0, 3,3,0, 1,3,0, 1,1,0 -- vertices of second polygon
)
)5
0.5 -- second argument: tolerance
) is_valid FROM DUAL;
IS VALID

54515 Point:0,Edge:2,Ring:1,Polygon:1,

Observe that Oracle returns ORA-54515: “Outer rings in a composite surface intersect.” It also
indicates that the second edge from vertex (2,0,0) to vertex (2,2,0) from first polygon intersecting
with another edge (you need to identify that edge manually).

Simple Solid

A solid in Oracle defines a single contiguous volume bounded by one composite surface on the exte-
rior and zero or more inner composite surfaces on the interior. Based on this definition, the validation
rules are as follows:

e Single volume check: The volume should be contiguous.

¢ Closedness test: The boundary has to be closed. This is verified by checking that every edge is
traversed twice in the solid.

¢ Connectedness test: This means each component (surface, solid) of the solid should be reach-
able from any other component. Inner boundaries can never intersect but only touch under
the condition that the solid remains connected (see the preceding bulleted item).

* Inner-outer check: Every surface marked as an inner boundary should be inside the solid
defined by the exterior boundary.

* Orientation check: The polygons in the surfaces are always oriented such that the normals of
the polygons point outward from the solid that they bound. The normal of a planar surface is
defined by the “right thumb” rule (if the fingers of the right hand curl in the direction of the
sequence of the vertices, the thumb points in the direction of the normal).

* Validity of composite surfaces: Every specified surface is a valid surface.

* No inner ring in polygons: In the composite surfaces of a solid, no inner rings are allowed.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Figure 5-4 shows a solid that is not closed (the top face on the y=4 plane is missing). Likewise,
in Figure 5-5 (a), the solid has two exterior components (shown as dark boxes) and six inner compo-
nents (shown in faded lines). The six inner components are attached to each of the smaller dark box
and in that sense separate it from the outer solid. This solid is invalid because the volume is sepa-
rated into two pieces (one each in the dark solids). By adding a small connecting solid between the
two dark boxes as in Figure 5-5 (b), the solid becomes a valid solid because the two volumes are now
connected.

Figure 5-4. The solid geometry is invalid because it is not closed on the top side.

(@)

Figure 5-5. (a) Invalid solid because the volume in the dark boxes (thick lines) is separated by the holes
defined as boxes with thin lines. (b) The solid becomes valid because the volume is connected by adding
a conduit between the two disjoint volumes.

You can run validation on the solid in Figure 5-4 using the SQL in Listing 5-36. The SQL returns
error ORA-542502: “Solid is not closed.” It also indicates that the solid is open at the edge connect-
ing (0,4,0) and (4,4,0). In other words, this edge is not traversed twice (once each in opposite directions
in two polygons) in the solid specification.

www.freepdf-books.com

139

http://www.it-ebooks.info/

140 CHAPTER 5 "' LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Listing 5-36. Validating the Simple Solid in Figure 5-4
SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

SDO_GEOMETRY (3008, NULL, NULL,
SDO_ELEM_INFO_ARRAY(
1, 1007, 1, -- Solid element
1, 1006, 5, -- Composite surface with 5 polygons
1, 1003,1, 16, 1003, 1, 31, 1003, 1, 46, 1003, 1, 61, 1003, 1
)
SDO_ORDINATE_ARRAY(

0) 0) 0) 0) 4) O) 4‘) 4‘) 0) 4) 0) 0) 0) O) O)

4, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 4, 4, 4, 4,

0, 0,0, 4,00, 4,0, 4,°0,0,4,00,0,

o) 0) 0) 0) OJ 4) OI 4‘) 4‘) 0) 4) 0) OJ OJ OI

4, 4, 4, 4, 0, 4, 4, 0, 0, 4, 4,0, 4, 4, 4
)
)s
0.5

) is_valid FROM DUAL;

IS_VALID

54502 Point:0,Edge:2,Ring:1,Polygon:1,Comp-Surf:1,

Composite Solids
A composite solid defines a single contiguous volume formed by a combination of one or more sim-
ple solids. Composite solids have the following characteristics:

* Component validity: Each component simple solid of a composite is valid.

e Shared-face but no-volume intersection: Intersection of two simple solid components of
a composite solid has to be a zero volume (can be non-zero area).

* Connectedness: The volume of the composite is contiguous. In other words, you can go from
any point in one component to any other component without going out of the composite
solid.

Figure 5-6 shows examples of some invalid composite solids. Figure 5-6 (a) is invalid because
the two simple solids that compose the composite solid are overlapping and their intersection has
a non-zero volume. Figure 5-6 (b) is invalid because the two components are not connected (that is,
the composite is not a single volume).

(@) (b)

Figure 5-6. Composite solids invalid due to (a) overlapping volume and (b) not being a single volume
(violate connectedness)

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Note that composite solids are just for convenience: every composite solid can be represented
by a single simple solid by removing the shared faces in the representation of the solids. Figure 5-7
shows an example.

Figure 5-7. Composite solid and an equivalent simple solid

Collections

For collections of multiple elements, Oracle requires that all the individual elements are valid. In
addition, if the collection is a homogenous collection such as multipoint, multiline string, multisur-
face (multipolygon), or multisolid, the elements of the collection have to be of the same conforming
type.

Until now, all the examples are performing validation on a single geometry. What if you want to
validate all the geometries in a table? You use the VALIDATE_LAYER_WITH_CONTEXT function. To illus-
trate the usage with an example, run this procedure on the sales_regions table. Listing 5-37 shows
the corresponding SQL.

Listing 5-37. Using the VALIDATE_LAYER_WITH_CONTEXT Procedure
SQL> CREATE TABLE validate results(sdo_rowid ROWID, status VARCHAR2(2000));

Table created.

SoL>
BEGIN
SDO_GEOM.VALIDATE_LAYER WITH_CONTEXT
(
"SALES_REGIONS',
"GEOM'
'VALIDATE_RESULTS'
)s
END;
/

SOL> SELECT * FROM validate results;
SDO_ROWID STATUS

AAALCtAADAAATRVAAA 13356 [Element <1>] [Coordinate <17>][Ring <1>]

Note that this returns the ROWID of the geometry with ID=10000, which is invalid. The reason is
that the coordinates of vertex 17 and the subsequent one are duplicates.
www.freepdf-books.com

141

http://www.it-ebooks.info/

142

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Debugging Spatial Data

How do you remove the duplicate vertices? Oracle Spatial provides a number of functions to debug
and clean data loaded into an SDO_GEOMETRY column. In the following sections, we describe these
functions, because they will be useful in cleaning spatial data. These functions are part of the
SDO_UTIL package.

REMOVE_DUPLICATE_VERTICES

This function removes duplicate vertices from an SDO_GEOMETRY object. It takes in an SDO_GEOMETRY
and a tolerance value as input and returns a new SDO_GEOMETRY that does not have duplicate vertices.
The SQL in Listing 5-38 shows its usage.

Listing 5-38. Example of Removing Duplicate Vertices in a Geometry

SQL> SELECT geom, SDO_UTIL.REMOVE DUPLICATE VERTICES(sr.geom,0.5) nodup geom
FROM sales regions sr
WHERE id=1000;

GEOM
SDO_GEOMETRY
(
2003, 8307, NULL, SDO _ELEM INFO ARRAY(1, 1003, 1),
SDO_ORDINATE_ARRAY
(
-77.04487, 38.9043742, -77.046645, 38.9040983, -77.04815, 38.9033127,
-77.049155, 38.9021368, -77.049508, 38.9007499, -77.049155, 38.899363,
-77.048149, 38.8981873, -77.046645, 38.8974017, -77.04487, 38.8971258,
-77.043095, 38.8974017, -77.041591, 38.8981873, -77.040585, 38.899363,
-77.040232, 38.9007499, -77.040585, 38.9021368, -77.04159, 38.9033127,
-77.043095, 38.9040983, -77.04487, 38.9043742, -77.04487, 38.9043742
)
)
NODUP_GEOM
SDO_GEOMETRY
(
2003, 8307, NULL, SDO _FLEM INFO ARRAY(1, 1003, 1),
SDO_ORDINATE_ARRAY
(
-77.04487, 38.9043742, -77.046645, 38.9040983, -77.04815, 38.9033127,
-77.049155,38.9021368, -77.049508, 38.9007499, -77.049155, 38.899363,
-77.048149, 38.8981873,-77.046645, 38.8974017, -77.04487, 38.8971258,
-77.043095, 38.8974017, -77.041591,38.8981873, -77.040585, 38.899363,
-77.040232, 38.9007499, -77.040585, 38.9021368, -77.04159, 38.9033127,
-77.043095, 38.9040983, -77.04487, 38.9043742
)
)

Notice that the last two vertices (look at the bold four numbers) of the original geometry are
the same. After invoking the REMOVE_DUPLICATE_VERTICES function, the duplicate vertex (which is the
18th in this case) is removed (both ordinates of this vertex are removed) from the geometry. If you
rerun the VALIDATE_GEOMETRY_WITH CONTEXT function on this result geometry as shown in Listing 5-39,
it returns the string ' TRUE'. Since the geometry is a polygon (sdo_gtype=2003), observe that the first

point (at—77.04487, 38.9043742) and the %ast 80%%(% —77.04487, 38.9043742) are the same.
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Listing 5-39. Validating After Removing the Duplicate Vertices
SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

SDO_UTIL.REMOVE DUPLICATE VERTICES(a.geom, 0.5),
0.5

) is valid

FROM sales regions a

WHERE 1d=10000;

IS VALID

EXTRACT

This function extracts a specific element from an SDO_GEOMETRY object. It comes in handy while
debugging multielement geometries such as multipolygons. This function takes as arguments an
SDO_GEOMETRY, an element number, and, optionally, a ring number (within the element). It returns
the extracted element as an SDO_GEOMETRY object.

Listing 5-40 shows an example of how to extract the second element of a multipolygon geome-
try. Note that the second argument, 2, in the EXTRACT function specifies that the second element is
to be fetched. Looking at SDO_ELEM_INFO ARRAY (1,1003,3, 5, 1003,1), you have two element descrip-
tor triplets (1,1003,3) for the first element (specifying a rectangle polygon; see Figure 4-10 and the
accompanying listing for examples) and (5, 1003,1) for the second element. This means the second
element starts at ordinate 5 (that is, the third vertex). This is the element that will be extracted.

Caution The EXTRACT function described here is for use only with two-dimensional geometries. For three-
dimensional geometries, there is a separate function called EXTRACT3D that we describe at the end of the section.

Listing 5-40. Extracting the Second Element from a Geometry
SQL> SELECT SDO_UTIL.EXTRACT

SDO_GEOMETRY

(
2007, -- multipolygon collection type geometry
NULL,
NULL,
SDO_ELEM _INFO_ARRAY
(
1,1003,3, -- first element descriptor triplet: for rectangle polygon
-- (see Figure 4-10 and the accompanying listing in Chapter 4)
5, 1003, 1 -- second element descriptor triplet:
-- starting offset 5 means it starts at the 5th ordinate
)5
SDO_ORDINATE_ARRAY
(
1,1,2,2, -- first element ordinates (four for mbr)
3,3, 4, 3, 4,4, 3,4, 3,4,3,3 -- second element starting at 5th ordinate:
-- this second element is returned
)

), -- End of the Geometry

www.freepdf-books.com

143

http://www.it-ebooks.info/

144

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

2 -- specifies the element number to extract
) second_elem
FROM dual;
SECOND_ELEM(SDO_GTYPE, SDO_SRID, SDO _POINT(X, Y, Z), SDO_ELEM_INFO,
SDO_ORDINATE

SDO_GEOMETRY

(
2003,
NULL,
NULL,
SDO_ELEM_INFO ARRAY(1, 1003, 1),
SDO_ORDINATE AR RAY
(
3, 3, -- first vertex coordinates
4, 3, -- second vertex coordinates
4, 4, -- third vertex coordinates
3, 4, -- fourth vertex coordinates
3, 4, -- fifth vertex coordinates
3,3 -- sixth vertex coordinates (same as first for polygon)
)
)

After extracting the appropriate element, you can perform validation on the specific element to
identify what is wrong with it. Listing 5-41 shows an example.

Listing 5-41. Validation of an Extracted Geometry
SQL> SELECT SDO_GEOM.VALIDATE GEOMETRY WITH CONTEXT
SDO_UTIL.EXTRACT
SDO_GEOMETRY
2007, null, null,

SDO_ELEM_INFO_ARRAY(1,1003,3, 5, 1003, 1),
SDO_ORDINATE_ARRAY

(
1,1,2,2, -- first element of multipolygon geometry
3,3, 4, 3, 4,4, 3,4, 3,4,3,3 -- second element of multipolygon geometry
)
)s
2 -- element number to extract
)s
0.00005
)
FROM dual;

Note that the highlighted (bold) portion of the SQL in Listing 5-41 is the same as the SQL in
Listing 5-40. That means Listing 5-41 is equivalent to performing the validation check on the result
of Listing 5-40. Listing 5-42 shows the SQL rewritten using the result of Listing 5-40.

Listing 5-42. Validation on the Result of SDO_UTIL.EXTRACT
SQL> SELECT SDO_GEOM.VALIDATE GEOMETRY WITH CONTEXT

SDO_GEOMETRY
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

(

2003, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1, 1003, 1),
SDO_ORDINATE_ARRAY

(
3, 3, -- first vertex coordinates
4, 3, -- second vertex coordinates
4, 4, -- third vertex coordinates
3, 4, -- fourth vertex coordinates
3, 4, -- fifth vertex coordinates
3,3 -- sixth vertex coordinates (same as first for polygon)
)
)s
0.00005 -- tolerance

) FROM dual;

SDO_GEOM.VALIDATE_GEOMETRY WITH_CONTEXT(SDO_UTIL.EXTRACT(SDO_GE
OMETRY(2007,NULL,

13356 [Element <1>] [Coordinate <4>][Ring <1>]

The result of 13356 <Coordinate 4> indicates a duplicate vertex at the fourth (and fifth) vertex
coordinates of the SDO_ORDINATE_ARRAY5. The ordinate array is (3, 3, 4, 3,4, 4, 3,4, 3, 4, 3, 3), and the
fourth and fifth vertexes (coordinates) are at (3, 4) and (3, 4), which are duplicates. You can remove
this duplicate coordinate using the REMOVE_DUPLICATE_VERTICES function, as shown in Listing 5-43.
This function removes the duplicate vertex from the geometry.

Listing 5-43. Removing Duplicate Vertices

SQL> SELECT SDO_UTIL.REMOVE DUPLICATE VERTICES

(
SDO_UTIL.EXTRACT

SDO_GEOMETRY

2007, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3, 5, 1003, 1),
SDO_ORDINATE_ARRAY
(

1)1)2)2)

3,3, 4, 3, 4,4, 3,4, 3,4,3,3

)
)s
2
)s

0.00005
FROM dual;

SDO_UTIL.REMOVE DUPLICATE VERTICES(SDO_UTIL.EXTRACT(SDO_GEOMETRY(
2007,NULL,NULL,
SDO_GEOMETRY
(
2003,
NULL,
NULL,
www.freepdf-books.com

145

http://www.it-ebooks.info/

146 CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

SDO_ELEM_INFO_ARRAY(1, 1003, 1),
SDO_ORDINATE_ARRAY

(
3, 3, -- first vertex coordinates
4, 3, -- second vertex coordinates
4, 4, -- third vertex coordinates
3, 4, -- fourth vertex coordinates (duplicate (3,4) at fifth removed)
3, 3 -- fifth vertex coordinates (same as first for polygon)
)

Tip You can directly run REMOVE_DUPLICATE VERTICES on the collection geometry, and that will remove the
duplicate vertex. Listing 5-41 uses SDO_UTIL.EXTRACT mainly for illustration.

APPEND

How do you recombine the new element after removing the duplicate with element 12 The SDO_
UTIL.APPEND function combines multiple geometries as long as they do not intersect. This function
takes two geometries and a tolerance and appends them into a single geometry. Listing 5-44 shows
an example. This function first expands the first element, specified as a rectangle polygon (see
Figure 4-10 in Chapter 4 for example) using the triplet <1,1003,3> in SDO_ELEM_INFO_ARRAY to five
vertices for the polygon (four vertices for each corner and the first vertex repeated as the fifth vertex
repeated for closure of the ring). The function then performs an append of the vertices of the first
element and the second element, removing any duplicates automatically in that process.

Listing 5-44. Example of SDO_UTIL.APPEND

SQL> SELECT
SDO_UTIL.APPEND

SDO_UTIL.EXTRACT

(
SDO_GEOMETRY
(
2007, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3, -- First element is as a rectangle polygon
5, 1003, 1),
SDO_ORDINATE_ARRAY(1,1,2,2,
3,3, 4, 3, 4,4, 3,4, 3,4,3,3)
)s
1
)5

SDO_UTIL.REMOVE DUPLICATE VERTICES
SDO_GEOMETRY

2007, NULL, NULL,
SDO_ELEM_INFO_ARRAY(1,1003,3, 5, 1003, 1),
SDO_ORDINATE_ARRAY
(

1,1,2,2,

3,3, 4, 3, 4,4, 3,4, 3,4,3,3

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

))

0.00005

) combined geom
FROM dual;

COMBINED GEOM(SDO_GTYPE, SDO_SRID, SDO POINT(X, Y, Z), SDO_ELEM_INFO,
SDO_ORDINATES)

SDO_GEOMETRY

2007, NULL, NULL,
SDO_ELEM_INFO ARRAY(1, 1003, 1, 11, 1003, 1),
SDO_ORDINATE_ARRAY

(1, 1, 2,1, 2, 2,1, 2, 1, 1, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3)

)

GETNUMELEM, GETNUMVERTICES, and GETVERTICES

These functions allow you to inspect the number of elements or vertices or get the set of vertices in
an SDO_GEOMETRY object. These functions are also part of the SDO_UTIL package. The SQL in Listing 5-45
shows an example of the usage of the first two functions.

Listing 5-45. Finding the Number of Elements in a Geometry

SOL> SELECT SDO_UTIL.GETNUMELEM(geom) nelem
FROM sales_regions

WHERE 1d=10000;

NELEM

SQL> SELECT SDO_UTIL.GETNUMVERTICES(geom) nverts
FROM sales regions

WHERE 1d=10000;

NVERTS

EXTRACT3D

The EXTRACT function described earlier takes an input geometry and at most two additional numeric
parameters. This function works only with two-dimensional geometries. For three-dimensional
geometries, you may need to specify more than two parameters to get a point or an edge, for example,
of a solid geometry. For working with three-dimensional geometries, you can use the EXTRACT3D func-
tion. This function takes an input three-dimensional geometry and a LABEL string that uniquely
identifies each element of the input geometry. The LABEL string is a comma-delimited string of ID num-
bers specifying the subset geometry to be returned, and they should be of the form PointID, Edgeld,
RingID, PolygonID, CSurfld, SolidId, MultiID.You can specify values for these IDs as follows:

* PointID: ID of the point to be retrieved. Specify 0 if you do not want to retrieve a point but
you want to retrieve a higher-level element such as an edge, ring, polygon, surface, solid, or
multisolid.

* EdgelD: ID of the edge to be retrieved. Specify 0 if you do not want to retrieve an edge but you
want to retrieve a higher-level element such as a ring, polygon, surface, solid, or multisolid.

www.freepdf-books.com

147

http://www.it-ebooks.info/

148 CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

» RingID: ID of the ring to be retrieved. Specify 0 if you do not want to retrieve a ring but you
want to retrieve a higher-level element such as a polygon, surface, solid, or multisolid.

* PolygonID: ID of the polygon to be retrieved. Specify 0 if you do not want to retrieve a poly-
gon but you want to retrieve a higher-level element such as a composite surface, solid, or
multisolid.

e CSurfID: ID of the surface in a solid to be retrieved. Specify 0 otherwise. This ID is used to
identify a specific surface in the set of outer and inner composite surfaces that make up
a solid element. You specify a value of 1 for the outer surface and values greater than 1 for the
inner surfaces of the solid element.

* S0lidID: ID of the solid component of a composite solid element to be retrieved. Specify 0
otherwise.

e MultiID: ID of the component in a collection to be retrieved.

The MultiID will be useful only in the case of collections, and it can be omitted otherwise.
Likewise, you can specify as many of the elements as apply for the specific geometry type (that is,
you do not have to specify solidId if the geometry is a point, line polygon, or surface).

Using this function, let’s identify the edge that caused the problem in Listing 5-36. The error
string was “Point:0, Edge:2, Ring:1, Polygon:1, Csurf:1.” You can plug in the same values of point_id=0
(this means you are not interested in this but instead a higher-level element such as a line or poly-
gon), edgeID=2, RingID=1, PolygonID=1, and CsurfID=1 as the LABEL string for the EXTRACT3D function.
Listing 5-46 shows the corresponding SQL. As mentioned in the discussion for Listing 5-36, the edge
that is not closed is the edge from (0,4,0) to (4,4,0) (corresponding to one of the edges on the top
face of the solid of Figure 5-4 mentioned in Listing 5-36).

Listing 5-46. Extracting the Invalid Edge for Listing 5-36
SQL> SELECT SDO_UTIL.EXTRACT3D

SDO_GEOMETRY(3008, NULL, NULL,
SDO_ELEM_INFO_ARRAY(
1, 1007, 1, -- Solid element
1, 1006, 5, -- Composite surface with 5 polygons
1, 1003,1, 16, 1003, 1, 31, 1003, 1, 46, 1003, 1, 61, 1003, 1

)

SDO_ORDINATE_ARRAY(
o, o,0, o0, 4,0, 4, 4,0, 4,0, 0, 0, 0, 0, -- Vertices of 2nd edge bold
4, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 4, 4, 4, 4,
0, 0, 0, 4,0, 0, 4, 0, 4,0, 0, 4, 0, 0, O,
O) 0) 0) 0) O) 4) O) 4) 4) 0) 4) 0) O) O) O)
4, 4, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 4, 4, 4

)

)

'0,2,1,1,1' -- LABEL String for extracting the
----- 2nd edge of Ringl, Polygoni,Comp Surfacel
) edge FROM DUAL;

EDGE (SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM INFO, SDO_ORDINATES)

SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM INFO ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(
0, 4, 0, 4, 4, 0))

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 5 " LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA

Miscellaneous Functions

The SDO_UTIL package has a number of other functions to manipulate SDO_GEOMETRY objects. The fol-
lowing is a list of functions that may aid in debugging or cleaning up spatial data. We will discuss
other functions at appropriate times throughout the book.

* SDO_CONCAT_LINES: This function concatenates two line string geometries. The line strings are
expected to be nonintersecting. Because of this assumption, this function executes much
faster than the SDO_UNION function, which we will discuss in Chapter 9.

e SDO_REVERSE_LINESTRING: This function reverses the order of vertices in a line string. Such
functions may be useful in routing and other navigation applications.

e SDO_POLYGONTOLINE: This function converts a polygon to a line string geometry.

In short, the SDO_UTIL and SDO_GEOM packages provide a rich set of functions to validate and
debug SDO_GEOMETRY data.

Summary

In this chapter, we described how to load data into and out of SDO_GEOMETRY columns. We discussed
how to load from text files using SQL*Loader and how to load using the Oracle utilities such as
Import/Export and transportable tablespaces. We also described how to convert SDO_GEOMETRY data
to GML format.

Once data are loaded into SDO_GEOMETRY columns, the data need to be validated. We described
how to perform validation to check for conformity with Oracle Spatial formats. In case of invalid
data, we described a set of functions that are helpful in debugging such geometries and correcting
the inaccuracies.

We also explained how to import data into the example application described in Chapter 3. In
the next chapter, we will describe how to derive the SDO_GEOMETRY data from the address columns of
an application’s table. You can use this alternate method to populate the columns in application-
specific tables such as branches and customers. Once the spatial data is populated in the tables, we
will describe how to perform analysis and visualization in Chapters 8 to 11.

www.freepdf-books.com

149

http://www.it-ebooks.info/

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6

Geocoding

To run the examples in this chapter, you need to import the following dataset. For complete
details on creating this user and loading the data, refer to the introduction.

imp spatial/spatial file=gc.dmp ignore=y full=y

In preceding chapters, we discussed how to perform spatial searches and analysis. In each example,
the entities manipulated (customers, ATMs, stores, and so on) were spatially located. They all
included an SDO_GEOMETRY column containing their spatial location using geographical coordinates
(longitude and latitude).

But how did this happen? Where did this information come from? Certainly, you cannot ask
your customers to give their geographical coordinates when they register with you or when they
place an order! We used a process called geocoding—we geocoded addresses and stored the result-
ing locations as SDO_GEOMETRY objects.

By geocoding, we mean a process that converts an address (for example, “3746 Connecticut
Avenue NW, Washington, D.C. 20008, United States”) to geographical coordinates (longitude =
—77.060283, latitude = 38.9387083). In addition, geocoding may also normalize and correct the input
address (HouseNumber=3746; StreetName=Connecticut Avenue NW; City=Washington; State=D.C.;
Zip=20008; Country=US).

In this chapter, we describe the functionality of the geocoder in Oracle Spatial and how to use it to
location-enable a business application. We start with a brief overview of the geocoding process. This
will give you an understanding of how the conversion from addresses to SDO_GEOMETRY objects happens.

Next, we discuss how to set up the reference data used by the geocoder. This reference data is
used to determine/extrapolate the location for a specified address. You can obtain this data from
a data provider such as NAVTEQ.

Then we describe different geocoding functions that use the reference data. We provide generic
examples to illustrate their functionality.

We go on to describe how to add SDO_GEOMETRY columns to application data and how to popu-
late them using the Oracle geocoder. We illustrate this using different functions/APIs of the geocoder.

Finally, we show how to set up and use the Geocoding web service, provided with Oracle Spatial
since 10g Release 2.

What Is Geocoding?

Geocoding serves two purposes. The main purpose is to associate geographical coordinates with an
address. Listing 6-1 shows an example of how to get the coordinates from an address using the sim-
ple GEOCODE_AS_GEOMETRY function that returns a point SDO_GEOMETRY object. That object contains the
geographical coordinates that the geocoder associated with this address.

www.freepdf-books.com

151

http://www.it-ebooks.info/

152

CHAPTER 6 ©* GEOCODING

Listing 6-1. Geocoding an Address
SQL> SELECT SDO_GCDR.GEOCODE_AS_GEOMETRY

'SPATIAL',
SDO_KEYWORDARRAY

‘3746 CONNECTICUT AVE NW',
"WASHINGTON, DC 20008’
)5
Us
) geom
FROM DUAL;

GEOM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO _ELEM INFO, SDO_ORDINATES)

SDO_GEOMETRY (2001, 8307, SDO_POINT TYPE(-77.060283, 38.9387083, NULL), NULL, NULL)

What would happen if the address were misspelled? This brings us to the second purpose of
geocoding, which is to correct various errors in addresses. This process is often called address nor-
malization, and it involves structuring and cleaning the input address.

Address normalization is important: it corrects mistakes and ensures that all address informa-
tion is complete, well structured, and clean. A set of clean and normalized addresses is necessary to
derive meaningful location information and to remove duplicates.

It is common, for instance, to find variations of the same customer address in a customer data-
base. The same customer might provide the information at different occasions in slightly different
ways, and without normalization, this would lead to semantic duplicates that are treated as sepa-
rate entries in the customer database.

Listing 6-2 shows how to obtain corrections for a misspelled address using the GEOCODE function.
“Connecticut” is spelled as “Connectict” here, and the postal code is incorrect.

Listing 6-2. Geocoding and Normalizing an Address

SQL> SELECT SDO_GCDR.GEOCODE
(
"SPATIAL',
SDO_KEYWORDARRAY

'3746 CONNECTICT AVE NW',
'WASHINGTON, DC 20023'
)s
"us',
'DEFAULT'
) geom
FROM DUAL;

GEOM(ID, ADDRESSLINES, PLACENAME, STREETNAME, INTERSECTSTREET, SECUNIT,

SETTLEM

SDO_GEO_ADDR

(0, SDO_KEYWORDARRAY(NULL), NULL, "CONNECTICUT AVE NW', NULL, NULL,
"WASHINGTON', NULL, 'DC', 'US', '20008', NULL, '20008', NULL, '3746', 'CONNECT

ICUT', 'AVE', 'F', 'F', NULL, 'NW', 'L', .944444444, 18571166, '??22?#E?UT?B281C

??', 10, 'DEFAULT', -77.060283, 38.9387083)

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

The result of this function is a fairly complex structure of type SDO_GEO_ADDR. For now, we merely
note that the structure contains the correct street name and the correct postal code. Later in this
chapter, we cover the structure in more depth, and you will see how to format it in a readable way.

Architecture of the Oracle Geocoder

How is geocoding done? Figure 6-1 illustrates this process. First, the geocoder requires reference
data—a list of addresses with known coordinates such as roads and streets but also towns, postal
codes, and so on, with their geographical locations and shapes.

With this reference data, the geocoder performs the following three steps:

1. Parse the input address.
2. Search for an address with a matching name.

3. Compute a location (spatial coordinates) for the address that was found.

Let’s examine these three steps in detail.

Reference Data

Address N\ for Geocoding
/ . \
Address Parsing 4 Address
. J Structure
. g
= ()
© Searching and 4 Street and
g Cleansing Place Names
<1 A J
i g
inat
gg?l:edrlz?t?oﬁ 4 Geometries
Coordinates and &
Corrected Address

Figure 6-1. Oracle geocoder architecture

Parsing the Input Address

The geocoder first recognizes the parts of a street address and separates them into recognizable ele-
ments such as street name, street type (street, avenue, boulevard, and so on), house number, postal
code, and city.

This process can be tricky—there are many ways to write the same address, especially in differ-
ent countries, cultures, and languages. For example, the street type can precede (such as Rue de la
Paix), follow (such as Elm Square), or be attached to the street name (such as Bahnhofstralle).

www.freepdf-books.com

153

http://www.it-ebooks.info/

154

CHAPTER 6 ©* GEOCODING

The Oracle geocoder recognizes a variety of address formats in various countries and languages.
The formats are defined in one table, GC_PARSER_PROFILEAFS, in the reference data. Table 6-1 illustrates
the effect of parsing some common international addresses.

Table 6-1. Parsing International Addresses

Address Element United States Germany France

Full address 3746 Connecticut Avenue NW Arabellastralle 6 12, Avenue Robert Soleau
Washington, D.C. 20008 D-81925 Miinchen 06600 Antibes

House number 3746 6 12

Street base name Connecticut Arabella Robert Soleau

Street type Avenue Strasse Avenue

Street suffix NW

City Washington Miinchen Antibes

Postal code 20008 81925 06600

Region D.C

Note Postal organizations have defined an official way to format addresses. The Universal Postal Union
(www. upu. int) compiles and publishes this information.

Searching for the Address

Once the address has been parsed into recognizable elements, the geocoder can search the list of
street names for the one that most closely matches the given address.

This search is fuzzy, meaning it finds a match even if the input address is misspelled (such as
“avenue” spelled as “avnue” or “Van Ness” spelled as “Van Neus”) or represented differently from the
stored addresses (such as “street” entered as “st.” or “strasse” entered as “stral3e”).

The various keywords used in an address, with their multiple spellings (including common
spelling errors), are stored in the GC_PARSER_PROFILES table in the reference data. For example,
JUNCTION can be spelled JCT, JCTN, JUNCTN, or evenn JCTION or JUNCTON.

The search may also be “approximate”—that is, if the exact street cannot be found, then the
geocoder will fall back to the postal code or city name. The user is able to specify whether this is
acceptable by passing a matching mode parameter. We will cover the various possible modes later in
the chapter.

In some cases, there may be multiple matches. For example, the chosen street name “Warren
Street” may not exist, but “Warren Place” and “Warren Avenue” might. In such a case, both results
will be returned. It is up to the calling application to decide which result to choose or, more likely, to
let the user of the application choose.

One important result of the address search is a cleaned-up address, with the correct formatting
and spelling of the street name, complete with elements that were missing from the input address,
such as the postal code.

Computing the Spatial Coordinates

Once the proper street has been located, the geocoder needs to convert it into a geographical point.
Let’s examine this final step of the geocoding process.

www.freepdf-books.com

http://www.upu.int
http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

The geocoding reference data used by the Oracle geocoder holds the house numbers at each
end of a street segment, on each side of that street. When the input address contains a house num-
ber, the geocoder computes the geographical position of the house number by interpolation.

Figure 6-2 illustrates this process. The figure shows a section of Elm Street. Only the numbers of
houses at each end are known: numbers 10 and 11 are at one end, and numbers 18 and 19 are at the
other end. Where, then, is “13 Elm St”? The Oracle geocoder assumes that houses are regularly spaced
along the linear geometry that represents the street segment, and positions (that is, interpolates)
house number 13 accordingly.

10 ElmStreet 18

O
o

1 T 19
13

Figure 6-2. Interpolation example

When there is a good correlation between the house numbers and the distance along the road,
the result will be quite precise. Otherwise, it will be approximate and may be erroneous. Even in the
latter case, the margin of error is generally small.

Note Streets are modeled as line strings, the “centerline” of the actual street. The Oracle geocoder actually
positions houses on the centerline—that is, the actual coordinates are in the middle of the street!

Note that the input address may be incomplete. This is what happens when the input address
has missing components:

¢ When no house number is given in the address, the geocoder returns the midpoint of the
street. The reference data of the Oracle geocoder stores the precomputed location of the
house number at the midpoint.

¢ When no street is given in the input address or when the street is not found, the geocoder falls
back to the postal code or city (built-up area, settlement, or municipality). In those cases, it
returns a geographical point that corresponds to the “center” of the postal code or city.

Note that the required precision of a geographical location for a given address varies with the
application:

» For an application that returns the current weather at a chosen location, geocoding at the
postal code or city level is quite sufficient.

 For an application that compares customer locations with branch (business) locations or
sales territories, geocoding at the street level is generally sufficient.

» For a pizza delivery or taxi pickup application, geocoding at the house level is nice, but just
knowing the street segment (that is, the city block) and the side of the street is generally
sufficient.

www.freepdf-books.com

155

http://www.it-ebooks.info/

156

CHAPTER 6 ©* GEOCODING

Note The coordinates returned by the geocoder are always in the coordinate system used in the reference
data. For most data providers (as is the case for NAVTEQ) this will be longitude, latitude (WGS84) but the geocoder
will work with any coordinate system.

In the next section, we discuss how to set up the reference data for the geocoder. We then illustrate
the previously discussed geocoding process with appropriate examples.

Setting Up the Reference Data for the Geocoder

The reference data used by the Oracle geocoder is a set of tables with a specific structure. All the
tables start with the GC_ prefix. There are two kinds of tables:

e Parameter tables control the operation of the geocoder.

* Data tables contain the place names and their geographical coordinates.

The way you load those tables depends on the way your data supplier provides them. At the
time of this writing, only NAVTEQ supplies the reference data for the geocoder, in Oracle export
(.dmp) files or transportable tablespaces. Other suppliers may choose other mechanisms, such as
SQL*Loader and SQL scripts, to provide their data.

For the examples in this book, we use the sample data that NAVTEQ provides, which covers San
Francisco, California, and Washington, D.C. For ease of use, the data is provided to you as a single
Oracle export file.

Loading this reference data for the Oracle geocoder is as easy as running the following import
command. This will create all tables (parameter as well as data) and populate them.

imp spatial/spatial file=gc.dmp full=y ignore=y

For real geocoder reference data, you will most likely need to perform multiple such imports,
because the data for each country is provided as one or more dump files. Note that you can load the
data for different countries in the same Oracle schema or in different schemas. The data for each
country uses different tables. See the “Data Tables” section of this chapter for details.

The rest of this section describes the overall structure and purpose of all tables in the reference
data. You do not need to understand the details of the tables to use the geocoder.

Parameter Tables

Three tables contain information about the structuring of addresses in each country supported by
the Oracle geocoder. You should not change the content of these tables.

GC_COUNTRY_PROFILE

This table contains general information about each country known to the Oracle geocoder, such as
the definition of administrative levels for that country. One important piece of information is the
suffix of the data tables for that country (more on this later).

GC_PARSER_PROFILEAFS

This table describes the structuring of the addresses for each country supported by the Oracle
geocoder. There is one row per country, with the address structure defined in an XML notation.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

GC_PARSER_PROFILES

The Oracle geocoder uses this table to recognize some address elements. It defines address elements
with their synonyms, including possible misspellings. For example, it defines that AV, AVE, AVEN, AVENU,
AVN, and AVNUE are all possible spellings for AVENUE. It also defines 1ST and FIRST as synonyms.

Data Tables

The data tables have names with a country-specific suffix (defined in the GC_COUNTRY_PROFILE table).
For example, the reference data for France is in tables with the FR suffix, while the data for the United
States is in tables with the US suffix. The xx in the following descriptions represents this suffix.

GC_AREA_xx

This table stores information on all administrative areas. The Oracle geocoder defines three levels of
administrative areas: REGION, MUNICIPALITY, and SETTLEMENT. The way administrative areas are mapped
to those levels varies from country to country.

For the United States, the administrative areas correspond to states, counties, and cities. For
the United Kingdom, they correspond to counties, postal towns, and localities.

Note that the same area can appear multiple times—this is the case when an area has multiple
names in different languages.

GC_POSTAL_CODE_xx

This table describes all postal codes, and it also contains the coordinates of the center point for each
postal code. The center point is the point returned by the geocoder when the street name in the
input address is invalid (or the input address contains no street name).

GC_POI_xx

This table contains a selection of points of interest (hospitals, airports, hotels, restaurants, parking
garages, ATMs, and so on). The number of points of interest (POIs) and their classification varies
among data suppliers.

GC_ROAD_xx

This is the main table used for address searches. It contains one row per road per settlement and
postal code. If a road crosses multiple postal codes, then it will appear multiple times in this table.

GC_ROAD_SEGMENT_xx

This table provides the information needed to compute the coordinates of an address by interpola-
tion. It contains one row for each segment of a road with the geometric shape of that road segment
(an SDO_GEOMETRY type), as well as the house numbers on each side, at each end of the segment.

GC_INTERSECTION_xx

When multiple road segments meet, they form an intersection. This table defines one row for each
couple of such road segments.

www.freepdf-books.com

157

http://www.it-ebooks.info/

158

CHAPTER 6 ©* GEOCODING

Using Geocoder Functions

The geocoding API is simple: it is composed of a PL/SQL package (SDO_GCDR) with only a few func-
tions. All of them accept an address as input and return geographical coordinate information as the
geocoded result. The difference between the functions is in the amount of information they return
as well as the format of the input address. Table 6-2 summarizes the functions and their behaviors.

Table 6-2. Comparing the Geocoding Functions

Address Address
Function Conversion Correction Description

GEOCODE_AS_GEOMETRY Yes No Returns a geometric point (with the geo-
graphical coordinates) for the address. It
returns no indication as to the precision or
quality of the result. This is best used when
the addresses are known to be valid.

GEOCODE Yes Yes Returns the geographical coordinates and
a corrected address with detailed indications
of the quality of the result. The input is an
unstructured address, passed as a set of
address lines.

GEOCODE_ADDR Yes Yes Same as GEOCODE, but uses a structured
address as input.

GEOCODE_ALL Yes Yes Like GEOCODE, but can return multiple matches

GEOCODE_ADDR_ALL Yes

Yes

if the input address is ambiguous. This is best
used for interactive applications, when the end
user chooses which of the matches is correct.

Like GEOCODE_ALL, but uses a structured address

as input.

In the rest of this section, we cover each function in detail with examples.

Note The first call to a geocoding function in a session requires more time (is longer) than the subsequent
calls. This is because the function needs to load and parse the profile tables.

GEOCODE_AS_GEOMETRY

This is the simplest function to use. You just pass it the address to geocode, and it returns an
SDO_GEOMETRY object with the corresponding geographical location for that address. Recall that we
used this function to illustrate geocoding in Chapters 2 and 3.

Here is the syntax of the function:

SDO_GCDR.GEOCODE_AS_GEOMETRY (

username IN VARCHAR2,
addr_lines IN SDO_KEYWORDARRAY,
country IN VARCHAR2

) RETURN SDO_GEOMETRY;

Function Parameters
The following sections outline the parameters for the GEOCODE_AS_GEOMETRY function.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

username

This is the name of the Oracle schema that contains the geocoding tables for the specified country.
Itis a required argument. If the data is in the same schema as the one that calls the function, then
you can also use the SQL built-in USER.

Note If the geocoding tables are in a different schema than the one you are connected as, then you must have
the SELECT access right on those tables

addr_lines

The type SDO_KEYWORDARRAY is a simple array (VARRAY) of character strings that is used to pass address
lines to the geocoding functions. Fill each array entry with one line of the street address to geocode
as illustrated in the list that follows.

The lines of the address must be passed according to the structure described in GC_PARSER _
PROFILEAFS. They should be in the order defined and formatted properly. This formatting varies
from country to country. If an address is incorrectly formatted, then the geocoder will reject it (that
is, it will return NULL).

There is, however, a certain degree of flexibility in the formatting. For example, all of the follow-
ing are valid ways to format the U.S. address “1250 Clay Street, San Francisco, CA 94108”:

¢ The state and postal code are on separate lines:

SDO_KEYWORDARRAY (
'1250 Clay St',
'San Francisco',
"CA',

'94108'

)

* The state and postal code are together on a separate line:

SDO_KEYWORDARRAY (
'1250 Clay St',
'San Francisco',
'CA 94108

)

¢ The city, state, and postal code are on the same line:

SDO_KEYWORDARRAY (
'1250 Clay St',
'San Francisco CA 94108

)

The following, however, is incorrect:
e The address is on one line:

SDO_KEYWORDARRAY (
'1250 Clay St, San Francisco CA 94108’

)

country

This is the two-letter ISO code for the country to which the address to be geocoded belongs.
www.freepdf-books.com

159

http://www.it-ebooks.info/

160

CHAPTER 6 ©* GEOCODING

Function Result: SDO_GEOMETRY

The result of the function is a simple SDO_GEOMETRY object that contains a point geometry.

If the function is unable to parse the input address (because it is incorrectly formatted) or if it is
unable to geocode the address (because it could not find any place at all with the provided informa-
tion), then it returns a NULL geometry.

Let’s look at a few examples.

Examples

Listing 6-3 shows how to geocode a street address in San Francisco.

Listing 6-3. Using the GEOCODE_AS GEOMETRY Function
SQL> SELECT SDO_GCDR.GEOCODE_AS_GEOMETRY

'SPATIAL',
SDO_KEYWORDARRAY('1250 Clay Street', 'San Francisco, CA'),
ST

FROM DUAL;
SDO_GEOMETRY(2001, 8307, SDO_POINT TYPE -122.41356, 37.7932878, NULL), NULL, NULL)

The result is a simple point geometry object that contains the geographical coordinates for that
address. The coordinates may not point exactly to number 1250 on Clay Street; they are computed
by interpolation between known house numbers.

If the house number does not exist, such as in the example in Listing 6-4 (the highest house
number on Clay Street is 3999), you still get a valid geometry pointing to a house on the street, but
you have no indication of the exact house on which the geocoder positioned the coordinates.

Listing 6-4. Using the GEOCODE_AS GEOMETRY Function with an Invalid House Number
SQL> SELECT SDO_GCDR.GEOCODE_AS_GEOMETRY

'SPATIAL',
SDO_KEYWORDARRAY('4500 Clay Street', 'San Francisco, CA'),
ST

FROM DUAL;
SDO_GEOMETRY (2001, 8307, SDO_POINT TYPE(-122.41437, 37.79318, NULL), NULL, NULL)

The geocoder tries its best to always return a geographic location. If the street does not exist at
all, then you get a location in the middle of the town (or postal code if one was specified). If the town
does not exist, then you will get a location in the middle of the state (for U.S. addresses). If nothing
is found at all, then you will get a NULL geometry back. This is illustrated in Listing 6-5.

Listing 6-5. Using the GEOCODE_AS_GEOMETRY Function with an Invalid Street Name

SQL> SELECT SDO_GCDR.GEOCODE_AS GEOMETRY

(
"SPATIAL',
SDO_KEYWORDARRAY('Cloy Street', 'San Francisco, CA'),
s

FROM DUAL;

SDO_GEOMETRY (2001, 8307, SDOJ\?\%WMWF%@&]‘#—%&%%'&@%’ NULL), NULL, NULL)

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

The drawback of this function is that you have no indication of the quality of the result—the
address you passed may contain a house number that does not exist. In this case, the address may
have been matched to the house halfway down the street, but you have no way of knowing that. Or
the street may not exist, and the address is then positioned in the middle of the postal code area or
city. You also have no way to tell the geocoder what precision level (match mode) to use; it always
uses the DEFAULT mode. The previous example is a good illustration of this problem: the location
returned is actually a point in the middle of San Francisco (as stored in the GC_AREA_US table). This is
probably not what you want.

Therefore, you will mostly use the GEOCODE_AS_GEOMETRY function on addresses that you know
are valid, such as the existing shipping addresses of your customers.

On the other hand, sometimes you cannot be sure that the input address is valid, for example,
when you register a new customer in your database in your order-entry system or when a user
types an address to find the nearest store to that address. In those cases, you will use the GEOCODE or
GEOCODE_ALL function, which we describe next.

GEOCODE

GEOCODE is the main geocoding function. Contrary to the GEOCODE_AS _GEOMETRY function, which
returns only coordinates, the GEOCODE function also returns a fully formatted address and codes that
tell you precisely how the address matched.

This is the syntax of the GEOCODE function:

SDO_GCDR . GEOCODE

(
username IN VARCHAR2,
addr_lines IN SDO_KEYWORDARRAY,
country IN VARCHAR2
match_mode IN VARCHAR2

) RETURN SDO_GEO_ADDR;

Function Parameters

The following sections outline the parameters for the GEOCODE function. They are the same as those
of the GEOCODE_AS_GEOMETRY function, except for the additional MATCH_MODE parameter.

username

This is the name of the Oracle schema that contains the geocoding tables for the specified country.
It is a required argument. If the data is in the same schema as the one that calls the function, then
you can also use the SQL built-in USER.

addr_lines
This is a simple array (VARRAY) of character strings that is used to pass address lines. See the

GEOCODE_AS_GEOMETRY function for a detailed explanation.

country

This is the two-letter ISO code for the country to which the address to be geocoded belongs.

www.freepdf-books.com

161

http://www.it-ebooks.info/

162

CHAPTER 6 ©* GEOCODING

match_mode

The match mode lets you decide how closely the elements of an input address must match the data
in the geocoding catalog. Note that you do not specify this parameter for the GEOCODE_AS_GEOMETRY
function—it always uses the DEFAULT mode.

The match mode can be specified as shown in Table 6-3.

Table 6-3. Match Modes and Their Meanings

Match Mode Meaning

EXACT All fields provided must match exactly.

RELAX_STREET TYPE The street type can be different from the official street type.

RELAX_POI_NAME The POI name does not have to match exactly.

RELAX_HOUSE_NUMBER The house number and street type do not have to match.

RELAX_BASE_NAME The street (base) name, house number, and street type do not have to
match.

RELAX_POSTAL_CODE The postal code (if provided), street (base) name, house number, and
street type do not have to match.

RELAX BUILTUP_AREA This mode searches the address outside the city specified, but within
the same county, and includes RELAX_POSTAL_CODE.

RELAX_ALL Same as RELAX_BUILTUP_AREA.

DEFAULT Same as RELAX_POSTAL_CODE.

You will see the effect of the various modes in the upcoming examples.

Function Result: SDO_GEO_ADDR

This structure contains the detailed results of a geocoding operation. See Table 6-4 for the exact
content of the structure.

As you can see, this structure is quite rich and contains many pieces of information. They can
be summarized as follows:

e LONGITUDE and LATITUDE: The coordinates of the address.

* MATCHCODE and ERRORMESSAGE: Together, they indicate how close the match is. The possible
values are detailed later.

e SIDE: The side of the street on which this address lies (L for left; R for right).

* PERCENT: The relative position of the address on the road segment when traveling from lower
to higher numbered addresses. This is expressed as a percentage. A setting of 50 percent
indicates that the address is halfway down the road segment.

e EDGE_ID: The ID of the road segment on which this address is located.

The other attributes hold the cleansed and completed address, broken down into individual
components. This includes settlement, municipality, and region names; postal code; and street base
name, suffix, prefix, and so on.

www.freepdf-books.com

http://www.it-ebooks.info/

Table 6-4. SDO_GEO_ADDR Object Structure

Column Name Data Type

D NUMBER
ADDRESSLINES SDO_KEYWORDARRAY
PLACENAME VARCHAR2(200)
STREETNAME VARCHAR2(200)
INTERSECTSTREET VARCHAR2(200)
SECUNIT VARCHAR2(200)
SETTLEMENT VARCHAR2(200)
MUNICIPALITY VARCHAR2(200)
REGION VARCHAR2(200)
COUNTRY VARCHAR2(100)
POSTALCODE VARCHAR2(20)
POSTALADDONCODE VARCHAR2(20)
FULLPOSTALCODE VARCHAR2(20)
POBOX VARCHAR2(100)
HOUSENUMBER VARCHAR2(100)
BASENAME VARCHAR2(200)
STREETTYPE VARCHAR2(20)
STREETTYPEBEFORE VARCHAR2 (1)
STREETTYPEATTACHED VARCHAR2(1)
STREETPREFIX VARCHAR2(20)
STREETSUFFIX VARCHAR2(20)
SIDE VARCHAR2 (1)
PERCENT NUMBER

EDGEID NUMBER
ERRORMESSAGE VARCHAR2(20)
MATCHCODE NUMBER
MATCHMODE VARCHAR2(30)
LONGITUDE NUMBER
LATITUDE NUMBER
MATCHVECTOR VARCHAR2(20)

Interpreting the Results of a Geocode Operation

CHAPTER 6

GEOCODING

The results of the GEOCODE function indicate the way the input address was matched with the list of
addresses from the reference data. All that was returned from the GEOCODE_AS_GEOMETRY function

was a geographical point. The GEOCODE function allows you to find out whether there were any mis-
takes in the input address. Three attributes of the SDO_GEO_ADDR structure give you this information:
MATCHCODE, ERRORMESSAGE, and MATCHVECTOR.

www.freepdf-books.com

163

http://www.it-ebooks.info/

164

CHAPTER 6 ©* GEOCODING

MATCHCODE
The MATCHCODE attribute indicates the general “quality” of the match and is described in Table 6-5.

Table 6-5. Match Codes and Their Meanings

Match Code Meaning

1 Exact match. The city name, postal code, street base name, street
type/suffix/prefix, and house number are all matched.

2 The city name, postal code, street base name, and house number are
matched, but the street type and suffix or prefix is not matched.

3 The city name, postal code, and street base name are matched, but the
house number is not matched.

4 The postal code and city name are matched, but the street address is
not matched.

10 The city name is matched, but the postal code is not matched.

11 The postal code is matched, but the city name is not matched.

Note that the code specifies how close the match is with only those address elements that are
specified in the input address. It does not consider the ones that are not passed. For example, an
address such as “Clay St, San Francisco, CA” receives a match code of 1, even though no house num-
ber or postal code was specified. On the other hand, an address such as “9650 Clay St, San Francisco,
CA 92306” receives a match code of 10, which indicates that neither the postal code nor the house
number matched.

ERRORMESSAGE

The ERRORMESSAGE attribute further details the quality and precision of the match by telling you how
each individual address element matched.

The error message is a character string in which each character specifies how each address element
was matched. When the address element is not matched, then its corresponding character position con-
tains a question mark (?). Table 6-6 shows the meaning of each position in the ERRORMESSAGE string.

Table 6-6. Detailed ERRORMESSAGE Structure

Position Meaning Value When Matched
5 House or building number #
6 Street prefix E
7 Street base name N
8 Street suffix u
9 Street type T
10 Secondary unit S
11 Built-up area or city B
14 Region 1
15 Country C
16 Postal code P
17 Postal add-on code A

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

Used together, the MATCHCODE and ERRORMESSAGE attributes let your application decide whether
to accept the results of a geocode operation or reject the results and flag the containing record for
later resolution by a human. Common reasons for rejecting a geocode are as follows:

¢ The geocoder was unable to correct errors in the address (such as an invalid house number).

* The application wants all addresses to be geocoded at the street level at a minimum, but the
address was geocoded at the postal code or city level.

MATCHVECTOR

The ERRORMESSAGE attribute allows you to find out about any errors in the input address; for exam-
ple, the postal code may be incorrect, or the street name may be misspelled. But it does not give any
indication as to the accuracy of the result.

For example, an address may be supplied without any house number. In this case, we will match
it to a random location on the specified street (actually, we will just use the coordinates for the center
house number specified in the GC_ROAD xx table). This will be diagnosed as an “exact match”: the
MATCHCODE attribute will be set to 1, and the ERRORMESSAGE vector will indicate that the house number
was found.

However, this may not be satisfactory for your application. If you want to use the location and
address for home deliveries, then an address without any house number is not useful. The MATCHVECTOR
attribute will tell you not just whether an address element matched but also whether it was present.

Like ERRORMESSAGE, the MATCHVECTOR attribute contains a string. Each character of this string
indicates the match status of an address attribute. Table 6-7 shows the meaning of each position in
the MATCHVECTOR string.

Table 6-7. Detailed MATCHVECTOR Structure

Position Meaning

5 House or building number
6 Street prefix

7 Street base name

8 Street suffix

9 Street type

10 Secondary unit

11 Built-up area or city
14 Region

15 Country

16 Postal code

17 Postal add-on code

Each character position in the MATCHVECTOR string can have one of the values detailed in
Table 6-8.

www.freepdf-books.com

165

http://www.it-ebooks.info/

166

CHAPTER 6

GEOCODING

Table 6-8. Codes Used in the MATCHVECTOR Structure

Value Meaning Example

0 MATCHED = The address element was specified and ~ Your address contained the correct
was successfully matched. postal code.

1 ABSENT = The address element was not specified Your address did not contain any
and not replaced. postal code, and the geocoder did

not supply one.

2 CORRECTED = The address element was specified but ~ Your address contained an invalid
was not matched and was replaced by a different postal code, which was replaced with
value from the database. the correct one.

3 IGNORED = The address element was specified but Your address has a house number,
was not matched and not replaced. but the street could not be found, so

the house number was ignored.

4 SUPPLIED = The address element was not specified Your address did not specify any
and was filled with a value from the database postal code. The correct postal code

was supplied from the database.

Examples

Let’s look at a various examples. We start with valid addresses, and then we move on to show what
happens when addresses contain various errors.

A Street Address Without a House Number

Listing 6-6 shows the geocoding of a street address in San Francisco. The address specifies the street
name and town but no postal code.

Listing 6-6. Example of Calling the GEOCODE Function
SQL> SELECT SDO_GCDR.GEOCODE

(

'SPATIAL',

SDO_KEYWORDARRAY('Clay Street', 'San Francisco, CA'),
s,

'DEFAULT'

FROM DUAL;
SDO_GEO_ADDR(0, SDO_KEYWORDARRAY(NULL), NULL, 'CLAY ST', NULL, NULL, 'SAN
FRANCISCO',
NULL, "CA', 'US', '94108', NULL, '94108', NULL, '978', 'CLAY', 'ST', 'F',

"F', NULL,
NULL, 'L', 0, 1, 23600689, 'nul?#ENUT?B281CP?', 1, 'DEFAULT', -122.40904, 37.79385)

The result is hard to read, so we will write a PL/SQL stored procedure that will format and dis-
play the result in a more readable way. Procedure FORMAT_GEO_ADDR takes an SDO_GEO_ADDR object as
input and formats it using the DBMS_OUTPUT package. Listing 6-7 details the procedure.

Listing 6-7. FORMAT_GEO_ADDR Procedure

SoL>

CREATE OR REPLACE PROCEDURE format geo addr

address SDO_GEO_ADDR

)

www.freepdf-books.com

http://www.it-ebooks.info/

AS
BE

GIN
dbms_output.put line ('- ID

dbms_output.put line ('- ADDRESSLINES');
if address.addresslines.count() > 0 then

CHAPTER 6

" || address.ID);

for i in 1..address.addresslines.count() loop
dbms_output.put line ('- ADDRESSLINES['[|i||'] "

address.ADDRESSLINES(i));

end loop;
end if;
dbms_output.put line ('- PLACENAME " || address.PLACENAME);
dbms_output.put line ('- STREETNAME " || address.STREETNAME);
dbms_output.put_line ('- INTERSECTSTREET ' || address.INTERSECTSTREET);
dbms_output.put_line ('- SECUNIT " || address.SECUNIT);
dbms_output.put line ('- SETTLEMENT " || address.SETTLEMENT);
dbms_output.put_line ('- MUNICIPALITY " || address.MUNICIPALITY);
dbms_output.put line ('- REGION " || address.REGION);
dbms_output.put_line ('- COUNTRY " || address.COUNTRY);
dbms_output.put line ('- POSTALCODE " || address.POSTALCODE);
dbms_output.put_line ('- POSTALADDONCODE " || address.POSTALADDONCODE);
dbms_output.put line ('- FULLPOSTALCODE " || address.FULLPOSTALCODE);
dbms_output.put_line ('- POBOX " || address.POBOX);
dbms_output.put_line ('- HOUSENUMBER " || address.HOUSENUMBER);
dbms_output.put line ('- BASENAME " || address.BASENAME);
dbms_output.put _line ('- STREETTYPE " || address.STREETTYPE);
dbms_output.put_line ('- STREETTYPEBEFORE ' || address.STREETTYPEBEFORE);
dbms_output.put line ('- STREETTYPEATTACHED ' || address.STREETTYPEATTACHED);
dbms_output.put line ('- STREETPREFIX " || address.STREETPREFIX);
dbms_output.put_line ('- STREETSUFFIX " || address.STREETSUFFIX);
dbms_output.put line ('- SIDE " || address.SIDE);
dbms_output.put_line ('- PERCENT " || address.PERCENT);
dbms_output.put line ('- EDGEID " || address.EDGEID);
dbms_output.put_line ('- ERRORMESSAGE " || address.ERRORMESSAGE);
dbms_output.put line ('- MATCHVECTOR " || address.MATCHVECTOR);
dbms_output.put line ('- '|| substr (address.errormessage,5,1) ||' '|
substr (address.matchvector,5,1) ||' House or building number');
dbms_output.put _line ('- '|| substr (address.errormessage,6,1) ||' '|
substr (address.matchvector,6,1) ||' Street prefix');
dbms_output.put line ('- '|| substr (address.errormessage,7,1) ||' '|
substr (address.matchvector,7,1) ||' Street base name');
dbms_output.put_line ('- '|| substr (address.errormessage,8,1) ||' ']
substr (address.matchvector,8,1) ||' Street suffix');
dbms_output.put line ('- '|| substr (address.errormessage,9,1) ||' '|
substr (address.matchvector,9,1) ||' Street type');
dbms_output.put line ('- '|| substr (address.errormessage,10,1) ||' |
substr (address.matchvector,10,1) ||' Secondary unit');
dbms_output.put_line ('- '|| substr (address.errormessage,11,1) ||' ']
substr (address.matchvector,11,1) ||' Built-up area or city');
dbms_output.put line ('- '|| substr (address.errormessage,14,1) ||' |
substr (address.matchvector,14,1) ||' Region');
dbms_output.put line ('- '|| substr (address.errormessage,15,1) ||' |
substr (address.matchvector,15,1) ||" Country');
dbms_output.put line ('- '|| substr (address.errormessage,16,1) ||' |

substr (address.matchvector,16,1) ||’

Postal code');

dbms_output.put line ('- '|| substr (address.errormessage,17,1) ||' |

substr (address.matchvector,17,1) ||’
dbms_output.put_line ('- MATCHCODE

Postal add-on code');

I
www.freepdf-books.com

167

http://www.it-ebooks.info/

168

CHAPTER 6 ©* GEOCODING

address.MATCHCODE || ' = ' ||

case address.MATCHCODE
when 1 then 'Exact
when 2 then 'Match
when 3 then 'Match
when 4 then 'Match
when 10 then 'Match
when 11 then 'Match

end

)s

dbms_output.put line ('- MATCHMODE
dbms_output.put line ('- LONGITUDE
dbms_output.put_line ('- LATITUDE

END;
/
show errors

match'

on
on
on
on
on

city, postal code, street base name and number'
city, postal code and street base name'

city and postal code’

city but not postal code'

postal but not on city'

" || address.MATCHMODE);
" || address.LONGITUDE);
" || address.LATITUDE);

Listing 6-8 shows how to use the procedure with the previous example.

Listing 6-8. Example of Using the FORMAT_GEO_ADDR Procedure

SQL> SET SERVEROUTPUT ON
SQL> BEGIN
FORMAT GEO_ADDR (

(

SDO_KEYWORDARRAY('Clay Street', 'San Francisco, CA'),

SDO_GCDR . GEOCODE
"SPATIAL',
s,
"DEFAULT'
)
)s
END;
/
D) 0
- ADDRESSLINES
- PLACENAME
- STREETNAME CLAY
- INTERSECTSTREET
- SECUNIT
- SETTLEMENT
- MUNICIPALITY
- REGION CA
- COUNTRY us
- POSTALCODE 94108
- POSTALADDONCODE
- FULLPOSTALCODE 94108
- POBOX
- HOUSENUMBER 978
- BASENAME CLAY
- STREETTYPE ST

- STREETTYPEBEFORE F
- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE L
- PERCENT 0
- EDGEID

ST

23600689

SAN FRANCISCO

www.freepdf-books.com

http://www.it-ebooks.info/

- ERRORMESSAGE 222?2#ENUT?B281CP?
- MATCHVECTOR 2222410101072004?
4 House or building number
E 1 Street prefix
N 0 Street base name
U 1 Street suffix
T 0 Street type
? 1 Secondary unit
B 0 Built-up area or city
1 0 Region
C 0 Country
P 4 Postal code
- ? ? Postal add-on code
- MATCHCODE 1 = Exact match
- MATCHMODE DEFAULT
- LONGITUDE -122.40904
- LATITUDE 37.79385

spreads over five postal codes, as shown in Listing 6-9).

CHAPTER 6 " GEOCODING

We receive a geographical point that lies on Clay Street. We also receive a corrected address
with the street name as CLAY ST, and a ZIP code, 94108. The house number returned (978) corre-
sponds to the middle point of the part of Clay Street that lies in ZIP code 94108 (Clay Street actually

The MATCHCODE returned is 1, indicating that we had a full match, including street type. The
ERRORMESSAGE is ??? ?#ENUT?B281CP?, and the MATCHVECTOR is ????4101010??004?. Their combination
indicates how address elements matched. Table 6-9 shows the details.

Table 6-9. Matching Elements in the ERRORMESSAGE and MATCHVECTOR

Code Match Address Element Explanation

4 House or building number No house number specified, filled by
the geocoder

E 1 Street prefix No street prefix, none in the database

N 0 Street base name Street name found

U 1 Street suffix No street suffix

T 0 Street type Street type found

B 0 Built-up area or city City name found

1 0 Region State name found

C 0 Country Country found

P 4 Postal code No postal code specified, filled by the

geocoder

the input address used “Street” and the actual type is “St.”

Notice the letter T in the error message code. It indicates a match on the street type, even though

However, the ERRORMESSAGE also contains the characters # and P, which indicate matches on the
house number and postal code, despite that the input address contained no house number or
postal code. The MATCHVECTOR correctly reflects this; the value 4 for house number and postal code
indicates they were missing from the input address.

www.freepdf-books.com

169

http://www.it-ebooks.info/

170

CHAPTER 6 ©* GEOCODING

Caution The indication of a positive match for an address element in ERRORMESSAGE does not necessarily
mean that the corresponding address element actually matched—the address element may simply be missing
from the input address. Use MATCHVECTOR to determine this.

Dissecting Clay Street

For the following examples, it is useful to know more about the house numbers on Clay Street. This
will help you understand the preceding example as well as those that follow. Listing 6-9 shows how
to find out the house numbers for a street.

Listing 6-9. Getting Street Details from the Geocode Reference Data

SOL> SELECT road_id, name, postal code, start hn, center_hn, end hn
FROM gc_road_us

WHERE name = 'CLAY ST' AND postal code like '94%'

ORDER BY start_hn;

ROAD_ID NAME POSTAL ~ START_HN CENTER_HN END_HN
767 CLAY ST 94111 1 398 699
427 CLAY ST 94108 700 978 1299
505 CLAY ST 94109 1300 1698 1999

1213 CLAY ST 94115 2200 2798 3299
1446 CLAY ST 94118 3300 3698 3999

The results show the house numbers on Clay Street for each postal code: the first house num-
ber, the last house number, and the number of the house halfway down the street.

Since our address did not include any explicit postal code, the geocoder picked the one with
the smallest number (94108) and then the center house number (978).

A Street Address with a House Number

The example in Listing 6-10 includes a house number but does not specify the street type. Note that
we use the FORMAT_GEO_ADDR procedure to make the results clearer.

Listing 6-10. Using the GEOCODE Function with a Valid House Number

SQL> SET SERVEROUTPUT ON
SQL> BEGIN
FORMAT GEO_ADDR (
SDO_GCDR . GEOCODE (
"SPATIAL',
SDO_KEYWORDARRAY('1350 Clay', 'San Francisco, CA'),
"usT,
'DEFAULT'

- ID 0

- ADDRESSLINES

- PLACENAME

- STREETNAME CLAY ST
- INTERSECTSTREET

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

- SECUNIT

- SETTLEMENT SAN FRANCISCO
- MUNICIPALITY

- REGION CA

- COUNTRY us

- POSTALCODE 94109
- POSTALADDONCODE

- FULLPOSTALCODE 94109
- POBOX

- HOUSENUMBER 1350
- BASENAME CLAY
- STREETTYPE ST

- STREETTYPEBEFORE F
- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE L

- PERCENT .49

- EDGEID 23600696

- ERRORMESSAGE 272 7#ENU??B281CP?
- MATCHVECTOR ?227010141022004?

- # 0 House or building number
Street prefix

Street base name

Street suffix

Street type

Secondary unit

Built-up area or city
Region

Country

Postal code

- ? ? Postal add-on code-

- MATCHCODE 2 = Street type not matched
- MATCHMODE DEFAULT

- LONGITUDE -122.4152166
- LATITUDE 37.7930729

1
AR, @™ vvCZ2m
MO OORPRELOR

This time, the MATCHCODE returned is 2. This is because we did not match on the street type (we
specified only the street base name). The letter T no longer appears in the error message code, and
the match vector value of 4 for street type indicates it was not specified in the input address but was
filled in the output address.

Notice also that we received the correct postal code (94109) that corresponds to the house num-
ber we specified. Number 1350 is in the range of houses from 1300 to 1999, in postal code 94109.

Correcting Invalid Addresses

If the house number does not exist on this street, you still get a successful match, as shown in
Listing 6-11.

Listing 6-11. Using the GEOCODE Function with an Invalid House Number

SQL> SET SERVEROUTPUT ON
SQL> BEGIN
FORMAT GEO_ADDR (
SDO_GCDR.GEOCODE (
"SPATIAL',

www.freepdf-books.com

17

http://www.it-ebooks.info/

172

CHAPTER 6 ©* GEOCODING

SDO_KEYWORDARRAY ('4500 Clay Street', 'San Francisco, CA'),

us',
'DEFAULT'
)
)s
END;
/
- ID 0
- ADDRESSLINES
- PLACENAME
- STREETNAME CLAY ST
- INTERSECTSTREET
- SECUNIT
- SETTLEMENT SAN FRANCISCO
- MUNICIPALITY
- REGION CA
- COUNTRY us
- POSTALCODE 94108
- POSTALADDONCODE
- FULLPOSTALCODE 94108
- POBOX
- HOUSENUMBER 1299
- BASENAME CLAY
- STREETTYPE ST

- STREETTYPEBEFORE F
- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE R

- PERCENT 0

- EDGEID 23600695

- ERRORMESSAGE ??7222ENUT?B281CP?
- MATCHVECTOR 2?72?21010107?7004?

- ? 2 House or building number
Street prefix

Street base name

Street suffix

Street type

Secondary unit

Built-up area or city
Region

Country

Postal code

? ? Postal add-on code

- MATCHCODE 3 = House number not matched
- MATCHMODE DEFAULT

- LONGITUDE -122.41437
- LATITUDE 37.79318

1
~ U MNEL ™~y CZ2Z2m
S~ OO0 Ok, O O

This time, the MATCHCODE returned is 3, confirming that the house number did not match. The
coordinates returned are positioned on the highest house number in the first segment of the street
(that is, the postal code with the smallest number): house 1299 in postal code 94108. The MATCHVECTOR
value of 2 for the house number indicates that the original house number in the input address was
replaced by one coming from the database.

Contrast this with the “naive” use of the GEOCODE_AS_GEOMETRY function in Listing 6-4, where we
received coordinates but had no way of knowing that the house number was actually invalid and

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

that the coordinates were pointing elsewhere. The GEOCODE function gives us this indication, allowing
our application to reject the address or flag it as requiring human correction.

Let’s see what happens if the postal code in the address is invalid. As illustrated in Listing 6-12,
we still get the right answer, including a corrected postal code.

Listing 6-12. Using the GEOCODE Function with an Invalid Postal Code

SQL> SET SERVEROUTPUT ON
SOL> BEGIN
FORMAT GEO_ADDR (
SDO_GCDR . GEOCODE (

"SPATIAL',
SDO_KEYWORDARRAY('1350 Clay St', 'San Francisco, CA 99130'),
s,
'DEFAULT'
)
)5
END;
/
- ID 0
- ADDRESSLINES
- PLACENAME
- STREETNAME CLAY ST
- INTERSECTSTREET
- SECUNIT
- SETTLEMENT SAN FRANCISCO
- MUNICIPALITY
- REGION CA
- COUNTRY us
- POSTALCODE 94109
- POSTALADDONCODE
- FULLPOSTALCODE 94109
- POBOX
- HOUSENUMBER 1350
- BASENAME CLAY
- STREETTYPE ST

- STREETTYPEBEFORE F
- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE L

- PERCENT .49

- EDGEID 23600696

- ERRORMESSAGE 2?2 24ENUT?B281C??

- # House or building number

- E Street prefix

- N Street base name

- U Street suffix

- T Street type

- B Built-up area or city

- 1 Region

- C Country

- MATCHCODE 10 = Match on city but not postal code
- MATCHMODE DEFAULT

- LONGITUDE -122.4152166
- LATITUDE 37.7930729

www.freepdf-books.com

173

http://www.it-ebooks.info/

174

CHAPTER 6 ©* GEOCODING

The resulting MATCHCODE is 10, indicating that the postal code was not matched. However, the
coordinates are correctly positioned on number 1350 Clay Street, and the correct postal code (94109)
is given back to us.

Using the EXACT Match Mode

All the previous examples use the default match mode, RELAX_BASE_NAME. However, if we repeat
the last geocode using a stricter match mode such as EXACT, then the operation fails, as shown in
Listing 6-13.

Listing 6-13. Using the GEOCODE Function with an Invalid Postal Code (in EXACT Mode)

SQL> SET SERVEROUTPUT ON
SQL> BEGIN
FORMAT_GEO_ADDR (
SDO_GCDR.GEOCODE (
'SPATIAL',
SDO_KEYWORDARRAY('1350 Clay St', 'San Francisco, CA 99130'),
"usT,
"EXACT'
)
)5
END;
/
- ID 0
- ADDRESSLINES
- PLACENAME
- STREETNAME
- INTERSECTSTREET
- SECUNIT
- SETTLEMENT
- MUNICIPALITY
- REGION
- COUNTRY
- POSTALCODE
- POSTALADDONCODE
- FULLPOSTALCODE
- POBOX
- HOUSENUMBER
- BASENAME
- STREETTYPE
- STREETTYPEBEFORE F
- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE

- PERCENT 0

- EDGEID 0

- ERRORMESSAGE Not found
- MATCHCODE 0 =

- MATCHMODE DEFAULT

- LONGITUDE 0

- LATITUDE 0

Here the MATCHCODE is 0 and the ERRORMESSAGE is Not found.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

Geocoding on Business Name

This final example demonstrates a powerful technique: instead of specifying an address, we specify
the name of a POI. This allows us to find POIs by just specifying their name, for example, “City Hall,”
“Central Station,” or “General Hospital.” The result will be not only the coordinates of the POI, but
also its full address.

Listing 6-14 shows how to find the location and address of the Transamerica Pyramid in San
Francisco.

Listing 6-14. Using the GEOCODE Function to Find a POI

SQL> SET SERVEROUTPUT ON
SOL> BEGIN
FORMAT GEO_ADDR (
SDO_GCDR . GEOCODE (

"SPATIAL',
SDO_KEYWORDARRAY (' Transamerica Pyramid', 'San Francisco, CA'),
s,
'DEFAULT'
)
);
END;
/
- ID 0
- ADDRESSLINES
- PLACENAME TRANSAMERICA PYRAMID
- STREETNAME MONTGOMERY ST
- INTERSECTSTREET
- SECUNIT
- SETTLEMENT SAN FRANCISCO
- MUNICIPALITY
- REGION CA
- COUNTRY us
- POSTALCODE 94111
- POSTALADDONCODE
- FULLPOSTALCODE 94111
- POBOX
- HOUSENUMBER 600
- BASENAME
- STREETTYPE
- STREETTYPEBEFORE F
- STREETTYPEATTACHED F
- STREETPREFIX
- STREETSUFFIX
- SIDE R
- PERCENT 0
- EDGEID 23611721
- ERRORMESSAGE 2227#ENUT?B281CP?
- MATCHVECTOR ?222410111077004?

- # 4 House or building number
Street prefix

Street base name

Street suffix

Street type

Secondary unit

Built-up area or city
Region

1
B W~V C=m
OO R R R OR

www.freepdf-books.com

175

http://www.it-ebooks.info/

176

CHAPTER 6 ©* GEOCODING

- C o Country
- P 4 Postal code
- ? ? Postal add-on code

- MATCHCODE 1 = Exact match
- MATCHMODE DEFAULT

- LONGITUDE -122.40305

- LATITUDE 37.79509

The response contains the exact address of the Transamerica Pyramid: 600 Montgomery Street,
San Francisco, CA 94111, as well as its geographical position (longitude and latitude).

The GEOCODE function is powerful, but it has a limitation: it returns only one match. When the
input address results in multiple matches, the GEOCODE function returns only the first one. The
GEOCODE_ALL function returns all matches.

GEOCODE_ALL

Some addresses may be ambiguous and result in multiple matches. For example, the address
“12 Presidio, San Francisco, CA” is ambiguous—there are several matching streets. Is “12 Presidio
Avenue” intended or “12 Presidio Boulevard”? Perhaps “12 Presidio Terrace”? The GEOCODE function
returns only one of them. To see them all, use the GEOCODE_ALL function.

Another cause for ambiguity is when a street extends into multiple postal codes and no house
number or postal code is passed to refine the match. Finally, when geocoding to a POI, the name of
that POI may be that of the brand or a chain with multiple branches (such as “Bank of America” or
“Hertz”).

The GEOCODE_ALL function is similar to the GEOCODE function; it takes the same input arguments.
However, instead of returning a single match in an SDO_GEO_ADDR object, it returns an array of
SDO_GEO_ADDR objects as an object of type SDO_ADDR_ARRAY.

The syntax of the GEOCODE_ALL function is as follows:

SDO_GCDR.GEOCODE_ALL (

username IN VARCHAR2,
addr_lines IN SDO_KEYWORDARRAY,
country IN VARCHAR2
match_mode IN VARCHAR2

) RETURN SDO_ADDR_ARRAY;

Function Parameters

The following sections outline the parameters for the GEOCODE_ALL function. They are the same as
those of the GEOCODE function.

username

This is the name of the Oracle schema that contains the geocoding tables for the specified country.
Itis a required argument. If the data is in the same schema as the one that calls the function, then
you can also use the SQL built-in USER.

addr_lines

This is a simple array (VARRAY) of character strings that is used to pass address lines. See the
GEOCODE_AS_GEOMETRY function for a detailed explanation.

country

This is the two-letter ISO code for the country to which the address to be geocoded belongs.
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

match_mode

The match mode lets you decide how closely the elements of an input address must match the data
in the geocoding catalog. For a detailed explanation of possible values and their meanings, see the
GEOCODE function.

Function Result: SDO_ADDR_ARRAY

This is a VARRAY of up to 1,000 SDO_GEO_ADDR objects. Each SDO_GEO_ADDR object contains the details
about one matching address. The structure of each SDO_GEO_ADDR is the same as the one returned by
the GEOCODE function.

Examples

Before running the actual examples, we create a stored procedure that will help in decoding the
results of a call to the GEOCODE_ALL function. That procedure calls the procedure FORMAT GEO_ADDR
that we created previously, and it is shown in Listing 6-15.

Listing 6-15. FORMAT ADDR_ARRAY Procedure
CREATE OR REPLACE PROCEDURE format addr array

address_list SDO_ADDR_ARRAY
)
AS
BEGIN
IF address list.count() > O THEN
FOR i in 1..address list.count() LOOP
dbms_output.put line ('ADDRESS['||il]']1");
format_geo addr (address list(i));
END LOOP;
END IF;
END;
/
show errors

Our first example is to geocode the ambiguous address “12 Presidio.” Listing 6-16 shows this
operation.

Listing 6-16. Using GEOCODE_ALL Over an Ambiguous Address

SQL> SET SERVEROUTPUT ON SIZE UNLIMITED
SQL> BEGIN
FORMAT_ADDR_ARRAY (
SDO_GCDR.GEOCODE_ALL (
"SPATIAL',
SDO_KEYWORDARRAY('12 Presidio', 'San Francisco, CA'),
"usT,
'"DEFAULT'
)
)5
END;
/
ADDRESS[1]
- ID 1
- ADDRESSLINES

www.freepdf-books.com

177

http://www.it-ebooks.info/

178

CHAPTER 6

AD

GEOCODING

PLACENAME
STREETNAME PRESIDIO AVE
INTERSECTSTREET
SECUNIT
SETTLEMENT SAN FRANCISCO
MUNICIPALITY
REGION CA
COUNTRY us
POSTALCODE 94115
POSTALADDONCODE
FULLPOSTALCODE 94115
POBOX
HOUSENUMBER 12
BASENAME PRESIDIO
STREETTYPE AVE
STREETTYPEBEFORE F
STREETTYPEATTACHED F
STREETPREFIX
STREETSUFFIX
SIDE R
PERCENT .8877551020408163
EDGEID 23614728
ERRORMESSAGE 272 7#ENU??B281CP?
MATCHVECTOR ?2270101410272004?
0 House or building number
E 1 Street prefix
N 0 Street base name
U 1 Street suffix
? 4 Street type
? 1 Secondary unit
B 0 Built-up area or city
1 0 Region
C 0 Country
P 4 Postal code
? ? Postal add-on code
MATCHCODE 2 = Street type not matched
MATCHMODE DEFAULT
LONGITUDE -122.44757091836735
LATITUDE 37.7915968367347
DRESS[2]
ID 1
ADDRESSLINES
PLACENAME
STREETNAME PRESIDIO BLVD
INTERSECTSTREET
SECUNIT
SETTLEMENT SAN FRANCISCO
MUNICIPALITY
REGION CA
COUNTRY us
POSTALCODE 94129
POSTALADDONCODE
FULLPOSTALCODE 94129
POBOX
HOUSENUMBER 12
BASENAME PRESIDIO

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING 179

- STREETTYPE BLVD

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE L

- PERCENT .7931034482758621
- EDGEID 23622533

- ERRORMESSAGE 2?72 24ENU??B281CP?
- MATCHVECTOR ?772010141077004?

- # 0 House or building number

- E 1 Street prefix

- N O Street base name

- U 1 Street suffix

- ? 4 Street type

- ? 1 Secondary unit

- B 0 Built-up area or city

- 1 0 Region

- C 0 Country

- P 4 Postal code

- ? ? Postal add-on code

- MATCHCODE 2 = Street type not matched
- MATCHMODE DEFAULT

- LONGITUDE -122.45612528011925
- LATITUDE 37.798262171909265
ADDRESS[3]

- ID 1

- ADDRESSLINES

- PLACENAME

- STREETNAME PRESIDIO TER

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY us

- POSTALCODE 94118

- POSTALADDONCODE

- FULLPOSTALCODE 94118

- POBOX

- HOUSENUMBER 12

- BASENAME PRESIDIO

- STREETTYPE TER

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE R

- PERCENT .6428571428571429
- EDGEID 28488847

- ERRORMESSAGE 2227#ENU??B281CP?
- MATCHVECTOR ?2?2201014107?004?

- # 0 House or building number
- E 1 Street prefix
- N O Street base name
- U 1 Street suffix
www.freepdf-books.com

http://www.it-ebooks.info/

180

CHAPTER 6 ©* GEOCODING

- ? 4 Street type

- ? 1 Secondary unit

- B 0 Built-up area or city

- 1 0 Region

- C 0 Country

- P 4 Postal code

- ? ? Postal add-on code

- MATCHCODE 2 = Street type not matched
- MATCHMODE DEFAULT

- LONGITUDE -122.46105691438208
- LATITUDE 37.788768523050976

The result of the function is an array of three SDO_GEO_ADDR objects, each describing one match,
complete with normalized address and geographical location.

So, what do we do with this result? Which of the matches is the right one for the address passed
as input? There is no way for a program to decide that. The proper approach is to ask the end user. If
the geocoding request is done in an interactive application (web or client/server), then the applica-
tion can display the list of matches and allow the user to pick the right one. This would be the case
for a call-center application where the operator asks the caller to clarify his or her address.

If the geocoding request is done in batch mode (that is, without direct user interaction), then
the application program should just flag the record for later manual investigation or write it out to
a “rejected addresses” table or report.

Our second example is to geocode a POI whose name appears multiple times in the geocoding
reference data, such as a chain brand name (hotel, car rental company, and so on) or a common
name. The geocoder then returns a list of those POIs that match the given name.

The example in Listing 6-17 (still using the FORMAT_ADDR_ARRAY function) shows how to get the
full address and geographical location of the two YMCAs in San Francisco.

Listing 6-17. Using GEOCODE_ALL Over an Ambiguous Address

SQL> SET SERVEROUTPUT ON SIZE 10000
SOL> BEGIN
FORMAT ADDR_ARRAY (
SDO_GCDR.GEOCODE_ALL (

"SPATIAL',
SDO_KEYWORDARRAY('YMCA', 'San Francisco, CA'),
s,
'DEFAULT'
)
;
END;
/
ADDRESS[1]
- ID 1
- ADDRESSLINES
- PLACENAME YMCA
- STREETNAME GOLDEN GATE AVE
- INTERSECTSTREET
- SECUNIT
- SETTLEMENT SAN FRANCISCO
- MUNICIPALITY
- REGION CA
- COUNTRY us
- POSTALCODE 94102
- POSTALADDONCODE

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING 181

- FULLPOSTALCODE 94102

- POBOX

- HOUSENUMBER 220

- BASENAME

- STREETTYPE

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE L

- PERCENT 0

- EDGEID 23605184

- ERRORMESSAGE 272 7#ENUT?B281CP?
- MATCHVECTOR ??7??410111077004?
- # 4 House or building number

1 Street prefix

E
- N 0 Street base name
- U 1 Street suffix
- T 1 Street type
- ? 1 Secondary unit
- B 0 Built-up area or city
- 10 Region
- C o Country
- P 4 Postal code
- ? ? Postal add-on code
- MATCHCODE 1 = Exact match
- MATCHMODE DEFAULT
- LONGITUDE -122.41412
- LATITUDE 37.78184
ADDRESS[2]
- ID 1
- ADDRESSLINES
- PLACENAME YMCA
- STREETNAME SACRAMENTO ST
- INTERSECTSTREET
- SECUNIT
- SETTLEMENT SAN FRANCISCO
- MUNICIPALITY
- REGION CA
- COUNTRY us
- POSTALCODE 94108
- POSTALADDONCODE
- FULLPOSTALCODE 94108
- POBOX
- HOUSENUMBER 855
- BASENAME
- STREETTYPE
- STREETTYPEBEFORE F
- STREETTYPEATTACHED F
- STREETPREFIX
- STREETSUFFIX
- SIDE R
- PERCENT 0
- EDGEID 23615793
- ERRORMESSAGE 2222#ENUT?B281CP?
- MATCHVECTOR 2222410111022004?

www.freepdf-books.com

http://www.it-ebooks.info/

182

CHAPTER 6 ©* GEOCODING

House or building number
Street prefix

Street base name

Street suffix

Street type

Secondary unit

Built-up area or city
Region

Country

Postal code

- ? ? Postal add-on code

- MATCHCODE 1 = Exact match
- MATCHMODE DEFAULT

- LONGITUDE -122.40685
- LATITUDE 37.7932

1
TN W v CZm*H#
BNOOORRRLRORSN

The response contains two matches (that is, two SDO_GEO_ADDR objects): one for the YMCA at
220 Golden Gate Avenue and the other for the YMCA at 855 Sacramento Street (with, of course, their
geographical coordinates).

Caution Do not use the GEOCODE_ALL function as a way to search for businesses in a city. The proper way is
to perform proximity searches (“within distance” or “nearest neighbor”) on POI tables using the techniques described
in Chapter 8.

Geocoding Using Structured Addresses

The GEOCODE and GEOCODE_ALL functions work on unformatted addresses: you pass the address as an
array of strings, where each string represents one line of the address. The geocoder then needs to
parse those lines into distinct address components.

Sometimes, however, your database already contains formatted addresses. For example, your
customer table contains columns such as STREET_NAME, HOUSE_NUMBER, ZIP_CODE, CITY NAME, ..., or
your input form to your web application breaks down an address into the same elements.

In those cases, it will be simpler and more efficient to provide the address elements to the
geocoding functions in a structured way: the geocoder will no longer need to parse the address, and
your multinational application will no longer need to worry about formatting the address lines cor-
rectly for each country.

To use this technique, just call the GEOCODE_ADDR or GEOCODE_ADDR_ALL functions. They are iden-
tical to the GEOCODE and GEOCODE_ALL functions, respectively, except for their input arguments.

GEOCODE_ADDR

GEOCODE_ADDR is identical to the GEOCODE function, except it takes an SDO_GEO_ADDR object as input,
instead of an SDO_KEYWORDARRAY. Note that the other parameters (country and match_mode) are now
also passed inside the SDO_GEO_ADDR object.

This is the syntax of the GEOCODE_ADDR function:

SDO_GCDR.GEOCODE_ADDR
(
username IN VARCHAR2,

address IN SDO_GEO_ADDR
) RETURN SDO_GEO ADDR;

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

Using the SDO_GEO_ADDR Object

Filling an SDO_GEO_ADDR object using its full constructor is difficult because of all its attributes. The
attributes must all be filled explicitly, most of them with nulls. But you can use a simplified constructor,
as illustrated in Listing 6-18.

Listing 6-18. Example of Calling the GEOCODE_ADDR Function
SQL> SELECT SDO_GCDR.GEOCODE_ADDR

"SPATIAL',

SDO_GEO_ADDR
us', -~ COUNTRY
'DEFAULT', -- MATCHMODE
1200 Clay Street', -- STREET
'San Francisco', -- SETTLEMENT
NULL, -- MUNICIPALITY
"CA', -- REGION
'94108" -- POSTALCODE)

FROM DUAL;

Note that you must specify a value for all arguments to the SDO_GEO_ADDR constructor. If you do
not have a value for some argument, then specify the NULL value.

If you want to geocode a point of interest for which you do not have any address, then you
can use your own stored function to populate the PLACENAME attribute of the SDO_GEO_ADDR object.
Listing 6-19 shows an example of such a function.

Listing 6-19. A Function Producing an SDO_GEO_ADDR Object

SQL> CREATE OR REPLACE FUNCTION geo addr poi (
country VARCHAR2,
poi_name VARCHAR2

RETURN SDO GEO_ADDR

AS
geo_addr SDO_GEO _ADDR := SDO_GEO_ADDR();

BEGIN
geo_addr.country := country;
geo_addr.placename := poi_name;
geo_addr.matchmode := 'DEFAULT';

return geo_addr ;

end;

/

The example in Listing 6-20 illustrates how to use this function in order to find the location of
the Moscone Center.

Listing 6-20. Example of Calling the GEOCODE_ADDR Function
SQL> SELECT SDO_GCDR.GEOCODE_ADDR

"SPATIAL',
GEO_ADDR_POI

(
s, -~ COUNTRY

www.freepdf-books.com

183

http://www.it-ebooks.info/

184

CHAPTER 6 ©* GEOCODING

'Moscone Center' -- POI_NAME
)

FROM DUAL;

SDO_GEO_ADDR(0, SDO_KEYWORDARRAY(NULL), 'MOSCONE CENTER', 'HOWARD ST', NULL, NULL,
"SAN FRANCISCO', NULL, 'CA', 'US', '94103', NULL, '94103', NULL, '747', NULL, NULL,
"F', 'F', NULL, NULL, 'R', 0, 23607005, '????#ENUT?B281CP?', 1, 'DEFAULT',
-122.40137, 37.7841, '?222414111422404?")

GEOCODE_ADDR_ALL

GEOCODE_ADDR_ALL is identical to the GEOCODE_ALL function, except it takes an SDO_GEO_ADDR object as
input, instead of an SDO_KEYWORDARRAY. Note that the other parameters (country and match_mode) are
now also passed inside the SDO_GEO_ADDR object.

This is the syntax of the GEOCODE_ADDR_ALL function:

SDO_GCDR.GEOCODE_ADDR _ALL

(
username IN VARCHAR2,
address IN SDO_GEO_ADDR
) RETURN SDO_GEO_ADDR_ARRAY;

Reverse Geocoding

As the name implies, reverse geocoding performs the reverse operation of geocoding; given a spatial
location (coordinates of a point), it returns the corresponding street address.

Reverse geocoding is useful for many applications. For example, GPS devices may be used to
track buses or delivery vehicles. The reverse geocoding process will allow you to know approximately
at what street address the bus or truck currently is.

Another common use is to identify locations from a click on a map. The click is first converted
into geographical coordinates (MapViewer will do this automatically), then the reverse geocoding
returns the corresponding street address.

The reverse geocoder performs four steps:

1. Locate the road segment. This is done using a nearest neighbor search, that is, using the
SDO_NN spatial operator that you will see in Chapter 8.

2. Project the input location on the road segment, that is, find the point on the road segment
that corresponds to the shortest distance between the input location and the road segment.

3. Compute the house number at that point by interpolation between the known house num-
bers at each end of the road segment. The house number returned will be on the same side
of the road as the geographical point given as input.

4. Find all other address details (street name, postal code, city, and so on).

To perform reverse geocodings, use the REVERSE_GEOCODE function.

REVERSE_GEOCODE

Here is the syntax of the REVERSE_GEOCODE function:

SDO_GCDR.REVERSE_GEOCODE
(
username IN VARCHAR2,
location IN SDO_GEOMETRY,
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

country IN VARCHAR2
) RETURN SDO_GEO_ADDR;

Function Parameters
The following sections outline the parameters for the REVERSE_GEOCODE function.

username

This is the name of the Oracle schema that contains the geocoding tables for the specified country.
It is a required argument. If the data is in the same schema as the one that calls the function, then
you can also use the SQL built-in USER.

location

This is the geographic point to locate.

country

This is the two-letter ISO code for the country to which the address to be geocoded belongs.

Function Result: SDO_GEO_ADDR

This structure contains the detailed results of a geocoding operation. See Table 6-4 and the discussion
of the GEOCODE function for the exact content of the structure and how to use it.

Note The table GC_ROAD SEGMENT xx must have a spatial index in order to allow reverse geocoding.

Examples

The example in Listing 6-21 illustrates the REVERSE_GEOCODE function. To make the result more read-
able, we will format them using the FORMAT _GEO_ADDR procedure.

Listing 6-21. Example of Calling the REVERSE_GEOCODE Function

SQL> SET SERVEROUTPUT ON
SQL> BEGIN
FORMAT GEO_ADDR (
SDO_GCDR.REVERSE_GEOCODE (
'SPATIAL',
SDO_GEOMETRY (
2001,
8307,
SDO_POINT TYPE (-122.4152166, 37.7930, NULL),
NULL, NULL

)s
s

www.freepdf-books.com

185

http://www.it-ebooks.info/

186

CHAPTER 6 ©* GEOCODING

- ID 0

- ADDRESSLINES

- PLACENAME

- STREETNAME CLAY ST

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO
- MUNICIPALITY

- REGION CA

- COUNTRY us

- POSTALCODE 94109

- POSTALADDONCODE

- FULLPOSTALCODE 94109

- POBOX

- HOUSENUMBER 1351

- BASENAME CLAY

- STREETTYPE ST

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE R

- PERCENT .484531914156248
- EDGEID 23600696

- ERRORMESSAGE

- MATCHVECTOR ?2?22414141422404?

1
~

House or building number

Street prefix

Street base name

Street suffix

Street type

Secondary unit

Built-up area or city

Region

Country

Postal code

Postal add-on code

- MATCHCODE 1 = Exact match
- MATCHMODE DEFAULT

- LONGITUDE -122.415225677046
- LATITUDE 37.7930717518897

1
BV NI N NN N N

Notice that the coordinates returned are different from the ones passed. This is because the
input point is some distance away from the line that represents the centerline of the road.

Geocoding Business Data

Now that you know how to use the geocoder, how can you use it to location-enable business data—
that is, the customers, branches, and competitors tables?

Adding the Spatial Column

The first step is to add a spatial column (type SDO_GEOMETRY) to the tables. You can easily do this using
an ALTER statement, as shown in Listing 6-22. We previously explained the process in Chapter 3.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

Listing 6-22. Adding a Spatial Column

SQL> ALTER TABLE customers ADD (location SDO_GEOMETRY);
SQL> ALTER TABLE branches ADD (location SDO_GEOMETRY);
SQL> ALTER TABLE competitors ADD (location SDO_GEOMETRY);

Geocoding the Addresses: The “Naive” Approach

As you have seen, geocoding an address is really quite simple when you are certain that the address
is valid. Just use the result of the GEOCODE_AS_GEOMETRY function to update the location column you
just added, as shown in Listing 6-23 for the branches table. The process is identical for the other
tables (they all have the same structure).

Listing 6-23. Populating the location Column of the branches Table

SOL> UPDATE branches
SET location = SDO_GCDR.GEOCODE_AS GEOMETRY
(
"SPATIAL',
SDO_KEYWORDARRAY
(street number || ' ' || street name, city || ' ' || state || '’
|| postal code),
s
)5
SQL> COMMIT;

The GEOCODE_AS_GEOMETRY function expects the input address to be passed as a series of format-
ted lines. However, the branches table already contains a structured address (that is, it has address
elements in multiple columns):

STREET_NUMBER VARCHAR2(5)
STREET_NAME VARCHAR2(60)
CITY VARCHAR2(32)
POSTAL_CODE VARCHAR2(16)
STATE VARCHAR2(32)

All you need is to construct a multiline address using this information. You can do this simply
by concatenating the address elements:

e First address line: street_number || ' ' || street name

e Second address line: city || ' ' || state || ' ' || postal code

Then, just pass each resulting string as one element to the SD0_KEYWORDARRAY object constructor.

We assume that all addresses are U.S. addresses, but this may not be the case. Addresses in dif-
ferent countries must be formatted according to the formatting rules of addresses in those countries
before being passed to the geocoder.

For example, if you were geocoding German addresses, Listing 6-24 shows what the previous
code becomes.

Listing 6-24. Populating the location Column of the branches Table for German Addresses

SQL> UPDATE branches
SET location = SDO_GCDR.GEOCODE_AS GEOMETRY
(
"SPATIAL',
SDO_KEYWORDARRAY
(street name || " ' || street number || postal code || ' ' || city),
www.freepdf-books.com

187

http://www.it-ebooks.info/

188

CHAPTER 6 ©* GEOCODING

"DE
)
SQL> COMMIT;

The address lines are now formatted according to the German rules: the house number follows
the street name, and the postal code precedes the city. There is no state. The country code (DE) passed
indicates that this is a German address. Note that we assume that the geocoding reference data
tables (GC_ROAD DE and so on) are in the database schema called SPATIAL.

However, the better way to handle multinational addresses is to use the structured addressing
mechanism, that is, passing address elements in an SDO_GEO_ADDR structure.

Note For U.S. addresses, the state is optional if the address contains a postal code.

Address Verification and Correction
The preceding approach is simple to use, but it has limitations:
* You cannot be sure of the quality of the geocoding result (that is, there may be errors in the

input addresses). Failed or ambiguous addresses should be flagged for later manual correc-
tion, but status information is not returned from the GEOCODE_AS_GEOMETRY function.

¢ Ifan address contains errors (such as an invalid postal code), you should be able to update it
with the corrected information.

» For large data sets, it is not practical to do the update as a single transaction. You may need
to perform intermediate commits.

To overcome these limitations, you need to use PL/SQL. The procedure in Listing 6-25
geocodes the addresses in the customers table.

Listing 6-25. Address Geocoding and Correction

SET SERVEROUTPUT ON SIZE 32000
DECLARE
type match_counts t is table of number;

input_address sdo_geo_addr; -- Input address to geocode
geo_addresses sdo_addr_array; -- Array of matching geocoded addresses
geo_address sdo_geo_addr; -- Matching address

geo_location sdo_geometry; -- Geographical location

address_count number; -- Addresses processed

geocoded_count number; -- Addresses successfully geocoded
corrected_count number; -- Addresses geocoded and corrected
ambiguous_count number; -- Ambiguous addresses (multiple matches)
error_count number; -- Addresses rejected

match_counts match _counts t -- Counts per matchcode

1= match_counts_t();

update_address boolean; -- Should update address ?

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6

BEGIN

-- Clear counters

address_count := 0;

geocoded_count := 0;

error_count := 0;

corrected count := 0;

ambiguous_count := 0;

match_counts.extend(20);

for i in 1..match_counts.count loop
match_counts(i) := 0;

end loop;

-- Range over the customers
for b in

(select * from customers)
loop

-- Format the input address
input_address := sdo_geo addr();

input_address.streetname := b.street name;
input_address.housenumber := b.street number;
input_address.settlement := b.city;
input_address.postalcode := b.postal code;
input_address.region 1= b.state;
input_address.country 1= 'US';
input_address.matchmode := 'DEFAULT';

-- Geocode the address

geo_addresses := sdo_gcdr.geocode addr all (
"SPATIAL',
input_address

);

-- Check results
update_address := false;
address_count := address count + 1;

if geo_addresses.count() > 1 then

-- Address is ambiguous: reject
geo location := NULL;
ambiguous_count := ambiguous_count + 1;

else
-- Extract first or only match
geo_address := geo_addresses(1);

-- Keep counts of matchcodes seen
match_counts(geo_address.matchcode) :=
match_counts(geo_address.matchcode) + 1;

-- The following matchcodes are accepted:

-- 1 = exact match

-- 2 = only street type or suffix/prefix is incorrect
only postal code is incorrect

1
1
=
o
I

www.freepdf-books.com

GEOCODING

189

http://www.it-ebooks.info/

190 CHAPTER 6 ©* GEOCODING

if geo_address.matchcode in (1,2,10) then
-- Geocoding succeeded: construct geometric point
geo location := sdo_geometry (2001, 8307, sdo_point type (
geo_address.longitude, geo address.latitude, null),
null, null);
geocoded_count := geocoded count + 1;

-- If wrong street type or postal code (matchcodes 2 or 10)
-- accept the geocode and correct the address in the database
if geo_address.matchcode <> 1 then

update_address := true;

corrected count := corrected count + 1;
end if;

else
-- For all other matchcodes, reject the geocode
error _count := error count + 1;
geo_location := NULL;

end if;

end if;

-- Update location and corrected address in database
if update_address then
update customers
set location = geo location,
street_name = geo address.streetname,
postal code = geo address.postalcode
where id = b.id;
else
update customers
set location = geo location
where id = b.id;
end if;

end loop;

-- Display counts of records processed
dbms_output.put_line ('Geocoding completed');

dbms_output.put _line (address count || ' Addresses processed');
dbms_output.put line (geocoded count || ' Addresses successfully geocoded');
dbms_output.put line (corrected count || ' Addresses corrected');
dbms_output.put_line (ambiguous count || ' ambiguous addresses rejected');
dbms_output.put _line (error count || ' addresses with errors');

for i in 1..match_counts.count loop
if match_counts(i) > 0 then
dbms_output.put line ('Match code "|| 1 || ': ' || match_counts(i));
end if;
end loop;

END;
/

Let’s now look at some of the important parts of that procedure.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

The following is where you do the actual geocoding of each address. The address elements are
stored in a SDO_GEO_ADDR structure passed to the GEOCODE_ADDR_ALL function, which returns a list of
matches.

-- Format the input address
input_address := sdo_geo addr();
input_address.streetname := b.street name;

input_address.housenumber := b.street number;
input_address.settlement := b.city;
input_address.postalcode := b.postal code;
input_address.region 1= b.state;
input_address.country 1= "US';
input_address.matchmode := 'DEFAULT';

-- Geocode the address

geo_addresses := sdo_gcdr.geocode addr all (

"SPATIAL',
input_address

)

If the function returned multiple results in the SDO_ADDR_ARRAY, that means the address is
ambiguous and we reject it.

if geo_addresses.count() > 1 then
-- Address is ambiguous: reject
geo_location := NULL;
ambiguous count := ambiguous count + 1;
else

If the function returned one result, we can find out the quality of the result by looking at the
MATCHCODE for that result. Match codes 1, 2, and 10 are accepted. Match code 1 indicates an exact
match—the address was found and a geographical location was returned.

Match code 2 indicates that the street type, prefix, or suffix is in error. This is a common mistake.
For example, the address is stored as “1250 Clay Avenue,” when it should really be “1250 Clay Street.”

Match code 10 indicates that the postal code is incorrect. This is also an easy mistake to make,
especially for streets that span multiple postal codes. For example, for the address “1250 Clay Street,
San Francisco, CA 94109” the correct postal code is 94108.

In both cases, we choose to accept the corrected information returned by the geocoder, and we
use it to update the address in the table.

We also construct an SDO_GEOMETRY object using the coordinates returned. Notice that the coor-
dinate system is set to 8307 (longitude/latitude, WGS84), which we know is the coordinate system
used for the geocoding reference data.!

Finally, if the match code is anything else, we reject the result.

if geo_address.matchcode in (1,2,10) then
-- Geocoding succeeded: construct geometric point
geo_location := sdo _geometry (2001, 8307, sdo_point type (
geo_address.longitude, geo address.latitude, null),
null, null);
geocoded_count := geocoded count + 1;

-- If wrong street type or postal code (matchcodes 2 or 10)
-- accept the geocode and correct the address in the database

1. We know this because NAVTEQ), the supplier of the geocoder reference data, uses this coordinate system.

www.freepdf-books.com

191

http://www.it-ebooks.info/

192

CHAPTER 6 ©* GEOCODING

if geo_address.matchcode <> 1 then
update_address := true;
corrected count := corrected count + 1;
end if;
else
-- For all other matchcodes, reject the geocode
error count := error count + 1;
geo_location := NULL;
end if;

end if;

We can now update the table row inside the database. If the address error (if any) can be cor-
rected, we do so. We replace the street name and postal code columns with the values returned by
the geocoder.

In all cases, we update the location column with the geographical point object that contains
the coordinates of the address. If the address was ambiguous or if the geocoder indicated a problem
that we chose not to correct automatically, then the location column is set to NULL to indicate failure.

-- Update location and corrected address in database
if update_address then
update customers
set location = geo location,
street_name = geo address.streetname,
postal code = geo address.postalcode
where id = b.id;
else
update customers
set location = geo location
where id = b.id;
end if;

When all addresses have been processed, we print out some statistics. Those numbers are useful
to measure the quality of the input addresses. A hit rate can be computed as the ratio of successfully
geocoded addresses to the total addresses to process.

-- Display counts of records processed

dbms_output.put_line ('Geocoding completed');

dbms_output.put _line (address count || ' Addresses processed');
dbms_output.put_line (geocoded count || ' Addresses successfully geocoded');
dbms_output.put line (corrected count || ' Addresses corrected');
dbms_output.put_line (ambiguous count || ' ambiguous addresses rejected');
dbms_output.put line (error count || ' addresses with errors');

Running the preceding code produces results like the following:

SOL> @geocode_customers.sql
Geocoding completed

3173 Addresses processed

3146 Addresses successfully geocoded
6 Addresses corrected

10 ambiguous addresses rejected

17 addresses with errors

Match code 1: 3140

Match code 2: 6

Match code 4: 9

Match code 11: 8

PL/SQL procedure successfully completed.

www.freepdf-books.com

mailto:@geocode_customers.sql
http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

The hit rate for this run is 99.1 percent. Out of 3,173 addresses, 3,146 were successfully
geocoded, among which 6 had minor errors that were corrected. Twenty-seven addresses were
rejected; 10 addresses are ambiguous; and 17 addresses have various errors, for example, street
name errors (match code 4) or city name errors (match code 11).

The next step is for someone to look at those failed addresses and correct them manually.
Finding them is easy; we need look at only those rows where the location column is NULL. Once
those addresses are corrected, we can rerun the process, possibly on only the new addresses.

Further Refinements

You can build upon and improve the preceding code in several ways:

e Turn it into a stored procedure that takes a table_name column as input. Use dynamic SQL to
make the procedure work with any table.

¢ Perform periodic commits. This allows you to easily restart the process in case of failure by
just skipping those addresses that you already processed.

* Only geocode those addresses that have the location column set to NULL. This allows you to
use the same process after correcting the rejected addresses. It also enables you to restart the
process should it fail for any reason. It will skip those addresses that were already geocoded.

e Add amatch_code column to the data tables and populate it with the match codes returned
by the geocoder. This can help the user who later corrects the addresses to better understand
the nature of each error.

Automatic Geocoding

The geocoder is invoked using simple function calls. Those function calls can be used from any-
where, including from triggers. This is a powerful mechanism—it allows addresses to be geocoded
automatically whenever an address is changed. Listing 6-26 shows a simple trigger that automati-
cally geocodes addresses in the branches table.

Listing 6-26. Automatic Geocoding of the branches Table Using a Simple Trigger

CREATE OR REPLACE TRIGGER branches geocode
BEFORE INSERT OR UPDATE OF street name, street number, postal code, city, state
ON branches
FOR EACH ROW

DECLARE
geo_location SDO_GEOMETRY;
BEGIN
geo location := SDO_GCDR.GEOCODE AS GEOMETRY (
"SPATIAL',
SDO_KEYWORDARRAY (
:new.street number || ' ' || :new.street name,
tnew.city || " " || :new.state || ' ' ||:new.postal code),
s
)s
:new.location := geo location;
END;
/

This trigger uses the “naive” approach: the new location is accepted no matter what errors exist
in the new address. Consider the following example, in which the address of one of our branches is
changed. The branch is currently at 1 Van Ness Avenue.

www.freepdf-books.com

193

http://www.it-ebooks.info/

194

CHAPTER 6 ©* GEOCODING

SOL> SELECT name, street number, street name, city, postal code, location
FROM branches
WHERE id = 77;

NAME STREE STREET_NAME CITY POSTAL_CODE

BANK OF AMERICA 1 S VAN NESS AVE SAN FRANCISCO 94103
SDO_GEOMETRY (2001, 8307, SDO_POINT TYPE(-122.41915, 37.7751038, NULL), NULL, NULL)

The branch relocates to 1500 Clay Street:

SQL> UPDATE branches
SET street name = 'Clay Street', street number = 1500
WHERE id = 77;

1 row updated.

This is the result:

SOL> SELECT name, street_number, street_name, city, postal code, location
FROM branches
WHERE id = 77;

NAME STREE STREET NAME CITY POSTAL CODE
LOCATION(SDO GTYPE, SDO SRID, SDO POINT(X, VY, Z), SDO ELEM_INFO,

SDO_ORDINATES)

BANK OF AMERICA 1500 Clay Street SAN FRANCISCO 94103

SDO_GEOMETRY (2001, 8307, SDO_POINT TYPE(-122.41768, 37.7927675, NULL), NULL, NULL)

The branch now has the new address, and the geographic coordinates point to the new
address. However, the address has the wrong postal code—we forgot to change it!

A better approach is to proceed as in the previous example—that is, use the GEOCODE_ALL proce-
dure and use the result to automatically correct the address in addition to simply geocoding it. The
trigger in Listing 6-27 illustrates this technique.

Listing 6-27. Automatic Geocoding with Address Correction

CREATE OR REPLACE TRIGGER branches_geocode
BEFORE INSERT OR UPDATE OF street name, street number, postal code, city, state
ON branches
FOR EACH ROW
DECLARE
input_address SDO_GEO ADDR;
geo_location SDO_GEOMETRY;
geo_addresses SDO_ADDR_ARRAY;
geo_address SDO_GEO_ADDR;
update_address BOOLEAN;

BEGIN
-- Format the input address
input_address := sdo_geo_addr();
input_address.streetname := :new.street_name;
input_address.housenumber := :new.street number;
input_address.settlement tnew.city;
input_address.postalcode :new.postal code;

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

input_address.region = :new.state;
input_address.country = 'US';
input_address.matchmode := 'DEFAULT';

-- Geocode the address

geo_addresses := sdo_gcdr.geocode addr all (
"SPATIAL',

input_address

)s

-- Check results
if geo_addresses.count() > 1 then
-- Address is ambiguous: reject
geo location := NULL;
else
-- Extract first or only match
geo_address := geo addresses(1);
-- The following matchcodes are accepted:
-- 1 = exact match
-- 2 = only street type or suffix/prefix is incorrect
-- 10 = only postal code is incorrect
if geo_address.matchcode in (1,2,10) then
-- Geocoding succeeded: construct geometric point
geo_location := sdo_geometry (2001, 8307, sdo_point type (
geo_address.longitude, geo address.latitude, null),
null, null);
-- If wrong street type or postal code (matchcodes 2 or 10)
-- accept the geocode and correct the address in the database
if geo_address.matchcode <> 1 then
update_address := true;
end if;
else
-- For all other matchcoded, reject the geocode
geo_location := NULL;
end if;
end if;

-- Update location

:new.location := geo location;

-- If needed, correct address
tnew.street name := geo_address.streetname;
:new.postal code := geo_address.postalcode;

END;
/

Once this trigger is created, let’s see what happens if we perform the same address change of
branch 77 from 1 Van Ness Avenue to 1500 Clay Street:

SQL> UPDATE branches
SET street name = 'Clay Street', street_number = 1500
WHERE id = 77;

1 row updated.

www.freepdf-books.com

195

http://www.it-ebooks.info/

196

CHAPTER 6 ©* GEOCODING

This is the result:

SOL> SELECT name, street number, street name, city, postal code, location
FROM branches WHERE id = 77;

NAME STREE STREET_NAME CITY POSTAL_CODE

LOCATION(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,
SDO_ORDINATES)

BANK OF AMERICA 1500 CLAY ST SAN FRANCISCO 94109
SDO_GEOMETRY (2001, 8307, SDO_POINT TYPE(-122.41768, 37.7927675, NULL), NULL, NULL)

The geographical location is the same as computed previously, but notice that the street name
was corrected to match the name in the reference data and, more important, the postal code is now
the right one for that location.

Let’s say the branch moves again, this time to 1200 Montgomery Street:

SOL> UPDATE branches SET street name = 'Montgommery street', street number = 1200
WHERE id = 77;

Notice that again we did not specify any postal code, but we also made a typing mistake: Mont-
gommery instead of Montgomery. The result of the update is as follows:

SOL> SELECT name, street number, street name, city, postal code, location
FROM branches
WHERE id = 77;

NAME STREE STREET NAME CITY POSTAL_CODE

LOCATION(SDO_GTYPE, SDO SRID, SDO _POINT(X, Y, Z), SDO_ELEM INFO,
SDO_ORDINATES)

BANK OF AMERICA 1200 MONTGOMERY ST SAN FRANCISCO 94133
SDO_GEOMETRY (2001, 8307, SDO_POINT TYPE(-122.40405, 37.8001438, NULL), NULL, NULL)

The street name was automatically corrected, and the postal code is also now correct for that
section of Montgomery Street.

If the address given cannot be corrected or is ambiguous, then the location column is auto-
matically set to NULL.

The major benefit of this approach is that it allows addresses to be automatically geocoded and
corrected without needing any changes to the existing applications.

The Geocoding Server

Using SQL calls to geocode addresses is nice but requires a tight coupling between your application
and the database via JDBC connections. Another possibility is to set up a web service that will per-
form the geocoding calls on your behalf. This is the role of the Geocoding Server web service: you
send it geocoding requests, expressed in XML, and it returns the results also in XML.

Architecture

The architecture of the Geocoding Server is illustrated in Figure 6-3. The Geocoding Server is a pure
Java server component (a Java servlet) that needs a Java application server environment. You can
deploy it in the Oracle Application Server, as well as any J2EE-compliant application server.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

Client Client Application

Oracle Geocoding Server
Is\p:)‘:lcratlon Parser

erve Profiles
Database

Geocoding Country
Tables Profiles

Figure 6-3. Oracle Geocoding Server architecture

The Geocoding Server does not use the geocoding procedures that you saw in previous sections.
Rather, it runs the geocoding logic directly and uses JDBC only to read from the database geocoding
data tables. It uses its own local copy of the parser profiles, instead of the GC_PARSER_PROFILES and
GC_PARSER_PROFILEAFS tables. It does, however, load country profiles from the GC_COUNTRY_PROFILE
table.

Figure 6-4 illustrates the way your application talks to the Geocoding Server. Your application
must first format the geocoding request in XML and then send it to the server. Once the server has
found a matching location, it will send another XML document back to your application, which you
then need to parse and use.

Client Application

Geocode Request Geocode Response
Street Name Normalized Address
House Number Spatial Coordinates
City Network Location
e Result Quality

7 Vo

Geocoding Server

Figure 6-4. Oracle Geocoding Server request/response flow

The geocode request contains the address to process. You can pass it unstructured, as a set of
address lines, or (for U.S. addresses) among a small number of semistructured encodings. The
geocode response contains essentially the same information as the SDO_GEO_ADDR structure you
learned about earlier.

www.freepdf-books.com

197

http://www.it-ebooks.info/

198

CHAPTER 6 ©* GEOCODING

Installation and Configuration

The Geocoding Engine is provided as a standard J2EE archive (EAR) format. See the introduction for
details on how to install and configure OC4J and how to deploy applications using the OC4J console.
The installation EAR file for the Geocoding Engine is provided in $ORACLE_HOME/md/jlib/geocoder.ear.

Once installed, you need to configure the geocoding server. Do this by manually editing the
geocodercfg.xml file in $0C4J_HOME/j2ee/home/applications/geocoder/web/WEB-INF/config. To make
the geocoder use your modified configuration, you need to restart it. You can do so by stopping and
restarting the geocoder application using the OC4J administration console.

Tip You can also edit the configuration file and restart the geocoder using its own administration tool. You can
access it from the Geocoder’s home page, shown in Figure 6-5.

Caution The geocodercfg.xml file provided with the Geocoding Engine contains a database connection defini-
tion that points to a nonexistent database. This will make the engine fail the first time it starts, right after deployment.

The following is an example of a configuration file. All settings are the ones in the initial config-
uration. The only parameters you must change are those that define the database connection.

<GeocoderConfig >
<logging log level="finest" log_thread_name="false" log_time="true">
</logging>
<geocoder>
<database name="local"
host="localhost"
port="1521"
sid="orcl"
mode="thin"
user="gc"
password="gc" />
<data_source name="NAV" />
<parameters cache_admin="false"
cache_postcode="false"
fuzzy string distance="70"
fuzzy leading char match="4"
debug_level="0"/>
</geocoder>
<addressparser>
<parameters debug level="0" />
</addressparser>
</GeocoderConfig>

Logging
The Geocoding Server can generate a log of its operation. The <logging> element enables you to
control how detailed this logging should be. The following is an example setting:

<logging log level="info" log thread name="true" log time="true">
</logging>

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

The element contains the following attributes:

* log_level: This attribute defines the level of detail to log. It can range from less detailed
(fatal) to very detailed (finest). The default (info) is a good compromise. The debug and
finest settings are useful only to help in diagnosing problems or to better understand the
operation of the geocoder. The finest level involves each request and response getting
logged. Do not use it in production.

* log_thread_name: When this attribute is set to true, the name of each geocoder thread is
logged with each message.

» log time: When this attribute is set to true, a time stamp is logged with each message.

Note that you have no way to decide where the information is logged. It goes on the OC4J console,
as well as to a file: $0C4]_HOME/j2ee/home/applications/geocoder/web/WEB-INF/log/geocoder.log.

Caution The log file gets reset every time the geocoding server starts or restarts.

Database Connection
The following lets you define the connection to your database:

<database name="local"
host="localhost"

port="1521"
sid="orcl"
mode="thin"
user="gc"

password="gc"
/>

where the following is true:

* name is a name for this database.

* host is the name or IP address of the system hosting the Oracle database.

¢ port is the port on which the database is listening. By default, databases listen on port 1521.
* sidis the name of the database.

* mode defines the kind of JDBC driver to use (specify as thin or oci).

* user is the user name to connect to the database.

* password is the password of the user connecting to the database.

Geocoding Parameters
The following lets you exercise some control on the behavior of the geocoder.

<parameters
cache_admin="false"
cache_postcode="false"
fuzzy string distance="70"
fuzzy_leading_char match="4"
load db_parser profiles="false"
/>

www.freepdf-books.com

199

http://www.it-ebooks.info/

200

CHAPTER 6 " GEOCODING

where the following is true:

* cache_admin: This specifies whether to cache the admin areas in memory.
* cache_postcode: This specifies whether to cache the postal codes in memory.

e fuzzy string distance: The geocoder assigns a score (0-100) to each candidate street name.

The score 100 means an exact match. A lower score means the name is less like the input name.
This parameter sets the minimum string match score for qualified candidate street names. Only
names with score equal or greater than this value will be considered possible match candidates.

e fuzzy leading char_match: This is the number of leading characters in a street base name

that are required to match.

* load_db_parser profiles: Set this to true to load the parser profiles from the database

instead of the local ppr files.

Using the Geocoder: XML Queries and Responses

You should now be able to start submitting geocoding requests.

Go to http://oc4j_server:8888/geocoder using your web browser, where oc4j_server is

the name or IP address of the machine where you installed OC4J. For example, you would use
http://127.0.0.1:8888/ geocoder if you installed OC4J on your desktop machine. You should see
the page shown in Figure 6-5.

o
Fle Edt View Favorkes Tools Help ‘ r
(JBack ~) - [x] (@) (| D search < Favarites £ | - o B - 3
Address [{&] hitp:ii127.0.0. 118958 geacader F8e
ORACLE 103 r
bATABASE

Tacaton Setvices

Oracle Spatial International Geocoder

Oracle Spatial Geocoding service is provided by a fully finctional Tava geocoder application engine capable of international address standardization,
geocoding and POI matching by querying geocoder data stored in Oracle database. Oracle Spatial Geocoding service's unique unparsed address
support adds great flexibility and convenience to customer applications

» Dracle Spatial Geocoder concept

+ International postal addrees parsingfgeocoding demo
+ XM geocoding request page

+ Admmstration

Can not login?

Here are a few hints:

o Ifthis Geocoder is deploved in a standalone OC4T: The user name will be "admin", the password is the admun password you specified
when you installed the OC4T instance (at the prompt after you type in "java -jar ocdj.jar -mstall"). If you have forgotten the password,
vou can cd into OCAT's j2eethome direcotry and type "java -jar ocdj.jar -install” again which will prompt for the new admin password,

o If Geocoder is deploved in a full Oracle Application Server: Tou must have created a security user in the OCAT instance where
Geocoder is running, and mapped the security user to the Geocoder's built-in security role "ge_admin_role”. Once you have completed
these tasks throngh the Enterprise Manger website, you can then use that security user's name and password to log in as Geocoder
administrator,

&

SE

[T [[[4mtemet

Figure 6-5. The Geocoding Server home page

www.freepdf-books.com

http://oc4j_server:8888/geocoder
http://127.0.0.1:8888
http://www.it-ebooks.info/

CHAPTER 6

GEOCODING

From this page, you can choose links to various examples. If you click the link “XML geocoding
request page,” you will be taken to the page shown in Figure 6-6. This page allows you to enter any

XML geocoding request and send it to the server.

127.0.0.1:3888/geocoder/xmireq.html - Microsoft Internet Explorer } =]]
J File Edit ‘Wiew Faworites Tools Help ‘ w
| DBack -~ ~ [[2) 0| O searcth oFavarites £ | (0 Lh - 3
JAddress IE http:}/127.0.0,1;8835/geocoder/xmireq.html j So
-
oracLe 4008 [
DATABASE

=Lacation Services

Geocoder XML request page

Geocoding Request

<?ml wersion="1.0" standalone="yes"?x ;I

<geocode_request vendor="elocation™:>
<address_list>
<input_location id="z7010">
<input_address match mode="relax_street_type's

<usg_formZ street="500 oracle pky" city="redwood cicy"” state="ca/ >
</ input_address> b
</input_ location>
</address list>
</geocode_regquests

E
Clear |
4 |_'|LI

& pore LT w4

Figure 6-6. Geocoding request page

Just click the submit button for the first example. You should get a page back that looks like the
one shown in Figure 6-7. Congratulations, you just completed your first geocoding request.

www.freepdf-books.com

201

http://www.it-ebooks.info/

202 CHAPTER 6 " GEOCODING

2 http://127.0.0.1:6888/geocoder /gcserver - Microsoft Internet Explorer E =]

| Fle Edt iew Favortes Tools Help | ar

| eack) - H) 0| O seach U Favarites 2| 0 il -3

| thess [{@] hitp:47127.0.0.1 8858 geosoderfgeserver BB
<?xml version="1.0" encading="UTF-8" 7>

- «<geocode_responses
- =geocode id="27010" match_count="1">
match_vector="77773131310770017?">
zoutput_address name="" house_number="" street="" huiltup_area="REDWOOD CITY" orderl_area="CA" arderd_area=""
country="U8" postal_code="" postal_addon_code="" side="L" percent="0.0" edge_id="0" />
<fmatchz
</geocodex
«/geocode_responsex

[&] Done [T [[[mtemet

M

Figure 6-7. Geocoding response

Notice that the geocoder did not find the exact address (Oracle Parkway). This is because the
dataset does not cover this area.

Geocoding Requests
The following is a simple geocoding request:

<geocode_request>
<address_list>
<input_location id="1" >
<input_address>
<unformatted country="US" >
<address_line value="1250 Clay St" />
<address_line value="San Francisco, CA 94108" />
</unformatted >
</input_address>
</input_location>
</address_list>
</geocode_request>

This request uses the generic, unformatted notation for street addresses. The geocoder sup-
ports a few alternate formats, specifically for U.S. addresses. For example, the request in Figure 6-7
uses one of those formats. The response is like this:

<geocode_response>
<geocode id="1" match_count="1">
<match sequence="0" longitude="-122.4135615" latitude="37.7932878"
match_code="1"
error_message="????#ENUT?B281CP?"
match_vector="????0101010?2000?">
<output_address name="" house number="1250" street="CLAY ST"
builtup_area="SAN FRANCISCO"
orderl area="CA" order8 area="" country="US" postal code="94108"
postal addon code=""
side="L" percent="0.49" edge id="23600695" />
</match>
</geocode>
</geocode_response>

You will notice that the response contains the same information as that returned by the
SDO_GCDR.GEOCODE () function in the SDO_GEO_ADDR structure.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

The following request is ambiguous; you do not specify the house number you want on Clay
Street, and you do not specify any ZIP code:

<geocode_request>
<address _list>
<input_location id="1" >
<input_address>
<unformatted country="US" >
<address_line value="Clay St" />
<address_line value="San Francisco, CA" />
</unformatted >
</input_address>
</input_location>
</address list>
</geocode_request>

Since Clay Street has several ZIP codes, you get a list of matches back:

<geocode_response>
<geocode id="1" match_count="5">
<match sequence="0" longitude="-122.42093" latitude="37.79236"
match_code="1" error message="????#ENUT?B281CP?"
match_vector="????41010107?7004?">
<output_address name="" house number="1698" street="CLAY ST"
builtup_area="SAN FRANCISCO"
orderl area="CA" order8 area="" country="US" postal_code="94109"
postal_addon_code=""
side="L" percent="0.0" edge id="23600700" />
</match>
<match sequence="1" longitude="-122.40904" latitude="37.79385"
match_code="1" error message="????#ENUT?B281CP?"
match_vector="????4101010?2004?">
<output_address name="" house_number="978" street="CLAY ST"
builtup_area="SAN FRANCISCO"
orderl area="CA" order8 area="" country="US" postal code="94108"
postal addon code=""
side="L" percent="0.0" edge_id="23600689" />
</match>
<match sequence="2" longitude="-122.40027" latitude="37.79499"
match _code="1" error message="????#ENUT?B281CP?"
match_vector="????410101022004?">
<output_address name="" house_number="398" street="CLAY ST"
builtup_area="SAN FRANCISCO"
orderl area="CA" order8 area="" country="US" postal code="94111"
postal addon_code=""
side="L" percent="0.0" edge_id="23600678" />
</match>
<match sequence="3" longitude="-122.43909" latitude="37.79007"
match _code="1" error message="????#ENUT?B281CP?"
match _vector="????410101022004?">
<output_address name="" house number="2798" street="CLAY ST"
builtup_area="SAN FRANCISCO"
orderl area="CA" order8 area="" country="US" postal code="94115"
postal addon_code=""
side="L" percent="0.0" edge id="23600709" />
</match>
<match sequence="4" longitude="-122.45372" latitude="37.78822"
match_code="1" error_message="????#ENUT?B281CP?"

www.freepdf-books.com

203

http://www.it-ebooks.info/

204 CHAPTER 6 ©* GEOCODING

match_vector="????41010107?7004?">
<output_address name="" house number="3698" street="CLAY ST"
builtup_area="SAN FRANCISCO"
order1 area="CA" order8_area=
postal addon_code=""
side="L" percent="0.0" edge id="23600718" />
</match>
</geocode>
</geocode_response>

country="US" postal_code="94118"

Batch Geocoding

You probably noticed the <address_list> tagin the geocoding request. As you may have guessed,
this allows you to geocode multiple addresses in one single request, like this:

<geocode_request>
<address _list>
<input_location id="0" >
<input_address>
<unformatted country="US" >
<address_line value="747 Howard Street" />
<address_line value="San Francisco, CA" />
</unformatted >
</input_address>
</input_location>
<input_location id="1" >
<input_address>
<unformatted country="US" >
<address_line value="1300 Columbus" />
<address_line value="San Francisco, CA" />
</unformatted >
</input_address>
</input_location>
<input_location id="2" >
<input_address>
<unformatted country="US" >
<address_line value="1450 California St" />
<address_line value="San Francisco, CA" />
</unformatted >
</input_address>
</input_location>
<input_location id="3" >
<input_address>
<unformatted country="US" >
<address_line value="800 Sutter Street" />
<address_line value="San Francisco, CA" />
</unformatted >
</input_address>
</input_location>
</address_list>
</geocode_request>

The response, predictably, contains multiple <geocode> elements. Note that if an address is
ambiguous, then its <geocode> element would include multiple <match> elements. Notice also that
the id parameter lets you relate each result unambiguously with an input address.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 6 " GEOCODING

<geocode_response>
<geocode id="0" match_count="1">
<match sequence="0" longitude="-122.4014128" latitude="37.7841193"
match_code="1" error_message="????#ENUT?B281CP?"
match_vector="????0101010?2004?">
<output_address name="" house_number="747" street="HOWARD ST"
builtup_area="SAN FRANCISCO"
orderl area="CA" order8 area="" country="US" postal code="94103"
postal addon code=""
side="R" percent="0.53" edge_id="23607005" />
</match>
</geocode>
<geocode id="1" match_count="1">
<match sequence="0" longitude="-122.41833266666666" latitude="37.80600866666666"
match_code="2" error message="????#ENU??B281CP?"
match_vector="?7???0101410?22004?">
<output_address name="" house_number="1300" street="COLUMBUS AVE"
builtup_area="SAN FRANCISCO"
orderl area="CA" order8 area="" country="US" postal code="94133"
postal addon code=""
side="R" percent="0.03333333333333333" edge_id="23601015" />
</match>
</geocode>
<geocode id="2" match_count="1">
<match sequence="0" longitude="-122.4181062" latitude="37.790823100000004"
match_code="1" error message="????#ENUT?B281CP?"
match_vector="????0101010?2004?">
<output_address name="" house number="1450" street="CALIFORNIA ST"
builtup_area="SAN FRANCISCO"
orderl area="CA" order8 area="" country="US" postal code="94109"
postal addon code=""
side="L" percent="0.49" edge id="23599392" />
</match>
</geocode>
<geocode id="3" match_count="1">
<match sequence="0" longitude="-122.4134665" latitude="37.788557899999994"
match_code="1" error message="????#ENUT?B281CP?"
match_vector="????0101010?2004?">
<output_address name="" house_number="800" street="SUTTER ST"
builtup_area="SAN FRANCISCO"
orderl area="CA" order8 area="" country="US" postal code="94109"
postal addon code=""
side="L" percent="0.99" edge_id="23618424" />
</match>
</geocode>
</geocode_response>

Reverse Geocoding

To do areverse geocoding, that is, to obtain the address that corresponds to a spatial location, use
the following:

<geocode_request>
<address list>
<input_location id="1" country="us"

www.freepdf-books.com

205

http://www.it-ebooks.info/

206 CHAPTER 6 ©* GEOCODING

longitude="-122.4014128" latitude="37.7841193" />
</address_list>
</geocode_request>

The result shows that we correctly matched back to the original address.

<geocode_response>
<geocode id="1" match_count="1">
<match sequence="0" longitude="-122.4014128" latitude="37.7841193"
match_code="1" error message="" match_vector="????4141414?2404?">
<output_address name="" house number="747" street="HOWARD ST"
builtup_area="SAN FRANCISCO"
orderl area="CA" order8 area="" country="US" postal code="94103"
postal addon_code=""
side="R" percent="0.53" edge_id="23607005" />
</match>
</geocode>
</geocode_response>

Summary

In this chapter, you learned how to location-enable your data by converting street addresses into
geographical locations that you can then use for spatial searches and various analyses. This is the
first step in adding spatial intelligence to your applications.

You also learned that the geocoder can do much more than just generate geographical coordi-
nates; it can also correct and clean errors in the input addresses.

The next step is to use the geocoded locations for spatial analysis. In the next few chapters, we
describe spatial operators and functions to perform this spatial analysis.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7

Manipulating SDO_GEOMETRY in
Application Programs

So far, you have seen how to define and load spatial objects using the SDO_GEOMETRY type. You have
also seen how to read spatial objects from SQL using SQL*Plus. In this chapter, we cover how to
manipulate SDO_GEOMETRY types in the PL/SQL and Java programming languages.

Note that there are actually few occasions when you need to write explicit code to manipu-
late SDO_GEOMETRY types in your application. In most cases, you can directly examine the contents
of an SDO_GEOMETRY in SQL. For instance, you can obtain the geographical coordinates from an
SDO_GEOMETRY object as shown in Listing 7-1.

Listing 7-1. Extracting Coordinates

SQL> SELECT b.name,
b.location.sdo _point.x b_long,
b.location.sdo_point.y b_lat
FROM branches b

WHERE b.id=42 ;

BANK OF AMERICA -122.4783 37.7803596

This example illustrates a simple yet powerful technique for extracting information from objects:
dot notation. You can use this technique to extract any scalar value from geometry objects—in other
words, the geometry type (SDO_GTYPE); spatial reference system ID (SDO_SRID); and the X, Y, and Z
attributes of the point structure (SDO_POINT.X, .Y, and .Z).

This technique is generic; it applies to all object types, not just the SDO_GEOMETRY type. The
advantage of this technique is that the result set produced does not include any object types—only
native types—so it can be processed using any application tool, without the need to manipulate
objects.

Caution To use this technique, you must use a table alias (b in Listing 7-1). If you forget, your query will fail
with the “ORA-00904: invalid identifier” error.

In most application scenarios, you will be either extracting information from SDO_GEOMETRY as
in Listing 7-1 or selecting data based on spatial relationships using spatial operators and functions
(as discussed in Chapters 8 and 9). Listing 7-2 shows the selection of customers within a quarter-mile

www.freepdf-books.com 27

http://www.it-ebooks.info/

208

CHAPTER 7 ©° MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

distance of a specific branch. All you need for such spatial selection is a spatial operator, called
SDO_WITHIN_DISTANCE, in the WHERE clause of the SQL statement.

Listing 7-2. Simple Spatial Query

SELECT c.name, c.phone number
FROM branches b, customers c
WHERE b.id=42
AND SDO_WITHIN DISTANCE (c.location,b.location,'distance=0.25 unit=mile")

= 'TRUE';
NAME PHONE_NUMBER
GLOWA GARAGE 415-7526677
PUERTOLAS PERFORMANCE 415-7511701
TOPAZ HOTEL SERVICE 415-9744400
CLEMENT STREET GARAGE 415-2218868
ST MONICA ELEMENTARY SCHOOL NULL

Including SQL statements such as the ones in Listing 7-1 or Listing 7-2 in your application is no
different from including any regular query. They may include spatial predicates (operators or func-
tions, as discussed in Chapters 8 and 9) but return regular data types. They can be submitted and
processed from any programming language.

Nonetheless, there are cases in which you need to deploy specific functionalities. In these
cases, it may be necessary to develop specific code to read or write SDO_GEOMETRY types. This is typi-
cally an advanced use of Oracle Spatial but one that makes the difference in practice.

Typical cases in which you may need to manipulate SDO_GEOMETRY data are as follows:

* Advanced location analysis: You may want to create geometries for new branch locations, for
appropriate sales regions, or for tracking the route of a delivery truck in a business application.
In addition to creating geometries, you may need to know how to update existing geometries.
You may want to create new functions for such creation/manipulation.

* Data conversion: You may need to load data that comes in a format for which no standard
converter exists. Many commercial tools provide format-translation facilities, but there are
still numerous cases in which legacy databases store spatial and/or attribute data in specific
proprietary formats. This is also a relatively frequent issue when importing CAD/CAM dia-
grams in Oracle Spatial. In all these cases, you need to create interfaces between the external
format and the Oracle Spatial objects.

e Visualization analysis: You may decide to write your own graphical map renderer and not
use a standard component for this, such as Oracle MapViewer. This may not be a frequent
need, but be aware that there are many specific viewing tools that fetch objects from Oracle
Spatial for display on computer, handheld, and phone displays. The companies that create
these tools need to develop software that has in-depth access to the spatial objects in the
SDO_GEOMETRY column to perform efficient visualizations.

These tasks may require more than issuing SQL statements from application programs—you
may need to know how to manipulate Oracle objects (because SDO_GEOMETRY is an object type) in the
programming language in which the application is coded. In the rest of this chapter, we cover how
to manipulate SDO_GEOMETRY data in detail in PL/SQL and then Java. The types of manipulations that
we describe include the following:

* Mapping the object into corresponding data structures for that language

* Reading/writing SDO_GEOMETRY objects into an application program

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

* Extracting information from SDO_GEOMETRY objects

* Creating new SDO_GEOMETRY objects in the program

* Modifying existing SDO_GEOMETRY objects (PL/SQL)

Whenever possible, we illustrate these types of manipulations using typical tasks in a business
application, such as creating a new branch location, creating a new sales region, updating delivery

routes, and so on. However, such manipulation can be used for a variety of other different purposes
in different applications, as described earlier.

Manipulating Geometries Using PL/SQL

Listing 7-3 shows a sample application using SDO_GEOMETRY objects in PL/SQL. This PL/SQL code
creates a new branch location, computes a rectangular sales region, creates a delivery route for its
business, and extends the delivery route as the delivery truck moves on.

Listing 7-3. Sample Application in PL/SQL

SoL>

DECLARE
b long NUMBER;
b lat NUMBER ;
new_long NUMBER;
new_lat NUMBER;
new_branch loc SDO_GEOMETRY;
sales region SDO_GEOMETRY;
route SDO_GEOMETRY;

BEGIN

-- Obtain old location for branch id=1

SELECT br.location.sdo _point.x, br.location.sdo point.y
INTO b_long, b _lat

FROM branches br

WHERE id=1;

-- Compute new coordinates: say the location is displaced by 0.0025 degrees
new_long := b long+ 0.0025;
new lat := b_lat + 0.0025;

-- Create new branch location using old location
new_branch loc :=
point
(
X=> new_long,
Y=> new_lat,
SRID=> 8307
) 5

-- Compute sales region for this branch
sales region :=
rectangle
(
CTR_X=> new_long,
CTR_Y=> new_lat,
EXP_X=> 0.005,
EXP_Y=> 0.0025,

www.freepdf-books.com

209

http://www.it-ebooks.info/

210 CHAPTER 7 ©° MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

SRID=> 8307
)5
-- Create Delivery Route
route :=
line
(

)

FIRST X=> -122.4804,
FIRST_Y=> 37.7805222,
NEXT X=> -123,

NEXT V=> 38,

SRID=> 8307

)

-- Update Delivery Route by adding new point
route :=
add_to line

)

GEOM=> route,
POINT => POINT(-124, 39, 8307)

)

-- Perform additional analysis such as length of route
-- or # of customers in sales region (we give examples in Chapters 8 and 9)

-- Update geometry in branches table
UPDATE branches SET LOCATION = new_branch _loc WHERE id=1;

END;
/

First, note that all SQL types can be directly used in PL/SQL, so no explicit mapping needs to be
done to use an SDO_GEOMETRY in PL/SQL. As you can observe in Listing 7-3, you use the SDO_GEOMETRY
type in your code in the same way as you use native types (NUMBER, VARCHAR, and so on). In general,
you can do the following:

* Declare variables of type SDO_GEOMETRY to hold geometry objects. For instance, we have

declared three variables, new_branch_loc, sales_region, and route, in Listing 7-3, each of
type SDO_GEOMETRY.

Use regular PL/SQL operations to extract information from these geometry objects or to
modify their structure. Listing 7-3 shows an example of how to extract the x and y coordi-
nates of an SDO_GEOMETRY object.

Use SDO_GEOMETRY objects as bind (or result) variables in static or dynamic SQL statements.
This allows SDO_GEOMETRY objects to be read from and written to database tables. Listing 7-3
shows how to pass an SDO_GEOMETRY object to a SQL statement that updates the location of
a branch.

Create stored functions that may take SDO_GEOMETRY type arguments and/or return SDO_
GEOMETRY objects. For instance, in Listing 7-3, the point function is a stored function that
takes scalar (numeric) arguments and returns an SDO_GEOMETRY object. The add_to line
function has an SDO_GEOMETRY as the first argument and returns an SDO_GEOMETRY.

Next we will fill the gaps in Listing 7-3 and describe how to code some of the stored functions
in Listing 7-3. The code for the point, rectangle, and line stored functions illustrates how to create
new geometries in PL/SQL, and the code for the add_to_line function shows how to modify existing

geometries.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Since an SDO_GEOMETRY object contains two VARRAY structures, SDO_ELEM_INFO and SDO_ORDINATES
(as described in Chapter 4), it would be wise for us to take a detour here and present a primer on
manipulating VARRAYs. These VARRAY structures are primarily used to store polygons and line strings,
such as the sales region of a branch or the route of the delivery truck in our application. If you are
already familiar with how to manipulate VARRAYs in PL/SQL, you can skip to the “Reading and Writ-
ing SDO_GEOMETRY Objects” section.

VARRAY Manipulation Primer

VARRAYs (short for varying arrays) behave pretty much like arrays in any programming language:
they hold a fixed number of elements, but they can be extended and shrunk. They also have a maxi-
mum capacity beyond which you cannot extend them. They use sequential numbers as subscripts,
starting from 1. They also have a number of methods that allow you to manipulate the entries in the
array. Methods are called by appending them to the name of the VARRAY variable.

VARRAYs (as well as NESTED TABLES, another collections form) are not really new; they have been
available in the Oracle database since version 8.0. They are a fundamental part of the object/relational
aspects of Oracle. They make it possible to define multivalued attributes: and so to overcome a fun-
damental characteristic (some would say limitation) of the relational model, an attribute (for example,
a column) can hold only one value per row.

What makes VARRAYs especially powerful is that their elements can themselves be object types.
And those objects can themselves contain other VARRAYs. This makes it possible to construct complex
structures such as collections or matrices and therefore represent complex objects. The SDO_GEOMETRY
type, however, does not use such complex structures. It contains only two VARRAYs of NUMBERs.

Another important property of VARRAYs is that they are ordered. This is especially useful for geo-
metric primitives, since the order in which points are defined is important—a shape defined by points
A, B, C, and D is obviously not the same as one defined by A, C, B, and D.

The code in Listing 7-4 illustrates various array manipulations.

Listing 7-4. Manipulating VARRAYs

SET SERVEROUTPUT ON
DECLARE

-- Declare a type for the VARRAY
TYPE MY_ARRAY_TYPE IS VARRAY(10) OF NUMBER;

-- Declare a VARRAY variable

v MY_ARRAY TYPE;
-- Other variables
I NUMBER ;
K NUMBER;
L NUMBER;
ARRAY_CAPACITY NUMBER;
N_ENTRIES NUMBER;

BEGIN

-- Initialize the array
V := MY _ARRAY TYPE (1,2,3,4);

-- Get the value of a specific entry

DBMS_OUTPUT.PUT_LINE('* Values for specific array entries');

K := V(3);

DBMS_OUTPUT.PUT LINE('V(3)="|] V(3));
www.freepdf-books.com

211

http://www.it-ebooks.info/

212 CHAPTER 7 ©° MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

I :=2;

L := V(I+1);

DBMS_OUTPUT.PUT LINE('I=' || I);
DBMS_OUTPUT.PUT LINE('V(I+1)=" || V(I+1));

-- Find the capacity of a VARRAY:

DBMS_OUTPUT.PUT LINE('* Array capacity');

ARRAY_CAPACITY := V.LIMIT();

DBMS_OUTPUT.PUT LINE('Array Capacity: V.LIMIT()='||V.LIMIT());
N_ENTRIES := V.COUNT();

DBMS_OUTPUT.PUT LINE('Current Array Size: V.COUNT()='||V.COUNT());

-- Range over all values in a VARRAY
DBMS_OUTPUT.PUT _LINE('* Array Content');
FOR I IN 1..V.COUNT() LOOP

DBMS_OUTPUT.PUT LINEC'V('||I]]")=" || V(I));
END LOOP;
FOR I IN V.FIRST()..V.LAST() LOOP
DBMS_OUTPUT.PUT LINEC'V('|]I]]")=" || V(I));
END LOOP;

I := V.COUNT();

WHILE I IS NOT NULL LOOP
DBMS_OUTPUT.PUT LINEC'V('||I]]")=" || V(I));
I := V.PRIOR(I);

END LOOP;

-- Extend the VARRAY

DBMS_OUTPUT.PUT LINE('* Extend the array');
I := V.LAST();

V.EXTEND(2);

V(I+1) := 5;

V(I+2) := 6;

DBMS_OUTPUT.PUT LINE('Array Capacity: V.LIMIT()='||V.LIMIT());
DBMS_OUTPUT.PUT_LINE('Current Array Size: V.COUNT()='||V.COUNT());
FOR I IN 1..V.COUNT() LOOP

DBMS_OUTPUT.PUT_LINEC'V('||I]]")="]] V(I));
END LOOP;

-- Shrink the VARRAY
DBMS_OUTPUT.PUT _LINE('* Trim the array');
V.TRIM();

DBMS_OUTPUT.PUT_LINE('Array Capacity: V.LIMIT()="[|V.LIMIT());
DBMS_OUTPUT.PUT LINE('Current Array Size: V.COUNT()="'||V.COUNT());
FOR I IN 1..V.COUNT() LOOP

DBMS_OUTPUT.PUT LINEC'V('||I]]")="]] V(I));
END LOOP;

-- Delete all entries from the VARRAY
DBMS_OUTPUT.PUT_LINE('* Empty the array');
V.DELETE();

DBMS_OUTPUT.PUT LINE('Array Capacity: V.LIMIT()="||V.LIMIT());
DBMS_OUTPUT.PUT _LINE('Current Array Size: V.COUNT()="||V.COUNT());
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

FOR I IN 1..V.COUNT() LOOP
DBMS_OUTPUT.PUT LINEC'V('[|I]]")="]] V(I));
END LOOP;
END;
/

Let’s look at this code in detail next.

Declaring and Initializing VARRAY Variables

You cannot declare a VARRAY variable directly. You must first declare a type that includes the maximum
capacity of the array:

TYPE MY_ARRAY_TYPE IS VARRAY(10) OF NUMBER;
You can then declare your VARRAY variable using this type:
V MY_ARRAY TYPE;

Before you can do anything with the array, it must be initialized. You can do this at the same
time as you declare it, or you can initialize it later by assigning it a value. The following shows the
simultaneous declaration and initialization of an array:

V. MY_ARRAY_TYPE := MY_ARRAY_ TYPE ();

Getting the Value of a Specific Entry

Just use the number of the entry as a subscript. The subscript can be any expression that returns an
integer equal to or less than the number of entries in the array, for example:

K := V(3);
I :=2;
L := V(I+1);

Finding the Capacity of a VARRAY

Use the COUNT() method on the VARRAY variable. Note that you do not have to specify the parenthe-
ses, since this method takes no arguments:

N_ENTRIES := V.COUNT();

This tells you the number of entries currently in use in the array. A VARRAY also has a maximum
capacity that was specified when the type was declared. You can find out that capacity using the
LIMIT() method:

ARRAY_CAPACITY := V.LIMIT();

Ranging Over All Values in a VARRAY

You can use several techniques. The simplest is to use a FOR loop:

FOR I IN 1..V.COUNT() LOOP
DBMS_OUTPUT.PUT_LINEC'V('||I||")=""|] V(I));

END LOOP;

You can also use the FIRST() and LAST() methods. FIRST() returns the subscript of the first
entry in the array (which is always 1), and LAST() returns the subscript of the last entry in the array
(which is always the same as COUNT):

www.freepdf-books.com

213

http://www.it-ebooks.info/

214

CHAPTER 7 ©° MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

FOR I IN V.FIRST()..V.LAST() LOOP
DBMS_OUTPUT.PUT LINEC'V('|[I]]")=" || V(I));
END LOOP;

You could also use the PRIOR(n) and NEXT(n) methods, which return the subscript of the entry
that precedes or follows a given entry, respectively. For example, use this to range backward over the
array:

I := V.COUNT();

WHILE I IS NOT NULL LOOP
DBMS_OUTPUT.PUT_LINEC'V('||I||")="" || V(I));
I := V.PRIOR(I);

END LOOP;

PRIOR(n) is really the same as n-1, and NEXT(n) is the same as n+1, but PRIOR(1) and
NEXT(V.COUNT()) return NULL.

Extending a VARRAY

Use the EXTEND(k) method. This method adds k new entries at the end of the VARRAY. When k is not
specified, the array is extended by a single entry. The new entries have no value yet (they are set to

NULL), but they can now be initialized. The COUNT() and LAST() methods now reflect the new capac-
ity of the VARRAY. The following adds two entries to the array and initializes them:

I := V.LAST();
V.EXTEND(2);

V(I+1) := 5;
V(I+2) := 6;

Note that you cannot extend a VARRAY beyond its maximum capacity (returned by the LIMIT()
method). Note also that the VARRAY must be instantiated before you can extend it. The following
does not work:

VT MY _ARRAY TYPE;
VT.EXTEND(5);

but the following does work:

VT MY _ARRAY TYPE;
VT := MY_ARRAY TYPE();
VT.EXTEND(5);

Shrinking a VARRAY

Use the TRIM(k) method. This method removes the last k entries from the end of the VARRAY. When k
is not specified, the last entry of the array is removed. The values of the removed entries are lost.
COUNT() and LAST() reflect the new capacity. The following removes the last entry from the VARRAY:

V.TRIM;
You can trim all entries from the array, like this:
V.TRIM(V.COUNT());

or you can use the DELETE () method, which has the same effect. It removes all entries from the array
and sets its capacity to zero (that is, V.COUNT () now returns 0).

V.DELETE()

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Now that you know how to manipulate VARRAYs, let’s apply those techniques to the SDO_GEOMETRY
type. We will start by covering the techniques to extract information from an SDO_GEOMETRY object,
and then we will present an example of how to update an SDO_GEOMETRY object.

Next, we will revert to our original discussion on how to read/write SDO_GEOMETRY data, how to
create new geometries, how to extract information from existing ones, and how to modify existing
geometries. We cover each of these topics in a separate subsection.

Reading and Writing SDO_GEOMETRY Objects

Reading and writing SDO_GEOMETRY data in a PL/SQL program is easy. You define new variables of
SDO_GEOMETRY and read from or write to these variables while executing a SQL statement. Listing 7-3
shows an example of both reading the x,y components of a branch location and updating the new
location in the branches table.

Creating New Geometries

In this section, we illustrate how to create new geometries using stored functions, as described in
Listing 7-3. These functions simplify the writing of some SQL statements and hide some of the

complexities in dealing with geometries. You can use these constructors to populate new branch
locations or to create new sales regions, for example.

Point Constructor

Inserting point geometries using the SD0O_GEOMETRY constructor may seem unduly complicated.
Listing 7-5 shows a simple stored function that makes this operation easier by hiding some of the
complexity of spatial objects from developers and/or end users.

Listing 7-5. Point Constructor Function

CREATE OR REPLACE FUNCTION point (

x NUMBER, y NUMBER, srid NUMBER DEFAULT 8307)
RETURN SDO_GEOMETRY
DETERMINISTIC
IS
BEGIN

RETURN SDO_GEOMETRY (

2001, srid, SDO_POINT TYPE (x,y,NULL), NULL, NULL);

END;
/

As you can see, you just declare the function to return an SDO_GEOMETRY type. It is then a simple
matter to use the standard constructor of SDO_GEOMETRY to generate a proper point object using the
arguments provided (X, Y, and an optional spatial reference system).

You can then use this new constructor to simplify your SQL statements. For example, here is
how to update the geographical location of a new branch using the constructor in Listing 7-5:

UPDATE branches
SET location = point (-122.48049, 37.7805222, 8307)
WHERE id = 1;

www.freepdf-books.com

215

http://www.it-ebooks.info/

216

CHAPTER 7 ©° MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Tip Always use the DETERMINISTIC keyword when the result of the function depends only on the input argu-
ments (and not on the database state). This will help you reuse cached evaluations of the function when the same
arguments are passed in, and it also results in better overall performance.

Rectangle Constructor

Listing 7-3 uses the rectangle function to create a new geometry to represent a sales region around
a branch location. You can code this function to define a region around the branch location by expand-
ing from the location by a specified amount in each of the two dimensions. Listing 7-6 shows the
corresponding SQL. Note that rectangles are used extensively in visualization; many interactions
that select objects to include on a map use rectangles to define the area of interest. As for the point
constructor, the goal here is to simplify the writing of SQL statements that need to use rectangles.

Listing 7-6 shows how to define a rectangular shape. The function takes the coordinates of the
center of the rectangle, the distances from the center to each side, and optionally a spatial reference
system ID. As shown in Listing 7-6, the SDO_ORDINATES attribute in the SDO_GEOMETRY constructor
stores the lower-left and upper-right points. Note that all you do here is create a new object using
the SDO_GEOMETRY constructor, populate it with the appropriate information, and return the object
as the function result.

Listing 7-6. Rectangle Constructor

CREATE OR REPLACE FUNCTION rectangle (
ctr x NUMBER, ctr y NUMBER, exp x NUMBER, exp y NUMBER, srid NUMBER)
RETURN SDO_GEOMETRY
DETERMINISTIC
IS
1 SDO_GEOMETRY;
BEGIN
T := SDO_GEOMETRY (
2003, srid, NULL,
SDO_ELEM_INFO_ARRAY (1, 1003, 3),
SDO_ORDINATE_ARRAY (
ctr x - exp x, ctr y - exp_y,
ctr x + exp x, ctr y + exp_y));
RETURN r;
END;
/

You can use this function anywhere in your SQL statements. For example, the following code
counts the number of customers in a rectangular window, grouped by grade. Without the rectangle
function, you would have to use the more complex generic SDO_GEOMETRY constructor.

SELECT count(*), customer grade
FROM customers WHERE SDO_INSIDE (location,
rectangle (-122.47,37.79, 0.01, 0.01, 8307)) = 'TRUE'
GROUP BY customer_grade;

COUNT(*) CUSTOMER_GRADE

307 GOLD
4 PLATINUM
457 SILVER

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Line Constructor

In Listing 7-3, we used the 1ine function to create a new line geometry with a start point and an end
point. Listing 7-7 shows how to write such a function.

Listing 7-7. Line Constructor

CREATE OR REPLACE FUNCTION line (
first x NUMBER, first y NUMBER, next x NUMBER, next y NUMBER, srid NUMBER)
RETURN SDO_GEOMETRY
DETERMINISTIC
IS
1 SDO_GEOMETRY;
BEGIN
1 := SDO_GEOMETRY (
2002, srid, NULL,
SDO_ELEM INFO ARRAY (1, 2, 1),
SDO_ORDINATE_ARRAY (
first x, first.y,
next _x, next_y));
RETURN 1;
END;
/

Extracting Information from Geometries

In this section, we illustrate the manipulation of geometries with two examples. The first is simple
and demonstrates how to find out the number of points in a geometry. The second is a slightly more
complex example in which we show how to write a function to extract a specific point from a line
geometry.

The functions we present here are intended primarily to illustrate the techniques you can use
to manipulate geometry objects in PL/SQL.

Counting the Number of Points in a Geometry

The get_num_points function in Listing 7-8 computes the number of points in a geometry by divid-
ing the count of elements in the SDO_ORDINATES array (that is, the total number of ordinates) by the
dimensionality of the geometry (that is, the number of ordinates per point).

Listing 7-8. Counting the Number of Points in a Geometry

CREATE OR REPLACE FUNCTION get num_points (
g SDO_GEOMETRY)
RETURN NUMBER
1s
BEGIN
RETURN g.SDO_ORDINATES.COUNT() / SUBSTR(g.SDO_GTYPE,1,1);
END;
/

You can use the function as follows to find out the number of points in a geometry:

SELECT get num_points(geom) FROM us_states WHERE state = 'California';
GET_NUM_POINTS(GEOM)

www.freepdf-books.com

217

http://www.it-ebooks.info/

218

CHAPTER 7 ©° MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Extracting a Point from a Line

Let’s assume you have an application that keeps track of the route followed by a delivery truck.
When the truck is moving, it reports its position every minute. Those points are stringed together to
form a line geometry that represents the route followed by the truck so far. (This operation is
described later in this chapter.)

Listing 7-9 shows a function that extracts a selected point from a geometry. The function takes
two input arguments: a geometry object and the number of the point in that geometry. The first
point in the geometry is point number 1. It then returns a new geometry object that contains only
the selected point.

Listing 7-9. Function to Extract a Point from a Geometry

CREATE OR REPLACE FUNCTION get point (
geom SDO_GEOMETRY, point number NUMBER DEFAULT 1
) RETURN SDO_GEOMETRY

IS
g MDSYS.SDO _GEOMETRY; -- Updated Geometry
d NUMBER; -- Number of dimensions in geometry
p NUMBER; -- Index into ordinates array
px NUMBER; -- X of extracted point
py NUMBER; -- Y of extracted point
BEGIN

-- Get the number of dimensions from the gtype
d := SUBSTR (geom.SDO_GTYPE, 1, 1);

-- Verify that the point exists

IF point_number < 1

OR point_number > geom.SDO_ORDINATES.COUNT()/d THEN
RETURN NULL;

END IF;

-- Get index in ordinates array
p := (point_number-1) * d + 1;

-- Extract the X and Y coordinates of the desired point
px := geom.SDO_ORDINATES(p);
py := geom.SDO_ORDINATES(p+1);

-- Construct and return the point
RETURN
MDSYS.SDO_GEOMETRY (
2001,
geom.SDO_SRID,
SDO_POINT TYPE (px, py, NULL),
NULL, NULL);
END;
/

In this function, you perform some error checking. If the number of the point is larger than the
number of points in the object, then you return a NULL object. If the point number is not specified,
then you just return the first point of the geometry. Notice that the extracted point is always returned
as a two-dimensional point (even if the geometry is three- or four-dimensional). The returned point
is always in the same coordinate system as the input geometry.

Further refinements to the function could be to make it throw an exception if the point num-

ber is incorrect or if the geometrymaﬂié%pdf_books com

http://www.it-ebooks.info/

CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Listing 7-10 shows some examples of how to use this function to get the first, middle, and last
points of a line string (the line that represents Interstate 95).

Listing 7-10. Getting the First, Middle, and Last Points of a Line String

-- Getting the first point of a line string

SELECT get point(geom) p

FROM us_interstates

WHERE interstate='I95';

P(SDO_GTYPE, SDO_SRID, SDO POINT(X, Y, Z), SDO_ELEM_INFO, SDO ORDINATES)

SDO_GEOMETRY (2001, 8307, SDO _POINT TYPE(-80.211761, 25.74876, NULL), NULL, NULL)

-- Getting the last point of a line string

SELECT get point(geom, get num_points(geom)) p

FROM us_interstates

WHERE interstate="I95';

P(SDO_GTYPE, SDO_SRID, SDO _POINT(X, Y, Z), SDO_ELEM INFO, SDO_ORDINATES)

SDO_GEOMETRY (2001, 8307, SDO_POINT_TYPE(-74.118584, 40.754608, NULL), NULL, NULL)

-- Getting the middle point of a line string

SELECT get point(geom, ROUND(get num points(geom)/2)) p

FROM us_interstates

WHERE interstate="I95';

P(SDO_GTYPE, SDO_SRID, SDO POINT(X, Y, Z), SDO_ELEM_INFO, SDO ORDINATES)

SDO_GEOMETRY (2001, 8307, SDO_POINT TYPE(-68.118683, 46.120701, NULL), NULL, NULL)

Modifying Existing Geometries

Array manipulation techniques are most useful when updating geometries. In this section, we
present a few examples. They are all stored functions that take an SDO_GEOMETRY object as input and
return a new SDO_GEOMETRY object.

Removing a Point from a Line

A common editing operation on geometries is to add and remove points from a geometry, which
is what this and the next stored function do. First you'll look at the removal of a point using the
remove_point function in Listing 7-11.

Listing 7-11. remove_point Function

CREATE OR REPLACE FUNCTION remove point (
geom SDO_GEOMETRY, point_number NUMBER
) RETURN SDO_GEOMETRY

Is
g MDSYS.SDO_GEOMETRY; -- Updated Geometry
d NUMBER; -- Number of dimensions in geometry
p NUMBER; -- Index into ordinates array
i NUMBER; -- Index into ordinates array
BEGIN

-- Get the number of dimensions from the gtype
d := SUBSTR (geom.SDO GTYPE, 1, 1);

www.freepdf-books.com

219

http://www.it-ebooks.info/

220 CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

-- Get index in ordinates array
-- If 0 then we want the last point
IF point_number = 0 THEN
p := geom.SDO_ORDINATES.COUNT() - d + 1;
ELSE
p := (point_number-1) * d + 1;
END IF;

-- Verify that the point exists

IF p > geom.SDO_ORDINATES.COUNT() THEN
RETURN NULL;

END IF;

-- Initialize output line with input line
g := geom;

-- Step 1: Shift the ordinates "up"

FOR i IN p..g.SDO_ORDINATES.COUNT()-d LOOP
g.SDO_ORDINATES(i) := g.SDO_ORDINATES(i+d);

END LOOP;

-- Step 2: Trim the ordinates array
g.SDO_ORDINATES.TRIM (d);

-- Return the updated geometry
RETURN g;

END;

/

Just like in the get_point() function, you begin by converting the number of the point to be
removed into the index of the SDO_ORDINATE element where the ordinates of the point start (p).

Figure 7-1 illustrates the subsequent process. You first remove the point by shifting the ordi-
nates “up.” Assume you want to remove the third point (point C) from the line string. Its index in the
ordinate array is 5. The ordinates for points D, E, and F are then shifted up from elements 7-12 into
elements 5-10. This is step 1 in the figure.

Original Ordinates Step 1 Step 2
1 Xa 1 Xa 1 Xa
2 Ya 2 Ya 2 Ya
3 Xb 3 Xb 3 Xb
4 Yb 4 Yb 4 Yb
5 Xc 5 Xd 5 Xd
6 Yc 6 Yd 6 Yd
7 Xd 7 Xe 7 Xe
8 Yd 8 Ye 8 Ye
9 Xe 9 Xf 9 Xf
10 Ye 10 Yf 10 Yf
11 Xf 1 Xf
12 Yf 12 Yf

Figure 7-1. Removing a point from a line
gapomtfr www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Then, you trim the array by removing the last elements you no longer need. This is step 2 in the
figure.
You can use this function, for example, to remove the last point from I-95:

UPDATE US_INTERSTATES
SET GEOM = REMOVE_POINT (GEOM, 0)
WHERE INTERSTATE = 'I95';

Adding a Point to a Line

This is the reverse of the previous operation: you now insert a new point into a line string. The func-
tion needs the geometry to update, the geometry of the point to insert, and an indication of where
to insert the new point in the line. You do this by passing the number of the point before which the
new point should be inserted.

To insert the point at the start of the line, pass the value 1. To append it at the end of the line,
pass the value 0. Listing 7-12 shows the SQL.

Listing 7-12. Adding a Point in a Line String (add_to_line in Listing 7-3)

CREATE OR REPLACE FUNCTION add_to line (
geom SDO_GEOMETRY,
point SDO_GEOMETRY,
point number NUMBER DEFAULT O

) RETURN SDO_GEOMETRY

IS
g SDO_GEOMETRY; -- Updated geometry
d NUMBER; -- Number of dimensions in line geometry
t NUMBER; -- Geometry type
p NUMBER; -- Insertion point into ordinates array
i NUMBER;

BEGIN

-- Get the number of dimensions from the gtype
d := SUBSTR (geom.SDO GTYPE, 1, 1);

-- Get index in ordinates array
-- If 0, then we want the last point
IF point_number = 0 THEN

p := geom.SDO_ORDINATES.COUNT() + 1;
ELSE

p := (point_number-1) * d + 1;
END IF;

-- Verify that the insertion point exists
IF point_number <> 0 THEN
IF p > geom.SDO_ORDINATES.LAST()
OR p < geom.SDO_ORDINATES.FIRST() THEN
RAISE_APPLICATION ERROR (-20000, 'Invalid insertion point');
END IF;
END IF;

-- Initialize output line with input line
g := geom;

-- Step 1: Extend the ordinates array
g.SD0O_ORDINATES.EXTEND(d);

www.freepdf-books.com

221

http://www.it-ebooks.info/

222 CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

-- Step 2: Shift the ordinates "down".

FOR i IN REVERSE p..g.SDO_ORDINATES.COUNT()-d LOOP
g.SDO_ORDINATES(i+d) := g.SDO_ORDINATES(i);

END LOOP;

-- Step 3: Store the new point
g.SDO_ORDINATES(p) := point.SDO_POINT.X;
g.SDO_ORDINATES(p+1) := point.SDO_POINT.Y;

IF d = 3 THEN
g.SDO_ORDINATES(p+2) := point.SDO_POINT.Z;
END IF;
-- Return the new line string
RETURN g;
END;

/

Again, you begin by converting the place to insert the new point into the index of the first
SDO_ORDINATE element of the point before you want to insert the new point.

Figure 7-2 illustrates the process for inserting the point. You begin, in step 1, by extending the
SDO_ORDINATE array by the number of elements needed to represent a point, according to the dimen-
sionality (two-, three-, or four-dimensional) of the line string. Then in step 2, you make room for the
new point by shifting the ordinates “down.” Assume you want to insert a new point (point G) before
point D (the fourth point). The index of point D in the ordinate array is 7. The ordinates for points D,
E, and F are then shifted down from elements 7-12 into elements 9-14. Finally, in step 3 you fill ele-
ments 7 and 8 with the x and y of the new point G.

Original Ordinates Step 1 Step 2 Step 3

1 Xa 1 Xa 1 Xa 1 Xa

2 Ya 2 Ya 2 Ya 2 Ya

3 Xb 3 Xb 3 Xb 3 Xb

4 Yb 4 Yb 4 Yb 4 Yb

5 Xc 5 Xc 5 Xc 5 Xc

6 Yc 6 Yc 6 Yc 6 Yc

7 Xd 7 Xd 7 Xd 7 Xg

8 Yd 8 Yd 8 Yd 8 Yg

9 Xe 9 Xe 9 Xd 9 Xd

10 Ye 10 Ye 10 Yd 10 Yd
1 Xf 1 Xf 11 Xe 11 Xe
12 Yf 12 Yf 12 Ye 12 Ye
13 13 Xf 13 Xf

14 14 Yf 14 Yf

Figure 7-2. Inserting a point into a line
www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Note The previous example assumes you add a point to an already existing valid line. Constructing the line
from scratch is left as an exercise to the reader.

Manipulating Geometries in Java

As you have seen, spatial objects are stored in database tables as SDO_GEOMETRY types. To process
them in Java, you must first read them from the database using JDBC, and then you need to map
them to Java classes.

Mapping an SDO_GEOMETRY type into a Java class is easy, thanks to the API provided with Oracle
Spatial. The API itself is simple: it contains one main package (oracle.spatial.geometry) that con-
tains two main classes (JGeometry and J3D_Geometry). The API has been significantly enhanced in
Oracle Database 11g. It now comes with a number of geometry processing functions, as well as util-
ity functions that allow you to convert geometries to/from some standard formats (GML, WKT, ESRI
shapefiles). Those are in a package called oracle.spatial.util.

The Java API for Oracle Spatial is distributed in two JAR files (sdoapi. jar and sdoutl.jar) located
in the Oracle installation (at $ORACLE_HOME/md/j1ib'). To use the API in your applications, be sure to
include them in your classpath. You will also need the JDBC driver, as well as the XML parser (this is
only for processing GML). Here is how your classpath setting would look in a Windows environment:

C:\>set classpath=.;%0RACLE_HOME%\jdbc\lib\ojdbc14.jar;
%0RACLE_HOME%\md\jlib\sdoapi.jar;%0RACLE_HOME%\md\jlib\sdoutl.jar;
%O0RACLE_HOME%\1ib\xmlparserv2.jar;

The documentation (Javadoc) is available with the full Oracle documentation set, as well as in
your Oracle installation, in the files $ORACLE_HOME/md/doc/sdoapi.zip and sdoutl.zip.

On the Apress website you will find a number of complete examples that illustrate how to read,
write, and process geometries in Java. Table 7-1 lists the programs.

Table 7-1. Example Programs

Program Information Returned

SdoPrint.java Prints the structure of geometries in any table

SdoExport.java Exports all or some geometries from a table into a flat file in a choice of
formats (WKT, WKB, GML, etc.)

SdoImport.java Imports previously exported geometries back into a table

Using the JGeometry Class

The main tool to manipulate geometries in Java is the JGeometry class. It allows you to read and write
geometries from and to the database, but it also allows you to inspect the geometries, to create new
geometries, and even to perform a number of transformations on those geometries.

Reading and Writing Geometries

When you read an object type (such as the SDO_GEOMETRY type) using a SQL SELECT statement, JDBC
returns a Java structure—more precisely, an oracle.sql.STRUCT object. To write an object type

1. Note that in version 10g of the Oracle Data%)ase tha]fA]E)ﬁles R/ere in ?nRACLE HOME/md/1ib.

223

http://www.it-ebooks.info/

224

CHAPTER 7 ©° MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

(using an INSERT or UPDATE statement), you are also expected to pass an oracle.sql.STRUCT object.
Decoding and constructing STRUCTs is rather complex, and the main goal of the Oracle Spatial Java
API (the JGeometry class) is to make that task easy.

The JGeometry class provides two methods to convert a STRUCT into a JGeometry object:

¢ The load() method reads the STRUCT and returns a JGeometry object. Use it when you convert
the geometries returned by a SELECT statement.

e The store() method performs the reverse conversion to the load() method. It converts
a JGeometry object into a STRUCT that you can then write back to the database using an INSERT
or UPDATE statement.

Figure 7-3 illustrates this conversion process.

load()

oracle.spatial. | €——| oracle.sql. J(DBC Geometries
JGeometry (—3 | STRUCT)
store()

Figure 7-3. Reading and writing geometries in Java

In Oracle Database 11g, the load() and store() methods have been enhanced to provide their
own “pickling”? and “unpickling” methods optimized for geometry objects and so should perform
better. For reading a geometry, read the object into a byte array and pass that array to the load()
method. Figure 7-4 illustrates the process.

load() ¢
oracle.spatial. " JDBC Geometries
JGeometry |y | Vel ‘
store()

Figure 7-4. Reading and writing geometries in Java using the optimized “pickler”

The following is an example. First use the getObject () method of the result set to extract the
geometry object for each row into a STRUCT and then use the static load() method of JGeometry to
convert it into a JGeometry object.

2. Picklingis the process by which an object is serialized or converted into a byte stream. Unpickling is the

FOVEIe Process www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

STRUCT dbObject = (STRUCT) rs.getObject(1);
JGeometry geom = JGeometry.load(dbObject);

To use the optimized unpickler, first use the getBytes() method of the result set to extract the
geometry into a byte array. Then again use the static load() method of JGeometry to convert it to
a JGeometry object.
byte[] image = rs. getBytes (1);
JGeometry geom = JGeometry.load(image);

Inspecting Geometries

You can now use one of the many get () methods to extract information from the geometry object.
Table 7-2 summarizes the main methods. The additional is() methods listed in Table 7-3 detail the
nature of the geometry.

Table 7-2. Main JGeometry get() Methods

Method Information Returned

getType() Type of geometry (1 for a point, 2 for a line, and so on).

getDimensions() Dimensionality.

getSRID() Spatial reference system ID.

getNumPoints() Number of points in the geometry.

getPoint() Coordinates of the point object (if the geometry is a point).

getFirstPoint() First point of the geometry.

getlastPoint() Last point of the geometry.

getMBR() MBR of the geometry.

getElemInfo() Content of the SDO_ELEM INFO array.

getOrdinatesArray() Content of the SDO_ORDINATES array.

getLabelPoint() Returns the coordinates of the SDO_POINT structure. When filled for
aline or polygon geometry, this is often used as a labeling point.

getJavaPoint() For a single-point object, returns the coordinates of the point as
a java.awt.geom.Point2D object.

getJavaPoints() For a multipoint object, returns an array of java.awt.geom.Point2D
objects.

getElements() Gets an array of JGeometry objects, each representing one element of
the geometry.

getElementAt() Extracts one element of the geometry as a JGeometry.

createShape() Converts the geometry into a java.awt. Shape object, ready for use by

the drawing and manipulation facilities of the java.awt package.

www.freepdf-books.com

225

http://www.it-ebooks.info/

226

CHAPTER 7 ©° MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Table 7-3. Main JCGeometry is() Methods

Method Information Returned

isPoint() Is this a point?

isOrientedPoint() Is this an oriented point?

isCircle() Is this a circle?

isGeodeticMBR() Is this a geodetic MBR?
isMultiPoint() Is this a multipoint?

isRectangle() Is this a rectangle?

hasCircularArcs() Does the geometry contain any arcs?
isLRSGeometry () Is this a “linear referenced” geometry?

Two of the methods in Table 7-3 (getElements() and getElementAt()) allow you to inspect the
structure of complex geometries: they allow you to extract individual elements as separate JGeometry
objects. The first method returns all elements into an array of separate JGeometry objects. The second
returns one specific element identified by its position in the geometry.

Caution The term element must be understood as defined in the 0GC Simple Features for SQL specification.
For example, a polygon with voids is considered as a single element, even though it is composed of multiple
rings (each being an element in the Oracle sense). The validation functions discussed in Chapter 5 (VALIDATE
GEOMETRY_WITH_CONTEXT() and EXTRACT()) behave the same way. This means the getElements() method
will not allow you to extract a void from a polygon with voids.

Gaution The numbering of the elements starts at 1, not 0.

Creating Geometries

Writing a geometry to the database (in an INSERT or UPDATE statement) requires that you create
anew JGeometry object, convert it into a STRUCT using the static JGeometry.store() method, and
then pass the STRUCT to an INSERT or UPDATE statement. Just like for the 1load() method, you can also
use the faster spatial pickler. Figures 7-3 and 7-4 illustrate both methods.

The following is an example of both approaches. First use the static store() method of
JGeometry to convert it to a STRUCT, and then use the setObject() method to set it into the prepared
SQL statement.

STRUCT dbObject = JGeometry.store (geom, dbConnection);
stmt.setObject (1,dbObject);

Using the optimized pickler is very much the same except that the order of the arguments to
the store() method is reversed: first specify the database connection object and then the JGeometry
object!

STRUCT dbObject = JGeometry.store (dbConnection, geom);
stmt.setObject (1,dbObject);

There are two ways you can construct new JGeometry objects. One way is to use one of the
constructors listed in Table 7-4. The other way is to use one of the static methods that create various
geometries. Table 7-5 lists those methods.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7

Table 7-4. JGeometry Constructors

MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Constructor

Purpose

JGeometry (double x, double vy,

int srid)

JGeometry (double x, double vy,

double z, int srid

Constructs a point

Constructs a three-dimensional point

JGeometry (double minX, double minY, Creates a rectangle
double maxX, double maxY, int srid)

JGeometry (int gtype, int srid,

Constructs a generic geometry

int[] elemInfo, double[] ordinates)

Table 7-5. Static JGeometry Creation Methods

Creation Method

Purpose

createPoint(double[] coord,
int dim, int srid)

createlinearLineString
(double[] coords,
int dim, int srid)

createlinearPolygon
(double[] coords,
int dim, int srid)

createMultiPoint
(java.lang.Object[] coords,
int dim, int srid)

createlinearMultilineString
(java.lang.Object[] coords,
int dim, int srid)

createlinearPolygon
(java.lang.Object[] coords,
int dim, int srid)

createCircle(double x1,
double y1, double x2,
double y2, double x3,
double y3, int srid)

createCircle(double x,
double y, double radius,
int srid)

Creates a point

Creates a simple line string

Creates a simple polygon

Creates a multipoint object

Creates a multiline string object

Creates a multipolygon

Creates a circle using three points on its circumference

Creates a circle using a center and radius

Modifying Existing Geometries

The JGeometry class does not provide any method that lets you modify a geometry. For example,
there is no method to remove a point from a line or to add one more point to a line. To perform
those updates, you need to extract the list of points using a method such as getOrdinatesArray(),
then update the resulting Java arrays, and then create a new JGeometry object with the results.

To write the modified geometries to the database, proceed as discussed previously: convert the
JGeometry object into a STRUCT using the store() method, and then pass the STRUCT to your SQL

INSERT or UPDATE statement.

www.freepdf-books.com

227

http://www.it-ebooks.info/

228

CHAPTER 7 ©° MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Processing Geometries

The Java API also provides you with a number of methods that perform various transformations on
geometries. Table 7-6 lists the main ones. They take a JGeometry object as input and generate a new
geometry as a result. Note that most of those functions are also provided via PL/SQL calls in the
database that will be discussed in detail in Chapter 9.

Table 7-6. Geometry-Processing Functions

Method Purpose

buffer(double bufferWidth) Generates a buffer around a geometry
simplify(double threshold) Simplifies a geometry

densifyArcs(double arc_tolerance) Densifies all arcs in a geometry

clone() Duplicates a geometry
affineTransforms(...) Applies affine transformations on the input

geometry based on the parameters supplied:
translation, scaling, rotation, shear, reflection

projectToLTP(double smax, double flat) Projects a geometry from longitude/latitude to
a local tangent plane

projectFromLTP() Projects a geometry from a local tangent plane to
longitude/latitude

The API also provides some helper methods, summarized in Table 7-7. Those functions (except
for equals) do not deal with JGeometry objects but are provided to help certain processing tasks.

The equals() method compares two JGeometry objects and determines whether they are the
same. However, the comparison is based on the internal encoding of the geometry: two geometries
will be considered as equal if the coordinates of all their points are the same and in the same sequence.
The method does not perform a true geometric comparison involving tolerance.

Table 7-7. Geometry Helper Functions

Method Purpose

equals() Determines whether two geometries are identical
computeArc(double x1, Computes the center, radius, and angles for this arc from the
double y1, double x2, three coordinate points

double y2, double x3,

double y3)

linearizeArc(double x1, Converts an arc into an array of 2D line segments

double y1, double x2,
double y2, double x3,

double y3)
reFormulateArc(double[] d) Reformulates an arc by recomputing the angles
expandCircle(double x1, Linearizes the circle by converting it into an array of 2D segments

double y1, double x2,
double y2, double x3,
double y3)

monoMeasure(double[] coords, Determines whether a line has increasing or decreasing measures
int dim ()

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Using 3D Geometries: the J3D_Geometry Class

One of the major new capabilities in Oracle Database 11g is the ability to model complex 3D objects:
surfaces and solids. The new J3D_Geometry class will help you manipulate those structures. Notice it
is a subclass of JGeometry, so all the methods you have seen so far are applicable.
To read J3D_Geometry objects from the database, proceed the same way as with JGeometry, and

then construct a J3D_Geometry from the JGeometry object. For example:
byte[] image = rs. getBytes (1);
JGeometry geom = JGeometry.load(image);
J3D_Geometry geom3D = new J3D_Geometry (

geom.getType(), geom.getSRID(),

geom.getElemInfo(), geom.getOrdinatesArray()

To write J3D_Geometry objects to the database, just use the regular JGeometry.store() method:

STRUCT dbObject = JGeometry.store (dbConnection, geom3d);
stmt.setObject (1,dbObject);

Just like JGeometry, it provides you with a number of methods that allow you to manipulate the
geometry in various ways. Table 7-8 summarizes those methods.

Table 7-8. 3D Geometry Processing Functions

Method Purpose

anyInteract(J3D_Geometry A, Determines whether two three-dimensional geometries
double tolerance) interact in any way

extrusion(JGeometry polygon, Returns a three-dimensional geometry extruded from a two-

double grdHeight, double height, dimensional polygon
Connection conn, boolean cond,
double tolerance)

closestPoints(J3D_Geometry A, Computes the closest points of approach between two

double tolerance) three-dimensional geometries

getMBH(J3D_Geometry geom) Returns the three-dimensional bounding box of a three-
dimensional geometry?

validate(double tolerance) Verifies the validity of a three-dimensional geometry.

area(double tolerance) Computes the area of a surface or of the sides of a solid

length(int count_shared edges, Computes the length of a three-dimensional shape

double tolerance)

volume(double tolerance) Computes the volume of a three-dimensional solid

distance(J3D_Geometry A, Computes the distance between two three-dimensional

double tolerance) geometries

Extracting Elements from 3D Geometries: the ElementExtractor
Class

3D objects can be complex. This is especially the case for solids. A complex solid is formed of multiple
simple solids. The simple solids are formed from surfaces, some of them forming voids in the solid.
Surfaces themselves are formed of elements, which are formed of rings.

3. This really returns a Minimum Bounding Hexahedron (MBH), that is, a solid with six faces, aligned with the
axis of the coordinate system.
www.freepdf-books.com

229

http://www.it-ebooks.info/

230

CHAPTER 7 ©° MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

The ElementExtractor class makes it easy for you to inspect a complex object and extract indi-
vidual components, such as one or more of the surfaces that form a solid. Note that you can also
use the extractor on regular two-dimensional geometries. This can be useful to extract, for example,
the linear contour of one of the rings in a complex polygon.

You can use the extractor in two ways: one is to extract one specific element. The other is to
iterate over all available elements.

Tip The ElementExtractor class is not restricted to 3D geometries. It will also work on 2D geometries.
However, since its input must be a 13D_Geometry object, you must first convert your JGeometry object into
a J3D_Geometry.

Extracting a Single Element
All you need is to call the static getElementBylLabel() method, passing it a “label” that uniquely
identifies the geometry element to extract. The label is a comma-delimited string of ID numbers
that specify the subset geometry to be returned. Specify as many of the following elements as
apply. (For any null elements before the last specified element, enter a comma for the element.)

¢ Point ID

e EdgeID

¢ RingID

e Polygon ID

 Surface ID

* Solid ID

e Multisolid ID

Those ID numbers are really sequence numbers for each element at each level. The sequence
numbers begin with 1: the first polygon in a multipolygon is polygon 1. Its rings are numbered from

1 to N. The second polygon is polygon 2, and its rings are again numbered from 1.
For example, the following will return polygon number 3 in surface 2 of a simple solid:

J3D_Geometry ring = ElementExtractor.getElementBylLabel (solid,"0,0,0,3,2");

Note that the validate() method of 13D_Geometry will return such a label when it finds an
error. You can then simply pass this label to ElementExtractor.getElementByLabel() to isolate the
element on which the error was detected.

Iterating Over Elements

Create an ElementExtractor object, passing it the parameters for your query. This will essentially cre-
ate an iterator that you initialize at a certain level of detail. You can then use its nextElement() method
to extract the components of the object one by one. You can then use another ElementExtractor object
to further inspect each of the elements you receive from the first loop.

The parameters to use when you create an ElementExtractor object are detailed in Table 7-9.
Those parameters control the way the extractor behaves.

www.freepdf-books.com

http://www.it-ebooks.info/

CHAPTER 7 © MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS

Table 7-9. Parameters of the ElementExtractor

Parameter Purpose

geometry The 3D geometry to analyze.

firstElement The place to start the extraction, specified as an offset in the
SDO_ELEM_INFO array of the geometry. By default, this will be 0.

extractionLevel This is a code that indicates the way the iterator will process the

elements in the geometry. See the “Extraction Levels” section for
a detailed discussion.

allow comp sub_elements Specify as true (the default) or false. In MULTICOMP_TOSIMPLE
extraction level, users can also arrange to extract directly simple
geometries from multi or composite geometries by setting this
parameter to FALSE. The default value is TRUE, which means users
will extract composite geometry first (if any) from a multigeometry.

Extraction Levels

The extractionLevel parameter allows you to control the way the extractor operates. Specify it as
one of the following values. The names are those of the constants defined in the class.

* Level 0 = MULTICOMP_TOSIMPLE: This returns the successive e