
this print for content only—size & color not accurate 7" x 9-1/4" / CASEBOUND / MALLOY
(1.625 INCH BULK -- 824 pages -- 50# Thor)

The EXPERT’s VOIce® in Oracle

Ravi Kothuri, Albert Godfrind,
and Euro Beinat

Pro
Oracle Spatial
for Oracle Database 11g

The essential guide to developing spatially
enabled business applications using Oracle

Books for professionals by professionals®

Pro Oracle Spatial for Oracle Database 11g
Dear Reader,

This book will provide you with the conceptual knowledge and practical skills
to become a professional in spatial information management. It contains all
you need to master one of the most powerful tools available for this purpose:
Oracle Spatial. The power of Oracle Spatial—the set of spatial technologies for
the Oracle database—stems from the fact that you can store, retrieve, analyze,
and visualize spatial data just like any other type of data and integrate it into
any business application. You can do so by using the same tools and languages
with which you are familiar, such as SQL, Java, and XML.

Spatial information is utilized in a variety of applications. Think about how
you get travel directions from your GPS, how cables and pipes are maintained,
how distribution chains choose the location of their outlets, or how we predict
storms and weather. Almost every organization now stores spatial information
assets. Pro Oracle Spatial for Oracle Database 11g shows you how to manage
and make the most effective use of that information.

The book introduces the concepts of spatial data, the architecture of Oracle
Spatial, and the vast set of functions and procedures for managing spatial data.
It shows how to create spatial applications, how to integrate the technology into
existing applications, and how organizations have already successfully imple-
mented spatial solutions. The book provides sample data, examples, and tips
so that you can learn, experiment, and find guidance in becoming an expert
Oracle Spatial developer. It will allow you to develop exciting applications, be
part of large and inspiring projects, and explore the rich world of spatial data. It is
our hope that you will find this world as interesting and challenging as we do.

Enjoy!

Ravi Kothuri, Ph.D.; Albert Godfrind; and Euro Beinat, Ph.D.

THE APRESS ROADMAP

Beginning
Oracle Programming

Beginning
PL/SQL

Mastering Oracle
SQL & SQL*Plus

Mastering
Oracle PL/SQL

Pro Oracle Spatial
for Oracle Database 11g

Kothuri,
Godfrind,

Beinat

 CYAN
  MAGENTA

 YELL OW
  BLACK
  PANTONE 123 C

Ravi Kothuri

ISBN-13: 978-1-59059-899-3
ISBN-10: 1-59059-899-7

9 781590 598993

90000

Shelve in
Databases/Oracle

User level:
Intermediate–Advanced

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

Companion eBook Available

Updated for
Oracle

Database 11g

Updated for
Oracle

Database 11g

Albert Godfrind

Euro Beinat

Kothuri, Godfrind,
and Beinat coauthored

Pro Oracle Spatial
(first edition)

ProOracle Spatial
for Or acle Database 11g

www.freepdf-books.com

http://www.it-ebooks.info/

Ravi Kothuri, Albert Godfrind, and Euro Beinat

Pro Oracle Spatial for
Oracle Database 11g

8997ch00FM.qxt 9/28/07 9:52 AM Page i

www.freepdf-books.com

http://www.it-ebooks.info/

Pro Oracle Spatial for Oracle Database 11g

Copyright © 2007 by Ravi Kothuri, Albert Godfrind, Euro Beinat

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-899-3

ISBN-10: 1-59059-899-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick
Technical Reviewer: Carel-Jan Engel
Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick, Jason

Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Ben Renow-
Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Kinetic Publishing Services, LLC
Proofreader: Linda Seifert
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section.

8997ch00FM.qxt 9/28/07 9:52 AM Page ii

www.freepdf-books.com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.it-ebooks.info/

Contents at a Glance

About the Authors. xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

Introduction . xxv

Setting Up . xxxi

PART 1 ■ ■ ■ Overview
■CHAPTER 1 Spatial Information Management . 3

■CHAPTER 2 Overview of Oracle Spatial . 19

■CHAPTER 3 Location-Enabling Your Applications. 37

PART 2 ■ ■ ■ Basic Spatial
■CHAPTER 4 The SDO_GEOMETRY Data Type . 55

■CHAPTER 5 Loading, Transporting, and Validating Spatial Data. 115

■CHAPTER 6 Geocoding . 151

■CHAPTER 7 Manipulating SDO_GEOMETRY in Application Programs. 207

PART 3 ■ ■ ■ Spatial and Network Analysis
■CHAPTER 8 Spatial Indexes and Operators . 243

■CHAPTER 9 Geometry Processing Functions. 305

■CHAPTER 10 Network Modeling . 345

■CHAPTER 11 The Routing Engine . 417

PART 4 ■ ■ ■ Visualization
■CHAPTER 12 Defining Maps Using MapViewer . 437

■CHAPTER 13 Using Maps in Your Applications . 503

iii

8997ch00FM.qxt 9/28/07 9:52 AM Page iii

www.freepdf-books.com

http://www.it-ebooks.info/

PART 5 ■ ■ ■ Spatial in Applications
■CHAPTER 14 Sample Applications . 581

■CHAPTER 15 Case Studies . 623

■CHAPTER 16 Tips, Common Mistakes, and Common Errors . 663

PART 6 ■ ■ ■ Appendixes
■APPENDIX A Additional Spatial Analysis Functions. 689

■APPENDIX B Linear Referencing . 701

■APPENDIX C Topology Data Model in Oracle . 713

■APPENDIX D Storing Raster Data in Oracle . 725

■APPENDIX E Three-Dimensional Modeling Using Point Clouds
and TINs in Oracle . 743

■INDEX . 757

8997ch00FM.qxt 9/28/07 9:52 AM Page iv

www.freepdf-books.com

http://www.it-ebooks.info/

Contents

About the Authors. xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

Introduction . xxv

Setting Up . xxxi

PART 1 ■ ■ ■ Overview
■CHAPTER 1 Spatial Information Management . 3

Using Spatial Information in Various Industries. 5

Sources of Spatial Data . 7

Managing and Analyzing Spatial Data . 7

Storing Spatial Data in a Database . 11

Spatial Analysis . 14

Benefits of Oracle Spatial . 15

Summary . 18

References . 18

■CHAPTER 2 Overview of Oracle Spatial . 19

Technology and Architecture Overview . 19

Getting Started with Oracle Spatial . 22

Data Model: Storing Spatial Data . 22

Location-Enabling . 22

Query and Analysis . 24

Visualizing Spatial Data. 27

Advanced Spatial Engine. 29

Oracle Spatial Technology Products . 30

Locator . 30

Spatial Option. 32

What to Expect in an Oracle Spatial Install . 33

Installing Oracle Spatial in the Database. 34

Upgrades. 34

Understanding a Spatial Install. 35

Checking the Version of a Spatial Install . 36

Summary . 36
v

8997ch00FM.qxt 9/28/07 9:52 AM Page v

www.freepdf-books.com

http://www.it-ebooks.info/

■CHAPTER 3 Location-Enabling Your Applications . 37

Adding Location Information to Tables. 38

Application-Specific Data . 38

Geographic Data . 42

Metadata for Spatial Tables. 45

Dictionary View for Spatial Metadata. 45

Populating Spatial Metadata for Your Application . 49

Additional Information for Visualization and Network Analysis 50

Summary . 51

PART 2 ■ ■ ■ Basic Spatial
■CHAPTER 4 The SDO_GEOMETRY Data Type . 55

Types of Spatial Geometries in Oracle . 56

Points . 56

Line Strings . 56

Polygons and Surfaces . 57

Solids . 57

Collections . 58

Logical Implementation of SDO_GEOMETRY . 58

Spatial Data in SQL/MM and OGC . 59

SDO_GEOMETRY Type, Attributes, and Values . 60

SDO_GTYPE Attribute . 61

SDO_SRID Attribute . 63

SDO_POINT Attribute . 72

SDO_ELEM_INFO and SDO_ORDINATES Attributes 74

Simple Two-Dimensional Geometry Examples . 76

Point . 76

Line String: Connected by Straight Lines . 78

Line String: Connected by Arcs . 79

Polygon: Ring (Boundary) Connected by Straight Lines 80

Polygon: Ring (Boundary) Connected by Arcs . 82

Rectangle Polygon . 82

Circle Polygon. 83

Complex Two-Dimensional Geometry Examples . 84

Constructing Complex Geometries. 85

SDO_ELEM_INFO for Compound Elements. 86

SDO_ELEM_INFO for Voided Polygon Element . 87

Compound Line String Example . 87

Compound Polygon Example . 88

Polygon with a Void . 89

Collections . 91

■CONTENTSvi

8997ch00FM.qxt 9/28/07 9:52 AM Page vi

www.freepdf-books.com

http://www.it-ebooks.info/

Three-Dimensional Examples. 95

Three-Dimensional Points, Lines, and Polygons. 97

Composite Surfaces. 102

Simple Solid . 105

Composite Solid . 110

Collections . 112

Summary . 114

■CHAPTER 5 Loading, Transporting, and Validating Spatial Data 115

Inserting Data into an SDO_GEOMETRY Column . 116

Loading and Converting Spatial Data. 117

Loading from Text Files Using SQL*Loader . 117

Transporting Spatial Data Between Oracle Databases. 120

Loading from External Formats . 122

Converting Between SDO_GEOMETRY and WKT/WKB. 124

Converting SDO_GEOMETRY Data in GML . 124

Extruding a Two-Dimensional Geometry to Three Dimensions 129

Validating Spatial Data . 132

Validation Functions. 132

Validation Criteria. 133

Composite Solids . 140

Collections . 141

Debugging Spatial Data. 142

REMOVE_DUPLICATE_VERTICES . 142

EXTRACT. 143

APPEND. 146

GETNUMELEM, GETNUMVERTICES, and GETVERTICES 147

EXTRACT3D . 147

Miscellaneous Functions. 149

Summary . 149

■CHAPTER 6 Geocoding. 151

What Is Geocoding? . 151

Architecture of the Oracle Geocoder . 153

Parsing the Input Address . 153

Searching for the Address. 154

Computing the Spatial Coordinates . 154

Setting Up the Reference Data for the Geocoder . 156

Parameter Tables . 156

Data Tables . 157

■CONTENTS vii

8997ch00FM.qxt 9/28/07 9:52 AM Page vii

www.freepdf-books.com

http://www.it-ebooks.info/

Using Geocoder Functions . 158

GEOCODE_AS_GEOMETRY . 158

GEOCODE . 161

GEOCODE_ALL . 176

Geocoding Using Structured Addresses. 182

GEOCODE_ADDR . 182

GEOCODE_ADDR_ALL. 184

Reverse Geocoding . 184

REVERSE_GEOCODE . 184

Geocoding Business Data . 186

Adding the Spatial Column . 186

Geocoding the Addresses: The “Naive” Approach 187

Address Verification and Correction. 188

Automatic Geocoding . 193

The Geocoding Server . 196

Architecture . 196

Installation and Configuration. 198

Using the Geocoder: XML Queries and Responses. 200

Summary . 206

■CHAPTER 7 Manipulating SDO_GEOMETRY
in Application Programs . 207

Manipulating Geometries Using PL/SQL . 209

VARRAY Manipulation Primer . 211

Reading and Writing SDO_GEOMETRY Objects . 215

Creating New Geometries . 215

Extracting Information from Geometries . 217

Modifying Existing Geometries . 219

Manipulating Geometries in Java. 223

Using the JGeometry Class. 223

Using 3D Geometries: the J3D_Geometry Class . 229

Extracting Elements from 3D Geometries: the
ElementExtractor Class . 229

Using Standard Notations: WKT, WKB, GML . 232

Using ESRI Shapefiles . 235

Summary . 240

■CONTENTSviii

8997ch00FM.qxt 9/28/07 9:52 AM Page viii

www.freepdf-books.com

http://www.it-ebooks.info/

PART 3 ■ ■ ■ Spatial and Network Analysis

■CHAPTER 8 Spatial Indexes and Operators . 243

Spatial Indexes . 245

Inserting Metadata for a Spatial Layer Prior to Indexing 246

Creating a Spatial Index . 247

Spatial Indexing Concepts. 247

Spatial Index Parameters . 249

Spatial Operators . 253

Syntax of Spatial Operators . 253

Semantics of Spatial Operators . 254

Evaluation of Spatial Operators . 255

A Closer Look at Spatial Operators . 256

SDO_WITHIN_DISTANCE Operator . 256

SDO_NN Operator . 261

Operators for Spatial Interactions (Relationships) 268

Hints for Spatial Operators . 280

Advanced Spatial Index Features . 287

Function-Based Spatial Indexes. 287

Local Partitioned Spatial Indexes . 290

Parallel Indexing. 293

Online Index Rebuilds . 294

Spatial Joins . 295

Three-Dimensional Analysis . 298

Summary . 303

■CHAPTER 9 Geometry Processing Functions . 305

Buffering Functions . 307

Relationship Analysis Functions . 310

SDO_DISTANCE . 310

SDO_CLOSEST_POINTS . 313

RELATE . 315

Geometry Combination Functions . 320

SDO_INTERSECTION . 321

SDO_UNION . 323

SDO_DIFFERENCE . 323

SDO_XOR . 325

Geometric Analysis Functions. 326

Area, Length, and Volume Functions . 326

MBR Functions . 330

Miscellaneous Geometric Analysis Functions . 333

■CONTENTS ix

8997ch00FM.qxt 9/28/07 9:52 AM Page ix

www.freepdf-books.com

http://www.it-ebooks.info/

Aggregate Functions . 337

Aggregate MBR Function . 337

Other Aggregate Functions . 338

Summary . 343

■CHAPTER 10 Network Modeling . 345

General Network Modeling Concepts. 347

Examples of Networks. 348

Oracle Network Data Model . 349

Data Structures: The Network Tables. 351

Node Table . 352

Link Table . 352

Path Table . 353

Path Link Table. 354

Network Metadata . 354

Defining Networks . 355

“Automatic” Network Definition . 355

“Manual” Network Definition . 357

Defining Multiple Networks on the Same Tables . 359

Dropping a Network. 363

Creating Spatial Indexes on Network Tables. 363

Getting Information About a Network. 364

Verifying Network Connectivity. 365

Example Network. 366

Analyzing and Managing Networks Using the Java API . 370

Analyzing Networks: The NetworkManager Class 370

Limiting the Search Space: The SystemConstraint Class 384

Advanced Analysis: Network Constraints . 385

Network Structures: The Network, Node, Link, and Path Classes. 391

Creating Networks: The NetworkFactory Class. 394

Debugging Network Structures . 396

Analyzing Networks Using the PL/SQL API . 397

Using a Memory Object . 399

Analyzing Networks . 400

Creating and Updating Networks . 403

Using Network Constraints . 405

The Network Editor . 412

Starting the Editor . 412

Using the Loaded Network . 414

Example Data: The Streets of San Francisco . 415

Summary . 416

■CONTENTSx

8997ch00FM.qxt 9/28/07 9:52 AM Page x

www.freepdf-books.com

http://www.it-ebooks.info/

■CHAPTER 11 The Routing Engine . 417

Architecture . 418

Installation and Configuration . 420

Data Structures . 422

Example Data: The Streets of San Francisco . 424

Partitioning . 425

Using the Router: XML Queries and Responses . 427

Routing Requests. 430

Routing Options . 431

Pregeocoded Start and End Locations. 431

Geographic Start and End Locations . 432

Batch Routing. 432

Summary . 434

PART 4 ■ ■ ■ Visualization

■CHAPTER 12 Defining Maps Using MapViewer. 437

Why Use Maps in Location-Enabled Applications?. 437

Overview of MapViewer and Oracle Maps. 440

Oracle MapViewer . 440

Oracle Maps . 442

Getting Started . 443

Load the Sample Data. 444

Location-Enable the Application Data . 445

Load the Geographical Data . 445

Load Maps, Themes, Style, and Map Cache Definitions
for MapViewer . 445

Define a Data Source. 446

Install Example Applications . 446

Configuring MapViewer . 448

Using the Administration Console . 449

Configuration Parameters . 452

Defining Maps . 457

Using Map Builder . 458

Using Styles . 461

Using Themes. 474

Using Maps. 484

■CONTENTS xi

8997ch00FM.qxt 9/28/07 9:52 AM Page xi

www.freepdf-books.com

http://www.it-ebooks.info/

Defining Map Caches. 491

The USER_SDO_CACHED_MAPS View . 491

Managing Caches Using the MapViewer Console 491

Creating a New Map Cache . 493

Creating Map Caches Using SQL . 495

Cache Data Structures . 498

Exporting Cache Definitions . 498

Purging and Refreshing Cache Contents. 498

Using External Data Sources . 499

Summary . 502

■CHAPTER 13 Using Maps in Your Applications . 503

Overview of MapViewer’s APIs . 503

XML, Java, JSPs, and PL/SQL. 503

JavaScript and Ajax: Oracle Maps . 505

Choosing an API . 506

Anatomy of a Map Request. 507

What: The Information That Should Appear on the Map 507

Where: The Geographical Area to Be Covered by the Map 508

How: The Format and Size of the Resulting Map . 508

Interacting with Maps . 509

Controlling the Level of Detail: Zoom In and Zoom Out 509

Controlling the Area Shown on the Map: Pan and Recenter 509

Selecting Features: Identify. 510

Choosing the Information to Appear on the Map: Layer Control 510

Oracle Maps: The JavaScript API . 510

Displaying a Map . 511

Interacting with Maps: Zooming and Panning. 514

Adding Map Decorations. 515

Adding Generic Decorations . 515

Creating an Overview Map . 516

Rectangular (Marquee) Zooming . 517

Adding Dynamic Information: Theme-Based FOIs 519

Adding Individual FOIs . 523

Controlling Styles . 524

Capturing User Input: Tools and Selectors. 525

Responding to Events . 528

Using the Java API . 530

Map Requests . 530

Zooming and Panning . 533

Theme Control . 535

Style Control . 540

Identification and Queries . 540

■CONTENTSxii

8997ch00FM.qxt 9/28/07 9:52 AM Page xii

www.freepdf-books.com

http://www.it-ebooks.info/

Dynamic Features . 543

Legends . 543

Map Decorations . 545

Using the Map Cache . 546

Discovering Data Sources, Maps, Themes . 547

Using JSP Tags. 547

Using the XML API . 552

Simple Map Requests . 553

Adding Themes to a Base Map. 555

Using Multiple Data Sources. 556

Constructing a Map from Themes . 557

Dynamic Themes . 558

Dynamic Features . 561

Legends . 563

The XML Map Response . 565

Using the PL/SQL API. 566

Installing the API . 566

A Simple Example . 567

Using the Administrative API . 568

Browsing Map Definitions . 568

Managing the MapViewer Server. 570

Restarting MapViewer . 573

Web Map Service (OGC WMS) Interface . 573

The GetCapabilities Request. 573

The GetMap Request . 575

The GetFeatureInfo Request . 576

Spatial Reference Systems (SRS) Mapping. 578

Summary . 578

PART 5 ■ ■ ■ Spatial in Applications

■CHAPTER 14 Sample Applications . 581

Data Preparation and Setup . 582

Loading the Geographical Data . 582

Location-Enabling the Application Data. 582

Loading Map, Theme, Style, and Map Cache Definitions
for MapViewer . 583

Applications Setup . 583

The JavaScript Application . 584

Application Walk-Through. 584

Under the Hood . 589

■CONTENTS xiii

8997ch00FM.qxt 9/28/07 9:52 AM Page xiii

www.freepdf-books.com

http://www.it-ebooks.info/

The Java (JSP) Application . 603

Application Walk-Through. 603

Under the Hood . 610

Summary . 622

■CHAPTER 15 Case Studies . 623

Overview of the Case Studies. 623

Spatial Information for Managing the London Bus Network 624

BusNet . 625

Spatial Data and Oracle Spatial in BusNet . 626

User Interface for Spatial Data in BusNet . 628

BusNet Conclusions. 630

P-Info: A Mobile Application for Police Forces. 631

P-Info Functionality . 632

P-Info Architecture. 633

Use of Oracle Spatial in P-Info . 635

Measurable Added Value of P-Info . 637

Risk Repository for Hazardous Substances. 638

RRGS Technology . 640

Use of Oracle Spatial in the RRGS . 642

From Hazardous Substances to Risk Management 643

USGS National Land Cover Visualization and Analysis Tool 644

The Architecture of USGS Visualization and Analysis Tool 647

Oracle Spatial in USGS Visualization and Analysis Tool 648

Benefits of USGS Visualization and Analysis Tool . 651

U.S. Department of Defense MilitaryHOMEFRONT LBS . 652

The Architecture of MilitaryHOMEFRONT LBS . 654

Oracle Spatial in MilitaryHOMEFRONT. 657

Mobile MilitaryINSTALLATIONS. 660

Benefits of MilitaryHOMEFRONT LBS. 662

Summary . 662

■CHAPTER 16 Tips, Common Mistakes, and Common Errors 663

Tips . 663

Data Modeling and Loading . 663

Performance of Spatial Operator Query. 666

Performance of Other Spatial Processing Functions 670

Performance of Inserts, Deletes, and Updates . 672

Best Practices for Scalability and Manageability of Spatial Indexes 673

Common Mistakes . 678

Bounds, Longitude and Latitude, and Tolerance for Geodetic Data 678

NULL Values for SDO_GEOMETRY . 678

■CONTENTSxiv

8997ch00FM.qxt 9/28/07 9:52 AM Page xiv

www.freepdf-books.com

http://www.it-ebooks.info/

Use GEOCODE or GEOCODE_ALL . 678

Specify “INDEXTYPE is mdsys.spatial_index” in CREATE INDEX 678

Always Use Spatial Operators in the WHERE Clause 679

Use Spatial Functions When No Spatial Index Is Available 679

Do Not Move, Import, or Replicate MDRT Tables . 680

Network Metadata . 680

Map Metadata . 681

Common Errors . 681

ORA-13226: Interface Not Supported Without a Spatial Index 681

ORA-13203: Failed to Read USER_SDO_GEOM_METADATA View 681

ORA-13365: Layer SRID Does Not Match Geometry SRID. 681

ORA-13223: Duplicate Entry for <table_name, column_name> in
SDO_GEOM_METADATA . 682

ORA-13249, ORA-02289: Cannot Drop Sequence/Table 682

ORA-13249: Multiple Entries in sdo_index_metadata Table. 682

ORA-13207: Incorrect Use of the <operator-name> Operator 682

ORA-13000: Dimension Number Is Out of Range. 682

ORA-00904: . . . Invalid Identifier . 683

ORA-00939: Too Many Arguments for Function . 683

ORA-13030: Invalid Dimensionality for the SDO_GEOMETRY,
or ORA-13364: Layer Dimensionality Does Not Match Geometry
Dimensions . 684

Summary . 685

PART 6 ■ ■ ■ Appendixes

■APPENDIX A Additional Spatial Analysis Functions . 689

Tiling-Based Analysis. 689

TILED_BINS . 689

TILED_AGGREGATES . 691

Neighborhood Analysis . 694

AGGREGATES_FOR_GEOMETRY. 694

AGGREGATES_FOR_LAYER . 695

Clustering Analysis. 696

SPATIAL_CLUSTERS . 696

Refining the Candidates for Site Selection . 697

Geometry Simplification for Speeding Up Analysis. 698

Summary . 699

■CONTENTS xv

8997ch00FM.qxt 9/28/07 9:52 AM Page xv

www.freepdf-books.com

http://www.it-ebooks.info/

■APPENDIX B Linear Referencing . 701

Concepts and Definitions . 702

Measure . 702

Linear Referenced Segments . 702

Direction . 702

Shape Points. 702

Offset. 703

Typical Application . 703

Creating Linear Referenced Geometries . 705

SDO_GTYPE in LRS Geometries . 705

Constructing LRS Geometries. 706

Metadata. 707

Spatial Indexes and Spatial Operators on LRS Geometries 707

Dynamic Segmentation Operations . 707

Clip a Segment. 707

Locate a Point. 708

Project a Point . 709

Intersecting LRS Segments with Standard Geometries 710

Validation of LRS Segments . 710

Dynamic Segmentation on 3D Geometries . 711

Other Operations . 711

Summary . 712

■APPENDIX C Topology Data Model in Oracle . 713

Sharing Boundaries . 714

Benefits of the Topology Data Model . 715

Storing a Topology Data Model in Oracle. 715

Operating on a Topology in Oracle . 718

Creating a Topology . 718

Populating a Topology . 719

Associating a Feature Layer with a Topology . 719

Inserting, Updating, and Populating Feature Layers. 720

Updating Topological Elements. 721

Querying for Topological Relationships . 723

Hierarchical Feature Model . 723

Summary . 724

■APPENDIX D Storing Raster Data in Oracle . 725

The SDO_GEORASTER Data Type. 726

Storage for SDO_GEORASTER Data. 728

Metadata in SDO_GEORASTER Data . 731

■CONTENTSxvi

8997ch00FM.qxt 9/28/07 9:52 AM Page xvi

www.freepdf-books.com

http://www.it-ebooks.info/

Populating SDO_GEORASTER Columns . 731

Manipulating Raster Objects. 732

Generating Pyramids . 733

Subsetting. 734

Georeferencing. 734

Attaching Bitmap Masks . 736

Registering NODATA Values . 737

Using Compression in GeoRaster . 738

Visualizing Raster Data in Oracle MapViewer . 739

Summary . 741

■APPENDIX E Three-Dimensional Modeling Using Point Clouds
and TINs in Oracle . 743

Storing Large Point Sets . 744

The SDO_PC Data Type. 744

Populating a Point Cloud . 745

Querying a Point Cloud . 748

Other Manipulation Functions for Point Clouds. 749

Storing Triangulated Irregular Networks . 749

The SDO_TIN Data Type . 750

Populating a TIN . 751

Querying a TIN . 754

Other Manipulation Functions for TINs . 755

Summary . 755

■INDEX . 757

■CONTENTS xvii

8997ch00FM.qxt 9/28/07 9:52 AM Page xvii

www.freepdf-books.com

http://www.it-ebooks.info/

About the Authors

■RAVI KOTHURI has a PhD in computer science from the University of California,
Santa Barbara, and has been an active researcher and developer in the spatial
and multimedia areas for the past 15 years. Currently, he serves as project lead
and software architect in the spatial development team of Oracle Corporation.
He has more than 20 patents on specific Oracle technology and has authored
numerous articles for database conferences and journals. Other activities
include teaching database courses (most recently at Boston University), pre-
senting at panel meetings and conferences, and reviewing of research articles
for spatial and database conferences. Ravi enjoys music, movies, and playing
with his children.

■ALBERT GODFRIND has more than 25 years of experience in designing, devel-
oping, and deploying IT applications. His interest and enthusiasm for spatial
information and geographical information systems started at Oracle when he
discovered the spatial extensions of the Oracle database in 1998. Ever since,
Albert has been “evangelizing” the use of spatial information both to GIS and
IT communities across Europe, consulting with partners and customers, speak-
ing at conferences, and designing and delivering in-depth technical training.
Prior to joining Oracle Corporation, Albert held several positions in database
engineering at Digital Equipment Corporation (DEC), where he worked on
the development of the Rdb database system.

■EURO BEINAT has a PhD in economics and a master’s degree in electronics
and systems engineering. He has been involved in consultancy for more than
10 years in evaluation and strategic advice in sectors ranging from IT, govern-
ment, the oil industry, and large corporations. Currently, he is the managing
director of Geodan Mobile Solutions and holds a chair on Location Services at
the Vrije Universiteit of Amsterdam and at the University of Salzburg. His main
skills combine geo-IT and the Internet, with an extensive competence in deci-
sion analysis and strategy.

xix

8997ch00FM.qxt 9/28/07 9:52 AM Page xix

www.freepdf-books.com

http://www.it-ebooks.info/

8997ch00FM.qxt 9/28/07 9:52 AM Page xx

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

About the Technical Reviewer

xxi

■CAREL-JAN ENGEL is a member of the OakTable Network, lives in the Netherlands, and works as
a freelancer. He has been working in IT since 1982, and he started to work with Oracle version 4 in
1985. Fastforms (Forms 1.3) didn’t meet the requirements of the software project he was on, and he
joined the team that was developing “better” programming tools and applications in C, based on the
HLI, now known as the OCI. In 1992, he founded the Dutch software company Ease Automation,
which he headed for almost ten years. Some of his projects during this time related to airports and
had an important high-availability aspect to them, which inspired him to develop several techniques
for standby databases, often pushing Oracle technology to its limits. In 1998, he won the Chamber
of Commerce of Rotterdam’s Entrepreneur of the Year award. In 2002, he decided to continue his
career as a freelancer. He has been a regular author for several (Dutch) Oracle-related magazines
since 1998.

8997ch00FM.qxt 9/28/07 9:52 AM Page xxi

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Acknowledgments

Many people contributed to this book in numerous and important ways while remaining in the
background. Together they have made it possible for us to complete this project and we hope pub-
lish a good book.

We would like to thank the team at Apress, in particular Tony Davis for his role in initiating this
project and Jonathan Gennick for spearheading the revision. We also like to thank the project man-
ager, Kylie Johnston; the copyeditor, Kim Wimpsett; and the production editor, Ellie Fountain, for
their great job editing and proofreading the book as well as for their patience with shifting schedules,
flexible submission times, and above all their willingness to consider at any moment improvements,
changes, and adaptations that could make the book better.

We acknowledge the efforts of Daniel Abugov, Daniel Geringer, Siva Ravada, James Steiner, Jayant
Sharma, Steven Serra, Jay Banerjee, and Steven Hagan at Oracle Corporation for their help in getting this
book off the ground. Once we started writing the book, many other Oracle Spatial development team
members, including John Herring, Baris Kazar, Bruce Blackwell, Jeffrey Xie, Jack Wang, and Richard Pitts,
contributed with reviews of the chapters that fell in their respective areas of expertise. The reviews of
these multiple Oracle experts (in addition to those from Apress reviewers) had a tangible effect on the
quality of the text, its structure, and its completeness. Among these reviewers, special thanks go to
Daniel Abugov and Siva Ravada for their multiple reviews of a majority of the chapters. Dan’s compre-
hensive reviews and valuable suggestions have greatly enhanced the professional quality of the content.
Finally, this book would not have been a reality if it were not for the cooperation and flexibility in work
schedules extended by the Oracle Spatial management team (Siva Ravada and Steven Serra).

Consultants and application developers at Geodan Mobile Solutions provided a large amount
of material for the case studies and reviewed several sections of the book. We would like to thank in
particular Evert van Kootwijk and Valik Solorzano Barboza for their contributions regarding imple-
mentations of Oracle Spatial. We are also grateful for the contribution of Prof. Henk Scholten, who
advised us on a number of sections of the book.

The team of eSpatial has also provided major inputs for the case studies. We would like to thank
Matthew Bafford, Paul Baynham, David Miller, and Paul Saunders for their high-quality input, timely
revisions, and continuous support. The book has also been reviewed by several independent exter-
nal experts. We would like to thank in particular Carel-Jan Engel for his meticulous and sometimes
very critical comments. We wished, occasionally, to be given an easier ride, but his comments have
had a major impact on the book structure and content. They made a tangible and positive contribu-
tion to the overall quality of the book.

Several parties helped us collect the material necessary to compile the case studies. We would
like to thank all organizations involved for their willingness to share with us their experiences in
some important Oracle Spatial implementations. We are grateful to Transport for London (London
Buses), the Dutch Ministry of the Interior and the ISC (ICT service association for the Dutch police),
the Dutch Ministry of Environment and Spatial Planning and RIVM, the U.S. Department of Defense,
and the U.S. Geological Survey.

xxiii

8997ch00FM.qxt 9/28/07 9:52 AM Page xxiii

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Finally, we are indebted to our families for their patience and endurance during the book writ-
ing process. It is indeed difficult to understand why SQL, geometries, or long-distance conference
calls have priority over holidays, birthdays, or weekends. Nonetheless, we had a great time writing
this book, thanks to our families who managed to keep us on track while handling diverse priorities.

Ravi Kothuri
Albert Godfrind
Euro Beinat

■ACKNOWLEDGMENTSxxiv

8997ch00FM.qxt 9/28/07 9:52 AM Page xxiv

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Introduction

xxv

Organizations are discovering with increasing frequency that the vast majority of their informa-
tion assets have a spatial component, for example, the location of customers, shipments, facilities,
personnel, competitors, and so on. The ability to use this information properly is fundamental to
reducing operational costs, optimizing production efficiency, and increasing the quality of service.
Evidence of the benefits that can be achieved by exploiting spatial information is plentiful, and
many organizations are looking at ways of harvesting these benefits.

We have been professionally involved in a variety of projects that introduced spatial informa-
tion management into public and private organizations. The idea of writing this book came from
these projects and from discussing spatial information management with the software developers
and architects involved in them. We noticed a clear gap between the knowledge and skills necessary
for successful spatial information management projects and the common background of the tech-
nical personnel usually involved in large IT and database developments.

The vast majority of these staff members had backgrounds in such diverse areas as database
technology, Java, C++, PL/SQL, data models, security, availability, and scalability. However, only
a small number had some experience with spatial data—for most, working with spatial data was
completely new. It was easy to discover that spatial objects, geocoding, and map projections, for
example, were foreign terms to most (and, of course, spatial information management is not about
processing signals from space probes). Tools such as Google Maps and Google Earth have introduced
few of these concepts to a large audience, but the majority of spatial technology still remains an
esoteric subject.

It appears that this lack of knowledge of spatial technology is a common situation. Even within
the extensive community of Oracle experts, Oracle Spatial skills are relatively new to many. For those
of us who work at the interface between ICT, spatial informatics, management, and the traditional
world of geography and mapping, the realization of this gap was especially revealing, and it presents
a clear barrier to the diffusion of spatial information management through private and government
organizations, where the demand for spatial applications is steadily growing. Furthermore, while
Geographical Information Systems (GIS) are extensively used to manage spatial data, often as
stand-alone systems, the vast majority of spatial data resides in corporate databases. It is by adding
spatial intelligence to these databases that we probably disclose one of the largest untapped reser-
voirs of added value to organizations.

Oracle Spatial has grown to be one of the most established solutions for providing spatial intel-
ligence to databases. Besides the extensive installed base of Oracle databases, Oracle Spatial manages
spatial data just like any other data type, making it in principle easy for experienced database devel-
opers and architects to extend their scope into spatial information management. Using MapViewer
technology, Oracle Spatial also makes it easy to create and integrate maps in business applications.

Despite the plethora of available books on spatial information management and GIS, we still
encounter a lack of suitable material for Oracle developers or architects who do not have any spatial
background. This leads to simplistic uses of Oracle Spatial and suboptimal implementations that
frequently ignore the extensive list of Oracle Spatial capabilities. Besides the reference user guides,
most knowledge about Oracle Spatial is scattered around in technical papers or—even worse—in
the heads of those who have developed expertise and mastered the tool.

Our motivation for writing this book was to provide developers and architects with a reference
source to master Oracle Spatial and take their skills to a professional level. This book does not replace

8997ch00FM.qxt 9/28/07 9:52 AM Page xxv

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

the technical references. Instead, it presents concepts, examples, case studies, and tips to guide you
toward a full understanding of the potential of Oracle Spatial and how to use it at an advanced level.
We do not want to just familiarize you with Oracle Spatial; we want you to become an expert in
Oracle Spatial.

What Does This Book Cover?
This book covers spatial information management in the Oracle database. In particular:

• It introduces the main concepts of spatial information management and how they relate to
database concepts and tools.

• It describes the tools provided by Oracle Spatial to store, retrieve, analyze, and visualize
spatial information.

• It presents examples, applications, and case studies that will help you facilitate the incorpo-
ration of these concepts and tools into your applications.

While most conceptual discussions will be of general validity, this book is about Oracle Spatial
11g, the newest release of the Oracle database product.

The focus of the chapters in this book is the application of Oracle Spatial technology to general
e-business applications. All of the features that are relevant to such applications are discussed in full
detail, with working examples based on the sample data supplied with the book. In the appendixes,
we cover the topics that are more relevant to highly specialized GIS applications. These provide a more
general overview of each topic and reference the Oracle documentation for full details.

The following list contains a chapter-by-chapter breakdown summarizing the key topics
covered:

• Setting Up: The next section of this book, after this introduction, describes how to set up
Oracle Spatial and the example schema required to run the code examples in this book. It
then describes the specific e-business application and related dataset that are used for most
examples in this book. The data used includes mapping data (for example, state boundaries,
rivers, built-up areas), geocoding data (for example, lists of addresses with their x,y coordi-
nates), network data (for example, road networks for computing travel distance and providing
navigation instructions), and application-specific data (in this case, a set of tables with cus-
tomers, stores/branches, and competitors). The data covers parts of the United States, such
as the cities of Washington, D.C., and San Francisco, and uses typical U.S. terms and notations
(for example, counties, interstates, and so on). This does not imply any loss of generality—
the same examples can be made for any other similar dataset.

• Chapter 1: Spatial Information Management: In this chapter, we describe how spatial infor-
mation is used in different industry segments and cover the typical functionality required for
managing spatial/location information. We use a site-location example to illustrate different
aspects of spatial information management: representation and storage using appropriate
types, and analysis functionality for stored spatial data. We then discuss the systems that
enable spatial information management, such as GIS, and their evolution. We finally look at
the benefits of spatial information management using Oracle Spatial.

• Chapter 2: Overview of Oracle Spatial: The Oracle Spatial technology suite enables spatial
information management inside Oracle. This chapter provides an overview of this suite, its
architecture, and its functionality. The overview includes a concise description of the different
features of Oracle Spatial, including storage using SDO_GEOMETRY, analysis using spatial
operators, and visualization using Oracle MapViewer. We also illustrate how this functional-
ity is productized into the components that are shipped with different editions of Oracle.
Finally, we explain what to expect during and in a typical Oracle Spatial installation.

■INTRODUCTIONxxvi

8997ch00FM.qxt 9/28/07 9:52 AM Page xxvi

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Chapter 3: Location-Enabling Your Applications: In this chapter, we consider how to augment
existing application tables with location information. We introduce an e-business application
for this purpose, which we use in examples throughout the rest of the book. We also describe
several design choices to consider while storing geographic data in Oracle tables. Location-
enabling an application requires populating appropriate metadata tables to enable spatial
processing on spatial tables. In the last part of the chapter, we look at the details of populating
such metadata.

• Chapter 4: The SDO_GEOMETRY Data Type: This chapter focuses on the storage and modeling
of location information using the SDO_GEOMETRY data type in Oracle. The type can store
a wide variety of spatial data, including points, line strings, polygons, surfaces, and solid
geometries. We take a detailed look at the structure of SDO_GEOMETRY and at the different
attributes and the values it can take to store different types of geometric data. We then show
how to construct SDO_GEOMETRY objects for geometries to model roads, property bound-
aries, and city buildings.

• Chapter 5: Loading, Transporting, and Validating Spatial Data: In this chapter, we describe
different ways to populate Oracle tables that contain SDO_GEOMETRY columns. These
tables could be part of an e-business application or could be tables in CAD/CAM, GIS, GPS,
wireless, or telematics applications. We explain how to import the data that comes with this
book using the Oracle Import utility. We also describe other utilities and functions/procedures
for transferring data between Oracle databases and/or external formats. Finally, we look at
how to validate the loaded SDO_GEOMETRY objects and how to correct some invalid objects.

• Chapter 6: Geocoding: In this chapter, we cover the functionality of the geocoder in Oracle
Spatial. We first introduce geocoding concepts and the geocoding process to provide an
understanding of how the conversion from addresses to SDO_GEOMETRY objects takes
place. We then discuss how to set up a data catalog to enable geocoding in your application.
This catalog is used to determine and extrapolate the location for a specified address. Finally,
we describe how to add location columns to application data. We illustrate this using differ-
ent functions/APIs of the geocoder in Oracle that serve this purpose.

• Chapter 7: Manipulating SDO_GEOMETRY in Application Programs: Advanced application
developers often need to access and manipulate spatial objects in their applications. In this
chapter, we look at how to manipulate SDO_GEOMETRY types in programming languages
such as PL/SQL and Java. We also briefly cover C and Pro*C. We examine how to read, decode,
construct, and write geometries, providing extensive code examples throughout.

• Chapter 8: Spatial Indexes and Operators: In this chapter and in the next chapter, we describe
how to use spatial information to perform proximity analysis. In this chapter, we focus on spa-
tial indexes and spatial operators. Spatial indexes ensure effective response times for queries
that perform proximity analysis. The chapter introduces the concepts of spatial indexes and
their creation. We then describe different spatial operators that Oracle Spatial supports for per-
forming spatial analysis for indexed tables. We give an overview of their syntax and semantics
and describe in detail various operators. We also suggest tips that can ensure a faster evalua-
tion of spatial operators. In the final part of the chapter, we address some advanced spatial
indexing features that are useful for large spatial repositories.

• Chapter 9: Geometry Processing Functions: In this chapter, we discuss geometry processing
functions, simply referred to as spatial functions. In contrast to the spatial operators, these
geometry processing functions do not require a spatial index, provide more detailed analy-
ses than the spatial operators associated with a spatial index, and can appear in the SELECT
list as well as in the WHERE clause of a SQL statement. We discuss each of the spatial func-
tions in turn, including tips for their use.

■INTRODUCTION xxvii

8997ch00FM.qxt 9/28/07 9:52 AM Page xxvii

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Chapter 10: Network Modeling: In this chapter, we introduce another way of modeling spatial
data based on the concept of the network. A network is a useful way to model information
when we need to compute, for instance, routes, travel distances, or proximity based on travel
time. We describe the general concepts and terminology for setting up networks, and then we
discuss the Oracle Network Data Model and its data structures. We then specify how to set up
a network in Oracle and how to perform network analysis.

• Chapter 11: The Routing Engine: In this chapter, we introduce Oracle’s Routing Engine. Among
other things, you’ll learn how to use the Oracle Routing Engine to get turn-by-turn directions
from a starting address to a destination address.

• Chapter 12: Defining Maps Using MapViewer: MapViewer is the tool available in Oracle to
visualize spatial information stored in a spatial database. The tool is part of Oracle Application
Server. In this chapter, we describe MapViewer and introduce the basic mapping concepts,
such as themes, style rules, and user controls. We look at how to install, deploy, and configure
MapViewer, as well as how to construct maps and store them in the database using the Map
Builder definition tool.

• Chapter 13: Using Maps in Your Applications: In this chapter, we show how to integrate maps
created from spatial data in business applications. We also show how to support a seamless
browsing experience and improve the performance of mapping applications using the recently
introduced Oracle Maps technology.

• Chapter 14: Sample Applications: In this chapter, we use most of the techniques and tools illus-
trated so far in the book to create a simple application that integrates spatial analysis and
visualization. This chapter presents and dissects such an application. The application includes
map and data display, map functionality (zoom, pan, and so on), geocoding, spatial analysis,
and routing. We look at how the application was designed and coded, and we review some of
the source code that implements the major features of the application. The complete source
code is provided for download from the Apress website (www.apress.com); see the upcoming
“Setting Up” section for more details.

• Chapter 15: Case Studies: This chapter describes five case studies that illustrate how to use
Oracle Spatial for storing, analyzing, visualizing, and integrating spatial data in business
and government applications. The BusNet case study illustrates how to use Oracle Spatial
for managing the bus network of the city of London. The P-Info case study describes a sys-
tem to provide location-enabled information access to police officers operating in the field.
The case study on the Dutch Risk Repository for Hazardous Substances shows how to use
Oracle Spatial to spatially enable a repository for (bio)chemical risks and effects. The USGS
National Land Cover Visualization and Analysis Tool illustrates how to use Oracle Spatial to
provide access to the raster land-cover data of the United States. The MilitaryHOMEFRONT
case study illustrates how to use Oracle Spatial for storing and accessing points of interest,
geocoding, and routing.

• Chapter 16: Tips, Common Mistakes, and Common Errors: In this chapter, we describe some
useful tips in location-enabling your application. We also discuss some of the mistakes most
application developers make that can be easily avoided. Finally, we address some common
errors that you may encounter in location-enabling your application and the actions to take
to sort out these errors.

• Appendix A: Additional Spatial Analysis Functions: In this appendix, we describe analysis
functions that are provided, in addition to those described in Chapters 8 and 9, to cater to
specific business analysis needs. These functions enable tiling-based analysis, neighborhood
analysis, and clustering analysis.

■INTRODUCTIONxxviii

8997ch00FM.qxt 9/28/07 9:52 AM Page xxviii

www.it-ebooks.info

www.freepdf-books.com

http://www.apress.com
http://www.apress.com
http://www.it-ebooks.info/

• Appendix B: Linear Referencing: Linear referencing is widely used in the transportation and
utility industries. It uses one parameter (measure) to identify an object position along a linear
feature with respect to some known point (such as its start point). This appendix introduces
the concept of linear referencing and its most common operations. It then discusses the
SDO_LRS package that contains all functions that manipulate linear-referenced geometries.

• Appendix C: Topology Data Model in Oracle: In some applications, such as land manage-
ment, sharing and updating of boundaries between multiple spatial objects is common. This
process may cause data inconsistency problems because of updates of underlying shared
boundaries. In this appendix, we describe an alternate model, the Topology Data Model, for
effective management of shared geometry features. We introduce topology modeling in Oracle
Spatial and the functionality to operate on the Topology Data Model.

• Appendix D: Storing Raster Data in Oracle: In this appendix, we briefly discuss how to store
raster objects in Oracle Spatial. This appendix introduces the SDO_GEORASTER data type and
explores how raster data is stored in an Oracle database. The chapter also describes how to
manipulate GeoRaster objects.

• Appendix E: Three-Dimensional Modeling Using Point Clouds and TINs in Oracle: In this
appendix, we briefly discuss how to store large point sets, which typically result from laser
scanning, in Oracle Spatial. The appendix introduces a new data type called SDO_POINT_CLOUD
for efficient storage and retrieval of such large point sets. Later, it describes the SDO_TIN data
type to create triangulated irregular networks for such point sets.

This book is not meant to repeat the content of user and installation guides. It is highly recom-
mended that you have those guides available when reading this book, and especially when running
the examples. In several cases, we refer you to the user or installation guide for details. The complete
documentation for Oracle Database and Oracle Application Server is available online on the Oracle
Technology Network website at www.oracle.com/technology/documentation. The Oracle 11g manu-
als relevant to this book are as follows:

• Oracle Spatial User’s Guide and Reference

• Oracle Application Server, MapViewer User’s Guide

• Oracle Spatial Topology and Network Data Models Developer’s Guide

• Oracle Spatial GeoRaster Developer’s Guide

• Oracle Spatial Java API Reference

Who Should Read This Book?
The primary audience for this book is application developers who are familiar with Oracle tech-
nologies and want to enhance their applications with spatial information. They typically know
about database design, PL/SQL, Java, and so on, but they do not know much (if anything) about
spatial data or geographical information systems.

The book will also appeal to the more general technical user of Oracle who is interested in the
advanced features of database technology. The book introduces the world of spatial information
gradually and guides the reader from the basic concepts to sophisticated analysis and case studies.
It has a hands-on style, with extensive examples and practical information.

The book should open up new application domains to developers and prompt them to incorpo-
rate spatial aspects to existing applications. However, the book should also attract GIS programmers
or users, if only because this is the first book that addresses Oracle Spatial in its entirety. In spite of its
title, this book does in fact cover the full spectrum of geospatial technologies at Oracle—that is, the
database (Oracle Spatial and Locator) and also Oracle Application Server (MapViewer and Router).

■INTRODUCTION xxix

8997ch00FM.qxt 9/28/07 9:52 AM Page xxix

www.it-ebooks.info

www.freepdf-books.com

http://www.oracle.com/technology/documentation
http://www.it-ebooks.info/

If you’re new to PL/SQL and database technology, then we suggest taking some time to get famil-
iar with the language and the main concepts of object-relational databases before tackling this book.
It’s not intended for the total beginner. On the other hand, we do not assume any previous knowledge
of spatial information management.

Once you’re up and running, we’re certain that you’ll find our book an invaluable guide for
creating robust spatially enhanced applications that perform well.

Copyrights and Disclaimer
Oracle is a registered trademark, and Oracle9i, 10g, 11g, Oracle iAS (Application Server), and Oracle
Spatial are trademarks of Oracle Corporation.

All other company and product names mentioned in the book are used for identification pur-
poses only and may be trademarks of their respective owners.

The data used in this book is provided exclusively to illustrate the concepts in this book and is
not authorized for use in any other way. The datasets cannot be transferred, changed, or modified in
full or in part without the written consent of the authors. In particular, we refer you to the End User
License Agreement for the sample data provided by NAVTEQ and used in this book. This agreement
is accessible at www.navteq.com/oracle-download/end_user_terms.pdf. By installing and using the
data provided with this book, you implicitly agree to the terms of this agreement.

The authors, the publishers, and the companies that originally sourced code and data cannot
be liable for any damages incurred by using the data shipped with this book. The authors and the
publishers do not guarantee that the data is complete, up to date, or accurate.

Most of the figures in the book were generated using Oracle MapViewer based on data from
NAVTEQ and DCW. The data is copyright of the respective owners.

■INTRODUCTIONxxx

8997ch00FM.qxt 9/28/07 9:52 AM Page xxx

www.it-ebooks.info

www.freepdf-books.com

http://www.navteq.com/oracle-download/end_user_terms.pdf
http://www.it-ebooks.info/

Setting Up

To be able to work through all the content and examples of this book, you need to set up some
software and download some data and code. Specifically:

• You need to have Oracle Database 11g and Oracle Spatial installed and configured.

• You need to have Oracle MapViewer (part of Oracle Application Server) installed and config-
ured. The instructions for installing and configuring MapViewer are in Chapter 12.

• You need to download data and scripts for this book from the Apress website (www.apress.com).

The Oracle software (Database 11g, Application Server, and MapViewer) is available for download
from the Oracle Technology Network website at www.oracle.com/technology/products. Note that any
software you download from the Oracle Technology Network site is for evaluation purposes only.

Downloads
Data, code, and links to software are provided for this book in the Downloads section of the Apress
website (www.apress.com). Here you will find a compressed file that contains the following:

• An HTML file with a hierarchical folder structure that contain links to the following:

• The code and the examples shown in the book chapters

• The datasets used for these examples and described briefly

• The download areas of the software tools used in the book, such as OC4J

• The files containing the example code and the data files. You can access all files from the
hyperlinks in the HTML file.

• A readme.txt file that contains all information needed to use this material.

■Note Please read the readme.txt file. It contains the most relevant information regarding the code, data, and
links provided in support of this book. This information is not provided in the book itself.

Setting Up Oracle Spatial and MapViewer
If you already have a recent version of an Oracle database up and running, you most probably do
not need to do anything specific to set up Oracle Spatial. Oracle Spatial technology is automatically
installed with the Standard or Enterprise Edition of an Oracle database server. As long as you are
using version 10.1.0.2 or newer, you should be able to work through the examples in the book.

Note that the Database Server license includes only a few of the functions described in the book
(the so-called Locator suite). To be able to work through all examples and explore the entire func-
tionality of Oracle Spatial, you need to obtain a separate product license for the Spatial option.
Chapter 2 includes detailed information on how to set up Oracle Spatial for this book.

xxxi

8997ch00FM.qxt 9/28/07 9:52 AM Page xxxi

www.it-ebooks.info

www.freepdf-books.com

http://www.apress.com
http://www.oracle.com/technology/products
http://www.apress.com
http://www.it-ebooks.info/

MapViewer serves to create mapping applications. You can deploy MapViewer either within
a full Oracle Application Server environment or as a stand-alone installation of the Oracle Appli-
cation Server Containers for J2EE (OC4J). Both MapViewer and OC4J are available for download
from the Oracle Technology Network website (see the links in the support material for this book).
The instructions to deploy MapViewer within Application Server are provided in Chapter 11, where
we use MapViewer for the first time.

The Example Data
Once you have your Oracle 11g database up and running, to run the examples in this book you first
need to do the following:

1. Create a user spatial with the password spatial.

2. Grant resource, connect, and unlimited tablespace privileges to the spatial user.

3. Create a tablespace called users, and make it the default tablespace for the spatial schema.
This tablespace should have at least 100MB of space.

For each chapter, you should re-create the spatial schema and import appropriate datasets listed
at the beginning of the chapter using the Oracle Import utility. Starting from Chapter 2, every chapter
that requires code or data to be downloaded from the Apress site will clearly specify this. You will find
a checklist of all data, scripts, and code that you need to download to be able to run the examples in the
chapter, as well as any particular operation that needs to be carried out to prepare for that.

We do not expect that you are using any specific tool for programming or for SQL, which means
you should be able to run all examples using your preferred tools.

The data used in the examples for this book comes from several sources. The detailed street-
level data is derived from a sample made available by NAVTEQ to Oracle users. (The original sample
is available for download at www.navteq.com/oracle-download.) This data includes detailed informa-
tion on San Francisco and Washington, D.C., as separate files. For the purposes of this book, we
merged the data and extracted a relevant subset.

The other sources of data are the U.S. Census Bureau and the GIS Data Depot. The GIS Data
Depot (http://data.geocomm.com) is a central distribution point for free and public domain data.

As noted, we provide the example data as a set of Oracle dump files, which you can import into
your database using the standard import (imp) tool. The following is a brief overview of what each
dump file contains.

app_data.dmp
Source: NAVTEQ
Size: 640KB
Tables: BRANCHES, CUSTOMERS, and COMPETITORS
Description: This file contains the definitions of our “application” tables: branches, customers, and
competitors.

app_data_with_loc.dmp
Source: NAVTEQ
Size: 640KB
Tables: BRANCHES, CUSTOMERS, and COMPETITORS
Description: This file is identical to the app_data.dmp file described earlier. The only difference is that
all the tables (branches, customers, and competitors) have an additional column called location of
type SDO_GEOMETRY to store the location of the corresponding entities.

■SETTING UPxxxii

8997ch00FM.qxt 9/28/07 9:52 AM Page xxxii

www.it-ebooks.info

www.freepdf-books.com

http://www.navteq.com/oracle-download
http://data.geocomm.com
http://www.it-ebooks.info/

citybldgs.dmp
Source: Oracle synthetic data
Size: 4MB
Tables: building_footprints, city_buildings, trip_route
Description: This file contains the three-dimensional structures of a few hypothetical buildings and
their two-dimensional footprints.

map_large.dmp
Source: Digital Chart of the World
Size: 34.2MB
Tables: US_STATES, US_COUNTIES, US_CITIES, US_INTERSTATES, US_PARKS, US_RIVERS, WORLD_CONTINENTS,
and WORLD_COUNTRIES
Description: This file contains the boundaries of states and counties in the United States, as well as
the locations of major cities, national parks, rivers, and interstates. It also contains the boundaries
of world continents and countries. In addition to the boundaries stored as SDO_GEOMETRY columns,
some of the tables have demographic information such as population density or area.

map_detailed.dmp
Source: NAVTEQ
Size: 3.1MB
Tables: MAP_MAJOR_HIGHWAYS, MAP_SEC_HIGHWAYS, MAP_MAJOR_ROADS, MAP_STREETS, MAP_PARKFACILITY_
POINTS, and US_RESTAURANTS
Description: This file contains the detailed definition of streets for San Francisco and Washington, D.C.

gc.dmp
Source: NAVTEQ
Size: 9.2MB
Tables: GC_COUNTRY_PROFILE, GC_PARSER_PROFILEAFS, GC_PARSER_PROFILES, GC_AREA_US, GC_INTERSECTION_
US, GC_POI_US, GC_POSTAL_CODE_US, GC_ROAD_SEGMENT_US, and GC_ROAD_US
Description: This file contains the geocoding data for two cities in the United States: Washington,
D.C., and San Francisco.

net.dmp
Source: NAVTEQ
Size: 5.2MB
Tables: NET_LINKS_SF, NET_NODES_SF, and MY_NETWORK_METADATA
Description: This file contains the description of the street network for San Francisco.

styles.dmp
Source: Oracle
Size: 400KB
Tables: MY_MAPS, MY_THEMES, and MY_STYLES
Description: This file contains a set of map, theme, and style definitions for use by MapViewer.

■SETTING UP xxxiii

8997ch00FM.qxt 9/28/07 9:52 AM Page xxxiii

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

zip.dmp
Source: U.S. Census Bureau
Size: 24KB
Table: ZIP5_DC
Description: This file contains the boundaries of the zip codes areas in Washington, D.C., with some
attributes (area, perimeter, and population).

■SETTING UPxxxiv

8997ch00FM.qxt 9/28/07 9:52 AM Page xxxiv

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Overview

P A R T 1

8997ch01.qxd 10/2/07 4:20 PM Page 1

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Spatial Information Management

Location is an inherent part of business data: organizations maintain customer address lists, own
property, ship goods from and to warehouses, manage transport flows among their workforce, and
perform many other activities. A majority of these activities entail managing locations of different
types of entities, including customers, property, goods, and employees. Those locations need not be
static—in fact, they may continually change over time. For instance, goods are manufactured, pack-
aged, and channeled to warehouses and retail/customer destinations. They may have different
locations at various stages of the distribution network.

Let’s consider an example of parcel services to illustrate how location is used. We have become
increasingly accustomed to monitoring the status of parcel deliveries on the Web by locating our
shipment within the distribution channel of our chosen service supplier. The simplicity and useful-
ness of this service is the result of a very complex underlying information system. The system relies
on the ability to locate the parcel as it moves across different stages of the distribution network.
Many information systems share location information in this process, which can be used to esti-
mate, for instance, transit or delivery times. Systems such as RFID1 are used to automatically record
the movements of parcels along the distribution chain. Aircraft, trains, container ships, or trucks
that move goods between distribution hubs use systems such as Global Positioning System (GPS) to
locate their positions in real time. Even the “last mile”—that is, the delivery of an individual parcel
to the end customer—is based on the geographical optimization of the delivery schedule as well as
on the ability to locate the truck drivers in real time, to guide them to their destinations, and to esti-
mate delivery times.

All of this location information is stored, analyzed, and exchanged between multiple systems
and is the basis for making the entire operation cheaper, faster, and more reliable. Most of these sys-
tems are connected to each other through the Internet. The end user also uses the Internet to access
the system and to query the current status of his parcel. By analyzing the system in its entirety, you
can recognize that the added value is the result of the integration of various systems, of their inter-
operability, and of the pervasive role of spatial information across the entire process. Spatial information
plays a crucial role in enabling the systems and processes to run smoothly and efficiently.

This example illustrates the pervasiveness of location or spatial information in day-to-day business.
In fact, market research estimates that the majority of the data handled by organizations—perhaps as
much as 80 percent of all data—has a spatial dimension.2 The ability to properly manage the “where,” or
the spatial information, is key to the efficiency of organizations and could translate to substantial costs
savings and commercial competitiveness. For instance, healthcare, telecommunications, and
local government organizations depend on spatial information to run their daily business. Other

3

C H A P T E R 1

1. RFID stands for Radio Frequency IDentification, a technology to exchange data between tags and readers
over a short range. See RFID Essentials (O’Reilly Media, 2006).

2. See Daratech Inc.’s analysis titled “Geographical Information Systems: Markets and Opportunities”
(www.daratech.com/research/index.php).

8997ch01.qxd 10/2/07 4:20 PM Page 3

www.it-ebooks.info

www.freepdf-books.com

http://www.daratech.com/research/index.php
http://www.it-ebooks.info/

organizations in the fields of retail, distribution, and marketing use spatial information for strategic
decision making—for example, choosing store locations, making investment decisions, examining mar-
ket segmentation, and supporting clients.

At one point in time, the Internet seemed to have made location irrelevant. The Web emerged
as a locationless cloud, where we could contact anybody around the world instantly and shop any-
where without the usual constraints of geography. It seemed that the worlds of transport, logistics,
and location received a critical blow. Of course, that thinking was naive. The Internet has made
geography even more relevant and has bound digital and physical worlds closer than ever. It is now
possible to do business over much farther distances, and tracking the locations of different compo-
nents of a business and analyzing them have become all the more important.

The emergence of wireless and location services promises to add location to every information
item that we use or process. Technologies such as RFID have the potential to radically alter the retail
and distribution worlds, making it possible to cheaply locate and track individual items, however
small they are. With these new developments, the relevance of location has grown, and this is why it
has become increasingly important to master the tools that handle spatial information.

Software tools for spatial information management have been traditionally known under the
name of Geographical Information Systems (GIS). These systems are specialized applications for
storing, processing, analyzing, and displaying spatial data. They have been used in a variety of
applications, such as land-use planning, geomarketing, logistics, distribution, network and utility
management, and transportation.3 However, until recently GIS have employed specific spatial data
models and proprietary development languages, which held them separate from the main corpo-
rate databases. This has represented a barrier for the full deployment of the added value of spatial
data in organizations.

As the use of GIS in enterprises and in the public sector has grown in popularity, some of the
limitations of GIS have become apparent. Organizations often have to deal with multiple and incom-
patible standards for storing spatial data, and they have to use different languages and interfaces to
analyze the data. Furthermore, systems such as Customer Relationship Management (CRM) and
Enterprise Resource Planning (ERP) or the systems used in logistics increasingly rely on the integra-
tion of spatial information with all other types of information. This has often been an operational
and technical challenge that in some cases was solved by manually extracting information from one
system and loading it into another to perform the necessary spatial analysis.

Oracle Spatial has an important role in changing this situation. Once the spatial data is stored
in an Oracle database, it can be processed, retrieved, and related to all the other data stored in the
database: spatial information, or location, is just another attribute of a business object. This elimi-
nates both the need for coordinating multiple data sources because of an application’s dependence
on special data structures and using different languages to query the data. Relevant features of Oracle
Spatial are the ability to access spatial data through SQL statements, just like any other database
content, and support for industry standards for spatial information (SQL and Open Geospatial4).
Above all, Oracle Spatial facilitates leveraging the full added value of spatial information, which
becomes an integral part of the information assets of organizations.

Given this overview of what location information is and how it can be used, in this chapter we
will elaborate on the following topics:

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT4

3. For an introduction to GIS and its applications, see An Introduction to Geographical Information Systems,
Third Edition (Prentice Hall, 2006).

4. See www.opengeospatial.org.

8997ch01.qxd 10/2/07 4:20 PM Page 4

www.it-ebooks.info

www.freepdf-books.com

http://www.opengeospatial.org
http://www.it-ebooks.info/

• First, we describe how location information is used in different industry segments. Chances
are that this will relate to your application and give you a head start putting spatial informa-
tion to good use.

• Next, we describe different sources for spatial data. The data could be location information
from different applications, or it could be geographical data representing, for instance, polit-
ical boundaries.

• We then describe typical functionality required for managing spatial/location information.
This functionality involves storing and analyzing the spatial data. We look at a specific exam-
ple to illustrate the different components of such spatial processing.

• Finally, we discuss the systems that enable spatial information management, such as GIS,
and their evolution. We consider an out-of-the-box approach to spatial information and the
Oracle Spatial approach that integrates spatial data with other data in an Oracle database.
We elaborate on this comparison and highlight the benefits of using Oracle Spatial.

Using Spatial Information in Various Industries
Let’s now consider a simple business application example. The database for this application con-
tains data about available products (a Products table), customers (a Customers table), suppliers
(a Suppliers table), delivery sites (a Delivery table), and competitors (a Competitors table). The
tables for customers, suppliers, delivery sites, and competitors contain information on the location
of each item in the table. For instance, the Customers table contains the address of each customer
and also the x,y coordinates of the address.

Notice that only the address is usually known, but for many spatial analyses, such as the calcu-
lation of the distance between a customer’s location and delivery sites, you need to know the x,y
coordinates of this address. The conversion of address fields to x,y coordinates is one of the most
fundamental spatial operations described in this book, called geocoding. It serves to translate a text
string such as “Abbey Road, 3, London NW8” into something like “longitude = –0.1784; latitude =
51.5320,” which is the information used to relate spatial information items to each other.

With this information available, we might want to conduct valuable business analyses that can
help determine new marketing campaigns, opening of new stores, and discontinuation of poorly
located stores, as well as identify more efficient home-delivery schedules, changes in the stores’
product portfolios, and so on. Consider the following options:

• Identify customers that are close to a competitor store (say less than 5 kilometers). To pre-
vent them from switching stores, you could design a specific marketing campaign proposing
special discounts for these customers.

• Optimize the distribution network. By counting the number of customers who are located
within a certain distance from a distribution center, you could see whether some centers are
overloaded or underutilized. This may lead to a redesign of the distribution network.

• Identify routes from delivery sites to customer locations, and cluster goods in such a way
that the same delivery can serve multiple customers and save money. Note that this analysis
requires additional data, such as the road network.

• Superimpose the location of stores on a population map, and check whether the store loca-
tions are appropriate. If some areas are underserved, this would alert you to opportunities
for new outlets. Note that additional demographic data is often useful for this analysis.

• Visualize table data and analysis results as maps (such as customer maps, delivery site maps, and
so on) and produce rich visual material better suited for communication and decision making.

• Integrate these maps with existing applications, such as a CRM system, so that location
information and analysis can promote effective customer relations.

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT 5

8997ch01.qxd 10/2/07 4:20 PM Page 5

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

To perform these types of analyses, you need to store location information for customers,
delivery sites, and competitors. In practice, this will mean augmenting the corresponding tables
with additional columns for storing location information. You also need to store additional infor-
mation, such as street networks, rivers, city and state boundaries, and so on, to use in visualization
and analysis.

The preceding analyses are representative of a vast class of uses for spatial information. The
following list summarizes some of the main uses of spatial data, analysis, and visualization in vari-
ous industries:

• Banking and finance: These industries use location data for analysis of retail networks and
for market intelligence. The customer database combined with demographics and wealth
information helps banks define an optimal retail network and define the best product mix to
offer at each branch.

• Telecommunications: Location analysis helps telecom operators and carriers improve their
competitive position. Spatial data is used for network planning, site location, maintenance
organization, call-center and customer support, marketing, and engineering.

• Local and central government: Spatial information is heavily used by all government agen-
cies, since they manage a multitude of assets distributed over large territories. Uses include
natural resource management or land-use planning, road maintenance, housing stock mainte-
nance, emergency management, and social services.

• Law Enforcement: Spatial information helps officers in operational duties, as well as in crime
analysis and prevention. Location information is used by field officers to locate places and
other resources in the field in real time. Investigators use spatial data for crime analysis.
Spatial patterns of crime are used to better locate police resources and improve prevention.

• Real estate and property management: Geographic data and demographics are used to iden-
tify and assess locations for outlets, housing, or facilities. Land-use, transport, and utility
networks are used to site industrial and production facilities.

• Retail: Location data serves as a basis for operational and strategic decisions. It can be used
to identify the profile of the best customers and help reach similar prospects. Spatial data
can increase the relevance and focus of marketing campaigns and find the best layout of
a distribution network for maximum profit.

• Utilities: Many different utility systems can be found under almost every street. Utility com-
panies use spatial information to design these underground systems, plan and monitor
groundwork, and maintain their cable and pipe networks.

• Communications, media, and advertising: Location data are frequently used for increasing
the return of communications campaigns. Segmentation and location-based targeting help
companies finesse the timing and appropriateness of marketing campaigns, thereby increas-
ing their expectation of success.

• Wireless data services: Wireless data services increasingly use location data to enrich the user
experience and provide valuable services. Uses include personal navigation systems, friend
finders, roadside emergency, location-based yellow page searches, and the like. Wireless
location services are necessary for fast returns on investments made on third-generation
telecom networks.

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT6

8997ch01.qxd 10/2/07 4:20 PM Page 6

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Sources of Spatial Data
In the previous section we described the uses of spatial information in applications and in various
industries, and we introduced the distinction between application data and spatial data. The simplest
example is that of address lists collected as text items and subsequently enhanced by associating
geographical (longitude, latitude) coordinates to each address. This association makes it possible to
analyze the address information from the spatial perspective, an otherwise impossible operation
based on the original address list.

In general, the association between nonspatial objects and their corresponding geometry makes
it possible to relate the objects based on spatial concepts (close, far, overlap, joined, and so on). Very
often the tables derive their spatial dimension from some primarily spatial data sources. In the case
of address geocoding, for instance, postal data provides the locations of individual addresses in the
form of a reference address list with the associated coordinates.

This is only one of the multitudes of spatial datasets and sources used in practice. Some datasets,
such as cadastral data, land-use data, road network data, administrative boundary data, rivers and
lakes data, and so on, are almost always present in spatial analysis and visualization. This data is
collected, updated, and distributed by public bodies or by companies (the latter is the case, for
instance, for the road networks for car navigation). All these datasets are first of all spatial, because
the geographic component of the data content defines the usefulness and relevance of the entire
dataset, and they are often used as reference layers.

The vast majority of these datasets are dynamic, at least to some extent. However, there are several
cases in which the reason for using spatial data is specifically because of their dynamics. For example,
use of real-time location is increasingly common, thanks to the widespread use of GPS and the growing
use of location systems such as Wi-Fi location or RFID tagging, to locate people or objects.

GPS receivers can be located with high accuracy and can feed a database with the real-time
location of a moving person/object (a field engineer, a car, a truck, a container, and so on). Note
that there are also many commercial GPS applications, such as car navigators, that use real-time
location within closed applications that support a specific purpose (such as door-to-door naviga-
tion) without connection to corporate data infrastructures. However, in most cases, it is the ability
to feed the enterprise databases with the location of the mobile users or assets of an organization
that allows planning, scheduling, and logistics improvements.

This is increasingly becoming the case in the retail and distribution industries, where the use of
RFID, instead of bar codes, makes it possible to track vast amounts of goods automatically while they
travel through the distribution chain from supplier to end user. RFID tagging can be implemented
at the level of single items, products, or even documents. With RFID, goods can be followed precisely—
for instance, within a warehouse—and this information can be used to minimize inventory, optimize
supply schedules, and create a unique opportunity to link logistics with administrative, CRM, and
ERP systems. It is likely that these areas, often referred to as location-based or sensor-based systems
and services, will stimulate a rapid increase in the use of spatial information in the near future.

Managing and Analyzing Spatial Data
In this section, we will examine how to manage spatial data and what the typical analysis functions
on spatial data are. Note that a variety of spatial processing systems such as GIS and spatial-enabled
databases can provide this functionality using their own types and functions. We first describe
spatial processing using generic terminology without referring to any specific solution (such as
Oracle Spatial).

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT 7

8997ch01.qxd 10/2/07 4:20 PM Page 7

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Spatial operations typically include, but are not limited to, the following:

• Storage of spatial data: In most cases, this involves the following:

• Storing the data in an appropriate form in the database. For instance, the database sys-
tem could have a geometry type to store spatial information as points, lines, polygons,
and other types of vector representations. The system may also have a network type for
modeling road networks.5

• Inserting, deleting, and updating these types of spatial data in the database.

• Analysis of vector spatial data: This typically includes the following analysis functionality:

• Within-distance: This operation identifies all spatial data within a specified distance of
a query location.

• Contains: This operation identifies all spatial data that contain a specified query loca-
tion (geometry). Functions to detect other types of relationships may also be defined.

• Nearest-neighbor: This operation identifies all spatial data closest to a query location.

• Distance: This operation computes the distance between two spatial objects.

• Buffer: This operation constructs buffer zones around spatial data.

• Overlay: This operation overlays different layers of spatial data.

• Visualization: This operation presents spatial data using maps.

• Analysis of network data: Typically, most spatial data, such as road networks, can also be rep-
resented as network data (in addition to vector data). We can perform the preceding analysis
on such data using network proximity rather than spatial proximity.

The subjects of spatial analysis and management have filled dozens of books and hundreds of
university courses. Our goal here is not to repeat all this—the references at the end of this chapter
will provide you with a good background on these topics. Here, we will illustrate spatial analysis and
management by describing how you can apply them to solve a common problem in the retail industry:
site selection.

The consideration of location in Figure 1-1 streamlines the selection of candidate sites for
a shopping mall. The process involves limiting the choice to those locations that are the following:

• Included in areas where construction is allowed

• On sale and of a suitable size

• Not exposed to natural risks, such as floods

• Close to main roads to ensure good accessibility

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT8

5. Oracle Spatial includes an additional data type called raster, which is used for images and grid data. We cover
raster data and the raster data model in Appendix D.

8997ch01.qxd 10/2/07 4:20 PM Page 8

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

-

Figure 1-1. Spatial data and spatial analysis for choosing a site for a shopping mall

For the selection of suitable sites, we use spatial information and spatial analysis. To keep the
example simple, however, we ignore demographic issues.

The main steps of the analysis are as follows:

1. From the land-use map (provided by a public organization), we first select areas for which
we can obtain permits to build commercial sites. These areas are labeled as “commercial”
and denote sites where new commercial activities can be located.

2. From a map that contains sites for sale (provided by a large real-estate agency), we restrict
the choice to sites that are sufficiently large for a shopping mall.

3. On the basis of a risk map, which indicates safety buffer areas around rivers, we eliminate
those sites that may be subject to floods.

4. Finally, of the remaining sites, only those close to main roads are deemed suitable for acces-
sibility reasons.

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT 9

8997ch01.qxd 10/2/07 4:20 PM Page 9

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 1-1 shows the sequence of steps, the data used, and the spatial operations involved in
this process. Note that the maps are numbered M1–M12 and the steps are numbered 1–8.

The combination of the first two steps leads to five candidate sites. One of them is excluded
because of high flood risk, and two additional ones are excluded because they are located too far
away from the main roads. This narrows the results to two suitable candidate sites.

Table 1-1 details the steps in this process. Note that the usual way of representing the data used
in this example is through maps, as in Figure 1-1. Note also that the description can be easily trans-
lated into database and SQL terms. The various “maps” correspond to one or more database tables.
The data objects (points, polygons, lines, grids, and so on) and their attributes are table records, while
the analysis is performed with SQL statements. It is clear that some SQL extensions are needed to
handle spatial and nonspatial objects simultaneously. The rest of this book will essentially deal with
the models and tools available in Oracle Spatial for storing and processing this type of data for types
of analysis like this one.

Table 1-1. Steps, Data, and Analysis for Choosing a Site for a Shopping Mall

Step Data Analysis Result

1. Select commercial M1: Land use map. Select polygons M5: Commercial
areas. Collection of polygons, where the attribute areas. A set of

described by an attribute is “commercial.” polygons with the
“land-use type.” “commercial” attribute.

2. Select large sites. M2: Sites for sale. Select points where M6: Large sites. A
Locations described by the size is larger selection of points
price, plot size, etc. than a certain value. corresponding to large

sites for sale.

3. Identify flood areas. M3: River map. Create a buffer M7: Flood risk areas.
around the riverbed
(e.g., 1 km) that is at
risk of floods.

4. Select major roads. M4: Road network map. Select road M8: Major roads.
Road segment attributes segments where the
are “road type,” “max attribute is “major
speed,” etc. roads.”

5. Select large sites in M5 and M6. Overlay M5 and M6. M9: A selection of
commercial areas. Select “large” points points corresponding

within “commercial” to large sites within
polygons. commercial areas.

6. Identify high- M8. Create a buffer of M10: High
accessibility zones. 500 meters on each accessibility zones.

side of a major road.

7. Select sites outside M9 and M7. Overlay M9 and M7, M11: Points
of flood areas. and eliminate sites corresponding to large

in the flood areas. siteswithin commercial
areas not subject to
flood risks.

8. Select candidate M10 and M11. Select safe sites M12: Large sites in
sites. within high– commercial areas

accessibility zones. that are not subject to
floods and are highly
accessible.

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT10

8997ch01.qxd 10/2/07 4:20 PM Page 10

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

For simplicity, in the example we have assumed that a new map is created at the end of every
step. This is certainly a possibility, but it is not necessarily the best option. Later in this book, we will
discuss data modeling and how to optimize the sequence of operations. In particular, Chapters 8
and 9 cover spatial operators and functions that make it possible to cluster some of the steps in the
example into single queries, making the process much simpler and more efficient.

Storing Spatial Data in a Database
Looking at vector data, we usually distinguish between the following:

• Points (for example, the plots for sale in Figure 1-1), whose spatial description requires only
x,y coordinates (or x,y,z if 3D is considered)

• Lines (for example, roads), whose spatial description requires a start coordinate, an end
coordinate, and a certain number of intermediate coordinates

• Polygons (for example, a residential area), which are described by closed lines

Figure 1-2 shows an example containing point, line, and polygon data. The figure corresponds
to a small portion of the area used in the previous site selection example. The vector representation,
here simplified for convenience, shows a point (the stadium), three lines (the roads), and four poly-
gons (the built-up areas, clipped at the picture borders, and the sports complex).

Figure 1-2. Vector representation of the spatial objects in the picture

The vector data in Figure 1-2 could be stored in one or multiple tables. The most natural way of
looking at this data is to identify data layers—sets of data that share common attributes—that become
data tables. Most spatial databases use a special data type to store spatial data in a database. Let’s
refer to this type as the geometry. Users can add columns of type geometry to a database table in
order to store spatial objects.

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT 11

8997ch01.qxd 10/2/07 4:20 PM Page 11

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

In this case, the choice of tables would be rather simple with three main data layers present:
“Road infrastructures,” “Land use,” and “Points of interest.” These three layers contain objects that
share common attributes, as shown in the three tables later in this section. The same objects could
have been aggregated into different data layers, if desired. For instance, we could have stored major
and minor roads in different tables, or we could have put roads and land use in the same table. The
latter would make sense if the only attributes of relevance for roads and land-use areas were the same,
for instance, the province name and the city name. It is also worth stressing that every geometry
column can contain any mix of valid spatial object (points, lines, polygons) and also that every table
can contain one or more geometry columns.

Structuring spatial data into tables and defining the right table structure are the first logical
activities of any spatial analysis. Fortunately, in most cases there is an intuitive correspondence
between the data and the table structure used to store them. However, in several cases you may find
that the spatial database design can be a complex activity. Proper designs may facilitate analysis
enormously, while poor data structures may make the analysis complex and slow. These issues are
addressed in various places in the book but in particular in Chapter 3.

Table 1-2 shows the road infrastructure table of Figure 1-2. This table contains three records
corresponding to the east road, the west road, and the stadium road. All of them are represented as
lines using the geometry type. Each road is described by three types of attributes: the road type (one
column containing either “major,” “local,” or “access” road), the road name (a column containing
the name of the road as used in postal addresses), and the area attributes (two columns containing
the name of the province and city where the road is located).

Table 1-2. Road Infrastructure Table

ID Province City Road Name Road Type Road Geometry

1 Province name City name West road Major road

2 Province name City name East road Major road

3 Province name City name Stadium road Access road

Table 1-3 shows the land-use table. It contains three records corresponding to the north quarter,
the south quarter, and the sports complex. In this case, all spatial objects are polygons. Each object
has three types of attributes: the surface of the area (in square meters), the name of the area, and
the area location (province and city names).

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT12

8997ch01.qxd 10/2/07 4:20 PM Page 12

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Table 1-3. Land Use Table

Surface (Square
ID Province City Area Name Meters) Area Geometry

1 Province name City name North quarter 10,000

2 Province name City name South quarter 24,000

3 Province name City name Sports complex 4,000

Table 1-4 shows the points of interest (POI) in the area. It contains two records: a point (in this
case, the center of the stadium complex) and a polygon (in this case, the contour of the stadium
complex). Attributes include the type of POI from a classification list, the POI name, and the
province and city where they are located.

Table 1-4. Points of Interest Table

ID Province City POI Name Type of POI POI Geometry

1 Province name City name Olympic Sports
stadium location

2 Province name City name Olympic Sports
stadium infrastructure

In the Table 1-4, we use two records to describe the same object with two different geometries.
Another option for storing the same information is presented in Table 1-5, where we use two columns of
type geometry to store two different spatial features of the same object. The first geometry column
stores the POI location, while the second stores the outline of the complex. Under the assumption
that all other nonspatial attributes are the same, Table 1-5 is a more efficient use of table space than
Table 1-4.

Table 1-5. Points of Interest Table: Two Geometry Columns

Location (POI) Infrastructure
ID Province City POI Name Geometry Geometry

1 Province name City name Olympic
stadium

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT 13

8997ch01.qxd 10/2/07 4:20 PM Page 13

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The objects in the preceding tables are represented with different line styles and fill patterns.
This information is added for clarity, but in practice it is not stored in the geometry object. In Oracle
Spatial, the geometry data are physically stored in a specific way (which we will describe in Chapters 3
and 4) that does not have a direct relationship to the visual representation of the data. Chapter 12,
which describes the Oracle Application Server MapViewer, shows how symbology and styling rules
are used for rendering geometry instances in Oracle.

Geometry models in the SQL/MM and Open Geospatial (OGC) specifications describe in detail
the technical features of the geometry type and how points, lines, and polygons are modeled using
this type.

Spatial Analysis
Once data is stored in the appropriate form in a database, spatial analysis makes it possible to
derive meaningful information from it. Let’s return to the site selection example and look again at
the three types of spatial operations that we used:

• Select, used in the following:

• Step 1 (to select areas where the attribute was a certain value)

• Step 2 (to select large sites from the sites for sale)

• Step 4 (to select major roads from the road network)

• Overlay, used in the following:

• Step 5 (large sites in commercial areas)

• Step 7 (sites away from risk areas)

• Step 8 (sites within highly accessible areas)

• Buffer, used in the following:

• Step 3 (areas subject to flood risk)

• Step 6 (high accessibility areas)

Returning to our example, assuming we have the data stored in a database, we can use the follow-
ing eight pseudo-SQL statements to perform the eight operations listed previously. Please note that for
the sake of the example, we have assumed certain table structures and column names. For instance, we
have assumed that M1 contains the columns LAND_USE_TYPE, AREA_NAME, and AREA_GEOMETRY.

1. Use

SELECT AREA_NAME, AREA_GEOMETRY

FROM M1

WHERE LAND_USE_TYPE='COMMERCIAL'

to identify available plots of land for which a construction permit can be obtained for
a shopping mall.

2. Use

SELECT SITE_NAME, SITE_GEOMETRY

FROM M2

WHERE SITE_PLOT_AREA > <some value>

to identify available sites whose size is larger than a certain value.

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT14

8997ch01.qxd 10/2/07 4:20 PM Page 14

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

3. Use

SELECT BUFFER(RIVER_GEOMETRY, 1, 'unit=km')

FROM M3

WHERE RIVER_NAME= <river_in_question>

to create a buffer of 1 kilometer around the named river.

4. Use

SELECT ROAD_NAME, ROAD_GEOMETRY

FROM M4

WHERE ROAD_TYPE='MAJOR ROAD'

to identify major roads.

5. Use the contains operator to identify the sites selected in step 2 that are within areas
selected in step 1. You could also achieve this in one step starting directly from M1 and M2:

SELECT SITE_NAME, SITE_GEOMETRY

FROM M2 S, M1 L

WHERE CONTAINS(L.AREA_GEOMETRY, S.SITE_GEOMETRY)='TRUE'

AND L.LAND_USE_TYPE= 'COMMERCIAL'

AND S.SITE_AREA > <some value>;.

6. As in step 3, use the buffer function to create a buffer of a certain size around the major
roads.

7. Use contains to identify sites selected in step 5 that are outside the flood-prone areas identi-
fied in step 3.

8. Use contains to identify safe sites selected in step 7 that are within the zones of easy accessi-
bility created in step 6.

Oracle Spatial contains a much wider spectrum of SQL operators and functions (see Chapters 8
and 9). As you might also suspect, the preceding list of steps and choice of operators is not optimal.
By redesigning the query structures, changing operators, and nesting queries, it is possible to drasti-
cally reduce the number of intermediate tables and the queries. M11, for instance, could be created
starting from M9 and M3 directly by using the nearest-neighbor and distance operations together.
They would select the nearest neighbor and verify whether the distance is larger than a certain value.

Benefits of Oracle Spatial
The functionality described in the previous section has been the main bread and butter for GIS for
decades. In the past five to ten years, database vendors such as Oracle have also moved into this
space. Specifically, Oracle introduced the Oracle Spatial suite of technology to support spatial pro-
cessing inside an Oracle database.

Since GIS have been around for several years, you may wonder why Oracle has introduced yet
another tool for carrying out the same operations. After all, we can already do spatial analysis with
existing tools.

The answer lies in the evolution of spatial information technology and in the role of spatial
data in mainstream IT solutions. GIS have extensive capabilities for spatial analysis, but they have
historically developed as stand-alone information systems. Most systems still employ some form of
dual architecture, with some data storage dedicated to spatial objects (usually based on proprietary
formats) and some for their attributes (usually a database). This choice was legitimate when main-
stream databases were unable to efficiently handle the spatial data. However, it has resulted in the
proliferation of proprietary data formats that are so common in the spatial information industry.

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT 15

8997ch01.qxd 10/2/07 4:20 PM Page 15

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Undesired consequences were the isolation of GIS from mainstream IT and the creation of automa-
tion islands dedicated to spatial processing, frequently disconnected from the central IT function of
organizations. Although the capabilities of GIS are now very impressive, spatial data may still be
underutilized, inaccessible, or not shared.

Two main developments have changed this situation: the introduction of open standards for
spatial data and the availability of Oracle Spatial. Two of the most relevant open standards are the
Open Geospatial Simple Feature Specification6 and SQL/MM Part 3.7 The purpose of these specifi-
cations is to define a standard SQL schema that supports the storage, retrieval, query, and update of
spatial data via an application programming interface (API). Through these mechanisms, any other
Open Geospatial–compliant or SQL/MM-compliant system can retrieve data from a database based
on the specifications. Oracle Spatial provides an implementation for these standards8 and offers
a simple and effective way of storing and analyzing spatial data from within the same database used
for any other data type.

The combination of these two developments means that spatial data can be processed, retrieved,
and related to all other data stored in corporate databases and across multiple sources. This removed
the isolation of spatial data from the mainstream information processes of an organization. It is now
easy to add location intelligence to applications, to relate location with other information, and to
manage all information assets in the same way. Figures 1-3 and 1-4 summarize this paradigm shift.

Figure 1-3 illustrates the industrywide shift from monolithic/proprietary GIS to open, univer-
sal, spatially enabled architectures.

Figure 1-3. From monolithic/proprietary GIS to universal, spatially enabled servers (Source:
UNIGIS-UNIPHORM project. See www.unigis.org)

Figure 1-4 emphasizes the shift from geo-centric processing to information-centric processing,
where the added value is not in the sophistication of the spatial analysis but in the benefits it deliv-
ers. Traditional geoinformation management tools emphasize geodata processing while separating
geodata storage from attribute data storage (see the emphasis on Geography in “Gis” in the figure).

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT16

6. See www.opengeospatial.org for information on approved standards, for an overview of ongoing standardiza-
tion initiatives for spatial information data and systems, and for an up-to-date list of compliant products.

7. See ISO/IEC 13249-3:2003, “Information technology - Database languages - SQL multimedia and application
packages - Part 3: Spatial” (www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369).

8. The ST_Geometryof Oracle Spatial is fully compliant with the OGC Simple Feature specification for the object model.

8997ch01.qxd 10/2/07 4:20 PM Page 16

www.it-ebooks.info

www.freepdf-books.com

http://www.unigis.org
http://www.opengeospatial.org
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369
http://www.it-ebooks.info/

Oracle Spatial makes it possible to process geodata within the same information platform used for
all other data types (see the emphasis on Information Systems in “gIS” in the figure).

Figure 1-4. From Gis to gIS

The benefits of using Oracle Spatial can be summarized as follows:

• It eliminates the need for dual architectures, because all data can be stored in the same way.
A unified data storage means that all types of data (text, maps, and multimedia) are stored
together, instead of each type being stored separately.

• It uses SQL, a standard language for accessing relational databases, thus removing the need
for specific languages to handle spatial data.

• It defines the SDO_GEOMETRY data type, which is essentially equivalent to the spatial types in
the OGC and SQL/MM standards.

• It implements SQL/MM “well-known” formats for specifying spatial data. This implies that
any solution that adheres to the SQL/MM specifications can easily store the data in Oracle
Spatial, and vice versa, without the need for third-party converters.

• It is the de facto standard for storing and accessing data in Oracle and is fully supported by
the world’s leading geospatial data, tools, and applications vendors, including NAVTEQ, Tele
Atlas, Digital Globe, 1Spatial, Autodesk, Bentley, eSpatial, ESRI, GE Energy/Smallworld,
Intergraph, Leica Geosystems, Manifold, PCI Geomatics, Pitney/Bowes/MapInfo, Safe Soft-
ware, Skyline, and many others.9

• It provides scalability, integrity, security, recoverability, and advanced user management fea-
tures for handling spatial data that are the norm in Oracle databases but are not necessarily
so in other spatial management tools.

• It removes the need for separate organizations to maintain a spatial data infrastructure
(hardware, software, support, and so on), and it eliminates the need for specific tools and
skills for operating spatial data.

• Through the application server, it allows almost any application to benefit from the availabil-
ity of spatial information and intelligence, reducing the costs and complexity of spatial
applications.

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT 17

9. For a list of partners, visit http://otn.oracle.com/products/spatial/index.html, and click the Partners link
(in the Oracle Spatial and Locator Resources section).

8997ch01.qxd 10/2/07 4:20 PM Page 17

www.it-ebooks.info

www.freepdf-books.com

http://otn.oracle.com/products/spatial/index.html
http://www.it-ebooks.info/

• It introduces the benefits of grid computing to spatial databases. For large organizations that
manage very large data assets, such as clearinghouses, cadastres, or utilities, the flexibility
and scalability of the grid can mean substantial cost savings and easier maintenance of the
database structures.

• It introduces powerful visualization of spatial data, eliminating the need to rely on separate
visualization tools for many applications.

Summary
This first chapter provided an introduction to spatial information management, its importance in busi-
ness applications, and how it can be implemented in practice. The example of situating a shopping
mall illustrated the relationship between the logical operations necessary to make a proper choice and
the spatial data and analysis tools that can be used to support it.

After describing the example, we discussed how database vendors such as Oracle enable spatial
functionality. We enumerated the benefits of a database approach, specifically that of Oracle Spatial. We
observed that the most basic and essential feature of Oracle Spatial is that of eliminating the separation
between spatial and nonspatial information in a database. This separation was mainly the result of
technology choices and technology limitations, but it does not have any conceptual ground or practical
justification. On the contrary, all evidence points toward the need to integrate spatial and nonspatial
information to be able to use the spatial dimension in business operations and decision making.

We have also made the explicit choice of emphasizing the relevance of adding the spatial dimen-
sion to mainstream database technology, thereby introducing spatial information starting from the
database. A GIS specialist, a geographer, or an urban planner would have probably described the same
examples with a different emphasis—for instance, highlighting the features and specific nature of spa-
tial data and analysis. This would have been a perfectly legitimate standpoint and is one very common
in literature and well served by the selected titles in the “References” section.

In the next chapter, we will give a brief overview of the functionality of Oracle Spatial. The sub-
sequent chapters in the book present an in-depth tour of the different features and functionality of
Oracle Spatial and how you can implement them in applications.

References
Glover and Bhatt, RFID Essentials, Cambridge: O’Reilly Media, 2006.

Grimshaw, David J. Bringing Geographical Information Systems into Business, Second Edition. New
York: John Wiley & Sons, 1999.

Haining, Robert. Spatial Data Analysis: Theory and Practice. Cambridge: Cambridge University Press,
2003.

Heywood, Ian, Sarah Cornelius, and Steve Carver. An Introduction to Geographical Information
Systems. New Jersey: Prentice Hall, 2006.

Korte, George B. The GIS Book, 5th Edition. Clifton Park, NY: OnWord Press, 2000.

Longley, Paul A., Michael F. Goodchild, David J. Maguire, and David W. Rhind, eds. Geographical
Information Systems and Science. New York: John Wiley & Sons, 2005.

CHAPTER 1 ■ SPATIAL INFORMATION MANAGEMENT18

8997ch01.qxd 10/2/07 4:20 PM Page 18

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Overview of Oracle Spatial

To run the examples in this chapter, you need to load three datasets in the spatial
schema as follows. Please refer to the introduction for instructions on creating the spatial
schema and other setup details.

imp spatial/spatial file=gc.dmp ignore=y full=y

imp spatial/spatial file=map_large.dmp tables=us_interstates

imp spatial/spatial file=map_detailed.dmp tables=us_restaurants

In Chapter 1, you observed that spatial information can add value to a range of applications. You
examined the benefits of storing spatial information with other data in the database.

The Spatial technology suite in Oracle enables storage of spatial data in the database and facili-
tates different types of analyses on spatial data. This chapter provides an overview of the Spatial
technology suite and covers the following topics:

• An overview of the Oracle Spatial architecture and technology.

• An examination of the functionality of different components of this Spatial technology
suite in Oracle. This includes a brief introduction to the data type that stores spatial data
(SDO_GEOMETRY), the query predicates for performing spatial query and analysis, and addi-
tional functionality to perform visualization.

• A description of how this functionality is packaged into different products that are shipped
with different editions of Oracle software. We will discuss the relative merits of each product
in turn.

• What to expect in a typical install of Oracle Spatial. This knowledge should get you off to
a smooth start in spatially enabling your application.

Technology and Architecture Overview
Oracle Spatial technology is spread across two tiers: the Database Server and the Application Server.
Figure 2-1 depicts the various components that comprise Oracle’s Spatial technology stack and indi-
cates the distribution of the components across the Database Server and Application Server tiers.
Basic components that are provided as part of Oracle Database Server 11g include the storage model,
query and analysis tools, and location-enabling/loading utilities. The MapViewer component is
provided in Oracle Application Server 10g.

19

C H A P T E R 2

■ ■ ■

8997ch02.qxd 9/28/07 9:54 AM Page 19

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 2-1. Oracle Spatial technology components

The basic components from Figure 2-1 can be described as follows:

• Data model: Oracle Spatial uses a SQL data type, SDO_GEOMETRY, to store spatial data in an
Oracle database. Users can define tables containing columns of type SDO_GEOMETRY to store
the locations of customers, stores, restaurants, and so on, or the locations and spatial extents
of geographic entities such as roads, interstates, parks, and land parcels. We describe this
data type in detail in Chapter 4.

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL20

8997ch02.qxd 9/28/07 9:54 AM Page 20

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Location-enabling: Users can add SDO_GEOMETRY columns to application tables. We describe
this process in detail in Chapter 3. Users can populate the tables with SDO_GEOMETRY data
using standard Oracle utilities such as SQL*Loader, Import, and Export. We describe this
process in Chapter 5. Alternatively, users can convert implicit spatial information, such as
street addresses, into SDO_GEOMETRY columns using the geocoder component of Oracle Spatial,
as described in Chapter 6.

• Spatial query and analysis: Users can query and manipulate the SDO_GEOMETRY data using the
query and analysis component, comprising the Index Engine and Geometry Engine. We give
full details of this process in Chapters 8 and 9.

• Advanced Spatial Engine: This component comprises several components that cater to
sophisticated spatial applications, such as Geographical Information Systems (GIS) and
bioinformatics. This includes the network analysis and the Routing Engine, which are cov-
ered in detail in Chapters 10 and 11. The Advanced Spatial Engine also consists of other
specialized components such as the GeoRaster that allows storage of spatial objects using
images (groups of pixels) rather than points, lines, and vertices. We cover these components
in Appendixes A through E.

• Visualization: The Application Server components of Oracle’s Spatial technology include the
means to visualize spatial data via the MapViewer tool. MapViewer renders the spatial data
that is stored in SDO_GEOMETRY columns of Oracle tables as displayable maps. In recent releases,
Oracle also provides the Oracle Maps suite of technologies to enhance the functionality of
the MapViewer. The Oracle Maps suite enables fast map-browsing experience using a map
cache server that pregenerates and caches image tiles for a map and a feature-of-interest
(FOI) server that renders dynamic application content using a combination of images and
geometric themes. We describe these features in detail in Chapters 12 and 13.

In Figure 2-1, observe that third-party tools can access spatial data through the Application
Server, directly from the database using SQL, or via programmatic interfaces such as OCI and JDBC.
We describe how to program with spatial data via these APIs in Chapter 7. Recent additions to the
list of interfaces to Oracle Spatial are the Spatial Web Services. Using the Spatial Web Services infra-
structure, users can perform the following spatial functions: geocoding, routing, and feature selection
using spatial and nonspatial predicates. Spatial Web Services will not be covered in much detail in
this book, but you can find all necessary information in the Oracle Spatial User’s Guide.

■Note The core subset of this functionality (known as the Locator component) is included for free in all editions
of the database (essentially, the SDO_GEOMETRY data type and the Index Engine). The rest of the components, along
with the data type and the Index Engine, are packaged in a priced option of the Enterprise Edition of the database
(known as the Spatial option). We discuss this in more detail later in this chapter.

In the following sections, we’ll preview these components and introduce you to some (very
basic) SQL to create a table that stores spatial data, to populate that data, and to perform simple
proximity analysis. We cover all of these topics in full detail in subsequent chapters, as described
previously, but this should serve as a useful introduction to the technology and help you to get
started.

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL 21

8997ch02.qxd 9/28/07 9:54 AM Page 21

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Getting Started with Oracle Spatial
Oracle Spatial technology is automatically installed with the Standard or Enterprise Edition of an
Oracle database server. So, as long as you have one of these editions of version 10.1.0.2 or newer,
you should be able to work through the simple examples in the coming sections. If you encounter
any problems, you can refer to the “What to Expect in an Oracle Spatial Install” section later in this
chapter. Note that the Database Server license includes only a few of the functions described in this
section. To use the rest of the functionality, you should obtain a separate product license for the
Spatial option.

Data Model: Storing Spatial Data
In Chapter 1, we briefly discussed the idea that spatial information is specified using two compo-
nents: a location with respect to some origin and a geometric shape.

• Location specifies where the data is located with respect to a two-, three-, or four-dimensional
coordinate space. For instance, the center of San Francisco is located at coordinates (–122.436,
37.719) in the two-dimensional “latitude, longitude” space.

• Shape specifies the geometric structure of the data. Point, line, and polygon are examples of
possible shapes. For instance, the center of San Francisco is located at coordinates (–122.436,
.37.719) in the two-dimensional “latitude, longitude” space and is a point shape. Note that
point specifies both a location and a default shape. Alternately, shape could specify a line or
a polygon connecting multiple points (specified by their locations). For instance, the city
boundary of San Francisco could be a polygon connecting multiple points.

In some applications, the shapes could be more complex and could have multiple polygons
and/or polygons containing holes. For instance, the state boundaries for Texas and California
include multiple polygons and some with islands. In general, spatial information, occurring
in GIS, CAD/CAM, or simple location-enabled applications, could be arbitrarily complex.

The SDO_GEOMETRY data type captures the location and shape information of data rows in
a table. This data type is internally represented as an Oracle object data type. It can model different
shapes such as points, lines, polygons, and appropriate combinations of each of these. In short, it
can model spatial data occurring in most spatial applications and is conformant with the Open GIS
Consortium (OGC) Geometry model.1

Chapter 4 provides details about what types of spatial data SDO_GEOMETRY can model and what
it cannot, and it also covers the structure of SDO_GEOMETRY and the tools to construct, validate, and
debug SDO_GEOMETRY objects. For now, it is sufficient to understand that you can create tables with
SDO_GEOMETRY columns to store the locations of objects.

Location-Enabling
You can create tables with the SDO_GEOMETRY columns to store locations. For instance, you can create
the us_restaurants_new2 table as shown in Listing 2-1.

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL22

1. Open GIS Consortium, Inc., "OpenGIS Simple Features Specification for SQL, Revision 1.1,"
http://www.opengis.org/docs/99-049.pdf, May 5, 1999.

2. Note that the us_restaurants table already exists. So, name this new table as us_restaurants_new.

8997ch02.qxd 9/28/07 9:54 AM Page 22

www.it-ebooks.info

www.freepdf-books.com

http://www.opengis.org/docs/99-049.pdf
http://www.it-ebooks.info/

Listing 2-1. Creating the us_restaurants_new Table

SQL> CREATE TABLE us_restaurants_new

(

id NUMBER,

poi_name VARCHAR2(32),

location SDO_GEOMETRY -- New column to store locations

);

Now that you know basically how to create tables to store locations, we’ll briefly cover the tools
to populate such tables. Since SDO_GEOMETRY is an object type, just like any other object type, you can
populate an SDO_GEOMETRY column using the corresponding object constructor. For example, you
can insert a location of (–87, 38) for a Pizza Hut restaurant into the us_restaurants table, as shown
in Listing 2-2.

Listing 2-2. Inserting a Value for the SDO_GEOMETRY Column in an Oracle Table

SQL> INSERT INTO us_restaurants_new VALUES

(

1,

'PIZZA HUT',

SDO_GEOMETRY

(

2001, -- SDO_GTYPE attribute: "2" in 2001 specifies dimensionality is 2.

NULL, -- other fields are set to NULL.

SDO_POINT_TYPE -- Specifies the coordinates of the point

(

-87, -- first ordinate, i.e., value in longitude dimension

38, -- second ordinate, i.e., value in latitude dimension

NULL -- third ordinate, if any

),

NULL,

NULL

)

);

The SDO_GEOMETRY object is instantiated using the object constructor. In this constructor, the
first argument, 2001, specifies that it is a two-dimensional point geometry (a line would be repre-
sented by 2002, a polygon by 2003, and a collection by 2004).

The fourth argument stores the location of this point in the SDO_POINT attribute using the
SDO_POINT_TYPE constructor. Here, we store the geographic coordinates (–87, 38). In this example,
the remaining arguments are set to NULL.

■Note In Chapter 4, we examine the structure of the SDO_GEOMETRY type in detail and describe how to choose
appropriate values for each field of the SDO_GEOMETRY type.

Note that the preceding example shows a single SQL INSERT statement. Data loading can also
be performed in bulk using Oracle utilities such as SQL*Loader and Import/Export or using pro-
grammatic interfaces such as OCI, OCCI, and JDBC. These utilities and interfaces come in handy
when populating data from GIS vendors or data suppliers.

In some applications, spatial information is not explicitly available as coordinates. Instead, the
address data of objects is usually the only spatial information available. You can convert such address
data into an SDO_GEOMETRY object using the geocoder component (provided with the Spatial option).
The geocoder takes a postal address, consults an internal countrywide database of addresses and
locations, and computes the longitude and latitude coordinates for the specified address. This process

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL 23

8997ch02.qxd 9/28/07 9:54 AM Page 23

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

is referred to as geocoding in spatial terminology. The address/location database is usually provided
by third-party data vendors. For the United States, Canada, and Europe, NAVTEQ and Tele Atlas
provide such data.

Listing 2-3 shows how to use the geocoder to obtain the coordinates in the form of an SDO_GEOMETRY
object for the address '3746 CONNECTICUT AVE NW' in Washington, D.C.

Listing 2-3. Converting Address Data (Implicit Spatial Information) to the SDO_GEOMETRY (Explicit
Spatial Information) Object

SQL> SELECT

SDO_GCDR.GEOCODE_AS_GEOMETRY

(

'SPATIAL', -- Spatial schema storing the geocoder data

SDO_KEYWORDARRAY -- Object combining different address components

(

'3746 CONNECTICUT AVE NW',

'WASHINGTON, DC 20008'

),

'US' -- Name of the country

) geom

FROM DUAL ;

GEOM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

--

SDO_GEOMETRY

(

2001,

8307,

SDO_POINT_TYPE(-77.060283, 38.9387083, NULL),

NULL,

NULL

)

This geocoding function, geocode_as_geometry, takes three arguments. The first argument is the
schema. This example uses the 'spatial' schema. The second argument specifies an SDO_KEYWORDARRAY
object, composed from different components of an address. In this example, SDO_KEYWORDARRAY is con-
structed out of the street component '3746 Connecticut Ave NW' and the city/ZIP code component
'Washington, DC 20008'. The third argument to the geocoding function specifies the 'US' dataset that
is being used to geocode the specified street address. The function returns an SDO_GEOMETRY type with
the longitude set to –77.060283 and the latitude set to 38.9387083.

The geocoder can also perform fuzzy matching (via tolerance parameters, which we’ll cover in
the next chapter). In the same way that search engines can search on related words as well as exact
words, Oracle can perform fuzzy matching on the street names and so on. So, for example, suppose
the address field in the preceding example was misspelled as 'CONNETICUT AVE'. The geocoder could
perform approximate matching to match the misspelled fields with those in the database.

Note that the SDO_GEOMETRY data type is just like any other object type in the database. Users
can view the data and examine and modify the attributes. In contrast, several GIS data vendors and
partners have their own proprietary binary formats for representing spatial information. These ven-
dors usually provide tools for loading the data or converting the data into standard Oracle formats.
Discussion of these tools, however, is beyond the scope of this book.

Query and Analysis
Now that you’ve seen how to define SDO_GEOMETRY for storing spatial data in Oracle and how to populate
Spatial tables with data, the next topic to look at is how to query and analyze this SDO_GEOMETRY data.

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL24

8997ch02.qxd 9/28/07 9:54 AM Page 24

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The query and analysis component provides the core functionality for querying and analyzing
spatial geometries. This component has two subcomponents: a Geometry Engine and an Index Engine.
It is via these components that you perform your spatial queries and analysis, for example, to identify
the five nearest restaurants along Interstate 795 or the five nearest hospitals to a construction site.

The Geometry Engine
The Geometry Engine provides functions to analyze, compare, and manipulate geometries. For
instance, you could use the Geometry Engine functionality to identify the nearest five restaurants
on I-795 in the greater Washington, D.C., area. This involves computing the distance between I-795
and all the restaurants in the us_restaurants table, sorting them in order of increasing distance, and
returning the top five restaurants. The SQL in Listing 2-4 illustrates this operation.

Listing 2-4. Finding the Five Nearest Restaurants on I-795

SQL> SELECT poi_name

FROM

(

SELECT poi_name,

SDO_GEOM.SDO_DISTANCE(P.location, I.geom, 0.5) distance

FROM us_interstates I, us_restaurants P

WHERE I.interstate = 'I795'

ORDER BY distance

)

WHERE ROWNUM <= 5;

POI_NAME

PIZZA BOLI'S

BLAIR MANSION INN DINNER THEATER

KFC

CHINA HUT

PIZZA HUT

5 rows selected.

Observe that the inner SELECT clause computes the distance between I-795 (which is not a major
highway) and each restaurant row of the us_restaurants table using the Geometry Engine function
SDO_GEOM.SDO_DISTANCE. Also, note that the ORDER BY clause sorts the results in ascending order of
distance. The outer SELECT statement selects the first five rows, or the five nearest restaurants.

In the preceding query, the location of the I-795 highway is compared with every restaurant
row of the table, irrespective of how far the restaurant is from I-795. This could mean considerable
time is spent processing rows for restaurants that are too far from the I-795 highway and hence are
irrelevant to the query. To speed up query processing by minimizing the processing overhead, you
need to create indexes on the location of the restaurants.

The Index Engine
Oracle Spatial provides the spatial Index Engine for this purpose. Listing 2-5 shows an example of
how to create an index on the locations of restaurants.

Listing 2-5. Creating an Index on Locations (SDO_GEOMETRY Column) of Restaurants

SQL> DROP INDEX us_restaurants_sidx;

SQL> CREATE INDEX us_restaurants_sidx ON us_restaurants(location)

INDEXTYPE IS mdsys.spatial_index;

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL 25

8997ch02.qxd 9/28/07 9:54 AM Page 25

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 2-5 first drops the index that exists. In the second and third lines, it shows the SQL for creat-
ing the spatial index. Note that the clause INDEXTYPE tells the database to create a spatial index on the
location (SDO_GEOMETRY) column of the us_restaurants table. This index is a specialized index to cater to
the SDO_GEOMETRY data. Using such an index, the Index Engine in Oracle Spatial prunes faraway rows
from query processing and thus speeds up the query for most applications. The Index Engine provides
equivalent functions, referred to as operators, for identifying rows of the table that satisfy a specified
proximity predicate such as closeness to I-795. You can rewrite the preceding query to find the five near-
est restaurants to I-795 using such index-based operators. Listing 2-6 shows the resulting query.

Listing 2-6. Finding the Five Nearest Restaurants on I-795 Using the Spatial Index

SQL> SELECT poi_name

FROM us_interstates I, us_restaurants P

WHERE I.interstate = 'I795'

AND SDO_NN(P.location, I.geom) ='TRUE'

AND ROWNUM <= 5;

POI_NAME

PIZZA BOLI'S

BLAIR MANSION INN DINNER THEATER

KFC

CHINA HUT

PIZZA HUT

5 rows selected.

Note that this query returns the same five rows as Listing 2-4. However, this query has a simpler
structure with no subqueries. It uses only a new index-based operator called SDO_NN, with NN being short
for nearest neighbor. This index-based operator returns rows of the us_restaurants table whenever the
location column is close to the I-795 highway geometry. The SDO_NN operator returns these rows in order
of proximity to the I-795 geometry. So, the row with the closest location is returned first, the next closest
next, and so on. The ROWNUM predicate determines how many close restaurants need to be returned in the
query. The query uses a spatial index and examines only those rows that are likely to be close to the loca-
tion of I-795. Consequently, it is likely to execute faster than the query in Listing 2-4.

As a variation on this, suppose that instead of having to find the five nearest restaurants on
I-795, you want to identify all restaurants within 50 kilometers of I-795. One way to accomplish this
is to construct a buffer around the I-795 highway and determine all businesses inside this buffer
geometry. Figure 2-2 shows an example: I-795 appears in black, the 50 km buffer is shown with the
gray oval around it, and the restaurants inside this buffer are shown by x marks.

Figure 2-2. Restaurants in the 50 km buffer around I-795

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL26

8997ch02.qxd 9/28/07 9:54 AM Page 26

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 2-7 shows the corresponding SQL query and the results.

Listing 2-7. Identifying All Restaurants in a 50 km Radius Around I-795

SQL> SELECT POI_NAME

FROM us_interstates I, us_restaurants P

WHERE

SDO_ANYINTERACT

(

P.location,

SDO_GEOM.SDO_BUFFER(I.geom, 50, 0.5, 'UNIT=KM')

) ='TRUE'

AND I.interstate='I795' ;

POI_NAME

SPICY DELIGHT

PHILLY'S STEAK EXPRESS

EL TAMARINDO

MCDONALD'S

PIZZA HUT

CHINA HUT

KFC

BLAIR MANSION INN DINNER THEATER

PIZZA BOLI'S

9 rows selected.

The function SDO_ANYINTERACT is an index-based operator just like the SDO_NN operator in
Listing 2-6. This operator identifies all rows of us_restaurants where the locations intersect with
the geometry passed in as the second parameter. The second parameter, in this case, is the result
returned by an SDO_BUFFER function. The SDO_BUFFER function generates and returns a 50 km buffer
around the I-795 geometry. This SDO_BUFFER function is part of the Geometry Engine, which also
provides additional functions to facilitate more complex analysis and manipulation of spatial
information.

Note that the number of restaurants returned in Listing 2-7 is nine, as opposed to five in Listings 2-4
and 2-6. This means you may not know the cardinality of the result set when you use a query buffer.
With an SDO_ANYINTERACT operator, you may get more answers than you expect, or fewer answers. The
cardinality of the result set depends on distribution of the data (in other words, the restaurants). In
general, when you know how far to search (for example, a 50 km radius, as in Listing 2-7), you can
use the SDO_BUFFER and SDO_ANYINTERACT functions.3 Alternatively, if you know how many results you
want to return, then you should use the SDO_NN function, as described in Listing 2-6. In Chapters 8
and 9, we will describe in greater detail the different operators and functions in the Index Engine
and Geometry Engine.

Visualizing Spatial Data
How do you visualize the results of spatial queries? Oracle technology includes the MapViewer
component to facilitate the generation of maps from spatial data. Each map is associated with a set
of themes. Each theme denotes spatial data from a specific table and is associated with a rendering
style. For instance, you can specify that the interstates theme (data from the INTERSTATES table)
should be rendered as thick blue lines. Oracle Spatial provides appropriate dictionary views—
USER_SDO_MAPS, USER_SDO_THEMES, and USER_SDO_STYLES—to define new maps, to associate them with
themes, and to specify rendering styles for the themes in the database, respectively.

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL 27

3. In Chapter 8, we will describe a better alternative using the SDO_WITHIN_DISTANCE operator.

8997ch02.qxd 9/28/07 9:54 AM Page 27

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

In addition, MapViewer renders the map for a specified map name. Basically, a servlet consults
the database views and retrieves the themes and associated styling rules for a specified map name.
Using this information, the MapViewer servlet generates an image of the constructed map. Figure 2-3
shows an image of such a map constructed using MapViewer (constructed entirely using Spatial
technology and the data provided in this book). This map shows I-795 along with the larger interstates.

Figure 2-3. Sample map with multiple themes generated using MapViewer

The map consists of multiple themes: cities, county boundaries, rivers, interstates, and parks.
The cities, D.C. and Baltimore, are rendered as points in black color. The counties, Howard, Fairfax,
Charles, Frederick, and so on, are shown as white polygons. The river in the right side of the map is
shown in a dark gray color. The interstates, such as I-795, are rendered as line strings in black, and
the parks are rendered as polygons in light gray.

Onto this map, you can also superimpose the locations of the five closest restaurants to I-795.
In addition to rendering predefined themes/base maps, the MapViewer request can specify a pre-
defined base map (such as the map in Figure 2-3) and a dynamic theme, such as a SQL/JDBC query
retrieving the locations of the five nearest restaurants. MapViewer will then generate a new map
that contains the locations of the five restaurants superimposed on the predefined base map.

Note that the map in Figure 2-3 displays vector data stored as SDO_GEOMETRY columns in different
(theme) tables. In addition to vector data, MapViewer can display spatial data stored in the raster
(or image) format. Such data is stored in Oracle tables using the SDO_GEORASTER data type. Chapters 12
and 13 provide full details of how to construct maps and display the results of queries on such maps
using MapViewer technology.

The basic functionality of MapViewer provides APIs only for generating maps from vector, raster,
or network data stored in an Oracle database. If a user “pans to the south” of a rendered image,
MapViewer has to fetch the corresponding data from the database, which could result in a notice-
able delay in the map-browsing experience. To make the browsing experience seamless for a user,
an efficient strategy is to cache adjacent regions of a displayed map in the Application Server cache.
To support a seamless browsing experience and improve the performance of mapping applications,
Oracle enhanced the basic MapViewer functionality with additional features; the full functionality

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL28

8997ch02.qxd 9/28/07 9:54 AM Page 28

7a2857917d2aafe8c018c4c9b0cd987b

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

is now called Oracle Maps. In addition to a rendering engine, Oracle Maps consists of a map cache
server that pregenerates and caches neighboring tiled images of a displayed base map image. Oracle
Maps also consists of an FOI server that renders dynamic content for spatially enabled tables (cus-
tomers, for example) detailing their geographic locations and associated (nonspatial) attribute
information. Together, the cached base maps (from the map cache server) and the dynamic FOIs
(from the FOI server) enable users to build efficient mapping applications.

Advanced Spatial Engine
The Advanced Spatial Engine has several subcomponents that cater to the complex analysis and
manipulation of spatial data that is required in traditional GIS applications.

■Note Our focus in this book is the applicability of Oracle Spatial to Oracle business applications, so we do not
cover most of these advanced options, with the exception of the Network Data Model and the Routing Engine, in great
detail. However, we provide a good overview of these topics in the appendixes, with references for further details.

Internally, each of these additional components uses the underlying geometry data type and
Index Engine and Geometry Engine functionality.

• The Network Data Model provides a data model for storing networks in the Oracle database.
Network elements (links and nodes) can be associated with costs and limits, for example, to
model speed limits for road segments. Other functionality includes computation of the shortest
path between two locations given a network of road segments, finding the N nearest nodes,
and so on. The Network Data Model is useful in routing applications. Typical routing appli-
cations include web services such as MapQuest and Yahoo! Maps or navigation applications
for roaming users using Global Positioning System (GPS) technology. We cover more details
about this component in Chapters 10 and 11.

• The Linear Referencing System (LRS) facilitates the translation of mile markers on a highway
(or any other linear feature) to geographic coordinate space, and vice versa. This component
allows users to address different segments of a linear geometry, such as a highway, without
actually referring to the coordinates of the segment. This functionality is useful in transporta-
tion and utility applications, such as gas pipeline management.

• The Spatial Analysis and Mining Engine provides basic functionality for combining demo-
graphic and spatial analysis. This functionality is useful in identifying prospective sites for
starting new stores based on customer density and income. These tools can also be used to
materialize the influence of the neighborhood, which in turn can be used in improving the
efficacy and predictive power of the Oracle Data Mining Engine.

• GeoRaster facilitates the storage and retrieval of georeferenced images using their spatial
footprints and the associated metadata. GeoRaster defines a new data type for storing raster
images of geographically referenced objects. This functionality is useful in the management
of satellite imagery.

• The Topology Data Model supports detailed analysis and manipulation of spatial geometry
data using finer topological elements such as nodes and edges. In some land management
applications, geometries share boundaries, as in the case of a property boundary and the
road on which the property is situated. Oracle Spatial defines a new data type to represent
topological elements (such as the shared “road segment”) that can be shared between differ-
ent spatial objects. Updates to shared elements implicitly define updates to the sharing
geometry objects. In general, this component allows for the editing and manipulation of
nodes and edges without disturbing the topological semantics of the application.

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL 29

8997ch02.qxd 9/28/07 9:54 AM Page 29

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Oracle Spatial Technology Products
In the previous sections, we briefly described the functionality that Oracle Spatial provides to sup-
port the following operations on spatial data:

• Storage data model using the SDO_GEOMETRY data type

• Query and analysis using the Index Engine and Geometry Engine

• Location-enabling using the geocoder by converting address data into SDO_GEOMETRY data

• Visualization using MapViewer and Oracle Maps

• Advanced Spatial Engine functionality such as network analysis and routing

Let’s next look at how this functionality is productized or licensed in Oracle Database 11g
version 1.0.6 and Oracle Application Server 10g version 1.0.3. (Note, though, that this packaging
may change with later versions of Oracle.)

MapViewer, the visualization tool of Spatial, is included as part of the Oracle Application Server.
You can also deploy MapViewer by just installing the Oracle Containers for Java (OC4J) without
installing the entire Application Server. We will look at these details in Chapter 12. The remainder of
the spatial functionality is included, sometimes optionally, with the Database Server. Let’s look
at these details next.

In the Lite edition of Oracle Database Server, none of the spatial functionality is included. As
mentioned in an earlier note, in the Personal Edition, Standard Edition,4 Express Edition, and Enter-
prise Edition, a subset of the spatial functionality is included for free with the database. This subset
is referred to as the Locator. In the Personal Edition and the Enterprise Edition, the full functionality
of Spatial technology is available as a priced option, called Spatial. We’ll now cover each of these
versions of Oracle Spatial and what you can do with them.

Locator
Locator provides a core subset of spatial functionality to cater to specific applications. Specifically, it
includes the following functionality:

• The data model for storing spatial data using the SDO_GEOMETRY data type: This includes storing
all types of geometries (points, lines, polygons, and so on).

• Query and analysis using the Index Engine: This includes creating spatial indexes and querying
using associated spatial operators such as SDO_NN. In Locator, this functionality is restricted to
only two-dimensional data.

• The SDO_GEOM.SDO_DISTANCE and the SDO_GEOM.VALIDATE_GEOMETRY_XXX functions: These
functions are also part of Locator.

Figure 2-4 shows the functionality provided in Locator. The Locator components are highlighted
in black. The non-Locator components of Spatial technology are shown in solid gray.

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL30

4. Standard implies both Standard Edition One and Standard Edition.

8997ch02.qxd 9/28/07 9:54 AM Page 30

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 2-4. The functionality of Locator, the free part of Spatial technology, is shown in black.

Applications that use Locator may need to use third-party geocoding services to convert addresses
in application tables. After storing the spatial locations as SDO_GEOMETRY columns, Locator enables
a variety of spatial queries, such as identification of customers within a specified sales territory or
the nearest ATM to a specific location. Locator is typically used in the following applications:

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL 31

8997ch02.qxd 9/28/07 9:54 AM Page 31

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Simple GIS applications, which may just work with geographic data such as state, city, or
property boundaries and index-based query using associated spatial operators. Typically,
though, most GIS applications may need the Geometry Engine functionality (which is not
supported in Locator).

• Simple business applications, where the spatial data is obtained from third-party vendors.
As you will see in Chapter 8, the index-based operators supported in Locator can perform
a great deal of analysis in business applications.

• CAD/CAM and similar applications, where the spatial data does not refer to locations on the
surface of the earth. For instance, in CAD/CAM applications, the data represents the structure/
shapes of different parts of an automobile. In this case, the data is inherently in the two- or
three-dimensional coordinate space—that is, there is no need to convert nonspatial columns
(such as addresses) to obtain spatial information. Typical examples include printed circuit
board layouts that are two-dimensional layout mappings. Another example is the storage of
city models where three-dimensional building representations are managed. The query oper-
ations that are needed for such applications are the index-based proximity analysis operators
such as identifying all circuits within specified region in the PCB-layout examples and iden-
tifying all buildings within a specified distance of a point or a building or a helicopter trajectory
in the city model example.

To summarize, Locator offers a core subset of Spatial technology. If you want to exploit the full
feature set of Spatial technology, you will need to purchase the Spatial option in the Enterprise
Edition of Oracle Database.

Spatial Option
The Spatial option is a priced option of the Enterprise Edition of Oracle Database Server. This option
includes all the components of the Spatial technology referred to in Figure 2-4 and is a superset of
Locator. Figure 2-5 shows the functionality of the Spatial option in gray. Note that the Spatial option
does not include the MapViewer component (shown in black) of Spatial technology. The Spatial
option consists of the following:

• Storage data model using SDO_GEOMETRY data type: This includes the storing of all types of
geometries (points, lines, polygons, and so on).

• Query and analysis using the Index Engine: This includes creating spatial indexes and querying
using associated spatial operators such as SDO_NN. The functionality also supports three-
dimensional geometries such as surfaces and solids that model buildings and other architectural
elements in three-dimensional city-modeling applications.

• Query and analysis using the Geometry Engine: This supports different analysis functions for
individual geometries, pairs of geometries, or a set of geometries. Typical operations include
length, area for two-dimensional geometries and length, and area and volume for three-
dimensional geometries.

• Location-enabling using the geocoder: This facilitates the conversion of address data into
SDO_GEOMETRY data.

• Advanced Spatial Engine functionality: This includes routing and network analysis.

A wide variety of applications can use the full set of functionality provided in the Spatial option.
By now, you should have a good idea of how Oracle Spatial functionality is packaged. This

understanding is helpful when determining whether your application needs to license the full set of
spatial functionality using the Spatial option. For the remainder of this book, we will not differenti-
ate or explicitly refer to Locator and Spatial option products. Instead, we will refer to the entire set
of functionality as Oracle Spatial technology or simply as Oracle Spatial.

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL32

8997ch02.qxd 9/28/07 9:54 AM Page 32

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 2-5. The functionality of the Spatial option is shown in gray.

What to Expect in an Oracle Spatial Install
In the following sections, we discuss what to expect during or after you install Oracle Spatial tech-
nology inside the Oracle Database Server. We describe how to install the MapViewer component,
which is part of Oracle Application Server 10g, in Chapter 12.

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL 33

8997ch02.qxd 9/28/07 9:54 AM Page 33

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Installing Oracle Spatial in the Database
As noted previously, Oracle Spatial is automatically installed with the Standard Edition or Enterprise
Edition of an Oracle Database Server. All Spatial data types, views, packages, and functions are
installed as part of a schema called MDSYS.

To verify that Spatial has been installed properly, you first have to check that the MDSYS account
exists. If it does not, then Spatial is not installed. Otherwise, you can execute the SQL in Listing 2-8
after connecting through your SYS (SYSDBA) account.

Listing 2-8. Verifying That a Spatial Install Is Successful

SQL> SELECT COMP_NAME, STATUS

FROM DBA_REGISTRY

WHERE COMP_NAME = 'Spatial';

COMP_NAME STATUS

----------------------------- -----------

Spatial VALID

After a successful installation, the status will be set to VALID or LOADED.

Upgrades
To understand upgrades properly, let’s look at how Spatial technology evolved between different
versions of Oracle. Figure 2-6 shows the progression from Oracle 7.2 to Oracle 11g.5 Note that the
figure shows the evolution only of the Spatial components in Oracle Database Server (MapViewer
and Oracle Maps, which are part of Oracle Application Server, are not shown).

Figure 2-6. Evolution of Spatial technology in Oracle

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL34

5. Unless otherwise mentioned, Oracle 11g means the Oracle Database 11g in the rest of the book.

8997ch02.qxd 9/28/07 9:54 AM Page 34

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Spatial technology was first introduced in Oracle 7.2 under the name Oracle MultiDimension
(MD). Later, the product name changed to Oracle Spatial Data Option (SDO) and to Spatial Data
Cartridge in Oracle 8. Since objects were not supported in these releases, the coordinates of a geom-
etry were stored as multiple rows in an associated table. Managing spatial (geometry) data in these
prior versions was inefficient and cumbersome.

Starting with Oracle 8i, the SDO_GEOMETRY data type was introduced to store spatial data. Even in
the latest versions (Oracle 11g, Oracle 10g, and Oracle 9i), the same SDO_GEOMETRY model is used to
store spatial data in Oracle. In Oracle 9i (and Oracle 10g), the geometry data also included support
for coordinate systems information specified using the SRID attribute in the SDO_GEOMETRY data type.
In Oracle 10g, additional functionality (that exists in the Advanced Spatial Engine) such as the Net-
work Data Model is introduced in the Spatial option of Oracle. In Oracle 10g Release 2, the EPSG
Coordinate Systems model was added to the Locator option. In Oracle 11g, several new features
such as 3D geometry support and Spatial Web Services were introduced. You will learn about each
of these features in subsequent chapters and appendixes.

Since the prior versions are named MD and SDO, you will see the prefixes MD and SDO for the
files and schemas that install Spatial technology. The name of the spatial install schema is MDSYS in
all versions of Oracle.

Despite the evolution of Spatial technology with each release, upgrading to the latest version,
Oracle 10g, is not difficult. Spatial technology is automatically upgraded with the upgrade of Oracle
Database Server. The upgrade may not need your intervention at all.6 However, if you are upgrading
from pre-8i releases, you need to additionally migrate your geometry data from the pre-8i format to
the SDO_GEOMETRY data model. Oracle Spatial provides the SDO_MIGRATE package to migrate the data
from pre-8i models to the current SDO_GEOMETRY data model. We discuss this migration package’s
functionality in Chapter 5.

Understanding a Spatial Install
In this section, we cover where to find appropriate spatial files and how to perform some prelimi-
nary investigation when an installation or upgrade fails.

To view all the spatial files, you can go to the $ORACLE_HOME/md/admin directory. In this directory,
you will find all files relevant to Oracle Spatial. You will observe that a majority of the files have
a prefix of either SDO or PRVT. In other words, the files are of the form sdoxxxx.sql or prvtxxxx.plb.
The SDO files, in most cases, contain package definitions for different components of Spatial tech-
nology. The PRVT files, on the other hand, are binary files and define the package bodies and so on.7

You should not tamper with these SDO and PRVT files at any time.
During the creation of the database,8 the MDSYS account is created with appropriate privileges

(see scripts mdinst.sql and mdprivs.sql for more details), and the catmd.sql file is loaded into the
MDSYS schema. This file loads all the SDO and PRVT files in an appropriate order that resolves all depend-
encies between all the Spatial packages. In the case of Locator, catmdloc.sql (instead of catmd.sql)
is loaded. Likewise, appropriate files in this directory such as sdodbmig.sql (upgrades), sdopatch.sql
(patches), and sdoe*.sql (downgrades) are loaded/executed at the time of upgrades, patches, and
downgrades.

During some installations or upgrades, you may find that several package dependencies are
unresolved and hence invalid. You can check for such invalid packages or other objects in your
Spatial installation by running the SQL in Listing 2-9.

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL 35

6. Note that some spatial components such as GeoRaster have dependencies on other Oracle components such
as interMedia and XML. You need to ensure that these components are also upgraded properly or installed if
they do not exist in a custom install.

7. Most functions in these package bodies are linked to C/Java libraries that are included with the Oracle kernel.

8. The database can be created either at install time or using a variety of Oracle tools such as DBCA.

8997ch02.qxd 9/28/07 9:54 AM Page 35

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 2-9. Checking for Invalid Objects in a Spatial Installation

SQL> SELECT OBJECT_NAME, OBJECT_TYPE, STATUS

FROM ALL_OBJECTS

WHERE OWNER='MDSYS' AND STATUS <> 'VALID'

ORDER BY OBJECT_NAME;

If Listing 2-9 returns any rows, you should contact Oracle Support for troubleshooting help.

Checking the Version of a Spatial Install
If you have paid for Oracle’s Spatial option, you can get the version of the Spatial install by executing
the query shown in Listing 2-10. For a Locator install, which is the free functionality of Spatial found
in all editions of Oracle, the query returns NULL.

Listing 2-10. Checking for the Version of a Spatial Install

SQL> SELECT SDO_VERSION FROM DUAL;

Summary
This chapter provided a brief overview of the various components of Oracle Spatial technology. First
you examined the functionality provided in Oracle Spatial. This functionality included a SQL-level
data type for storing spatial data, new operators and functions to perform spatial query and analy-
sis, MapViewer and Oracle Maps technology for visualizing spatial data, and advanced components
to perform more sophisticated analysis such as routing or network analysis. We then described how
this functionality is packaged in the Database Server and Application Server. Finally, we described
what to expect in a typical Spatial installation and where to find appropriate Spatial files.

Starting with the next chapter, we will cover Oracle Spatial functionality in more detail. Specifi-
cally in Chapter 3, we describe how to location-enable your application.

CHAPTER 2 ■ OVERVIEW OF ORACLE SPATIAL36

8997ch02.qxd 9/28/07 9:54 AM Page 36

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Location-Enabling Your Applications

To run the examples in this chapter, you need to import a dataset in the spatial schema as
follows. Please refer to the “Setting Up” section in the introduction of this book for instruc-
tions on creating the spatial schema and other setup details.

imp spatial/spatial file=gc.dmp ignore=y full=y

Consider a business application that stores information about its branches (or stores), customers,
competitors, suppliers, and so on. If you location-enable such a business application, you can per-
form the following types of analysis:

• Spatial query and analysis: Identify the number of customers in different sales territories of
a branch of this business or a competitor.

• Network/routing analysis: Compute the route between a branch and the nearest customer or
supplier.

• Visualization: Display the results of spatial query or network analysis on a map and integrate
this map in other components of the business application.

To exploit the benefits of these types of analysis in a business application, you will first need to
location-enable your application. In this chapter, we describe how to augment existing application
tables with location information. This location information is usually derived from the address com-
ponents in application tables such as customers, branches, and competitors and is stored as point
locations in these tables. Such location-enabling of the application tables allows simple spatial
analysis. We describe such analysis in Chapter 8.

You can augment this analysis, as described in Chapters 8 and 9, by combining the application
data with geographic data such as street networks, city boundaries, and so on. The street networks
and city boundaries are more complex than the location information in application tables. Such
street networks and city boundaries (that is, the geographic data) need to be stored as lines, poly-
gons, and other complex geometry types. We describe several design choices to consider while storing
such geographic data in Oracle tables. This geographic data will aid in a more comprehensive analy-
sis for a business application.

After setting up the application and geographic data tables, we show how to insert spatial-specific
metadata to location-enable these tables for subsequent analysis. Finally, we discuss how to popu-
late this metadata into appropriate dictionary views for each table that contains spatial data.

37

C H A P T E R 3

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 37

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Adding Location Information to Tables
Most application data can be categorized into two sets of tables:

• Application-specific tables: These contain information that is specific to the application
(product and customer information, and so on). Application tables will use standard nor-
malization techniques to arrive at an appropriate set of tables to store the data. These tables
might not contain explicit spatial data. However, these tables may have implicit spatial infor-
mation in the form of addresses.

• Geographic tables: Geographic data is independent of the application and contains columns
to store explicit spatial information for street networks, city boundaries, and so on. This data
may be used as a value-add in the application.

Figure 3-1 shows an example of these two sets of tables for a sample business application. We
will use this application along with the associated tables to illustrate all the concepts in this book.
Appendix D has appropriate instructions for loading these data.

Figure 3-1. Data for the sample application

Application-Specific Data
As discussed earlier, for application-specific data, you can employ standard normalization rules to
design a set of application tables best suited to the needs of the application. Let’s assume that, via
this design process, you arrive at the following set of tables for the application layer:

• A products table to hold information about all available products

• A customers table to hold information about customers

• A suppliers table to hold information about suppliers

• A branches table to hold information about different branch locations of a business franchise
(corresponding to the business application)

• A competitors table to hold information about competitors of the business franchise

These tables can be created with appropriate attributes. Listing 3-1 shows the sample SQL for
creating the customers table. Other tables such as branches, competitors, and products may likewise
be created. Note that the customers table does not, at this stage, have an explicit column that stores
spatial information. The same may apply to other tables in the application that store application-
specific data.

Delivery
Routing

Business
Analysis

Application-Specific
Data

Geographic
Data

Streets Interstates Cities

Products Customers Stores

Oracle Database 11g

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS38

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 38

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 3-1. Creating the customers Table

SQL> CREATE TABLE customers

(

id NUMBER,

datasrc_id NUMBER,

name VARCHAR2(35),

category VARCHAR2(30),

street_number VARCHAR2(5),

street_name VARCHAR2(60),

city VARCHAR2(32),

postal_code VARCHAR2(16),

state VARCHAR2(32),

phone_number VARCHAR2(15),

customer_grade VARCHAR2(15)

);

These tables can be populated using SQL INSERT statements or other loading tools such as
SQL*Loader. Listing 3-2 shows an example.

Listing 3-2. Populating the customers Table

SQL> INSERT INTO customers VALUES

(

1, -- id

1, -- datasrc_id

'Pizza Hut' , -- name

'Restaurant', -- restaurant

'134', -- street_number

'12TH STREET', -- street_name

'WASHINGTON', -- city

'20003', -- postal_code

'DC', -- state

NULL, -- phone_number

'GOLD' -- customer_grade

);

Adding Location to Application-Specific Data
At a fundamental level, to location-enable the previous business application, you need to store
location information for customers, branches, competitors, and so on. This means you need to aug-
ment the corresponding tables with an additional column for the storing location. This basic location
information is stored as a point using the SDO_GEOMETRY type.

For example, to add location information to the customers table, you simply alter it as shown in
Listing 3-3.

Listing 3-3. Adding a location Column to the customers Table

SQL> ALTER TABLE customers ADD (location SDO_GEOMETRY);

This, by itself, does not populate the location column. If you select the location column in the
table, you will observe that it contains only NULL values.

The most common way to populate the location columns in the application tables is by geocod-
ing the appropriate address columns. Figure 3-2 illustrates the geocoding process. A variety of tools
from different vendors support this geocoding.

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS 39

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 39

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 3-2. Geocoding application data to populate SDO_GEOMETRY columns

As shown in Figure 3-2, these tools consult an internal database to determine the longitude
and latitude values for a specified address. These <longitude, latitude> pairs can then be stored as
a point geometry using the SDO_GEOMETRY data type. Oracle Spatial provides a built-in geocoding tool
for translating addresses (implicit spatial information) into SDO_GEOMETRY objects.

For instance, let’s say the customers, suppliers, branches, and competitors tables store address
information. This address is typically stored using the attributes street_number (or Apt#), street_name,
city, and postal_code, all of the VARCHAR2 data type. Listing 3-4 shows the address information from
the customers table for a specific customer.

Listing 3-4. Sample Address for a Specific Customer in the customers Table

SQL> SELECT street_number, street_name, city, state, postal_code

FROM customers

WHERE id = 1;

134 12TH ST SE WASHINGTON DC 20003

Oracle Spatial allows you to convert this address (street_number, street_name, city, and
postal_code) into a two-dimensional point location on the surface of the earth. The specific function
you need is called sdo_gcdr.geocode_as_geometry. This function takes the schema name and the
geocoding dataset name as the first and last arguments. The second argument is an sdo_keywordarray
object constructed out of the address components street_number, street_name, city, and postal_code.
You will learn more about the details of this function in Chapter 6. For now, it is sufficient to note that
the simple SQL statement in Listing 3-5 will do the trick. Notice that the sdo_keywordarray object con-
catenates the street_number and street_name components. Additional whitespace helps in easy
identification of the two components.

Listing 3-5. Geocoding Addresses to Obtain Explicit Spatial Information

SQL> UPDATE customers

SET location =

SDO_GCDR.GEOCODE_AS_GEOMETRY

(

'SPATIAL',

SDO_KEYWORDARRAY

(

street_number || ` ` || street_name,

-- add whitespace to separate out street_number and street_name

city || `, ` || state || ` ` || postal_code

),

'US'

) ;

Geocoder

Geocoding
Data

Geocoding
Address
Columns

Address
Columns

SDO_GEOMETRY
Column

Customers Table Customers Table

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS40

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 40

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can now examine what the location information looks like. We will simply select the location
column from the customers table. Listing 3-6 shows the SQL to do this.

Listing 3-6. Geocoded location Column in the customers Table

SQL> SELECT location

FROM customers

WHERE id=1;

LOCATION(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-76.99022, 38.888654, NULL), NULL, NULL)

Notice that the specified address (street_number='134', street_name='12th ST SE',
city='WASHINGTON', and postal_code='20003') translates to an SDO_GEOMETRY object with longitude
and latitude values of –76.99022 and 38.888654 in the sdo_point attribute (instantiated using the
SDO_POINT_TYPE object). The sdo_gtype value of 2001 indicates that the location is a two-dimensional
(2 in 2001) point (1 in 2001) location. You will look at other attributes of the location column in the
next chapter.

■Caution Coordinate positions are commonly referred to as latitude/longitude. However, in Oracle Spatial, the
coordinates are stored as longitude followed by latitude.

Once an SDO_GEOMETRY object is constructed, you can insert it, update it, and query it just like
any other column in an Oracle table. For instance, you can update the location column directly by
constructing a geometry object using an SDO_GEOMETRY constructor, as shown in Listing 3-7.

Listing 3-7. Updating a location Column Using an SDO_GEOMETRY Constructor

SQL> UPDATE customers

SET location =

SDO_GEOMETRY

(

2001, -- Specify that location is a point

8307, -- Specify coordinate system id

SDO_POINT_TYPE(-77.06, 38.94, NULL), -- Specify coordinates here

NULL,

NULL

)

WHERE id=1;

Once you have basic location data for the application tables, such as customers, branches, and
suppliers, you can perform some basic proximity analysis (using SQL-level queries on SDO_GEOMETRY
columns; this is covered in Chapters 8 and 9). For instance, you can identify the following:

• Customers close to (for example, within a quarter mile of) a competitor store. For all such
customers, you can do some promotion to wean them from your competitor or retain them.

• How many customers are within a quarter-mile of each store or delivery site. Some store
sites may be overloaded, and you need to start new store sites at appropriate places.

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS 41

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 41

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Design Considerations for Application-Specific Data
As noted, the organization of application-specific data into appropriate tables will be application
dependent and will probably involve standard design techniques such as normalization, entity-
relationship (ER) diagram-based modeling, and so on. Oracle Spatial does not have any specific
recommendations or restrictions for how the application data is to be organized.

One point we can emphasize here, though, is that you should strongly consider table partitioning
when table data runs into millions of rows. Consider, for example, the customers data for an entire
country. These customers share the same attributes. As a result, normalization and other modeling
techniques may recommend storing all customers in a single table. However, for spatial applications,
the number of customers may be high, running into tens of millions or billions.

In such cases, where the access patterns for the table in question can be tied to a nonspatial
attribute (such as city or postal_code), then partitioning the customers table based on the city or
postal_code attribute can ensure good performance and at the same time present a single table on
which to operate.

■Note Table partitioning in Oracle is a priced option in the Enterprise Edition of Oracle; it is not available in the
Standard Edition.

Partitioning may help in effective and efficient management of large tables. Users can add,
split, or modify partitions while continuing to query other unrelated partitions. Partitioning is
a convenient mechanism to minimize the impact due to maintenance operations on a table. When-
ever possible, partitioned tables are also processed in parallel leading to better create, query, and
update times. In addition, partitioning may also improve the efficiency of spatial analysis opera-
tions by using partition pruning whenever the partition key is specified in the SQL query. You will
look at such analysis examples with partitioned tables in Chapter 8.

Geographic Data
To perform more sophisticated analysis such as routing between two locations or visualization
using regional maps, you need to store more than just locations of customers and branches. You
may need geographic data such as street networks, city boundaries, and so on. For example, to
identify routes from delivery sites to customer locations, you need to store additional information
that describes the street network. Likewise, if you want to be able to accurately visualize the loca-
tions stored in application tables on a map, then you need to display the boundaries of not just
streets and cities but also of rivers, national parks, and so on.

Obtaining the Geographic Data
Geographic data is usually available from a variety of sources, including commercial Geographical
Information Systems (GIS) vendors and national mapping agencies. NAVTEQ and Tele Atlas are two
such vendors, and both sell geographic data for the United States and Europe. The Ordnance Survey
is the national mapping agency for Great Britain: it supplies a highly detailed coverage of Great Britain
called MapsterMap. The U.S. Census Bureau is a similar organization serving the United States.
Appendix D has details for loading different components of this geographic data to enable network
analysis, geocoding, and map-based visualization. In the following sections, we describe the general
guidelines for storing and modeling the geographic data in the database.

To enable effective integration and analysis, the geographic data, just like the application-specific
data, needs to be stored in the database. This means you need to be able to store a range of different
types of data. For example, a street network might be represented by a set of lines connecting differ-
ent two-dimensional points. Likewise, a city boundary might be represented by a polygon connected

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS42

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 42

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

by lines. You can represent these types of spatial data using the same SDO_GEOMETRY data type that is
also used to represent the customer locations (point data) in the application-specific tables. Using
a single data type to store all sorts of spatial data ensures a seamless integration and analysis of spa-
tial data in business applications.

Design Considerations for Geographic Data
The next question that arises is how to best store the geographic data. We will illustrate the concepts
using typical geographic data (the actual tables used in the book will be directly loaded by importing
the appropriate .dmp files as discussed in the “Setting Up” section in the introduction of this book).
Each type of geographic data can have the following attributes:

• States: Attributes can include the state name, the abbreviation of the state name, the popula-
tion of the state, the average household income, and the boundary of the state (the latter of
these being stored in an SDO_GEOMETRY object).

• Counties: Attributes can include the county name, the state name in which the county
belongs, the land area, the population per square mile, and an SDO_GEOMETRY object to store
the boundary of the county.

• Interstates: Attributes can include the name and an SDO_GEOMETRY object to store the linear
shape of the interstate.

• Streets: Attributes can include the name, the city, the state, and an SDO_GEOMETRY object to
store the linear shape of the street.

Storing streets, interstates, counties, and states in a single table is likely to be inefficient (it may
slow down subsequent analysis) and should be avoided. You should store this data in different tables,
based on the following general criteria:

• Separate spatial data that does not share the same attributes: This is similar to normalization
techniques used for regular data. For instance, the states data will have different attributes
from the counties, streets, or interstates data.

• Separate coarser data from finer data: Streets and interstates both represent linear shapes.
Sometimes they may even share the same set of attributes. But interstates tend to go across
multiple states, whereas streets tend to be localized to a specific city or region. Since the
number of streets is likely to be much larger than the number of interstates, storing streets
and interstates in the same table may cause performance problems when you want to access
just the interstate data. Conversely, the large size of the interstates may pose performance
problems when you query for the street data.

• Separate based on the shape of the geometry: If you separate spatial data based on the geo-
metric shape—in other words, based on whether it is a point, a line, or a polygon—then you
can use the type-checking mechanisms provided by Oracle Spatial indexes at insertion time.
For example, if you created a spatial index and specified that a table had only points, the
index would raise an error if it encountered nonpoint geometry in the table. Spatial indexes
can perform better if they know what type of geometry to expect in a table. We will discuss
these features of spatial indexes in Chapter 5.

• Partition localized data: Consider the street data for an entire country. The streets share the
same attributes and are also at the same resolution level. Based on the previous three crite-
ria, we might store all the streets in the same table. However, because of the large number of
the rows in this table, the application may benefit from partitioning this table. We discuss the
actual benefits in Chapter 8.

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS 43

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 43

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Based on the preceding criteria, you can divide the geographic data, discussed at the beginning
of this section, into multiple tables. First, since states have different attributes from other geometries
(the first criterion), you can create a separate us_states table as shown in Listing 3-8.

Listing 3-8. Creating the us_states Table

SQL> CREATE TABLE us_states

(

state VARCHAR2(26),

state_abrv VARCHAR2(2),

totpop NUMBER,

landsqmi NUMBER,

poppssqmi NUMBER,

medage NUMBER,

medhhinc NUMBER,

avghhinc NUMBER,

geom SDO_GEOMETRY

);

Likewise, you can separate the county data from the rest, as shown in Listing 3-9.

Listing 3-9. Creating the us_counties Table

SQL> CREATE TABLE us_counties

(

id NUMBER NOT NULL,

county VARCHAR2(31),

state VARCHAR2(30),

state_abrv VARCHAR2(2),

landsqmi NUMBER,

totpop NUMBER,

poppsqmi NUMBER,

geom SDO_GEOMETRY

);

Now you have the streets and the interstates, both of which have the same attributes. However,
based on the second criterion, you can store them as separate tables, as shown in Listing 3-10.

Listing 3-10. Creating the us_interstates Table

SQL> CREATE TABLE us_interstates

(

id NUMBER,

interstate VARCHAR2(35),

geom SDO_GEOMETRY

);

SQL> CREATE TABLE us_streets

(

id NUMBER,

street_name VARCHAR2(35),

city VARCHAR2(32),

state VARCHAR2(32),

geom SDO_GEOMETRY

);

Until now, we have described how to location-enable the application-specific tables. We have
also discussed how to set up geographic data as regular Oracle tables. This involved creating

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS44

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 44

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

appropriate tables with a column of the SDO_GEOMETRY type to store associated spatial information.
We can populate these tables by either geocoding address data, as we will discuss in Chapter 6, or
by using appropriate loading tools, as we will discuss in Chapter 5.

In addition to separating the application-specific data and geographic data into appropriate
tables, we also need to specify additional information called metadata to location-enable the appli-
cation. This metadata is used in a variety of spatial functions, such as validation, indexing, and
querying of spatial data (as you will see in subsequent chapters).

Metadata for Spatial Tables
Spatial treats all the objects in a single SDO_GEOMETRY column of a table as a spatial layer. For instance,
the geometry objects stored in the location column of the customers table are treated as a spatial
layer.

To perform validation, index creation, and querying with respect to each spatial layer (in other
words, all the geometry objects in a specific SDO_GEOMETRY column of a table), you need to specify
the appropriate metadata for each layer. This will include the following information:

• The number of dimensions

• The bounds for each dimension

• The tolerance for each dimension (which will be explained later)

• The coordinate system (which will also be explained later)

This information for each spatial layer is populated in the USER_SDO_GEOM_METADATA dictionary
view.

Dictionary View for Spatial Metadata
Oracle Spatial provides the USER_SDO_GEOM_METADATA updatable view to store metadata for spatial
layers. This metadata view has the structure shown in Listing 3-11.

Listing 3-11. The USER_SDO_GEOM_METADATAView

SQL> DESCRIBE USER_SDO_GEOM_METADATA;

Name Null? Type

------------------------------------- ---------- ------------------

TABLE_NAME NOT NULL VARCHAR2(32)

COLUMN_NAME NOT NULL VARCHAR2(1024)

DIMINFO MDSYS.SDO_DIM_ARRAY

SRID NUMBER

Together, the TABLE_NAME and COLUMN_NAME columns uniquely identify each spatial layer. For the
identified layer, the metadata stores information about the individual dimensions for the layer in
the DIMINFO attribute. The information about the coordinate system of the geometry data is stored
in the SRID attribute. We will discuss how to choose the SRID attribute in more detail in Chapter 4,
but we will briefly describe it here before moving on to examine the DIMINFO attribute.

■Note The TABLE_NAME and COLUMN_NAME values are always converted to uppercase when you insert them into
the USER_SDO_GEOM_METADATA view.

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS 45

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 45

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SRID Attribute
This attribute specifies the coordinate system in which the data in the spatial layer is stored. The
coordinate system could be one of the following:

• Geodetic: Angular coordinates, expressed in terms of “longitude, latitude” with respect to the
earth’s surface.

• Projected: Cartesian coordinates that result from performing a mathematical mapping from
an area on the earth’s surface to a plane.

• Local: Cartesian coordinate systems with no link to the earth’s surface and sometimes spe-
cific to an application. These are used in CAD/CAM and other applications where the spatial
data does not pertain to locations on the earth.

Different geodetic and projected coordinate systems are devised to maximize the accuracy (of
distances and other spatial relationship calculations) for different parts/regions of the world. We
will describe coordinate systems in detail in Chapter 4.

In the case of geodetic coordinate systems, you can consult the CS_SRS1 table for possible val-
ues by selecting rows where the WKTEXT column2 starts with a prefix of 'GEOGCS'. Listing 3-12 shows
the SQL.

Listing 3-12. Selecting SRIDs of Geodetic Coordinate Systems

SQL> SELECT SRID

FROM MDSYS.CS_SRS

WHERE WKTEXT LIKE 'GEOGCS%';

As shown in Listing 3-13, you can select the SRIDs for the projected coordinate system from the
MDSYS.CS_SRS table by searching for rows where the WKTEXT column starts with 'PROJCS'. Analogously,
you can find the SRIDs for local coordinate systems by searching for the prefix 'LOCAL_CS' in the
WKTEXT column of the MDSYS.CS_SRS table.

Listing 3-13. Selecting SRIDs of Projected Coordinate Systems

SQL> SELECT SRID

FROM MDSYS.CS_SRS

WHERE WKTEXT LIKE 'PROJCS%';

In most cases, you don’t have to choose the coordinate system. Instead, you obtain the geome-
try data from a third-party vendor, and the SRID is already populated in these geometries.

■Caution If the coordinate system is geodetic (in other words, the SRID corresponds to one of the values in the
MDSYS.GEODETIC_SRIDS table), then the dimensions in the DIMINFO attribute are always longitude and latitude.
The first element in the DIMINFO attribute should always specify the dimension information for the longitude col-
umn, and the second element should always specify the information for the latitude dimension.

Starting in Oracle 10g Release 2, coordinate systems in Oracle are based on, but not entirely
identical to, the European Petroleum Standards Group (EPSG) data model and data set. The EPSG

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS46

1. The actual table is MDSYS.CS_SRS. In Oracle 10g and Oracle 11g, a synonym is created so that you can access
the CS_SRS table in the MDSYS schema directly by referring to CS_SRS. In prior versions of Oracle, you may need
to access the table explicitly as MDSYS.CS_SRS.

2. The wktext column stores the "well-known text" for a coordinate system. This is explained in detail in Chapter 4.

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 46

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

model is a widely accepted standard for coordinate system data representation and provides flexi-
bility in specifying transformations between different coordinate systems. This model extends
support to vertical, two-dimensional, and three-dimensional coordinate systems. Users can browse
coordinate system information by selecting from the SDO_COORD_REF_SYSTEM table. Oracle has addi-
tional tables, views, and functions to support the various operations in the EPSG model. We will
cover the EPSG model in more detail in Chapter 4.

DIMINFO Attribute
Spatial data is multidimensional in nature. For example, the location column in the customers table
of our business application has two dimensions: longitude and latitude (see Listing 3-3). The DIMINFO
attribute in USER_SDO_GEOM_METADATA specifies information about each dimension of the specified
layer. The DIMINFO attribute is of type MDSYS.SDO_DIM_ARRAY. Listing 3-14 shows this structure.

Listing 3-14. The SDO_DIM_ARRAY Structure

SQL> DESCRIBE SDO_DIM_ARRAY;

SDO_DIM_ARRAY VARRAY(4) OF MDSYS.SDO_DIM_ELEMENT

Name Null? Type

----------------------- ----------- --------------

SDO_DIMNAME VARCHAR2(64)

SDO_LB NUMBER

SDO_UB NUMBER

SDO_TOLERANCE NUMBER

Note that SDO_DIM_ARRAY is a variable-length array (VARRAY) of type SDO_DIM_ELEMENT. Each
SDO_DIM_ARRAY is sized according to the number of dimensions (so for a two-dimensional geometry,
the DIMINFO attribute will contain two SDO_DIM_ELEMENT types, and so on).

Each SDO_DIM_ELEMENT type stores information for a specific dimension and consists of the fol-
lowing fields:

• SDO_DIMNAME: This field stores the name of dimension. For instance, you can set it to 'Longitude'
or 'Latitude' to indicate that the dimension represents the longitude or latitude dimension.
The name you specify here is not interpreted by Spatial. You can specify 'X' for the longitude
dimension and 'Y' for the latitude dimension.

• SDO_LB and SDO_UB: These two numbers define the lower bound and the upper bound limits
for the values in a specific dimension. For instance, values in the longitude dimension range
from –180 to 180. So, you can set SDO_LB to –180 and SDO_UB to 180. Likewise, for the latitude
dimension, you can set SDO_LB and SDO_UB to –90 and 90, respectively. Note that these bounds
are application specific. For instance, in a CAD/CAM application, the values in a specific
dimension may range from 0 to 100, and the bounds will be set accordingly.

• SDO_TOLERANCE: An SDO_TOLERANCE value, or simply a tolerance value, is used to specify a degree
of precision for spatial data. It essentially specifies the distance that two values must be apart
to be considered different. For example, if the tolerance is specified as 0.5 and the distance
between two points A and B is less than 0.5, then points A and B are considered to be at the
same location.

By default, the tolerance value is in the same units as the SDO_LB and SDO_UB values (in other
words, in the same units as the ordinates in a dimension). However, in geodetic coordinate
systems, the tolerance value is always in meters (whereas the SDO_LB, SDO_UB bounds are in
degrees). Oracle additionally requires that the tolerance be the same value in all dimensions
(that is, in all SDO_DIM_ELEMENTs).

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS 47

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 47

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

In the following sections, we will describe the tolerance field in more detail and examine its
potential impact on different spatial functions and how to set the tolerance appropriately in an
application.

Understanding Tolerance

As discussed, tolerance is specified as a field of the DIMINFO attribute in the USER_SDO_GEOM_METADATA
view. The spatial indexes and other spatial layer–level operations use the DIMINFO attribute and the
associated tolerance from this view.

A second usage of tolerance is in spatial functions described in Chapters 5, 8, and 9. The major-
ity of these spatial functions do not read the USER_SDO_GEOM_METADATA view and instead expect the
tolerance to be passed in as an input parameter. You will see such uses of tolerance in spatial valida-
tion or the analysis functions that are described in Chapters 5, 8, and 9. In this section, we will first
discuss what tolerance is and then how to set it properly for your application.

Setting incorrect tolerance values can cause incorrect and unexpected results in a variety of
functions. Let’s illustrate this with an example, as shown in Figure 3-3.

Figure 3-3. Tolerance and its impact on the validity and relationship of two objects, A and B

Figure 3-3 shows two objects, A and B. Object A is a rectangle with four vertices: p, q, r, and s.
The lower-left vertex p is at coordinates (x1, y1), and the upper-right vertex r is at coordinates (x2, y2).
The distance between objects A and B is d. The spatial relationship between objects A and B, and
whether object A is considered a valid or invalid geometry, will vary depending on how you set the
tolerance value.

• Relationship between A and B: If the distance d < tolerance, then B is considered to be on the
outer boundary of A. In other words, object A is considered to be intersecting object B.

If the distance d >= tolerance, then A and B are considered to be disjoint or, in other words,
nonintersecting.

• Validation check for object A: If the distance between p and s is less than the tolerance
value—that is, (x2 – x1) < tolerance—then p and s are considered duplicate points/vertices.
Likewise, q and r will be considered duplicate vertices. Oracle Spatial does not allow dupli-
cate points in the specification of a geometry, so geometry object A would be considered
invalid. The same holds true if the distance (y2 – y1) between p and q is less than the tolerance.

If the preceding distances are greater than or equal to the tolerance, then the vertices are
considered distinct and geometry object A is considered a valid Oracle Spatial geometry.

Distance d

s(x2, y1)p(x1, y1)

q(x1, y2) r(x2, y2)

A B

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS48

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 48

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

From this example, you can understand that tolerance plays an important role in your applica-
tion. Setting it appropriately is an important step in location-enabling your application.

Choosing the Tolerance Value

As a general rule, the tolerance value should be set to the smallest distinguishable distance in your
application. In most applications, this distance corresponds to half the difference between two
individual coordinate values. For example, if the closest points in your application have the values
0.1 and 0.2 in a specific dimension, you can set the tolerance to (0.2 – 0.1)/2 = 0.05. This will ensure
that the two points (and all other points in the application data) are treated as distinct. Note that
the tolerance is specified in the same units as the coordinate values.

This technique can be applied directly when the geometry data refers to local coordinate sys-
tems (as in CAD/CAM and other applications) or for projected coordinate systems. However, for
locations on the surface of the earth modeled using geodetic coordinate systems, the difference in
the longitude or latitude values of two locations does not correspond to the actual distance between
them. In these cases (that is, in a geodetic coordinate system), the ordinates are interpreted to be in
degrees and the tolerance in meters.

From this discussion, it is clear that specifying an appropriate value for the tolerance depends
on the coordinate system (that is, the SRID attribute that specifies the coordinate system). In Table 3-1,
we describe some recommendations for different coordinate systems.

Table 3-1. Suggested Values for Tolerance Based on SRID for Applications

Coordinate System SRID Values Tolerance Units

Geodetic Select SRID from 0.5 (should not be Meters for
coordinate system MDSYS.CS_SRS, where less than 0.05) tolerance; degrees
(such as 8265, 8307) WKTEXT is like'GEOGCS%'. for longitude, latitude

dimensions.

Projected Select SRID from Half of the smallest Units for tolerance
coordinate system MDSYS.CS_SRS, where difference between are the same as the
(such as 32774) WKTEXT is like'PROJCS%'. any two values in a units for the ordinates

dimension in the dimensions.

Local coordinate Select SRID from Half of the smallest Units for tolerance
system MDSYS.CS_SRS, where difference between are the same as the

WKTEXT is like'LOCAL_CS%'. any two values in a units for the ordinates
dimension in the dimensions.

No specific
coordinate syst NULL. Half of the smallest Units for tolerance

difference between are the same as the
any two values in a units for the ordinates
dimension in the dimensions.

Populating Spatial Metadata for Your Application
Given this background on the different attributes in the USER_SDO_GEOM_METADATA view, we can now
populate the tables in our sample application with metadata.

Since we are dealing with locations on the earth and mostly for the continental United States,
we choose the SRID of 8307. This SRID is used in a majority of navigation systems that use Global
Positioning Systems (GPS). The tolerance value for this geodetic coordinate system can be set to
0.5 meters. Using this value, we insert a row in the USER_SDO_GEOM_METADATA view for the spatial layer
corresponding to the location column of the customers table. Listing 3-15 shows the correspon-
ding SQL.

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS 49

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 49

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 3-15. Inserting Metadata for the Spatial Layer Corresponding to the location Column of the
customers Table

SQL> INSERT INTO USER_SDO_GEOM_METADATA VALUES

(

'CUSTOMERS', -- TABLE_NAME

'LOCATION', -- COLUMN_NAME

SDO_DIM_ARRAY -- DIMINFO attribute for storing dimension bounds, tolerance

(

SDO_DIM_ELEMENT

(

'LONGITUDE', -- DIMENSION NAME for first dimension

-180, -- SDO_LB for the dimension

180, -- SDO_UB for the dimension

0.5 -- Tolerance of 0.5 meters

),

SDO_DIM_ELEMENT

(

'LATITUDE', -- DIMENSION NAME for second dimension

-90, -- SDO_LB for the dimension

90, -- SDO_UB for the dimension

0.5 -- Tolerance of 0.5 meters

)

),

8307 -- SRID value for specifying a geodetic coordinate system

);

Note that the SRID of 8307 specifies that the data in the corresponding spatial layer are in a geo-
detic coordinate system. There are specific restrictions when specifying the metadata for geodetic
coordinate systems:

• The first dimension in SDO_DIM_ARRAY should correspond to the longitude dimension. The
bounds should always be set to –180 and 180.

• The second dimension in SDO_DIM_ARRAY should correspond to the latitude dimension. The
bounds should always be set to –90 and 90.

• The tolerance for the dimensions must always be specified in meters. Meters are the “units”
of distance in all geodetic coordinate systems in Oracle.

Inserting incorrect metadata that does not conform to the preceding guidelines for geodetic
coordinate systems is one of the most common mistakes that Oracle developers make. To ensure
accurate distance calculations, you are advised to memorize the preceding three rules, because in
most applications you will use a geodetic coordinate system (specified by your data vendor).

In the earlier example, we constructed the metadata for the spatial layer corresponding to the
location column of the customers table and inserted it into the USER_SDO_GEOM_METADATA view. Likewise,
you have to insert rows into USER_SDO_GEOM_METADATA for other spatial layers such as the location
column in the branches table and the geom column in the us_interstates table.

Additional Information for Visualization and Network Analysis
In the preceding sections, we discussed how to insert metadata for a spatial layer. This metadata
will enable validation, spatial indexing, and spatial query and analysis operations, which are dis-
cussed in Chapters 5, 8, and 9.

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS50

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 50

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

In addition to such spatial analysis, you may want to enable your application with additional
functionality such as map-based visualization and network/routing analysis. To enable these types
of functionality, you will need to specify additional information in appropriate updatable dictionary
views. We discuss the details of this process in Chapters 10 and 11.

Summary
In this chapter, we covered the main steps required to location-enable your business applications,
namely, the following:

• Designing and creating tables to store application-specific data

• Designing and creating tables to store geographic data

• Defining metadata for each spatial layer both in the application-specific and the geographic
tables

Both the spatial application data and the geographic data are stored using an SDO_GEOMETRY
object. It is time to move on and discuss this object in detail.

CHAPTER 3 ■ LOCATION-ENABLING YOUR APPLICATIONS 51

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 51

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997ch03FINAL.qxd 9/28/07 9:55 AM Page 52

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Basic Spatial

P A R T 2

8997ch04.qxd 10/2/07 4:22 PM Page 53

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997ch04.qxd 10/2/07 4:22 PM Page 54

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The SDO_GEOMETRY Data Type

In the previous chapter, we discussed how to location-enable application data and how to organize
geographic data into multiple tables, each containing SDO_GEOMETRY columns. In this chapter, we focus
on storing and modeling different types of location information using the SDO_GEOMETRY data type in
Oracle. The SDO_GEOMETRY type can store a wide variety of spatial data, including the following:

• A point, which can be used to store the coordinate location of, for example, a customer site,
a store location, a delivery address, and so on

• A line string, which can be used to store the location and shape of a road segment

• A polygon, which can be used to store city boundaries, business regions, and so on

• Complex geometries, such as multiple polygons, which can be used to store boundaries for
states such as Texas, Hawaii, and California

First, we explain the structure of SDO_GEOMETRY, including the different attributes and the values
it can take to store the different types of geometric data listed.

After this, we cover how to actually construct SDO_GEOMETRY objects for simple geometries such
as points, lines, and polygons (as an application developer, you’ll mostly be working with such sim-
ple geometries).

Finally, we show how to construct more complex geometries, such as multipolygons. This
knowledge is useful in defining spatial regions of interest on the fly. In Chapters 8 and 9, you’ll see
how to use such constructed geometries to perform spatial analysis in an application. Throughout
this chapter, we illustrate potential uses for these different SDO_GEOMETRY data objects with examples
applicable to a typical business application.

The SDO_GEOMETRY examples that are constructed in this chapter are stored in the geometry_
examples table. You can create this table as shown in Listing 4-1.

Listing 4-1. Creating a Table to Store All Geometry Examples

SQL> CREATE TABLE geometry_examples

(

name VARCHAR2(100),

description VARCHAR2(100),

geom SDO_GEOMETRY

);

The geometry_examples table contains a description of the name and a description of the
geometry and the corresponding SDO_GEOMETRY object. You can use this table as a quick reference to
construct geometries of appropriate types on the fly. For simple types, you may just have to modify
the ordinates in the geom column.

55

C H A P T E R 4

8997ch04.qxd 10/2/07 4:22 PM Page 55

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Types of Spatial Geometries in Oracle
Let’s take a closer look at the types of spatial data that SDO_GEOMETRY can store. Figure 4-1 illustrates
some of these types, categorizing them into both types supported in two and three dimensions and
types supported in only three dimensions.

Figure 4-1. Examples of spatial data that SDO_GEOMETRY can represent

In the sections that follow, we’ll take a closer look at the geometry types in Figure 4-1.

Points
The simplest geometry is a point, which you have used in previous chapters. A point can represent
the location of a customer, a delivery site, or a competitor store. Object A in Figure 4-1 is an example
of a point geometry.

Line Strings
A line string connects multiple points (or vertices as they are sometimes called). In general, roads, trans-
portation networks, utility lines, and pipelines are represented as a line string type of SDO_GEOMETRY. If
the line string is closed, then it is a ring. Otherwise, it is just a line. A line string connects two or more
points by the following:

• Straight lines: We refer to this simply as a straight-line line string or as a line string when
there is no ambiguity. Object B in Figure 4-1 is an example of straight-line line string.

• Circular arcs: We refer to this as an arc string.1

• A combination of straight lines and circular arcs: We refer to this as a compound line string
(curve). Object F in Figure 4-1 is an example of such a compound line string.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE56

1. Oracle supports only circular arcs. From now on, we refer to circular arcs simply as arcs.

8997ch04.qxd 10/2/07 4:22 PM Page 56

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Polygons and Surfaces
A polygon is specified by one or more rings (closed line strings) and is associated with an area. Object C
in Figure 4-1 is a polygonal area bounded by straight lines connecting four points (the shaded area in
Figure 4-1). In this example, object C is shaped like a diamond, but in general a polygon can have
any arbitrary shape. A polygon could represent a city boundary, a ZIP code area, or a buffer zone
around a store site. A polygon has the following properties:

• The boundary of a polygon consists of one or more rings (a closed line string). Special cases for
the polygon boundary that can be specified easily in SDO_GEOMETRY include rectangles and circles.

• A polygon, unlike a line string, is associated with an area enclosed by the boundary. The area
has to be contiguous—that is, you should be able to travel in the interior of the polygon with-
out crossing the boundary. This means the digit 8 cannot be a valid polygon. (However, the
digit 8 can be modeled as a multipolygon or collection geometry, as described later.) Object C
in Figure 4-1 is an example of a (valid) polygon. In Chapter 5, you will learn the criterion for
determining the validity of polygons.

• The ring specifying the boundary or collection of a polygon can be composed of straight
lines, arcs, or a combination of arcs and lines. If it is a combination of arcs and lines, we refer
to the polygon as a compound polygon. Object G in Figure 4-1 is an example of such a com-
pound polygon, because its boundary is connected by straight lines and arcs.

• The area covered by a polygon can be expressed using one outer ring and any number (zero
or more) of inner rings. The inner rings are referred to as holes or voids because they void out
(subtract) the area covered by the outer ring. Object D in Figure 4-1 shows a polygon with
one outer ring and one inner ring (void). The inner ring in this example is a rectangle. The
area covered by this polygon is the shaded region between the two rings.

Until now we were assuming the example data is in a two-dimensional space. For three-
dimensional data, the polygons are in three-dimensional planes and hence are referred to as (planar)
polygonal surfaces, or surfaces when there is no ambiguity. Note that all vertices of a polygonal sur-
face have to be in a single plane. You can “stitch” one or more polygonal surfaces (each being in
a different plane) to constitute an arbitrary three-dimensional (but contiguous) composite surface.
Object H in Figure 4-1 is an example of such a composite surface. A surface geometry in general can
be a single polygonal surface or a composite surface consisting of contiguous polygonal surfaces.
Note that a surface can have still have an associated area but is not associated with a volume even if
the surface forming the boundary is closed, that is, defines a solid. Examples of three-dimensional
surfaces include the exteriors of buildings and soil surfaces.

Solids
A simple solid is specified by one outer surface and zero or more inner composite surfaces. Together,
the outer and inner composite surfaces define the boundary (or limits) of the simple solid. Unlike
a surface, a solid has both an area and a volume. Object J in Figure 4-1 is an example of a simple
solid. You can use the solid type to model buildings and other architectural entities in a city-modeling
application.

In some cases, buildings may consist of one or more attached components. You can model
such buildings either as a simple solid or as a composite solid consisting of multiple simple solids
that have a single volume. If it is represented as a combination, then it is referred to as a composite
solid. Object K in Figure 4-1 is an example of a composite solid. Storing different components as
components of a composite solid is advantageous if your application intends to access each com-
ponent of the solid separately. (We will look at functions for accessing components of a surface or
a solid in Chapter 7.) Such composite solids come in handy in CAD-type applications, where you
may attach a nut to a bolt to make a single composite solid.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 57

8997ch04.qxd 10/2/07 4:22 PM Page 57

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Collections
A collection has multiple geometry elements. A collection could be heterogeneous—that is, it could be
any combination of points, lines, and polygons. Alternatively, a collection could be homogeneous—
that is, it could consist of elements of a single type. Specific types of such homogeneous collections
are multipoint, multiline, multipolygon/multisurface, or multisolid collections.

Object E in Figure 4-1 has two polygons, a pentagon-shaped polygon and a polygon with a void,
and is an example of a multipolygon collection. The shaded regions in the figure show the area cov-
ered by this geometry. The boundaries for some states, such as Texas and California, are represented
as collections of polygons, where noncontiguous elements (islands) are stored as separate polygons.
Likewise, the digit 8 can also be stored as a collection geometry with two polygons. Object L in Figure 4-1
models a building as a collection of a solid and a surface, with the solid representing the actual building
and the surface representing the window.

Logical Implementation of SDO_GEOMETRY
In general, the shape of spatial objects can be quite complex, requiring a large number of connected
points (or vertices). For instance, the Amazon River may have thousands of vertices. State bound-
aries, which are modeled as polygons, could also have a large number of vertices. Any data type that
models spatial data should be able to represent the wide variety of shapes—from complex road seg-
ments to an arbitrarily shaped city and property boundaries.

To represent such complex geometric shapes, the SDO_GEOMETRY type is logically implemented
using an array of elements, as shown in Figure 4-2.

Figure 4-2. Conceptual class diagram of the SDO_GEOMETRY data type

The SDO_GEOMETRY data type has two logical components: the spatial reference system (also
called the coordinate system) of the geometry and the ElementArray.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE58

8997ch04.qxd 10/2/07 4:22 PM Page 58

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Note The coordinate system specifies the reference frame in which the coordinates of the geometry are repre-
sented. Different coordinate systems exist to model the surface of the earth. Alternatively, a coordinate system may
refer to a nonearth surface. You will learn more about different coordinate systems in the next section.

The ElementArray, or the array of elements, describes the shape and location of the SDO_GEOMETRY
object (with reference to the specified coordinate system). This array of elements constitutes (or makes
up) the SDO_GEOMETRY object. The array of elements represents any of the different types of spatial
data represented in Figure 4-1: point, line string, polygon, or collection-type geometry. This is depicted
in Figure 4-2 by the is-a relationship, illustrated by the triangle symbol between these types and the
ElementArray. Note that the diamond symbol shows a many-to-one relationship between different
types. For instance, a diamond between a point and a line string indicates that “many” points make
up “one” line string. Note that the “2+” next to the diamond symbol indicates the minimum number.
For example, at least two or more points make up a line string. Likewise, observe that one or more
rings constitute a polygon, and note that one or more polygons constitute a composite surface (called
a composite if more than one polygon and the surface are connected). One outer composite surface
and zero or more inner composite surfaces (represented as one or more in Figure 4-2) form a simple
solid (SSolid in Figure 4-2) if the surfaces are closed. One or more adjacent (sharing a face) simple solids
form a composite solid (referred to as CSolid in Figure 4-2). The collection types are formed as one
or more elements of the appropriate type (for example, one or more points form a multipoint,
one or more solids form a multisolid, and so on).

Spatial Data in SQL/MM and OGC
SQL/MM is the ISO/IEC international standard for “Text, Spatial, Still Images, and Data Mining.”
SQL/MM Part 32 specifically deals with spatial user-defined types and associated routines to store,
manage, and retrieve two-dimensional spatial data. This standard specifies the ST_Geometry type to
store two-dimensional spatial data. This type has subtypes such as ST_Point, ST_LineString, and
ST_Polygon to model different types of spatial geometries. This standard also includes a well-known
text format for specifying geometries. For instance, the string 'POINT(1 1)' indicates a point geom-
etry with coordinates at (1, 1).

The Open GIS Consortium (OGC) has the Simple Features Specification3 for storing, retrieving,
querying, and updating simple geospatial (two-dimensional) features. This specification defines
a Geometry type with appropriate subtypes to model two-dimensional points, line strings, polygons,
and so on. The types represented are a subset of those defined by SQL/MM. For three-dimensional
data, the GML 3.0 specification of OGC defines an extensive set of three-dimensional types.

Oracle Spatial explicitly supports ST_Geometry and its specific subtypes (ST_CircularString,
ST_CompoundCurve, ST_Curve, ST_CurvePolygon, ST_GeomCollection, ST_LineString, ST_MultiCurve,
ST_MultiLineString, ST_MultiPoint, ST_MultiPolygon, ST_MultiSurface, ST_Point, and ST_Polygon)
that are defined in the SQL/MM standard. These types and Oracle Spatial’s SDO_GEOMETRY data type
are essentially interoperable. In other words, you can create ST_Geometry from an SDO_Geometry
type, and vice versa. In addition, Oracle also implements relationship functions defined on
ST_Geometry and its subtypes in the SQL/MM standard (these are discussed in Chapter 8). In short,
Oracle Spatial conforms to the OGC Simple Features Specification (the ST_Geometry implementa-
tion is compliant with the OGC Simple Features Specification for Object Model) and the equivalent

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 59

2. ISO/IEC 13249-3:2003, “Information technology – Database languages – SQL multimedia and application
packages – Part 3: Spatial,” http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369.

3. Open GIS Consortium, “OpenGIS Simple Features Specification for SQL Revision 1.1,” http://www.opengis.org/
docs/99-049.pdf, May 5, 1999.

8997ch04.qxd 10/2/07 4:22 PM Page 59

www.it-ebooks.info

www.freepdf-books.com

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369
http://www.opengis.org
http://www.it-ebooks.info/

sections of SQL/MM Part 3. In this chapter, we illustrate how to construct various types of
geometries using the native SDO_GEOMETRY data type. For the construction of these geometries using
an ST_Geometry type, you can consult the Oracle Spatial’s User Guide and Reference or use the
SDO_GEOMETRY-ST_GEOMETRY conversion functions described in Chapter 5.

For three-dimensional data, Oracle can store and model the majority of the types in the GML
3.0 specification with the exception of parametric curve types (arcs, splines, and so on). In addition,
Oracle Spatial provides constructors for converting data between the SDO_GEOMETRY data type and
the well-known text (WKT) and well-known binary (WKB) notations of SQL/MM for two-dimensional
data and between SDO_GEOMETRY and GML 3.0 types for three-dimensional data. We describe these
converters in Chapter 5.

In the next section, we take a closer look at the SDO_GEOMETRY data type. In the subsequent sec-
tions, we describe how to construct SDO_GEOMETRY objects to store different types of spatial data.

SDO_GEOMETRY Type, Attributes, and Values
Now that you know what an SDO_GEOMETRY can represent and how it is internally constituted, let’s
examine its structure in Oracle. Listing 4-2 describes the SDO_GEOMETRY data type.

Listing 4-2. SDO_GEOMETRY Data Type in Oracle

SQL> DESCRIBE SDO_GEOMETRY

Name Null? Type

-------------------------- -------- --------------------

SDO_GTYPE NUMBER

SDO_SRID NUMBER

SDO_POINT SDO_POINT_TYPE

SDO_ELEM_INFO SDO_ELEM_INFO_ARRAY

SDO_ORDINATES SDO_ORDINATE_ARRAY

Let’s look at the purpose served by each attribute of SDO_GEOMETRY:

• The SDO_GTYPE attribute specifies the type of shape (point, line, polygon, collection, multi-
point, multiline, or multipolygon) that the geometry actually represents. Although the
SDO_GTYPE attribute captures what type of geometry is being represented, it does not specify
the actual coordinates.

• The SDO_SRID attribute specifies the ID of the spatial reference system (coordinate system) in
which the location/shape of the geometry is specified.

In Figure 4-2, we noted that a geometry consists of an element array (that is, one or more ele-
ments make up a geometry). How do you specify the coordinates of the elements? You can do it in
one of the following ways:

• If the geometry is a point (for example, the location of customers), then you can store the
coordinates in the SDO_POINT attribute of SDO_GEOMETRY.

• If the geometry is an arbitrary shape (for example, a street network or city boundaries), then
you can store the coordinates using the SDO_ORDINATES and SDO_ELEM_INFO array attributes:

• The SDO_ORDINATES attribute stores the coordinates of all elements of the geometry.

• The SDO_ELEM_INFO attribute specifies where in the SDO_ORDINATES array a new element
starts, how it is connected (by straight lines or arcs), and whether it is a point (although
we recommend you use SDO_POINT for the storage and performance reasons listed later
in the chapter), a line, or a polygon.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE60

8997ch04.qxd 10/2/07 4:22 PM Page 60

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Let’s look at each of these attributes in more detail.

SDO_GTYPE Attribute
This attribute describes the type of geometric shape modeled in the object. It reflects roughly the
top levels in the class hierarchy of Figure 4-2. Specifically, it has a distinct value to indicate whether
the geometry is a point, a line string, a polygon, a multipoint, a multipolygon, a multiline, or an arbi-
trary collection. You can think of this attribute as a high-level description of the geometry object.
The geometry object may itself be a combination of multiple elements, each of a different shape.
But this attribute specifies the general type for the entire object (with all elements it is composed of).

The SDO_GTYPE attribute is a four-digit number structured as follows: D00T. The first and the last
digits take different values based on the dimensionality and shape of the geometry, as described in
Table 4-1. The second and third digits are always set to 0.

■Note For a linear-referenced geometry, SDO_GTYPE is structured as DL0T. The second digit, L, in that case
refers to the dimension number (3 or 4) to use for the measure values in a linear-referenced geometry. In Oracle 11g
Release 1, linear referenced geometries can have only x,y and measure dimensions and not x,y,z and measure
dimensions. You will learn about linear-referenced geometries in Appendix C.

Table 4-1. Values for D and T in the D00T Format of the SDO_GTYPE Attribute of SDO_GEOMETRY

Digit Values

D (dimension of the geometry) 2 = Two-dimensional, 3 = Three-dimensional,
4 = Four-dimensional

T (shape/type of the geometry) 0 = Uninterpreted type, 1 = Point, 5 = Multipoint, 2 = Line,
6 = Multiline, 3 = Polygon/surface, 7 = Multipolygon/
multisurface, 4 = Collection, 8 = Solid, 9 = Multisolid

The D in the D00T representation of the SDO_GTYPE is used to store the dimensionality of (each
vertex in the shape of) the geometry object. Spatial can work with two- to four-dimensional geome-
tries. If the geometry is two-dimensional, then it has two ordinates for each vertex in the geometric
shape. If the geometry is three-dimensional, then each vertex has three ordinates, and so on. These
ordinates for vertices of the geometry are stored in the SDO_ORDINATES (or SDO_POINT) attribute, which
we discuss later.

The T in the SDO_GTYPE specifies the type/shape of the geometry. Let’s go over the values. For
simple types, such as points, lines, and polygons, T is in the range of 1 to 3. For multiple-item
geometries, T is simple_type + 4. For instance, T for a point is 1, and for a multipoint it is 1 + 4 = 5.
Likewise, T for a line is 2, and for multiline string it is 2 + 4 = 6, and so on.

The value of T (in SDO_GTYPE) is 1 if the geometry consists of a single point, and it is 5 if the geome-
try has multiple points. For example, for object A in Figure 4-1, the value of T is 1, and the SDO_GTYPE
value is 2001. Listing 4-3 shows the SDO_GTYPE for a point geometry from the customers table. Note
that to retrieve the SDO_GTYPE attribute of the location column, you need a table alias.

Listing 4-3. Example of the SDO_GTYPE in the location Column of the customers Table

SQL> SELECT ct.location.sdo_gtype FROM customers ct WHERE id=1;

SDO_GTYPE

2001

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 61

8997ch04.qxd 10/2/07 4:22 PM Page 61

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The value of T is 2 if the geometry represents a line string. This line could be a simple line con-
necting any number of points by straight lines or arcs. Alternatively, this line could be a combination
of multiple parts specifying straight-line segments and arc segments. Note that the line is still con-
tiguous. If the geometry consists of multiple line segments that are not connected, then the type is 6
(multiline). For objects B and F in Figure 4-1, the value of T is 2, and SDO_GTYPE is 2002. Listing 4-4
shows an example.

Listing 4-4. Example of SDO_GTYPE in the geom Column of the us_interstates Table

SQL> SELECT i.geom.sdo_gtype FROM us_interstates i WHERE rownum=1;

SDO_GTYPE

2002

The type T is 3 if the geometry represents an area bounded by a closed line string (also referred
to as ring) of edges. Listing 4-5 shows an example. The boundary may be connected by lines, arcs, or
a combination of both. The polygon can contain one or more inner rings called voids. In such cases,
the area of the polygon is computed by subtracting the areas of the voids. The area covered by
a geometry that has T equal to 3 should be contiguous. Objects C, D, and G are examples. Note that
object D has one outer ring and one inner ring (rectangle), but there is still only one single “contigu-
ous” area shown by the shaded region. So, this is considered a single polygon with type T set to 3.

Listing 4-5. Example of SDO_GTYPE in the location Column of the us_states Table

SQL> SELECT s.geom.sdo_gtype FROM us_states s WHERE state_abrv='NH';

SDO_GTYPE

2003

If there is more than one (nonvoid) polygon in the geometry (that is, if the area of the geometry
is not contiguous), then it is a multipolygon geometry and the type is 7. Object E in Figure 4-1 is an
example of this.

If the geometry is a collection of points, lines, and/or polygons, the geometry is a collection
geometry. The value of T for this geometry is 4. For object E, which has two polygons (one with a void),
you can set the type to 7, a multipolygon. Alternatively, you can set it to the more generic description
of a collection. The type T in this case will be 4. Listing 4-6 shows an example when T is 7.

Listing 4-6. Example of SDO_GTYPE in the location Column of the us_states Table

SQL> SELECT c.geom.sdo_gtype FROM us_cities c WHERE state_abrv='TX';

SDO_GTYPE

2007

Note that most of the shapes represent only two-dimensional geometries. How do you specify
three-dimensional (or four-dimensional) geometries? Just set the D in D00T for SDO_GTYPE to 3 (or 4).
Oracle Spatial then allows you to store three (or four) ordinates for each vertex of the geometry. So if
you have two points, (1, 1, 4) and (2, 2, 5), you have to specify the SDO_GTYPE to be 3002 (line).

In some applications, the third or fourth dimension holds additional information that can be
stored with each vertex of the geometry. This additional dimension may not pertain to the shape of
the geometry but may specify a “measure value” that is application-related. For example, the third
dimension could model the height of each vertex point in the geometry. In transportation applica-
tions, the third ordinate for each vertex in a road segment is used to store the mile marker. To denote
that a dimension as a measure dimension, you can use the L digit in SDO_GTYPE. If L is set to 3, then
the third dimension is the measure dimension; if L is set to 4, then the fourth dimension is treated
as the measure dimension.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE62

8997ch04.qxd 10/2/07 4:22 PM Page 62

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Tip Since the geometry has a provision to store four-dimensional ordinates (as specified by D in SDO_GTYPE),
even if you model a two- or three-dimensional geometry, you can store additional information such as the eleva-
tion, mile marker, time stamp, or speed limit as the third or fourth dimension.

So, Oracle Spatial does not interpret the measure dimension values by default. Oracle Spatial
does provide some functions to operate on the measure dimension for specific applications. You
will learn about one such application in Appendix B.

SDO_SRID Attribute
This attribute specifies the spatial reference system, or coordinate system, for the geometry. To
understand what a coordinate system is, consider the example in Figure 4-3. Recall that we briefly
discussed coordinate systems in Chapter 3. Here, we continue that discussion in more detail.

Figure 4-3. Coordinate systems example

Note that in Figure 4-3, the locations of two line string objects, A and B, are specified with
respect to the origin and using the coordinates in the orthogonal x- and y-axes. Note that both
A and B have the same shape; however, their positioning (in other words, location) with respect to
the origin is different. If you change the origin, the absolute locations (coordinates) of the two line
string objects change. Such a frame of reference using the x- and y-axes is termed the Cartesian system.
This system is popular in representing two-dimensional data in CAD/CAM applications. But how
good is it for representing customer locations and delivery sites on the surface of the earth?

To answer this question, let’s examine the surface of the earth. The earth is approximately ellip-
soidal in shape. Location has traditionally been specified using the longitude and latitude lines on
the earth. Flattening the surface of the earth to a two-dimensional plane loses spatial proximity and
distorts the shape. Figure 4-4 shows a map of the countries of the world. In Figure 4-4, by dividing the
surface of the earth at the dateline meridian, California and Japan appear to be farther apart than
they actually are. Also, countries at the North and South Poles, such as Antarctica and Greenland,
are distorted in shape.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 63

8997ch04.qxd 10/2/07 4:22 PM Page 63

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 4-4. Example map of the world, with countries and distances distorted

How do you represent locations on the surface of the earth without inaccuracies and distor-
tions? This has been a challenge to many geographers, mathematicians, and inventors for centuries.
Several books have dealt with this topic in great detail.4 There are two general techniques to model
the data on the earth’s surface. The first is to model the earth using three-dimensional ellipsoidal
surfaces. The second is to project the data into a two-dimensional plane. Let’s look at each of these
in turn. Note that in most cases, an application developer may not need to know much about differ-
ent coordinate systems. All that is required is to choose an appropriate coordinate system as described
in the section “Choosing an Appropriate Coordinate System.” The casual reader may skip the dis-
cussion in the next three sections.

Geodetic Coordinate Systems
If you model the surface of the earth as a regular three-dimensional ellipsoid, you can measure dis-
tance relationships between objects by computing the distances of the locations on the corresponding
ellipsoid. Unfortunately, the earth is not a perfect ellipsoid, and therefore a single ellipsoid cannot
accurately model the earth in all areas. This led geographers to define multiple ellipsoids to suit their
needs. Oracle Spatial supplies commonly used reference ellipsoids in the MDSYS.SDO_ELLIPSOIDS table.

Sometimes in your model, you will need to shift the center of the earth and rotate the axes to
better suit the curvature at the local region. For this, you can create models referred to as datums by
shifting and rotating specific ellipsoids to better suit the earth’s curvature at different regions. You can
examine the different three-dimensional models by looking at the datums in the MDSYS.SDO_DATUMS
table. Positioning data on the surface of the earth by referring to the coordinates (longitude and
latitude) on a specific datum is known as a geodetic coordinate system (or geodetic spatial reference
system).

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE64

4. For example, refer to John P. Snyder’s Flattening the Earth: Two Thousand Years of Map Projections (University
of Chicago Press, 1997).

8997ch04.qxd 10/2/07 4:22 PM Page 64

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Projected Coordinate Systems
In most applications, data are concentrated within a small region of the earth. Projecting such data
to a two-dimensional plane may be a simpler representation and may also be more accurate for the
application needs. How do you project data on the earth’s surface to a two-dimensional flat plane?
First, you start with a three-dimensional model (datum) of the earth. Then, using one of a variety of
projection techniques, the three-dimensional data on the reference model is transformed to two-
dimensional data on a flat plane.

Why have different projection techniques? Well, there is no single technique that can project
from three-dimensional to two-dimensional while preserving the distances between objects, the
areas of large objects, the directions, and so on. For example, in the Mercator cylindrical projection,
data are projected from the sphere to a cylindrical surface, and the cylindrical surface is unwrapped
to result in a two-dimensional plane. It preserves direction and has been used in marine navigation
for centuries. However, it does not preserve the area of objects. So, the Mercator cylindrical projec-
tion would not be useful in applications that need to compute land area (spatial object area, in
other words).

Alternate types of projections include conic projections (projecting to a conic surface) and
azimuthal projections (projecting from the center of a region to a tangential plane). Examples of
these projections include Lambert Azimuthal Equal-Area, Azimuthal Equidistant, Albers Equal-Area
Conic, and Equidistant Conic projections.

The equal-area projections preserve areas of the objects (unlike the Mercator) but distort direc-
tion and distance. The equidistant projections are good for measuring the distance from the center
of the projection area (say, New York City) to distant locations, such as San Diego, California, and
Seattle, Washington. However, such a projection cannot be used to compute distances between San
Diego and Seattle, two locations that are far off from the center of the projection. In short, the spe-
cific projection that is to be used depends on which of the following parameters are to be preserved:
direction, distance, and area. You can examine the different projections that can be applied to a spe-
cific datum by looking at the table MDSYS.SDO_PROJECTIONS.

To summarize, by choosing a projection and a three-dimensional reference datum, locations
on the surface of the earth can be represented in a two-dimensional plane. Such referencing using
a specific datum and an appropriate projection is referred to as a projected coordinate system or
a projected spatial reference system.

Georeferenced, Local Coordinate Systems
Coordinate systems pertaining to locations on the earth (that is, projected and geodetic coordinate
systems) are called georeferenced. All other coordinate systems, such as those in CAD/CAM, are
referred to as local or nongeoreferenced.

Choosing an Appropriate Coordinate System
You choose the coordinate system by setting an appropriate value for the SDO_SRID attribute. Next,
we will describe how to determine the appropriate values for projected, geodetic, and local coordi-
nate systems.

If the geometry does not refer to a location on the earth’s surface but instead refers to layout in
CAD/CAM or other applications, then you can set it either to NULL or to a value specified by your
data vendor.

Otherwise, if the geometry refers to a location on the earth’s surface, you can set SDO_SRID to
a value corresponding to either a projected coordinate system or a geodetic coordinate system. Pro-
jected coordinate systems are used whenever all the data are located in a small region of the earth.
Projected coordinate systems are useful to suit application needs such as preserving the distances
between locations, shapes, or areas of geometry objects (such as city boundaries) and other

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 65

8997ch04.qxd 10/2/07 4:22 PM Page 65

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

appropriate geometric properties. Geodetic coordinate systems are useful if the data are located in
a much larger portion on the surface of the earth and slight inaccuracies in some geometric proper-
ties such as distances, areas, and so on, can be tolerated. For example, when dealing with data fully
concentrated in southern Texas, you can use a state-plane projection appropriate for southern Texas.
However, when dealing with the United States as a whole, you can use a geodetic coordinate system.
You can look up the SDO_SRIDs for the geodetic or projected coordinate systems in the MDSYS.CS_SRS
table. Listing 4-7 shows the columns in this table.

Listing 4-7. MDSYS.CS_SRS Table

SQL> DESCRIBE MDSYS.CS_SRS

Name Null? Type

------------------------------------- -------- ---------------

CS_NAME VARCHAR2(68)

SRID NOT NULL NUMBER(38)

AUTH_SRID NUMBER(38)

AUTH_NAME VARCHAR2(256)

WKTEXT VARCHAR2(2046)

CS_BOUNDS SDO_GEOMETRY

The MDSYS.CS_SRS table has the following columns:

• CS_NAME: This specifies the name of the coordinate system.

• SRID: This is short for spatial reference system ID. This is a unique ID for the spatial reference
or coordinate system.

• AUTH_SRID and AUTH_NAME: These refer to the values assigned by the originator of this coordi-
nate system.

• WKTEXT: This is short for well-known text. This field provides a detailed description of the
coordinate system. For geodetic coordinate systems, the WKTEXT field starts with a prefix of
GEOGCS For projected systems, it starts with 'PROJCS'. You can use this information to search
for an appropriate coordinate system for your application’s needs.

• CS_BOUNDS: This specifies a geometry where the coordinate system is valid. Storing data
beyond the bounds may lead to inaccurate results. Currently, set to NULL.

As an application developer, chances are you will be interested only in how to choose the
coordinate system (you are not likely to have to populate these rows in the MDSYS.CS_SRS table). You
might be able to do this by examining the coordinate system description in the WKTEXT field. For
example, to identify a projected coordinate system for southern Texas, you can execute the SQL in
Listing 4-8. Note that the ROWNUM=1 predicate displays only one out of three rows for southern Texas.

Listing 4-8. Selecting an SRID for the Southern Texas Region from the MDSYS.CS_SRS Table

SQL> SELECT cs_name, srid, wktext

FROM MDSYS.CS_SRS

WHERE WKTEXT LIKE 'PROJCS%'

AND CS_NAME LIKE '%Texas%Southern%'

AND ROWNUM=1;

CS_NAME

Texas 4205, Southern Zone (1927)

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE66

8997ch04.qxd 10/2/07 4:22 PM Page 66

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SRID

41155

WKTEXT

--

PROJCS

[

"Texas 4205, Southern Zone (1927)",

GEOGCS

[

"NAD 27 (Continental US)",

DATUM

[

"NAD 27 (Continental US)",

SPHEROID ["Clarke 1866", 6378206.4, 294.9786982]

] ,

PRIMEM ["Greenwich", 0.000000],

UNIT ["Decimal Degree", 0.01745329251994330]

],

PROJECTION ["Lambert Conformal Conic"],

PARAMETER ["Standard_Parallel_1", 26.166667],

PARAMETER ["Standard_Parallel_2", 27.833333],

PARAMETER ["Central_Meridian", -98.500000],

PARAMETER ["Latitude_Of_Origin", 25.666667],

PARAMETER ["False_Easting", 2000000.0000],

UNIT ["U.S. Foot", 0.3048006096012]

]

The query returns a projected coordinate system for southern Texas. This coordinate system is
formed using the Lambert Conformal Conic projection technique on a datum formed using the
NAD 27 (continental United States) reference ellipsoid. You can use the corresponding SRID of
41155 to specify a geometry in this coordinate system.

For most business applications that have location data spread over the entire United States, you
can choose one of the widely used geodetic systems for North America, such as WGS84 (SRID=8307) or
NAD83 (SRID=8265). For applications in other countries, you can choose either an appropriate geo-
detic system or a projected system, depending on how widely distributed the location data are. Note
that Oracle supports approximately 1,000 coordinate systems that cover almost all countries/regions
of the world. These coordinate systems are all described in the MDSYS.CS_SRS table. All you have to do
is choose one of them (the SRID field) by searching for the region/country in the WKTEXT field.

■Note All geometries in a specific column of a table (for example, the location column of the customers table)
should have the same SDO_SRID value.

Note that the previous coordinate systems may or may not be suited for all applications. To
obtain more accurate coordinate systems, users can define new coordinate reference systems by
appropriately defining new entries in the MDSYS.CS_SRS table.

Coordinate systems enable accurate representation of the data based on the user’s region as well
as more accurate transformations when converting from data in one coordinate system to another
(using the SDO_CS.TRANSFORM function call). Starting in Oracle 10g Release 2, Spatial supports the EPSG
model for coordinate systems. We’ll briefly describe this model because of its popularity. The more
casual reader can skip the next section.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 67

8997ch04.qxd 10/2/07 4:22 PM Page 67

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The EPSG Coordinate System Model for Two-Dimensional and Three-Dimensional Data in
Oracle Spatial
The European Petroleum Standards Group (EPSG) model supports a rich set of predefined one-
dimensional, two-dimensional (projected, geodetic, or local), and three-dimensional coordinate
systems in addition to providing more flexibility in transformations across coordinate systems. We’ll
first cover the different types of coordinate systems.

Types of EPSG Coordinate Systems

You can determine the different types of supported two-dimensional and three-dimensional coor-
dinate systems by querying the SDO_COORD_REF_SYS table, as shown in Listing 4-9.

Listing 4-9. Determining the Different Kinds of EPSG Coordinate Systems

SQL> SELECT DISTINCT coord_ref_sys_kind FROM SDO_COORD_REF_SYS;

COORD_REF_SYS_KIND

PROJECTED

GEOCENTRIC

GEOGRAPHIC2D

VERTICAL

ENGINEERING

COMPOUND

GEOGRAPHIC3D

7 rows selected.

Which one of these systems should you use for your data? The answer will depend on your specific
application. You can classify the previous seven types of EPSG coordinate systems into one-dimensional
(1D), two-dimensional (2D), three-dimensional (3D), or local coordinate systems, as described here:

• 1D coordinate systems:

• Vertical: These coordinate systems are typically used to model height information
above the earth’s surface. The height can be either geoidal height, which is the height
above the earth’s geoid (the geoid represents the physical surface of the earth and is
highly irregular), or ellipsoidal height, which is the height above the ellipsoid that is
used to approximate the surface of the earth in a reference coordinate system.

• 2D coordinate systems:

• Geographic2D: This type of coordinate system specifies the longitude and latitude on
the surface of the earth approximated by a reference ellipsoid (usually referred to as
datum). This type is also referred to as the Geodetic coordinate systems (as in earlier
sections).

• Projected: This type of coordinate system specifies how to project longitude and latitude
values on a reference Geographic2D system to a two-dimensional Euclidean coordinate
system. As discussed in the prior section “Projected Coordinate Systems,” you can use
various types of projection techniques such as equal-area (to preserve areas of projected
geometries) or equidistant projections (to preserve distances to objects from projec-
tion center).

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE68

8997ch04.qxd 10/2/07 4:22 PM Page 68

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• 3D coordinate systems:

• Geographic3D: This type of coordinate system specifies latitude and longitude and
ellipsoidal height based on a geodetic datum (ellipsoid).

• Geocentric: This type of coordinate system specifies the x,y,z values with reference to
the center of the earth (as opposed to the surface ellipsoid as in a Geographic3D).

• Compound: This type of coordinate system combines either a Geographic2D (latitude,
longitude) or a Projected (2D) coordinate system with a vertical coordinate system
specifying height based on gravity, above a mean sea level, and so on.

• Local coordinate systems:

• Engineering: These coordinate systems are application-specific coordinate systems.
They may or may not refer to data on earth’s surface, but the data are usually treated as
if they are in Euclidean coordinate axes.

As mentioned in the previous section, you can obtain all relevant information about 2D coordi-
nate systems from the CS_SRS table. However, for 3D coordinate systems, the CS_SRS table contains
only partial information (this is likely to change in versions after Oracle 11g 5; after such changes,
you may be able to get all relevant information in the CS_SRS table itself). In Oracle 11g, you have to
consult other tables such as SDO_COORD_REF_SYS and SDO_CRS_VERTICAL to obtain detailed information
about 3D or 1D coordinate systems. For instance, assume you want to identify the 3D compound
coordinate system for the Texas region. You can select the coordinate system ID (SRID), its name
(COORD_REF_SYS_NAME), and the horizontal (CMPD_HORIZ_SRID) and vertical coordinate systems
(CMPD_VERT_SRID) that make up the compound system from the SDO_COORD_REF_SYS table by specify-
ing the COORD_REF_SYS_KIND to be 'COMPOUND'. Listing 4-10 shows how to find this information about
a compound coordinate system for the Texas region.

Listing 4-10. Searching for a Compound Coordinate System for the Texas Region

SQL> SELECT srid, coord_ref_sys_name name,

cmpd_horiz_srid hsrid, cmpd_vert_srid vsrid

FROM sdo_coord_ref_sys

WHERE coord_ref_sys_name like '%Texas%'

AND coord_ref_sys_kind='COMPOUND';

SRID NAME HSRID VSRID

------- --- -------- -------

7407 NAD27 / Texas North + NGVD29 32037 5702

Observe that the SQL returns the SRID of the compound coordinate system as 7407 and that
the compound system is made up of a horizontal coordinate system whose SRID is 32037 and a ver-
tical coordinate system whose SRID is 5702. The horizontal coordinate system typically pertains to
the x,y or longitude/latitude dimensions, and the vertical coordinate system usually refers to the
height from the surface of the earth. As shown in Listing 4-11, you can look up information on the
horizontal coordinate system using the CS_SRS table. From the wktext string returned in Listing 4-11,
you can notice that this (SRID=32037) horizontal coordinate system is a Lambert-Conformal Conic
projection using the NAD27 (North American Datum 1927) datum, and the default UNIT in this
coordinate system is U.S. FOOT (search for PROJECTION and UNIT substrings in the wktext value that
is returned).

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 69

5. Unless otherwise mentioned, all references to Oracle 11g in the book mean Oracle Database 11g.

8997ch04.qxd 10/2/07 4:22 PM Page 69

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 4-11. Looking Up Details for Horizontal Coordinate System ID 32037

SQL> SELECT cs_name, wktext FROM CS_SRS WHERE SRID=32037;

CS_NAME WKTEXT

-- ------------------

NAD27 / Texas North

PROJCS[

"NAD27 / Texas North",

GEOGCS [

"NAD27",

DATUM [

"North American Datum 1927 (EPSG ID 6267)",

SPHEROID ["Clarke 1866 (EPSG ID 7008)", 6378206.4,

294.978698213905820761610537123195175418],

-3, 142, 183, 0, 0, 0, 0],

PRIMEM ["Greenwich", 0.000000],

UNIT ["Decimal Degree", 0.01745329251994328]

],

PROJECTION ["Lambert Conformal Conic"], PARAMETER ["Latitude_Of_Origin", 34],

PARAMETER ["Central_Meridian", -101.5],

PARAMETER ["Standard_Parallel_1", 34.65],

PARAMETER ["Standard_Parallel_2", 36.18333333333333333333333333333333333333],

PARAMETER ["False_Easting", 2000000], PARAMETER ["False_Northing", 0],

UNIT ["U.S. Foot", .3048006096012192024384048768097536195072]

]

Next you want to look up the details of the vertical coordinate system whose SRID is 5702. You
can try the CS_SRS table, as shown in Listing 4-12.

Listing 4-12. Looking Up Details for Vertical Coordinate System ID 5702 in the CS_SRS Table 6

SQL> SELECT cs_name, wktext FROM CS_SRS WHERE SRID=5702;

CS_NAME WKTEXT

--- -----------------

National Geodetic Vertical Datum of 1929

The query returns the name as “National Geodetic Vertical Datum of 1929.” The query, how-
ever, does not return any value for the wktext field. In that case, how do you identify the reference
datum on which this vertical coordinate system is based or what the default units for this vertical
coordinate system are? You can query the SDO_CRS_VERTICAL and SDO_COORD_SYS tables as in Listing 4-13.
You can observe from the value for the COORD_SYS_NAME that the unit of measure (UoM) is ftUS (in
other words, the same as U.S. Foot).

Listing 4-13. Looking Up Details for Vertical Coordinate System ID 5702 in Appropriate Tables

SQL> SELECT cs.COORD_SYS_NAME

FROM SDO_CRS_VERTICAL v, SDO_COORD_SYS cs

WHERE v.SRID=5702 and cs.COORD_SYS_ID = v.COORD_SYS_ID;

COORD_SYS_NAME

--

Gravity-related CS. Axis: height (H). Orientation: up. UoM: ftUS.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE70

6. National Geodetic Vertical Datum of 1929

8997ch04.qxd 10/2/07 4:22 PM Page 70

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Now that you understand how to look up information about the rich set of 1D, 2D, 3D, or local
coordinate systems in EPSG, you’ll now focus on the second salient feature of the EPSG model:
specifying a user-preferred transformation between two coordinate systems.

Specifying a Preferred Transformation Path Between Coordinate Systems

The EPSG model defines more diverse transformation methods and allows chained concatenations
of these methods in transformations. Here is an example of defining a transformation from, say, the
projected SRID 41155 (obtained in Listing 4-8) to SRID 4269 (NAD83). For this you need to perform
the following steps:

1. First, determine the EPSG-equivalent coordinate system (SRID) for SRID 41155 using the
SQL in Listing 4-14.

Listing 4-14. Finding an EPSG Equivalent for SRID 41155

SQL > SELECT sdo_cs.find_proj_crs(41155, 'FALSE') epsg_srid FROM DUAL;

EPSG_SRID

32041

2. Since SRID 41155 is equivalent to the EPSG SRID 32041, you can identify the source geo-
graphic coordinate system on which this projected coordinate system is based on by
querying the SDO_COORD_REF_SYS table as in Listing 4-15.

Listing 4-15. Finding the Source Geographic SRID and the projection_conversion ID for SRID
41155 (EPSG 32041)

SQL> SELECT projection_conv_id cid, source_geog_srid src_srid FROM

SDO_COORD_REF_SYS

WHERE srid=32041;

cid src_srid

-------- ------------

14205 4267

3. Now you can define a preferred transformation from 41155 to 4269 by entering the trans-
formation using the SQL in Listing 4-16. The transformation from the source SRID 41155
(projected) to target SRID 4269 (NAD83) is accomplished as a concatenation of two conver-
sions using the SDO_TFM_CHAIN procedure call. The first conversion is from source SRID 41155
to the geog_srid 4267 using conversion_id 14205. The second conversion is from SRID 4267 to
target SRID 4269 using the NADCON conversion (the corresponding conversion_id ID 1241
can be obtained by querying the SDO_COORD_OPS table).

Listing 4-16. Creating a Preferred Transformation Path Between 41155 (Projection-Based on
NAD27) and 4269 (NAD83)

SQL > call sdo_cs.create_pref_concatenated_op(

10000, -- any unique id of the operation,

TFM_PLAN(

SDO_TFM_CHAIN(

41155, -- source srid

14205, 4267, -- convid 14205 from srid 41155 (32041) to srid 4267

1241, 4269 -- convid 1241 from 4267 to 4269

),

NULL);

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 71

8997ch04.qxd 10/2/07 4:22 PM Page 71

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

After you specify the previous transformation path between coordinate system 41155 and coor-
dinate system 4267, whenever you explicitly (or implicitly) invoke the SDO_CS.TRANSFORM function to
transform an SDO_GEOMETRY in the coordinate system 41155 to the coordinate system 4267, Oracle
Spatial will implicitly invoke your preferred transformation path defined in Listings 4-14 to 4-16.

In addition to defining preferred transformation paths, you can also define your own coordinate
systems by inserting appropriate information into the SDO_COORD_REF_SYSTEM7 and other appropriate
tables. For more details, you will have to refer to the Spatial User’s Guide and Documentation.

SDO_POINT Attribute
Now that we have finished discussing the SDO_SRID attribute of the SDO_GEOMETRY, let’s move on to
the next attribute: SDO_POINT. This attribute specifies the location of a point geometry, such as the
location of a customer. Notice that this attribute is of type SDO_POINT_TYPE, which is another object
type. Listing 4-17 shows the structure of this type.

Listing 4-17. SDO_POINT_TYPE Data Type

SQL> DESCRIBE SDO_POINT_TYPE

Name Null? Type

--------------------- -------- --------------

X NUMBER

Y NUMBER

Z NUMBER

The SDO_GTYPE for a point geometry is set to D001. Consider point A in Figure 4-5, identified by
coordinates XA and YA representing a customer location.

Figure 4-5. Example of a point at coordinates XA and YA

Listing 4-18 shows how to populate the SDO_GEOMETRY object in the geometry_examples table to
represent point A (substitute (–79, 37) with actual coordinates).

Listing 4-18. Point Data in geometry_examples

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'POINT',

'2-dimensional Point at coordinates (-79,37) with srid set to 8307',

SDO_GEOMETRY

(

2001, -- SDO_GTYPE format: D00T. Set to 2001 for a 2-dimensional point

8307, -- SDO_SRID (geodetic)

SDO_POINT_TYPE

(

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE72

7. Note that this is different from the SDO_COORD_REF_SYS table.

8997ch04.qxd 10/2/07 4:22 PM Page 72

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

-79, -- ordinate value for Longitude

37, -- ordinate value Latitude

NULL -- no third dimension (only 2 dimensions)

),

NULL,

NULL

)

);

■Caution Oracle Spatial requires that the longitude ordinates be entered as the first dimension and that the
latitude ordinates be entered as the second dimension.

The notation for specifying the geometry column may seem obscure, but it is logical. Objects in
Oracle are instantiated using the corresponding object constructors. The geom column is an object
of type SDO_GEOMETRY and is instantiated as shown. The fields of this object are populated as follows:

• SDO_GTYPE: The format is D00T, where D is 2 and T is 1 for two-dimensional POINT.

• SDO_SRID: This is set to 8307.

• SDO_POINT: This sets the x,y coordinates in SDO_POINT_TYPE to (–79, 37) in the example. The
z coordinate is set to NULL.

• SDO_ELEM_INFO: This is not used; it is set to NULL.

• SDO_ORDINATES: This is not used; it is set to NULL.

An alternate mechanism to construct a point geometry is by using the well-known text (WKT)
description of the point geometry as referenced in SQL/MM Part 3. Oracle Spatial provides an
SDO_GEOMETRY constructor that takes the WKT and an SRID as arguments to construct an SDO_GEOMETRY
object. Listing 4-19 shows an example.

Listing 4-19. Constructing a Point Geometry Using Well-Known Text (SQL/MM)

SQL> SELECT SDO_GEOMETRY(' POINT(-79 37) ', 8307) geom FROM DUAL;

GEOM

--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-79, 37, NULL), NULL, NULL)

■Caution The ordinates of a vertex are separated by a space rather than by a comma in a WKT. Commas sepa-
rate multiple vertices, if any, in the WKT. Refer to ISO IEC 12349 (www.iso.org/iso/en/CatalogueDetailPage.
CatalogueDetail?CSNUMBER=31369) for details on how to construct the well-known text for different types of
geometries.

The constructed SDO_GEOMETRY object can be passed in anywhere an SDO_GEOMETRY object can be
used—to insert into the geom column of geometry_examples as in Listing 4-18, to update the geom
column value, or in spatial query operators and functions (you will see examples of these in later
chapters).

Note that the SDO_POINT can store only three ordinates (x, y, and z). This representation is suit-
able if your data have three or fewer dimensions. For four-dimensional points, you have to use the
SDO_ELEM_INFO and SDO_ORDINATES attributes.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 73

8997ch04.qxd 10/2/07 4:22 PM Page 73

www.it-ebooks.info

www.freepdf-books.com

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31369
http://www.it-ebooks.info/

SDO_ELEM_INFO and SDO_ORDINATES Attributes
In the previous example, you saw how to store a point element in the SDO_GEOMETRY using the SDO_POINT
attribute. Obviously, you may want to store elements more complex than points; you may also want
to store lines and polygons, which may need a large number of vertices. To store such complex elements,
you will use the other two structures in the SDO_GEOMETRY type, the SDO_ORDINATES and SDO_ELEM_INFO
attributes. Together these attributes allow you to specify different elements that compose a geometry:
SDO_ORDINATES stores the coordinates of the vertices in all elements of a geometry, and SDO_ELEM_INFO
specifies the type of elements and where they start in the SDO_ORDINATES.

First you should understand how to represent elements using the SDO_ELEM_INFO and SDO_ORDINATES
attributes. You will learn about the different element-types that are supported in Oracle in subsequent
sections.

SDO_ORDINATES Attribute
We’ll start with the SDO_ORDINATES attribute. This attribute stores the ordinates in all dimensions of
all elements of a geometry. The SDO_ORDINATES attribute is of type SDO_ORDINATE_ARRAY, which, as
you can see in the following snippet, is a collection of type VARRAY (variable-length array) of num-
bers. The VARRAY is useful for storing the points that describe a geometric shape in the proper order
so that no explicit processing is needed when fetching that shape. If the data dimensionality is D,
then every consecutive D number in the SDO_ORDINATES specifies the coordinates of a vertex. For
example, if you want to model a line connecting point A that has coordinates (Xa, Ya) with point B
that has coordinates (Xb, Yb), then the SDO_ORDINATES will contain the numbers Xa, Ya, Xb, and Yb, in
that order. The size of this array attribute is set to 1048576. This large size limit provides enough room
to store the vertices of large and complex geometries.

SQL> DESCRIBE SDO_ORDINATE_ARRAY

SDO_ORDINATE_ARRAY VARRAY(1048576) OF NUMBER

If the SDO_ORDINATES attribute specifies the ordinates (in all dimensions) of all elements of
a geometry object, how are these ordinates interpreted and separated to represent different ele-
ments that make up the geometry? The information that is needed to interpret and separate the
ordinates into elements is specified in the SDO_ELEM_INFO attribute. We will look at that next.

VARRAYS

A VARRAY is an ordered set of data elements, all of the same data type. It can vary in size up to a specified maxi-
mum number of elements. Each element in the array has an index, which is a number corresponding to the
element’s position in the array and can be fetched directly using the index. The index starts at 1.

A VARRAY requires only the exact8 storage space needed to store the required number of elements, and it can
be expanded to accommodate new elements at the end of the array. Note that VARRAYs can be made of complex
types (that is, object types), which themselves can contain other VARRAYs. This is a powerful mechanism that
enables you to construct complex structures.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE74

8. This is excluding the additional overhead to store information such as the size of the VARRAY.

8997ch04.qxd 10/2/07 4:22 PM Page 74

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_ELEM_INFO Attribute
The SDO_ELEM_INFO attribute is of type SDO_ELEM_INFO_ARRAY, which is also a VARRAY of numbers with
a maximum size of 1,048,576 numbers. Every three consecutive numbers in the SDO_ELEM_INFO are
grouped into a descriptor triplet, describing an element or a part of an element. So, logically, the
SDO_ELEM_INFO attribute is an array of triplets (three numbers). This means the size of this array
attribute is always a multiple of 3.

Each descriptor triplet is associated with an element of the geometry. The triplet is of the form
<offset, element-type, interpretation>. The offset specifies the starting index in the SDO_ORDINATES
array where the ordinates of the element are stored. The other two numbers, element-type (etype for
short) and interpretation, take different values depending on whether the associated element repre-
sents a point, a line, or a polygon and whether the boundaries are connected by straight lines, arcs,
or both.

Let’s first look at SDO_ELEM_INFO values for the data that application developers are most likely to con-
struct. For instance, in our business application, the geometries that we construct could be as follows:

• Points representing location of customers, competitors, and so on

• Line strings representing streets and highways

• Polygons representing city boundaries

In most cases, these geometries have at most one element descriptor triplet and represent at most
one element of a point, line string, or polygon type. We refer to such elements and geometries as sim-
ple elements and simple geometries. In those cases, the descriptor triplet has the following values:

• Offset: This is always set to 1, because there is only one element in the SDO_ORDINATES field.

• Element-type: This has a direct correspondence with the type T value in the SDO_GTYPE for the
geometry.

• For points, the element-type is 1 (the T value in SDO_GTYPE is 1).

• For lines, the element-type is 2 (the T value in SDO_GTYPE is also 2).

• For polygons, the element-type is 1003 (the T value in SDO_GTYPE is 3).

• Interpretation: This is the only subtle information an element contains.

• For a point, interpretation is 1.

• For line strings and polygons, the interpretation is 1 if the connectivity is by straight
lines, and the interpretation is 2 if the connectivity is by arcs. For instance, a line string
connected by straight lines has the SDO_ELEM_INFO set to (1, 2, 1), in other words, a start-
ing offset of 1, an element-type of 2, and an interpretation of 1.

• For polygons, you could have interpretation set to 3 to indicate that the polygon is
a rectangle.

• Likewise, for polygons you could have interpretation set to 4 to indicate that the poly-
gon is a circle.

Table 4-2 summarizes the possible values for the SDO_ELEM_INFO array (and the SDO_ORDINATES
array) based on the type of the element. Using these values, you can construct an SDO_GEOMETRY by
additionally populating the SDO_GTYPE and SDO_SRID fields appropriately. In the next section, we
present detailed examples for such simple two-dimensional geometries. In the subsequent section,
we describe more complex two-dimensional geometries with more than one element descriptor
triplet. Examples of such data would be a street that has both straight lines and arcs. Such geome-
tries are referred to as complex geometries. Note that the majority of the 3D types such as composite
surfaces and solids need more than one element descriptor triplet. We describe the three-dimensional
elements separately in the “Three-Dimensional Geometry Examples” section.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 75

8997ch04.qxd 10/2/07 4:22 PM Page 75

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Simple Two-Dimensional Geometry Examples
A simple geometry consists of only one element descriptor triplet and represents a point, line string,
or polygon. The ordinates for the geometry are always stored at a starting offset of 1 (because there
is only one element). This means the SDO_ELEM_INFO is always of the form (1, x, y). Let’s look at each
simple geometry type next.

Point
In Listing 4-19, you saw how to represent a two-dimensional point using the SDO_POINT attribute of
SDO_GEOMETRY. An alternate (but not recommended) mechanism is to store the point coordinates in
the SDO_ORDINATES array. Listing 4-20 shows the example.

Listing 4-20. Storing the Point Coordinates in the SDO_ORDINATES Array Instead of SDO_POINT

SQL> INSERT INTO geometry_examples VALUES

(

'2-D POINT stored in SDO_ORDINATES',

'2-dimensional Point at coordinates (-79, 37) with srid set to 8307',

SDO_GEOMETRY

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE76

Table 4-2. Values for SDO_ELEM_INFO (and SDO_ORDINATES) for Simple Geometries

Element- SDO_ELEM_INFO:
Type (1, Etype,

Name (Etype) Interpretation Interpretation) SDO_ORDINATES Illustration

Point (for example, 1 N, where N is (1, 1, 1) (Xa, Ya)
customer location) the number of

points. 1 is for a
single point; >1 is
for a point cluster.

Line string 2 1 = Connected (1, 2, 1) (Xa, Ya, Xb,
(for example, by straight lines Yb, Xc, Yc)
streets, highways) 2 = Connected (1, 2, 2) (Xa, Ya, Xb,

by arcs Yb, Xc, Yc)

Polygon 1003 1 = Polygon (1,1003, 1) (Xa, Ya, Xb,Yb,
(for example, boundary Xc, Yc, Xd, Yd,
city boundary, connected by Xa, Ya)
buffer zone) straight lines

3 = Rectangle (1, 1003, 3) (Xa, Ya, Xc, Yc)
polygon (only
specify lower-left
and upper-
right corners)
4 = Circle polygon (1, 1003, 4) (Xa, Ya, Xb,
(specify three Yb, Xc, Yc)
points on
boundary of
circle)

8997ch04.qxd 10/2/07 4:22 PM Page 76

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

(

2001, -- SDO_GTYPE format: D00T. Set to 2001 for as a 2-dimensional point

8307, -- SDO_SRID

NULL, -- SDO_POINT attribute set to NULL

SDO_ELEM_INFO_ARRAY -- SDO_ELEM_INFO attribute (see Table 4-2 for values)

(

1, -- Offset is 1

1, -- Element-type is 1 for a point

1 -- Interpretation specifies # of points. In this case 1.

),

SDO_ORDINATE_ARRAY -- SDO_ORDINATES attribute

(

-79, -- Ordinate value for Longitude

37 -- Ordinate value for Latitude

)

)

);

In Listing 4-20, note that the SDO_GEOMETRY object is instantiated using the object constructor
with all the appropriate attributes for this type. Likewise, the SDO_ORDINATES and SDO_ELEM_INFO
attributes are VARRAYs, and they are instantiated using the corresponding types, SDO_ELEM_INFO_ARRAY
and SDO_ORDINATE_ARRAY, respectively.

■Tip Never store the coordinates of a two- or three-dimensional point in the SDO_ORDINATES attribute (as in
Listing 4-20). Always store them in the SDO_POINT attribute (as in Listing 4-19). The latter representation is stor-
age efficient as well as better performing during fetches.

Since SDO_POINT can store only three numbers, this attribute cannot store four-dimensional
points. Examples of such points include locations that store temperature and height. For such four-
dimensional points, you need to use the SDO_ELEM_INFO and SDO_ORDINATES attributes of SDO_GEOMETRY.
Let (Xa, Ya, Za, La) be the ordinates of the four-dimensional point. The SDO_GEOMETRY is populated as
shown in Listing 4-21. Note that the only change in the geom column, as compared to Listing 4-21, is
that the SDO_ORDINATES attribute has four numbers (corresponding to the four dimensions), as opposed
to two in Listing 4-20.

Listing 4-21. Four-Dimensional Point Example

INSERT INTO geometry_examples VALUES

(

'4-D POINT',

'4-dimensional Point at (Xa=>2, Ya=>2, Za=>2, La=>2) with srid set to NULL',

SDO_GEOMETRY

(

4001, -- SDO_GTYPE: D00T. Set to 4001 as it is a 4-dimensional point

NULL, -- SDO_SRID

NULL, -- SDO_POINT_TYPE is null

SDO_ELEM_INFO_ARRAY(1,1,1), -- Indicates a point element

SDO_ORDINATE_ARRAY(2,2,2,2) -- Store the four ordinates here

)

);

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 77

8997ch04.qxd 10/2/07 4:22 PM Page 77

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Line String: Connected by Straight Lines
Let’s return to two-dimensional data again and look at line geometries that could represent streets
and highways. Consider the three points A, B, and C shown in Figure 4-6. How do you represent
a line connecting these three points? Will the connection be using straight lines or arcs? First, let’s
consider straight lines.

Figure 4-6. Example of a line string connected by straight lines

The SDO_GEOMETRY object can be populated as shown in Listing 4-22.

Listing 4-22. Two-Dimensional Line String Example

SQL> INSERT INTO geometry_examples VALUES

(

'LINE STRING',

'2-D line string connecting A(Xa=>1,Ya=>1),B(Xb=>2, Yb=>2), C(Xc=>2,Yc=>1)',

SDO_GEOMETRY

(

2002, -- SDO_GTYPE: D00T. Set to 2002 as it is a 2-dimensional line string

32774, -- SDO_SRID

NULL, -- SDO_POINT_TYPE is null

SDO_ELEM_INFO_ARRAY -- SDO_ELEM_INFO attribute (see Table 4-2 for values)

(

1, -- Offset is 1

2, -- Element-type is 2 for a LINE STRING

1 -- Interpretation is 1 if line string is connected by straight lines.

),

SDO_ORDINATE_ARRAY -- SDO_ORDINATES attribute

(

1,1, -- Xa, Ya values

2,2, -- Xb, Yb values

2,1 -- Xc, Yc values

)

)

);

Since the geometry is a line string connected by straight lines, the SDO_ELEM_INFO attribute is set
to the triplet (1, 2, 1), as described in Table 4-2. The SDO_ORDINATES attribute is then populated with
the ordinates of each of the three vertices A, B, and C in the order they appear in the line string.

Observe that all the line segments are contiguous (in other words, they share vertices). If you
want to store lines that do not share vertices, you can model them using multiline string geometries.
We discuss these later in the chapter.

What happens if there are not just three points but N points with coordinates (X1, Y1) . . . (XN, YN)
and all of them need to be connected by straight lines in the order (X1, Y1), (X2, Y2), . . . , (XN, YN)? All
you have to do is store these vertices in the SDO_ORDINATES attribute (in the order in which they need to
be connected). Nothing else needs to change. The geometry constructor looks as follows:

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE78

8997ch04.qxd 10/2/07 4:22 PM Page 78

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_GEOMETRY

(

2002, 32774, NULL,

SDO_ELEM_INFO_ARRAY(1,2,1),

SDO_ORDINATE_ARRAY(X1, Y1, X2, Y2,, XN, YN)

)

■Note All lines joining successive vertices in a simple (that is, noncompound) element use the same interpretation—
that is, they are connected by straight lines (or by arcs).

Line String: Connected by Arcs
The example in Figure 4-7 stores a line string composed of three points. However, those same three
points could actually represent a very different shape: a circular arc that passes through those three
points.

Figure 4-7. Example of a line string connected by arcs

How do you do that? Simply change the interpretation in SDO_ELEM_INFO to 2 (arc). SDO_ELEM_INFO
then changes from (1, 2, 1) to (1, 2, 2), as shown in Listing 4-23.

Listing 4-23. Two-Dimensional Line String Connected by Arcs

SQL> INSERT INTO geometry_examples VALUES

(

'ARCSTRING',

'2-D arc connecting A(Xa=>1,Ya=>1),B(Xb=>2, Yb=>2), C(Xc=>2,Yc=>1)',

SDO_GEOMETRY

(

2002, -- SDO_GTYPE: D00T. Set to 2002 as it is a 2-dimensional line string

32774, -- SDO_SRID

NULL, -- SDO_POINT_TYPE is null

SDO_ELEM_INFO_ARRAY -- SDO_ELEM_INFO attribute (see Table 4-2 for values)

(

1, -- Offset is 1

2, -- Element-type is 2 for a LINE STRING

2 -- Interpretation is 2 if line string is connected by ARCs.

),

SDO_ORDINATE_ARRAY -- SDO_ORDINATES attribute

(

1,1, -- Xa, Ya values

2,2, -- Xb, Yb values

2,1 -- Xc, Yc values

)

)

);

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 79

8997ch04.qxd 10/2/07 4:22 PM Page 79

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

If you compare this representation with that of the example in Listing 4-22, you will notice that
the only difference is the interpretation (the third argument in SDO_ELEM_INFO_ARRAY), which is now
set to 2. The result is a line string formed using a circular arc instead of a straight line.

Again, what if the line string has more than three points? Since an arc is defined by three points
at a time, the line string should have an odd number of vertices. An arc is constructed with the three
points starting at every odd vertex (except the last vertex). So if there are the five points A, B, C, D,
and E, there will be two arcs: arc ABC at vertex A and arc CDE at vertex C, as shown in Figure 4-8.

Figure 4-8. Example of a line string with multiple arcs

The constructor for this geometry is as follows:

SDO_GEOMETRY

(

2002, 32774, null,

SDO_ELEM_INFO_ARRAY(1,2,2),

SDO_ORDINATE_ARRAY(Xa, Ya, Xb, Yb, Xc, Yc, Xd, Yd, Xe, Ye)

)

■Note In Oracle Spatial, every arc is specified by three points: a starting vertex, any distinct middle vertex, and
an ending vertex (for example, A, B, C). As a consequence, an arc-based line string (arc string) should always have
an odd number of vertices. The individual arcs are always contiguous and always start at the odd-numbered vertices.

If you want to model arcs that are not contiguous, these are considered multiline/curve
geometries. We describe them later.

What happens if the line string ends at the starting vertex? This causes a loop or a ring. Can it
be considered a polygon? The answer is no. To be considered a polygon, the element-type in the
SDO_ELEM_INFO attribute needs to be 1003 (or 2003).

Polygon: Ring (Boundary) Connected by Straight Lines
Next let’s look at another type of geometry: the polygon. The polygon boundary (ring) can be con-
nected by lines, connected by arcs, or specified as a rectangle or as a circle. Let’s look at examples
for each of these in turn.

In this section, we will consider simple geometries. We will consider more complex polygons
(those with voids and so on) later in the “Complex Geometry Examples” section. Figure 4-9 shows
an example polygon where the boundary is connected by lines.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE80

8997ch04.qxd 10/2/07 4:22 PM Page 80

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 4-9. Example of a polygon boundary connected by lines

Listing 4-24 shows how to insert the polygon into the geometry_examples table.

Listing 4-24. Example of a Simple Polygon Connected by Lines

SQL> INSERT INTO geometry_examples VALUES

(

'POLYGON',

'2-D polygon connecting A(Xa, Ya), B(Xb, Yb), C(Xc, Yc), D(Xd, Yd)',

SDO_GEOMETRY

(

2003, -- SDO_GTYPE: D00T. Set to 2003 as it is a 2-dimensional polygon

32774, -- SDO_SRID

NULL, -- SDO_POINT_TYPE is null

SDO_ELEM_INFO_ARRAY -- SDO_ELEM_INFO attribute (see Table 4-2 for values)

(

1, -- Offset is 1

1003, -- Element-type is 1003 for an outer POLYGON element

1 -- Interpretation is 1 if boundary is connected by straight lines.

),

SDO_ORDINATE_ARRAY -- SDO_ORDINATES attribute

(

1,1, -- Xa, Ya values

2,-1, -- Xb, Yb values

3,1, -- Xc, Yc values

2,2, -- Xd, Yd values

1,1 -- Xa, Ya values : Repeat first vertex to close the ring

)

)

);

Compared to the previous examples, the main points to note in this example are as follows:

• The SDO_GTYPE is set to 2003 (two-dimensional polygon).

• The element-type in the SDO_ELEM_INFO attribute is set to 1003 to indicate it is an outer poly-
gon, and the interpretation is set to 1 to indicate a polygon element connected by straight
lines (see Table 4-2 for reference).

• The ordinates of the polygon are stored in the SDO_ORDINATES attribute. Note that the first
vertex (Xa, Ya) is repeated as the last vertex (to close the boundary). Also note that the ver-
tices are specified in counterclockwise order. This is a requirement in Oracle Spatial.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 81

8997ch04.qxd 10/2/07 4:22 PM Page 81

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Caution The vertices in an outer ring of a polygon need to be specified in counterclockwise order. The vertices
for the inner rings, if any, are specified in clockwise order. This is a convention of Oracle Spatial.

Polygon: Ring (Boundary) Connected by Arcs
The previous example can be easily modified to model a polygon where every three consecutive
vertices are connected by an arc by simply changing the interpretation in the SDO_ELEM_INFO attribute
to 2. For this to be valid, you need an odd number of vertices. However, such circular polygons are
rarely used in representing spatial data.

Rectangle Polygon
Another popular shape to consider is the rectangle. A rectangle can be modeled as a polygon with
four vertices connected by straight lines as in the previous example. However, a simplified represen-
tation is possible by specifying 3 instead of 1 for the interpretation in SDO_ELEM_INFO. Figure 4-10
shows an example rectangle.

Figure 4-10. Example of a rectangular polygon

How is this rectangle different from the polygon in Figure 4-9? The rectangle needs only two
vertices to be specified instead of all four (that is, a much more compact representation); Oracle
Spatial uses the lower-left and upper-right corner vertices (that is, it specifies only the correspon-
ding ordinates).

• The lower-left corner vertex has the minimum values for the ordinates in x- and y-dimensions.
In Figure 4-10, A is the lower-left corner vertex.

• The upper-right corner vertex has the maximum values for the ordinates in x- and y-dimensions.
In Figure 4-10, C is the upper-right corner vertex.

■Note Always specify the lower-left corner before the upper-right corner for a two-dimensional rectangle poly-
gon. This holds true even if the rectangle polygon is an inner ring (void) of an outer two-dimensional polygon (see
Figure 4-16 later in this chapter).

Listing 4-25 shows how to insert the rectangular polygon into the geometry_examples table
using the lower-left and upper-right vertices.

Listing 4-25. Rectangular Polygon Example

SQL> INSERT INTO geometry_examples VALUES

(

'RECTANGLE POLYGON',

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE82

8997ch04.qxd 10/2/07 4:22 PM Page 82

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

'2-D rectangle polygon with corner points A(Xa, Ya), C (Xc, Yc)',

SDO_GEOMETRY

(

2003, -- SDO_GTYPE: D00T. Set to 2003 as it is a 2-dimensional polygon

32774, -- SDO_SRID

null, -- SDO_POINT_TYPE is null

SDO_ELEM_INFO_ARRAY -- SDO_ELEM_INFO attribute (see Table 4-2 for values)

(

1, -- Offset is 1

1003, -- Element-type is 1003 for (an outer) POLYGON

3 -- Interpretation is 3 if polygon is a RECTANGLE

),

SDO_ORDINATE_ARRAY -- SDO_ORDINATES attribute

(

1,1, -- Xa, Ya values

2,2 -- Xc, Yc values

)

)

);

Once again, note that the interpretation is set to 3 in the SDO_ELEM_INFO attribute. Listing 4-25
specifies only two corner vertices in the SDO_ORDINATES attribute. You can appropriately modify
these ordinates to store your own rectangle.

What is a rectangle in three dimensions? A cuboid. Can the same values for SDO_ELEM_INFO be
used to represent a three-dimensional cuboid (or its four-dimensional equivalent)? Yes. If you have
a cuboid with the lower-left corner vertex at (Xa, Ya, Za) (the minimum value ordinates in x-, y-,
and z-dimensions) and the upper-right corner vertex (the maximum value ordinates in x-, y-, and
z-dimensions) at (Xc, Yc, Zc), then the geometry looks like the following. Note the SDO_GTYPE has
changed to 3003 from 2003. The changes from the two-dimensional rectangle are in bold. You can
construct the SDO_GEOMETRY for the rectangle equivalent in four dimensions analogously.

SDO_GEOMETRY

(

3003, -- SDO_GTYPE set 3003 to indicate 3-dimensional polygon.

32774,

NULL,

SDO_ELEM_INFO_ARRAY(1, 1003,3),

SDO_ORDINATE_ARRAY(Xa, Ya, Za, Xc, Yc, Zc)

)

Circle Polygon
Next, let’s look at another regular structure: the circle. Figure 4-11 shows an example. Just like rectangles,
circles are different from linear polygons/arc polygons only in the interpretation in the SDO_ELEM_INFO
attribute and the number of ordinates in the SDO_ORDINATES array. The interpretation is set to 4, and
the ordinate array stores any three distinct points on the circumference of the circle.

Figure 4-11. Example of a circular polygon

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 83

8997ch04.qxd 10/2/07 4:22 PM Page 83

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 4-26 shows how to insert the circular polygon into the geometry_examples table.

Listing 4-26. Circular Polygon Example

SQL> INSERT INTO geometry_examples VALUES

(

'CIRCLE POLYGON',

'2-D circle polygon with 3 boundary points A(Xa,Ya), B(Xb,Yb), C(Xc,Yc)',

SDO_GEOMETRY

(

2003, -- SDO_GTYPE: D00T. Set to 2003 as it is a 2-dimensional polygon

32774, -- SDO_SRID

NULL, -- SDO_POINT_TYPE is null

SDO_ELEM_INFO_ARRAY -- SDO_ELEM_INFO attribute (see Table 4-2 for values)

(

1, -- Offset is 1

1003, -- Element-type is 1003 for (an outer) POLYGON

4 -- Interpretation is 4 if polygon is a CIRCLE

),

SDO_ORDINATE_ARRAY -- SDO_ORDINATES attribute

(

1,1, -- Xa, Ya values

3,1, -- Xb, Yb values

2,2 -- Xc, Yc values

)

)

);

■Caution You cannot specify circles and arcs if the SRID corresponds to a geodetic coordinate system. Circles
and arcs are valid only in projected and local coordinate systems. In geodetic coordinate systems, “densify” the
circumference of the circle with many points and represent the points a linear polygon using the sdo_util.arc_
densify function.

Can you specify a circle by its center and radius? Yes. In Chapter 7, we will look at some func-
tions that take the x and y ordinates of the center and a radius and return an SDO_GEOMETRY.

Complex Two-Dimensional Geometry Examples
So far, we have described how to represent simple geometries. These geometries are composed of a sim-
ple element—an element with just one descriptor triplet. In contrast, complex geometries have more
than one element descriptor triplet for an element. A complex geometry can be any of the following:

• A compound line string or a compound polygon: In such a geometry, the boundary is connected
by both straight lines and circular arcs. For instance, streets that have both straight-line
segments and arcs (to denote connecting roads) can be stored as a compound line string
geometry. Objects F and G in Figure 4-1 are examples of such a compound line string ele-
ment and a compound polygon geometry, respectively.

• A voided polygon: This geometry has an outer ring and one or more inner rings. The outer
and inner ring polygon elements are specified as simple polygon elements. Object D in
Figure 4-1 is an example of a voided polygon geometry. Lakes and other bodies of water that
have islands can be stored as voided polygons. Note that the area of the interior rings is not
considered part of these geometries.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE84

8997ch04.qxd 10/2/07 4:22 PM Page 84

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• A collection: This geometry is a collection of multiple elements such as points, lines, and/or
polygons. Object E in Figure 4-1 is an example of such a collection. The state boundaries for
Texas and California have one or more islands and can be stored as collection geometries.

Constructing Complex Geometries
You can construct complex geometries using the following steps:

1. The SDO_ELEM_INFO triplets of the simple elements constituting the complex geometry are
concatenated in the appropriate order.

2. The SDO_ORDINATES values are also concatenated. (Duplication of any shared vertices in
contiguous elements is removed.)

3. As a result of the concatenation of the SDO_ORDINATES, the offsets in the SDO_ELEM_INFO
attribute for each simple element are adjusted to reflect the correct start of the element in
the SDO_ORDINATES array.

4. For compound (line string or polygon) elements, additional triplets are added to SDO_ELEM_INFO
to specify the combination of subsequent simple elements. Table 4-3 presents the possible
values for the element-type for these additional triplets.

5. The SDO_GTYPE is set to reflect the resulting geometry.

Let’s examine the compound geometries and voided-polygon geometries. We will consider collec-
tion geometries in the last part of the section. First we will illustrate how to construct the SDO_ELEM_INFO
attributes (that is, the corresponding element descriptor triplets) for these geometries. Table 4-3 shows
the SDO_ELEM_INFO values for the compound geometries and the voided-polygon geometries.

Table 4-3. Values for <Element-Type, Interpretation> in an Element Descriptor Triplet for Compound/
Voided-Polygon Geometries

Name Element-Type (Etype) Interpretation

Voided polygon 1003 = Outer polygon 1 = Polygon boundary connected by
2003 = Interior polygon (hole) straight lines.

2 = Polygon boundary connected by
circular arcs.
3 = Rectangle polygon. The
lower_left and upper_right corner
vertices of the rectangle are specified
in the SDO_ORDINATES array.
4 = Circular polygon. Any three
vertices on the boundary of the circle
are specified in the SDO_ORDINATES array.

Compound line string 4 N = Specifies the number of
subelements that constitute the
compound line string. The N triplets
for these N subelements follow the
current (header) triplet.

Compound polygon 1005 = Outer polygon N = Specifies the number of straight-
2005 = Interior polygon line and circular-arc subelements

that constitute the polygon boundary.
The N triplets for these N subelements
follow this triplet.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 85

8997ch04.qxd 10/2/07 4:22 PM Page 85

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_ELEM_INFO for Compound Elements
If the compound element has N subelements, then there will be N + 1 descriptor triplets: one header
triplet specifying that it is a compound element, followed by N triplets, one for each subelement. The
N subelements have to be simple elements, and their descriptor triplets will be constructed as speci-
fied previously for simple elements. The header triplet has the following form:

• The offset specifies the starting offset for the compound element in the SDO_ORDINATES array.

• The element-type specifies one of the following:

• A compound line string (element-type = 4).

• A compound polygon (element-type = 1005 or 2005). The element-type will be 1005 if the
compound element is used an outer polygon ring, and it will be 2005 if it is used an
inner ring (void).

• The interpretation for the header triplet specifies the number of subelements that make up
this compound element.

For example, for the compound line string object F in Figure 4-1, the element-type for the
header triplet will be 4, and interpretation will be 2 since it has two subelements. The next two
triplets in the SDO_ELEM_INFO array will have the description for these subelements. Both elements
are lines and have an element-type of 2, but one subelement will have an interpretation of 1, indicating
straight-line connectivity, and another element will have an interpretation of 2, indicating arc-based
connectivity.9 The SDO_ELEM_INFO will have the triplets in the following order:

• (1, 4, 2) for the header triplet specifying the compound line string

• (1, 2, 1) for the first subelement triplet connected by straight lines

• (5, 2, 2) for the next subelement triplet representing the arc

Listing 4-27 shows the full SQL for constructing a compound line string corresponding to
object F in Figure 4-1. The first subelement connects vertices A, B, and C by a line, whereas the sec-
ond subelement connects C, D, and E by a circular arc. Note that the shared vertex C is represented
only once. Since the second subelement starts at C, the offset for that subelement is set to 5.

Listing 4-27. Compound Line String Example

SQL> INSERT INTO geometry_examples VALUES

(

'COMPOUND LINE STRING',

'2-D Compound Line String connecting A,B, C by a line and C, D, E by an arc

SDO_GEOMETRY

(

2002, -- SDO_GTYPE: D00T. Set to 2002 as it is a 2-dimensional Line String

32774, -- SDO_SRID

NULL, -- SDO_POINT_TYPE is null

SDO_ELEM_INFO_ARRAY -- SDO_ELEM_INFO attribute (see Table 4-2 for values)

(

1, -- Offset is 1

4, -- Element-type is 4 for Compound Line String

2, -- Interpretation is 2 representing number of subelements

1, 2, 1 -- Triplet for first subelement connected by line

5, 2, 2 – Triplet for second subelement connected by arc; offset is 5

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE86

9. Recall that Oracle supports only circular arcs. Arcs in this chapter always refers to circular arcs.

8997ch04.qxd 10/2/07 4:22 PM Page 86

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

),

SDO_ORDINATE_ARRAY -- SDO_ORDINATES attribute

(

1,1, -- Xa, Ya values for vertex A

2,3, -- Xb, Yb values for vertex B

3,1, -- Xc, Yc values for vertex C

4,2, -- Xd, Yd values for vertex D

5, 3 -- Xe, Ye values for vertex E

)

)

);

SDO_ELEM_INFO for Voided Polygon Element
If the voided polygon has N void (inner ring) subelements and one outer ring subelement, then
there will be at least N + 1 descriptor triplets. The first triplet will specify the descriptor triplet for the
outer ring. This will be followed by descriptor triplets for each of the N void subelements. If all
the subelements are simple elements, then there will be exactly N + 1 descriptor triplets. Otherwise, the
size will reflect the descriptors for any compound subelements.

For example, the voided-polygon object D in Figure 4-1 has two descriptor triplets. The first
triplet represents the outer polygon ring and has an element-type of 1003. The second triplet repre-
sents the rectangular void and has an element-type of 2003.

Next let’s look at some examples of such complex shapes and how to represent them using the
SDO_GEOMETRY data type in Oracle.

Compound Line String Example
Most road segments are connected by straight lines. However, there are some segments where the
road takes a sharp circular turn. How do you model roads that have a combination of straight-line
segments and circular segments? Figure 4-12 shows an example.

Figure 4-12. Example of a compound line string connected by lines and arcs

Line segment ABC is connected by straight lines, and CDE is connected by arcs. How do you
represent this compound line? The answer is to construct a compound element by specifying a header
triplet followed by simple element triplets for the SDO_ELEM_INFO attribute, as described in Table 4-3.

• Header triplet: The number of subelements is 2 and the starting offset is 1, so the header
triplet is (1, 4, 2). The 4 specifies that it is a header triplet for a compound line string, and the
2 specifies that the number of simple elements is two.

• The triplet for line ABC: Since this is the first simple element in the compound, the offset in
SDO_ORDINATES will still be 1. The element-type is set to 2 (line string), and the interpretation is
set to 1 to indicate straight-line connectivity. This triplet is thus (1, 2, 1). The six ordinates for
this element are the first to be stored in the SDO_ORDINATES array.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 87

8997ch04.qxd 10/2/07 4:22 PM Page 87

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• The triplet for arc CDE: Also, this element shares the vertex C with the previous element ABC,
so the ordinates for vertex C need not be repeated. Since this element (CDE) starts at vertex C,
which is stored at offset 5, the starting offset is set to 5. The element-type is set to 2 (line string),
and the interpretation is set to 2 to indicate arc-based connectivity. The triplet therefore is
(5, 2, 2).

Since the geometry has only two-dimensional lines, the SDO_GTYPE is set to 2002.
This representation is described using the SDO_GEOMETRY elements in Figure 4-13.

Figure 4-13. Storing a compound line string as an SDO_GEOMETRY

■Note Compound line strings should be contiguous (that is, they should share a vertex). In Figure 4-13, the ver-
tex (Xc, Yc) is shared by both the first and second elements. Also, note that a compound line string (or elements
with the element-type set to 4) can have only line string subelements (that is, subelements of element-type = 2).

Compound Polygon Example
If you connect vertex E to vertex A in Figure 4-12, it becomes a closed line as shown in Figure 4-14.

Figure 4-14. Example of a “closed” compound line string connected by lines and arcs

You can use this closed compound line string to be the boundary of a polygon by appropriately
modifying the SDO_GTYPE (and the element-types). Figure 4-15 shows the elements for SDO_GEOMETRY.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE88

8997ch04.qxd 10/2/07 4:22 PM Page 88

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 4-15. Storing a compound polygon as SDO_GEOMETRY

Here we note the following changes:

• SDO_GTYPE is set to 2003.

• For the compound element header triplet, the element-type is set to 1005 (compound poly-
gon) instead of 4, and the number of subelements changes to three from two.

• A new subelement represents the straight line connecting E to A. This subelement has
SDO_ELEM_INFO set to (9, 2, 1) where 9 represents the starting offset for the ordinates of E, 2
indicates it is a line, and 1 indicates connectivity by straight line.

• The ordinates of vertex A are repeated at the end in the SDO_ORDINATES array.

Remember that except for the header triplet, all other subelement triplets still have an element-
type of 2 (line), because these elements are representing only lines. The header triplet that signifies
the compound has an element-type of 1005.

■Caution A compound polygon (or elements of element-type = 5) can be made up only of line string subele-
ments (that is, subelements of element-type = 2).

Polygon with a Void
What about oceans that have islands? How do you represent the area occupied by such large bodies
of water? Polygons with voids will help here. Figure 4-16 shows a diamond-shaped polygon with
vertices A, B, C, and D. Inside this polygon is a rectangle polygon with corners at E and F. This rec-
tangle polygon serves as a void—that is, an area not covered by the outer ABCD polygon. How do
you represent this polygon with the void?

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 89

8997ch04.qxd 10/2/07 4:22 PM Page 89

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 4-16. Example of a polygon with a void

First let’s examine the constructors for the two polygons in Figure 4-16 separately. Polygon
ABCD (without the void) is a simple polygon whose boundary is connected by straight lines. The
constructor looks like this:

SDO_GEOMETRY

(

2003, 32774, NULL,

SDO_ELEM_INFO(1, 1003,1),

SDO_ORDINATE_ARRAY(Xa, Ya, Xb, Yb, Xc, Yc, Xd, Yd, Xa, Ya)

)

Assuming that the rectangular polygon EF is not inside ABCD, the constructor looks as follows:

SDO_GEOMETRY

(

2003, 32774, NULL,

SDO_ELEM_INFO(1, 1003, 3),

SDO_ORDINATE_ARRAY(Xe, Ye, Xf, Yf)

)

Using these two constructors, you can combine the two polygons to represent a polygon with
a void as shown in Figure 4-17. In this figure, the outer element descriptor describes the outer poly-
gon, and the inner element descriptor describes the inner polygon.

Figure 4-17. Storing a polygon with a void as an SDO_GEOMETRY

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE90

8997ch04.qxd 10/2/07 4:22 PM Page 90

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

In this example, the combined polygon has two elements: an outer polygon and an inner polygon.
You need to specify these elements as follows:

• The element triplets for the outer polygon are specified first, followed by that for the inner
polygon (that is, the void). The outer polygon ring should have the element-type set to 1003,
and the inner polygon ring should have the element-type set to 2003. (If there is more than
one inner polygon, these are specified in any order after the outer polygon is specified.)

• Likewise, the ordinates of the outer polygon are specified first, followed by those of the inner
polygon.

• The starting offset for the ordinates of the inner polygon are adjusted from 1 to 11 (because
they are preceded by the ordinates of the outer polygon).

■Note Unlike in a compound (line or polygon) geometry (see Figures 4-13 and 4-15), there is no header triplet
for constructing a polygon with a void. All inner elements (that is, triplets with an element-type of 2003 or 2005)
that follow an outer element (that is, triplets with an element-type of 1003 or 1005) are considered to be voids of
(that is, inside) the outer element.

Can you have a polygon inside the void (that is, inside the inner ring)? Yes, you can, but that
will be treated as a multipolygon geometry (the SDO_GTYPE is 7). The reason is that the area repre-
sented by the resulting polygon is not contiguous.

Collections
Next, we come to the last geometry type: the collection. Collections can be homogeneous, as in
a multipoint, multiline, multipolygon collection. Or they can be heterogeneous, containing a combi-
nation of point, line, and/or polygon geometries. In Table 4-1 you saw that multipoint, multiline,
multipolygon, and heterogeneous collections each have a different SDO_GTYPE. Now you will see how
to represent these geometries using the SDO_GEOEMTRY data type. At the end of this section, you will
learn about a function that appends two geometries. A collection of N geometries can be constructed
simply by calling this function N – 1 times.

Note that collections are created in much the same way as other “complex” geometries. See
“Guidelines for Constructing Complex Geometries” later in this chapter.

Multipoint Collection Example
Earlier in the chapter, you learned how to model a single point using the SDO_POINT attribute in the
SDO_GEOMETRY type. Here we will model multiple points as a single collection geometry—that is, we
will store all three points A, B, and C in Figure 4-18 as subelements of a single multipoint geometry.

Figure 4-18. Example of a multipoint collection

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 91

8997ch04.qxd 10/2/07 4:22 PM Page 91

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

How do you store this geometry? You first construct SDO_GEOMETRY objects for the individual
points and combine them using the guidelines described in the beginning of this section:

1. Set SDO_GTYPE to 5 (multipoint).

2. Combine the SDO_ORDINATES attributes of the three point SDO_GEOMETRY objects.

3. Combine the corresponding SDO_ELEM_INFO attributes of the three point objects. The offset
in the resulting SDO_ELEM_INFO is adjusted to reflect the offset in the SDO_ORDINATES attribute
for each point.

The resulting SDO_GEOMETRY will look like this:

SDO_GEOMETRY

(

2005, 32774, NULL,

SDO_ELEM_INFO_ARRAY -- SDO_ELEM_INFO: multiple elements each with 1 pt

(

1,1,1, -- triplet for first "point" element

3,1,1, -- triplet for second "point" element

5,1,1 -- triplet for third "point" element

),

SDO_ORDINATE_ARRAY

(

Xa, Ya, -- coordinates of first point

Xb, Yb, -- coordinates of second point

Xc, Yc -- coordinates of third point

)

)

In this example, the three points are represented as three elements. Oracle, however, has
a much simpler representation: you can represent the three points as a single element (and store all
the ordinates in the SDO_ORDINATES attribute). The element will have a descriptor triplet of the form
(1, 1, N) where N represents the number of points (if N = 1, then the element has just one point).
The corresponding constructor is as follows, and the changes are in bold:

SDO_GEOMETRY

(

2005, 32774, NULL,

SDO_ELEM_INFO_ARRAY -- SDO_ELEM_INFO attribute

(

1, 1, 3 -- "Point cluster" element with 3 points

),

SDO_ORDINATE_ARRAY

(

Xa, Ya, -- coordinates of first point

Xb, Yb, -- coordinates of second point

Xc, Yc -- coordinates of third point

)

)

We recommend using a single element of N points instead of an array of point elements. This
representation is more storage efficient and helps in performance.

Multiline String
Multiline string geometry consists of multiple line strings. Figure 4-19 shows an example. The
triplets in SDO_ELEM_INFO are used to denote and demarcate each line segment.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE92

8997ch04.qxd 10/2/07 4:22 PM Page 92

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 4-19. Example of a multiline string

We will use one triplet in the SDO_ELEM_INFO array to represent each of the elements in our
geometry. The offset in each triplet points to the first element in the SDO_ORDINATES array where the
first point of the geometric primitive starts. Figure 4-20 shows the resulting SDO_GEOMETRY construc-
tor for a multiline string.

• The first line string (ABC) starts at offset 1 and ends at offset 6 (that is, there are two ordinates
for each of the three points).

• The second line string (DEF) starts at offset 7 and ends at offset 12 (that is, there are two
ordinates for each of the three points).

Figure 4-20. Storing a multiline string in SDO_GEOMETRY

Note that the two geometry elements could have different interpretations: one could be a straight
line, and the other could be a circular arc. Note also that if the geometry were three-dimensional, the
offsets (other than the first) would be different.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 93

8997ch04.qxd 10/2/07 4:22 PM Page 93

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Multipolygon and Heterogenous Collections
Just as in the case of multipoint and multiline string geometry collections, the triplets in the
SDO_ELEM_INFO structure are used to describe each element of the collection. SDO_GTYPE is set to
the appropriate value for the collection. The ordinates of each collection element are stored in the
SDO_ORDINATES array, and the starting offsets are recorded in the corresponding SDO_ELEM_INFO triplet
for each collection element. We leave it as an exercise to the reader to come up with examples of
multipolygon and heterogeneous collections by consulting Tables 4-2 and 4-3 and previous exam-
ples. You can compare your answers with the collections created using an alternate mechanism.
This mechanism is described next.

Creating Collections: The Easy Way
The function SDO_UTIL.APPEND takes in two nonoverlapping geometries and returns an appended
geometry. For example, if you invoke APPEND using two polygons, you get a multipolygon geometry
as the result. Listing 4-28 shows an example.

Listing 4-28. Appending Two Geometries

SQL> SELECT SDO_UTIL.APPEND

(

SDO_GEOMETRY

(

2003, 32774, null,

SDO_ELEM_INFO_ARRAY(1,1003, 3),

SDO_ORDINATE_ARRAY(1,1, 2,2)

),

SDO_GEOMETRY

(

2003, 32774, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 3),

SDO_ORDINATE_ARRAY(2,3, 4,5)

)

)

FROM dual;

SDO_UTIL.APPEND(SDO_GEOMETRY(2003,32774,NULL,...

--

SDO_GEOMETRY

(

2007, -- SDO_GTYPE= Multi-polygon

32774, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 3, 5, 1003, 3),

SDO_ORDINATE_ARRAY(1, 1, 2, 2, 2, 3, 4, 5)

)

■Caution If the input geometries in an APPEND function are polygons that overlap or touch each other, this func-
tion will return an invalid geometry.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE94

8997ch04.qxd 10/2/07 4:22 PM Page 94

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

If you pass in a line and a polygon, you get a heterogeneous collection (SDO_GTYPE =2007)
geometry, as shown in Listing 4-29.

Listing 4-29. Creating a Heterogenous Collection Using SDO_UTIL.APPEND

SQL> SELECT SDO_UTIL.APPEND

(

SDO_GEOMETRY

(

2003, 32774, null,

SDO_ELEM_INFO_ARRAY(1,1003, 3),

SDO_ORDINATE_ARRAY(1,1, 2,2)

),

SDO_GEOMETRY

(

2002, 32774, NULL,

SDO_ELEM_INFO_ARRAY(1, 2, 2),

SDO_ORDINATE_ARRAY(2,3, 3,3,4,2)

)

)

FROM dual;

SDO_UTIL.APPEND(SDO_GEOMETRY(2003,32774,NULL,...

--

SDO_GEOMETRY

(

2004, -- SDO_GTYPE =(Heterogenous) Collection

32774, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 3, 5, 2, 2),

SDO_ORDINATE_ARRAY(1, 1, 2, 2, 2, 3, 3, 3, 4, 2)

)

Three-Dimensional Examples
So far, you’ve seen examples of geometries in two-dimensional spaces. In Oracle Database 11g,10

you can store in the SDO_GEOMETRY type different three-dimensional shapes that appear in a variety
of applications such as city modeling, CAD/CAM, virtual reality, and medical imaging. In Chapter 5,
you will learn about importing directly from emerging standard formats such as CityGML into an
SDO_GEOMETRY format. In this section, you will learn about how to construct three-dimensional
geometries manually.

Table 4-4 shows the list of three-dimensional types (SDO_GTYPEs) supported in Oracle and the
corresponding three-dimensional objects. You can trivially extend two-dimensional points, line
strings, and polygons to three-dimensional by adding the third dimensional ordinates as shown in
Figures 4-21 to 4-23. In addition to these basic types, you can also store in an SDO_GEOMETRY the fol-
lowing additional types:

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 95

10. Unless otherwise mentioned, Oracle 11g refers to the Oracle Database Server 11g (because the majority of
Spatial functionality is part of Oracle Database Server).

8997ch04.qxd 10/2/07 4:22 PM Page 95

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Surface geometry, represented by a composite surface element. A composite surface is com-
posed of nonoverlapping polygons as shown in Figure 4-25. All surfaces, whether they are
simple or composite, define a single contiguous area in three-dimensional space.

• Solid geometry, represented using either a simple solid element or a composite solid element.
The boundary of a simple solid is specified using one outer composite surface and zero or
more inner composite surfaces. A composite solid element is an array of nonoverlapping
simple solids. Figure 4-29 shows an example of a composite solid. All solids, whether they are
simple or composite, define a single contiguous volume in three-dimensional space.

• Collections of either heterogeneous types or homogenous types (multipoint, multiline, multi-
surface, or multisolid). Figure 4-31 shows an example of a typical building modeled as a hetero-
geneous collection of solids (for building structure) and surfaces (for windows and doors).

Table 4-4. Types of Three-Dimensional Data That Can Be Stored in Oracle’s SDO_GEOMETRY

Type of Three- Top-Level Elements
Dimensional Data SDO_GTYPE Value Type Description of the Geometry

Point 3001 Point specified The top-level element for a
in 3D domain. point-type geometry is a point.

Figure 4-21 shows an example.

Line string 3002 Line string connects The top-level element for a line
two or more distinct string is a straight-line connected
points. Connectivity is line. Figure 4-22 shows an example.
by straight lines (no arcs).
The line string is contiguous
(no gaps). Does not have
any area or volume.

Surface (can be 3003 Surface geometry bounds The top-level element for a surface
either a polygon or a single contiguous area. geometry can be either a polygon
a composite surface) Does not have any volume. or a composite surface. The

composite surface is an array of
nonoverlapping polygons.
Figures 4-23 and 4-24 give
examples of a surface geometry
constructed with a polygon
element or a composite surface
element, respectively.

Solid (can be either 3008 Solid geometry defines a The top-level element for a solid
a simple solid or single contiguous volume. geometry can be either a
a composite solid) simple solid or a composite solid.

A composite solid is an array of
nonoverlapping simple solids.
Figures 4-25 and 4-26 show
examples.

Collection 3005: Multipoint All elements of the The top-level elements can be any
3006: Multiline collection are line strings. element type for heterogeneous

collection.
3007: Multisurface All elements of the For homogenous collections of

collection are surfaces. a specific type (for example,
3009: Multisolid All elements of the multipoint, multiline,

collection are solids. multisurface, multisolid), the
3004: Heterogenous Elements can be any of the top-level elements have to be of

previous geometry types. the specified type. Figure 4-30
All elements of the shows an example of a multi-solid.
collection are points.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE96

8997ch04.qxd 10/2/07 4:22 PM Page 96

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that the supported list of three-dimensional types matches closely the three-dimensional
types in the GML 3 specification with the exception of parametric types (such as circular arcs).

■Caution All the lines joining three-dimensional objects (line strings, polygons, surfaces, solids) are assumed to
be straight-line segments. Circular arcs and other parametric curves are not supported.

Let’s next examine how to construct each of the three-dimensional objects in Table 4-4 as an
SDO_GEOMETRY. First we will start with the simple ones: the points, lines, and polygons that are trivial
extensions of the 2D counterparts. Then we will move on to more complex types.

Three-Dimensional Points, Lines, and Polygons
In what way do the three-dimensional points, lines, and polygons differ from the two-dimensional
counterparts? The only differences are the specification of the dimensionality D as 3 (instead of 2)
in the SDO_GTYPE and the specification of the third ordinate for each point. Listings 4-21 to 4-23 show the
SQL for storing the three-dimensional point, a three-dimensional line string, and a three-dimensional
polygon by highlighting just these differences.

Three-Dimensional Point
Figure 4-21 shows an example of a three-dimensional point. Listing 4-30 shows how to populate the
SDO_GEOMETRY object in the geometry_examples table to represent three-dimensional point in Figure 4-21
(substitute (2,0,2) with actual coordinates). Note that compared to the two-dimensional point of
Listing 4-18, the three-dimensional point is specified by three ordinate values, one for each of the
three dimensions.

Figure 4-21. Three-dimensional point example

Listing 4-30. Three-Dimensional Point Geometry Example

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D POINT',

'3-dimensional Point at coordinates (2,0,2) ',

SDO_GEOMETRY

(

3001, -- SDO_GTYPE format: D00T. Set to 3001 for a 3-dimensional point

NULL, -- No coordinate system

SDO_POINT_TYPE

(

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 97

8997ch04.qxd 10/2/07 4:22 PM Page 97

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

2, -- ordinate value for first dimension

0 -- ordinate value for second dimension

2 -- ordinate value for third dimension

),

NULL, -- SDO_ELEM_INFO is not needed as SDO_POINT field is populated

NULL -- SDO_ORDINATES is not needed as SDO_POINT field is populated

)

);

Three-Dimensional Line String
You can construct a three-dimensional line string by connecting distinct three-dimensional points
by straight lines (no arcs). Figure 4-22 shows an example. Listing 4-31 shows how to populate the
SDO_GEOMETRY object in the geometry_examples table to represent the three-dimensional line string in
Figure 4-22.

Figure 4-22. Three-dimensional line string example

Listing 4-31. Three-Dimensional Line String Geometry Example

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D LineString,

'3-dimensional LineString from coordinates (2,0,2) to (4,2,4) ',

SDO_GEOMETRY

(

3002, -- SDO_GTYPE format: D00T. Set to 3002 for a 3-dimensional line

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset for ordinates in SDO_ORDINATE_ARRAY

2, -- Line String typ

1, -- Connected by straight lines

),

SDO_ORDINATES_ARRAY

(

2, -- ordinate value for first dimension for first point

0, -- ordinate value for second dimension for first point

2, -- ordinate value for third dimension for first point

4, -- ordinate value for first dimension for second point

2, -- ordinate value for second dimension for second point

4 -- ordinate value for third dimension for second point

)

)

);

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE98

8997ch04.qxd 10/2/07 4:22 PM Page 98

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Caution The connectivity between two adjacent three-dimensional points should always be set to straight
lines (interpretation value of 1 in the SDO_ELEM_INFO attribute). Oracle Spatial does not support three-dimensional
arcs or any other three-dimensional parametric curves.

Note that Listing 4-31 shows a line string connecting just two points. You can extend the exam-
ple to a line string of an arbitrary number of points by simply adding the ordinates of the points to
the SDO_ORDINATES array.

Three-Dimensional Polygon
You can construct a three-dimensional polygon by creating an outer ring followed by 0 or more
inner rings. Vertices of the rings have to be coplanar (that is, all vertices on the same plane). Figure 4-23
shows an example of a three-dimensional polygon with and without an inner ring. Note that the
edges on the ring are always connected by straight lines (Oracle Spatial does not support connectiv-
ity by arcs in Oracle 11g).

Figure 4-23. Examples of a (a) three-dimensional polygon and (b) three-dimensional polygon with
inner ring (hole)

Consider the polygon in Figure 4-23 (a). This polygon has one exterior ring specified by the
points A, B, C, and D. Listing 4-32 shows the constructor for such a simple polygon geometry.

Listing 4-32. SQL for Three-Dimensional Polygon in Figure 4-23 (a)

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Polygon’,

'3-dimensional Polygon from coordinates (2,0,2) to (4,0, 4) ',

SDO_GEOMETRY

(

3003, -- SDO_GTYPE format: D00T. Set to 3003 for a 3-dimensional line

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset for ordinates in SDO_ORDINATE_ARRAY

3, -- Polygon type

1, -- Connected by straight lines

),

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 99

8997ch04.qxd 10/2/07 4:22 PM Page 99

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_ORDINATES_ARRAY

(

2, 0, 2, -- coordinate values for first point

2, 0, 4 -- coordinate values for second point

4, 0, 4, -- coordinate values for third point

4, 0, 2, -- coordinate values for fourth point

2, 0, 2 -- coordinate values for first point

)

)

);

Recall that for two-dimensional data, we had rules that the order of the vertices should be
specified in counterclockwise order for exterior rings and clockwise for interior rings. Do you need
any such restrictions for three-dimensional polygons? It’s nothing that Oracle stipulates. But the
order of the vertices specified implicitly defines the surface normal using the “right-hand thumb”
rule. If the fingers curl along the order of the specification of the vertices, the outward thumb is the
direction of the surface normal for the polygon. Figure 4-24 shows the direction of the surface nor-
mal (along the positive Y-axis) for the polygon specification in Listing 4-32.

Figure 4-24. Direction of surface normal for a polygon

Note that although Oracle does not stipulate a specific order for vertices of a three-dimensional
polygon (that is, no restrictions on the direction for a surface normal for the polygon), the surface
normal is needed for properly specifying solids. For solids, Oracle stipulates that the surface normals
for all the composing polygons have to point outward from the solid.

The polygon in Figure 4-23 (a) is aligned with the x-, y-, and z-axes. Instead of specifying all the
vertices, it can be represented as a rectangle by specifying just the two corners corresponding to the
minimum ordinate values and the maximum ordinate values for the x-, y-, and z-dimensions. We
refer to these corners as min-corner and max-corner, respectively. The interpretation value in the
element descriptor triplet (in the SDO_ELEM_INFO attribute) for the polygon element is set to 3 (rectangle).
Listing 4-33 shows the corresponding SQL.

Listing 4-33. Three-Dimensional Rectangle Representation for Polygon of Figure 4-23 (a)

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Rectangle Polygon’,

'3-dimensional Polygon from coordinates (2,0,2) to (4,0, 4) ',

SDO_GEOMETRY

(

3003, -- SDO_GTYPE format: D00T. Set to 3003 for a 3-dimensional polygon

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE100

8997ch04.qxd 10/2/07 4:22 PM Page 100

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset for ordinates of the Exterior Ring in SDO_ORDINATE_ARRAY

1003, -- ETYPE for Exterior ring

3, -- Connected by straight lines

),

SDO_ORDINATES_ARRAY

(

2, 0, 2, -- coordinates for min-corner of Exterior ring

4, 0, 4 -- coordinates for max-corner of Exterior ring

)

)

);

What is the direction of the surface normal for the previous rectangle? It depends on whether
the rectangle is parallel to the XY, YZ, or XZ plane and the order of specification of the min-corner
and max-corner in SDO_ORDINATES_ARRAY. Table 4-5 lists all the possible combinations along with the
direction of the surface normal. Note that with the <min-corner, max-corner> order for a rectangle
parallel to the XY, YZ, or XZ plane, the surface normal is along the positive perpendicular third dimen-
sion (Z-, X-, or Y-axis). On the other hand, if the rectangle is specified as < max-corner, min-corner>,
the surface normal is along the negative perpendicular third dimension.

Table 4-5. Direction of Surface Normal for a Rectangle Polygon Parallel to One of XY, YZ, or XZ Plane

Plane to Which Order of Specification of Direction of the Surface
Rectangle Is Parallel (Coordinates of) the Corners Normal

XY Min-corner, max-corner Positive Z-axis

YZ Min-corner, max-corner Positive X-axis

XZ Min-corner, max-corner Positive Y-axis

XY Max-corner, min-corner Negative Z-axis

YZ Max-corner, min-corner Negative X-axis

XZ Max-corner, min-corner Negative Y-axis

Using the information in Table 4-5, you can now determine the direction of the surface normal
for the rectangle in Listing 4-33. Since min-corner (2,0,2) is specified before max-corner (4,0,4) and
the rectangle is parallel to the XZ plane, the surface normal will be in the direction of the positive
Y-axis.

Note that the previous polygons have only one exterior ring and no inner rings. Just as in the
case of two-dimensional data, three-dimensional polygons can have zero or more inner rings. This
is illustrated in Figure 4-23 (b). Interior rings have an ETYPE of 2003 in contrast to exterior rings that
have an ETYPE of 1003. Interior rings should be oriented in the reverse order as the exterior ring. If
the outer and inner rings are rectangles and the outer ring is specified as <min-corner, max-corner>,
the inner ring should be specified in reverse order, as in <max-corner, min-corner> (and vice versa).
(Note that this is a deviation from the two-dimensional rectangle where the vertices are specified
always as <min-corner, max-corner> irrespective of whether the ring is inner or outer.) Using this
information, you can construct SDO_GEOMETRY for Figure 4-23 (b), as shown in Listing 4-34.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 101

8997ch04.qxd 10/2/07 4:22 PM Page 101

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 4-34. SQL for Polygon with Hole in Figure 4-23 (b)

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Rectangle Polygon with Hole’,

'3-dimensional Polygon ',

SDO_GEOMETRY

(

3003, -- SDO_GTYPE format: D00T. Set to 3003 for a 3-dimensional polygon

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset for ordinates in SDO_ORDINATE_ARRAY

1003, -- Exterior ring etype

3, -- Rectangle

7, -- Offset for interior ring ordinates in SDO_ORDINATE_ARRAY

2003, -- ETYPE for Interior ring

3, -- Rectangle

),

SDO_ORDINATES_ARRAY

(

2, 0, 2, -- coordinates for min-corner of Exterior ring

4, 0, 4, -- coordinates for max-corner of Exterior ring

3.5, 0, 3.5, -- coordinates of max-corner of Interior ring

3, 0, 3 -- coordinates of min-corner of Interior ring

)

)

);

■Caution For a three-dimensional rectangle modeling an inner ring of a three-dimensional polygon, the order of
vertex specification should always be the reverse of the order in the outer polygon.

Composite Surfaces
Note that a polygon can have only one exterior ring. What if you want multiple rings composing
a contiguous surface? Such a geometry that is constituted from multiple three-dimensional polygons
but still constitutes a single contiguous area is referred to as a composite surface. Figure 4-25 (a) shows
some examples. Observe that in Figure 4-25 (a), the composite surface is composed of two polygons,
with one in the XY plane and another in the XZ plane.

Figure 4-25. Examples of (a) a composite surface and (b) a closed composite surface

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE102

8997ch04.qxd 10/2/07 4:22 PM Page 102

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can store that as a composite surface. Let’s look at how to construct the SDO_ELEM_INFO and
SDO_ORDINATES attributes because they are no longer trivial.

A composite surface element is specified by a header triplet of the form <offset, etype=1006,
N> where offset specifies the offset of the element in the SDO_ORDINATES array and N specifies the
number of polygonal surfaces that make up the composite surface. The element specification for
each of the planar polygonal surfaces follows this header triplet. Listing 4-35 shows the SQL for the
composite surface in Figure 4-25 (a). Note that SDO_GTYPE is 3003, the same for a three-dimensional
polygon and a three-dimensional surface.

Listing 4-35. SQL for Composite Surface in Figure 4-25 (a)

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Composite Surface’,

'3-dimensional Composite with 2 rectangle polygons ',

SDO_GEOMETRY

(

3003, -- SDO_GTYPE format: D00T. Set to 3003 for a 3-dimensional Surface

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset of composite element

1006, --- Etype for composite surface element

2, -- Number of composing polygons

1, -- Offset for ordinates in SDO_ORDINATE_ARRAY

1003, -- Etype for Exterior (outer) ring of FIRST polygon

3, -- Polygon is an axis-aligned rectangle

7, -- Offset for second exterior polygon

1003, -- Etype for exterior Ring of SECOND polygon

3 -- Polygon is an axis-aligned rectangle

),

SDO_ORDINATES_ARRAY

(

2, 0,2, -- min-corner for exterior ring of first polygon,

4,2,2, -- max-corner for exterior ring of first polygon

2,0, 2, -- min-corner for second element rectangle

4,0,4 -- max-corner for second element rectangle

)

)

);

Note that the polygon elements are in different planes (the first in z=2 plane and the second in
the y=0 plane). You can also construct composite surfaces that are on the same plane. The only
restriction is that all the elements together should constitute a single “contiguous” area (that is, the
interiors of all the elements of a composite surface are connected). The polygons can also have
holes, that is, inner (or interior) rings. For example, in Figure 4-25 (b) the polygon in the XY plane
has not only an outer (or exterior) ring but also an inner ring. The composite surface then represents
the gray area in the polygons in the XY and XZ planes. Listing 4-36 shows the SQL for specifying
such a composite surface.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 103

8997ch04.qxd 10/2/07 4:22 PM Page 103

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 4-36. SQL for Composite Surface in Figure 4-25 (b)

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Composite Surface with hole polygons’,

'3-dimensional Composite with 2 rectangle polygons one of which has a hole ',

SDO_GEOMETRY

(

3003, -- SDO_GTYPE format: D00T. Set to 3003 for a 3-dimensional Surface

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset of composite element

1006, --- Etype for composite surface element

2, -- Number of composing Polygons

1, -- Offset for ordinates in SDO_ORDINATE_ARRAY

1003, -- Etype for Exterior (outer) ring of FIRST polygon

3, -- Polygon is an axis-aligned rectangle

7, -- Offset for ordinates in SDO_ORDINATE_ARRAY

2003, -- Etype for Interior (inner) ring of FIRST polygon

3, -- Polygon is an axis-aligned rectangle

13, -- Offset for second exterior polygon

1003, -- Etype for exterior Ring of SECOND polygon

3 -- Polygon is an axis-aligned rectangle

),

SDO_ORDINATES_ARRAY

(

2, 0,2, -- min-corner for exterior ring of first polygon,

4,2,2, -- max-corner for exterior ring of first polygon

3, 1, 2, -- min-corner for interior ring of first polygon

3.5, 1.5, 2, -- max-corner for interior ring of first polygon

2,0, 2, -- min-corner for second element rectangle

4,0,4 -- max-corner for second element rectangle

)

)

);

Note that a surface geometry only has an area but never a volume. This is true even if the sur-
face is closed, as shown in Figure 4-26. The composite surface consists of the six sides of the cube
(note that the faces are not shown in gray). Listing 4-37 shows the SQL for such a surface geometry.

Figure 4-26. Example of a closed composite surface

Listing 4-37. SQL for Composite Surface in Figure 4-26

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Composite Surface2’,

'3-dimensional Composite with 6 rectangle polygons ',

SDO_GEOMETRY

(

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE104

8997ch04.qxd 10/2/07 4:22 PM Page 104

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

3003, -- SDO_GTYPE format: D00T. Set to 3003 for a 3-dimensional Surface

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset of composite element

1006, --- Etype for composite surface element

6, -- Number of composing polygons; element triplets for each follow

1, 1003,3 --Axis-aligned Rectangle element descriptor

7, 1003,3, --Axis-aligned Rectangle element descriptor

13,1003,3 , --Axis-aligned Rectangle element descriptor

19, 1003,3, -- Axis-aligned Rectangle element descriptor

25, 1003,3, --Axis-aligned Rectangle element descriptor

31,1003,3 --Axis-aligned Rectangle element descriptor

),

SDO_ORDINATES_ARRAY

(

2, 0,2, 4,2,2, -- min-, max- corners for Back face,

2,0,4, 4,2,4, -- min-, max- corners for Front face,

4,0,2, 4,2,4 , -- min-, max- corners for Right side face,

2.0.2, 2,2,4, -- min-, max- corners for Left side face,

4,0,4, 2,0,2, -- min-, max- corners for Bottom face,

4,2,4, 2,2,2 -- min-, max- corners for Top face

)

)

);

■Caution The composing elements of a composite surface element can only be polygonal surface elements
(i.e., cannot be composite surfaces themselves). Together, the composing polygonal elements should define a single
contiguous area.

■Caution A surface-type geometry (that is, SDO_GTYPE=3003) can have at most only one composite surface as
the exterior (that is, ETYPE=1006). You cannot have any inner composite surfaces (that is, ETYPE=2006). The indi-
vidual polygon elements in the surface, however, can have both exterior (ETYPE=1003) and inner (ETYPE=2003) rings.

To associate a volume with the object of Figure 4-26, you need to denote it as a solid. How do
you make the surface geometry in Figure 4-26 a solid? You need to specify additional information in
the SDO_ELEM_INFO attribute as described next.

Simple Solid
A simple solid has one exterior composite surface and zero or more inner composite surfaces. A simple
solid element is denoted by the ETYPE of 1007. A simple solid is described using the following sequence
of descriptor triplets in the SDO_ELEM_INFO attribute:

• A header triplet for the solid element with an ETYPE of 1007

• A header triplet for exterior composite surface (with an ETYPE of 1006)

• Element descriptor triplets for each composing element of exterior surface

• Zero or more occurrences of the following:

• Header triplet for an inner composite surface (with Etype=2006)

• Element descriptor triplets for each composing element of the inner surface

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 105

8997ch04.qxd 10/2/07 4:22 PM Page 105

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Caution For all solids, simple or composite (described in the next section), the following two restrictions hold
in Oracle: First, the surface normal for each polygon in the solid specification should always point outside from the
solid. The surface normal is implicitly derived from the order of the vertex specification using the “right-hand thumb”
rule as illustrated in Figure 4-24. Second, the polygons in the composite surfaces (of a solid) cannot have any inner
rings; that is, polygons cannot be like the polygon in the XY plane in Figure 4-25 (b) that has an inner ring.

Consider the simple solids in Figure 4-27. Both of them are bounded by one exterior composite
surface. The solid in Figure 4-27 (b) has an additional interior surface to represent the hole.

Figure 4-27. Examples of (a) simple solid and (b) a simple solid with a hole inside

You can construct the SQL for the simple solid of Figure 4-27 (a), as shown in Listing 4-38. The
changes from Listing 4-39 are in bold. Observe that the only differences compared to Listing 4-27
are the addition of the solid element triplet <1, 1007, 1>, the rearranging of the vertices orders for
the rectangles so that their surface normals point outside from the solid, and the changing the
SDO_GTYPE to 3008.

Listing 4-38. SQL for Simple Solid in Figure 4-27 (a)

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Simple Solid’,

'3-dimensional Solid with 6 rectangle polygons as its boundary ',

SDO_GEOMETRY

(

3008, -- SDO_GTYPE format: D00T. Set to 3008 for a 3-dimensional Solid

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset of a Simple solid element

1007, --- Etype for a Simple solid

1, -- Indicates all surfaces are specified explicitly

1, -- Offset of composite element

1006, --- Etype for composite surface element

6, -- Number of composing elements;

-- element triplets for each element follow

1, 1003,3, --Axis-aligned Rectangle element descriptor

7, 1003,3, --Axis-aligned Rectangle element descriptor

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE106

8997ch04.qxd 10/2/07 4:22 PM Page 106

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

13, 1003,3 , --Axis-aligned Rectangle element descriptor

19, 1003,3, -- Axis-aligned Rectangle element descriptor

25, 1003,3, –Axis-aligned Rectangle element descriptor

31, 1003,3 --Axis-aligned Rectangle element descriptor

),

SDO_ORDINATES_ARRAY

(

4,2,2, 2,0,2, -- max-, min- corners for Back face (normal: -ve Z-axis)

2,0,4, 4,2,4, -- min-, max- corners for Front face (normal: +ve Z axis)

4,0,2, 4,2,4, -- min-, max- corners for Right face (normal: +ve X axis)

2,2,4, 2,0,2, -- min-, max- corners for Left face (normal: –ve X axis)

4,0,4, 2,0,2, -- max-, min- for Bottom face (normal: –ve Y axis)

2,2,2, 4,2,4 -- min-, max- corners for Top face (normal: +ve Y axis)

)

)

);

■Caution The polygons (in the composite surface) of a simple solid cannot have inner rings.

Since the solid in Figure 4-27 (a) is aligned with the X-, Y-, Z-axes, you can simplify the SQL by
specifying it as a solid box with a specific etype of 3 and using only the min-corner (the minimum
ordinate values in x-, y-, z-dimensions) and the max-corner (the maximum ordinate value in x-, y-,
z-dimensions). Listing 4-39 shows the SQL, using a box element and only two corners for the solid.

Listing 4-39. SQL for Simple Solid in Figure 4-27 (a)

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Simple Solid as a Solid Box’,

'3-dimensional Solid with just the 2 corner vertices ',

SDO_GEOMETRY

(

3008, -- SDO_GTYPE format: D00T. Set to 3008 for a 3-dimensional Solid

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset of a Simple solid element

1007, --- Etype for a Simple solid

3 -- Solid Box type: only two corner vertices are specified

),

SDO_ORDINATES_ARRAY

(

2,0,2, 4,2,4 -- min-corner and max-corner for the solid

)

)

);

The solid object in Figure 4-27 (a) could represent a typical building in a city-modeling applica-
tion. What if you want to model the open atrium inside the building? Let’s say this open atrium
is completely inside the building (does not touch any walls, ceiling, or ground) and by opening it, or
voiding it, you do not want it to be modeled as part of the building geometry (you might model it as
a separate structure). You can create the void in the building model by modeling this “open atrium”
as an inner composite surface as shown in Figure 4-27 (b). Note that you have to represent the poly-
gons of the inner composite surface such that their normals point outward from the entire solid.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 107

8997ch04.qxd 10/2/07 4:22 PM Page 107

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

(For determining the surface normal for a polygon, please refer to Figure 4-24 and to Table 4-5 if the
polygon happens to be a rectangle.) The corresponding SQL is shown in Listing 4-4011; changes
from Listing 4-38 are in bold.

Listing 4-40. Simple Solid with an Inner Hole as in Figure 4-27 (b)

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Simple Solid with inner hole’,

'3-dimensional Solid with 6 rectangle polygons as its boundary ',

SDO_GEOMETRY

(

3008, -- SDO_GTYPE format: D00T. Set to 3008 for a 3-dimensional Solid

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset of a Simple solid element

1007, --- Etype for a Simple solid

1, -- Indicates all surfaces are specified explicitly

1, -- Offset of composite element

1006, --- Etype for composite surface element

6, -- # of composing elements; element triplets for each element follow

1,1003,3, --Axis-aligned Rectangle element descriptor

7, 1003,3,--Axis-aligned Rectangle element descriptor

13,1003,3 , --Axis-aligned Rectangle element descriptor

19, 1003,3, -- Axis-aligned Rectangle element descriptor

25, 1003,3, --Axis-aligned Rectangle element descriptor

31,1003,3, --Axis-aligned Rectangle element descriptor

37, 2006, 6, -- Inner composite surface

37, 2003,3, -- Axis-aligned Rectangle element ; note etype is 2003

43, 2003,3, --Axis-aligned Rectangle element descriptor

49, 2003,3 , --Axis-aligned Rectangle element descriptor

55, 2003,3, -- Axis-aligned Rectangle element descriptor

61, 2003,3, --Axis-aligned Rectangle element descriptor

67, 2003,3 --Axis-aligned Rectangle element descriptor

),

SDO_ORDINATE_ARRAY

(

--- All polygons oriented such that normals point outward from solid

------- Ordinates for the rectangles of the outer composite surface

4,2,2, 2,0,2, -- Back face

2,0,4, 4,2,4, -- Front face

4,0,2, 4,2,4, -- Right face

2,2,4, 2,0,2, -- Left face

4,0,4, 2,0,2, -- Bottom face

2,2,2, 4,2,4, -- Top face

------- Ordinates for the rectangles of inner/hole composite surface

-------- representing the atrium

2.5, 0.5, 2.5, 3.5, 1.5, 2.5, -- Back face

3.5, 1.5, 3.5, 2.5, 0.5, 3.5, -- Front face

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE108

11. If you validate this geometry using functions discussed in Chapter 5, Oracle incorrectly raises an error. This
behavior is reported and resolved as bug 6357707.

8997ch04.qxd 10/2/07 4:22 PM Page 108

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

3.5, 1.5, 3.5, 3.5, 0.5, 2.5, -- Right face

2.5, 0.5, 2.5, 2.5, 1.5, 3.5, -- Left face

2.5, 0.5, 2.5, 3.5, 0.5, 3.5, -- Bottom face

3.5, 1.5, 3.5, 2.5, 1.5, 2.5 -- Top face

)

)

);

■Note An inner composite surface of a solid cannot topologically overlap with an outer composite surface of the
same solid.

Note that the atrium, that is, the interior solid, is modeled as the inner surface of the outer solid.
There is a notable exception to this modeling. If the inner solid touches the boundary of the outer solid
as in Figure 4-28, then it can no longer be modeled as an inner surface (the sdo_geom.validate_geometry
described in Chapter 5 will return an error on such a geometry). Instead, you can model it as a simple
solid with just the exterior surfaces. Figure 4-28 shows the example. Observe that you can represent the
side faces as a single polygon.

For the top face (likewise the bottom one too) that has a hole in it, Oracle does not allow you to
represent them as a polygon with an inner ring. So, you need to break it into the two polygon rings
ABCDEF and AGEDHB, as shown in Figure 4-28. Listing 4-41 shows the example SQL.

Figure 4-28. Examples of a solid with the hole where the hole cannot be modeled as an inner surface
(due to topological overlap of inner and outer composite surfaces)

Listing 4-41. Simple Solid with an Inner Hole That Touches Both Top and Bottom Faces

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Simple Solid with inner hole touching top/bottom faces’,

'3-dimensional Solid with 8 rectangle polygons as its boundary ',

SDO_GEOMETRY

(

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 109

8997ch04.qxd 10/2/07 4:22 PM Page 109

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

3008, -- SDO_GTYPE format: D00T. Set to 3008 for a 3-dimensional Solid

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset of a Simple solid element

1007,--- Etype for a Simple solid

1, -- Indicates all surfaces are specified explicitly

1, -- Offset of composite element

1006, --- Etype for composite surface element

8, -- # of composing elements; element triplets for each element follow

1, 1003,3, --Axis-aligned Rectangle element descriptor for left face

7, 1003,3, --Axis-aligned Rectangle element descriptor for right face

13,1003,3, --Axis-aligned Rectangle element descriptor for back face

19,1003,3, -- Axis-aligned Rectangle element descriptor for front face

25,1003,1, -- Element descriptor for ABCDEFA on Top Face

46,1003,1, -- Element descriptor for AGEDHBA on Top Face

67,1003,1, -- Element descriptor for equivalent ABCDEFA on Bottom Face

88,1003,1 -- Element descriptor for equivalent AGEDHBA on Bottom Face

),

SDO_ORDINATE_ARRAY

(

-- Outer side walls

4,2,2, 2,0,2, -- Back face

2,0,4, 4,2,4, -- Front face

4,0,2, 4,2,4, -- Right side face

2,2,4, 2,0,2, -- Left side face

--

-- Inner side walls

2.5,0,2.5, 3.5,2,2.5, -- Back Face

3.5,2,3.5, 2.5,0,3.5, -- Front Face

2.5,0,2.5, 2.5,2,3.5, -- Left Face

3.5,2,3.5, 3.5,0,3.5, -- Right Face

--

-- Coordinates for vertices A,B,C,D,E,F,A on top face

2,2,4, 2.5,2,3.5, 2.5,2,2.5, 3.5,2,2.5, 4,2,2, 2,2,2, 2,2,4,

-- Coordinates for vertices A,G,E,D,H,B,A on top face

2,2,4, 4,2,4, 4,2,2, 3.5,2,2.5, 3.5,2,3.5, 2.5,2,3.5, 2,2,4,

-- Coordinates for polygon equivalent to ABCDEFA on bottom face

2,0,4, 2,0,2, 4,0,2, 3.5,0,2.5, 2.5,0,2.5, 2.5,0,3.5, 2,0,4,

-- Coordinates for polygon equivalent to AGEDHBA on bottom face

2,0,4, 2.5,0,3.5, 3.5,0,3.5, 3.5,2,2.5, 4,0,2, 4,0,4, 2,0,4

)

)

);

Composite Solid
An alternate representation for the object in Figure 4-28 is a composite solid composed of four dif-
ferent simple solids, one each for the north wing, the south wing, the east wing, and the west wing,
as shown in Figure 4-29. You can denote the solid element as a composite element by specifying the
ETYPE as 1008. SDO_ELEM_INFO for this element will have a header triplet of the form <offset,
ETYPE=1008, N> where N is the number of components. This triplet is followed by the triplets for the
composing simple solid elements. Listing 4-42 shows the SQL for the solid object in Figure 4-29.
Note that we use the solid box representation (just the two corner vertices) for each of the simple
solids constituting the composite solid.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE110

8997ch04.qxd 10/2/07 4:22 PM Page 110

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 4-29. Modeling the simple solid of Figure 4-28 as a composite solid

Listing 4-42. Example SQL for Composite Solid of Figure 4-29

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Composite Solid of 4 simple solids’,

'3-dimensional composite solid ',

SDO_GEOMETRY

(

3008, -- SDO_GTYPE format: D00T. Set to 3008 for a 3-dimensional Solid

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset of the composite solid element

1008, --- Etype for a composite solid

4, --Number of cimple solids making up the composite.

--The simple solid descriptors next.

1, 1007, 3, -- Simple solid as a solid Box

7, 1007, 3, -- Simple solid as a solid box

13, 1007, 3, -- Simple solid as a solid box

19, 1007, 3 -- Simple solid as a solid box

),

SDO_ORDINATE_ARRAY

(

-- min-corner and max-corner for the West wing

2,0,2, 2.5,2,4,

-- min-corner and max-corner for the East wing,

3.5, 0,2, 4,2,3.5,

-- min-corner and max-corner for the North wing,

2.5,0,2, 3.5,2,2.5,

-- min-corner and max-corner for the South wing,

2.5,0,3.5, 4,2,4

)

)

);

■Note Every composite solid can also be represented as a simple solid. The composite solid type is provided
only for natural and easier modeling of solids such as those in Figure 4-29.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 111

8997ch04.qxd 10/2/07 4:22 PM Page 111

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Caution The composing elements of a composite solid element should be solid elements and should define
a contiguous volume.

Collections
In the previous example, the south wing is attached to the west, the west wing to the north, the
north to east, and so on. Because of the connected nature of these components, they are modeled
as a composite solid. But what if the different parts of the building are not connected to each other
as in Figure 4-30? You can model the components as a multisolid. Listing 4-43 shows the correspon-
ding SQL for constructing this object.

Figure 4-30. Modeling different disjoint parts of a building as a multisolid

Listing 4-43. Example SQL for Multisolid of Figure 4-30

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Multi Solid’,

'3-dimensional Multisolid with 2 solid boxes ',

SDO_GEOMETRY

(

3009, -- SDO_GTYPE format: D00T. Set to 3009 for a 3-dimensional MultiSolid

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset of a simple solid element

1007, --- Etype for a simple solid

3, -- Solid box type: only two corner vertices are specified

7, 1007, 3 – Solid Box for second solid),

SDO_ORDINATES_ARRAY

(

-- min-corner and max-corner for first solid

0,0,0, 4,4,4,

--

-- min-corner and max-corner for second solid.

5,0,0, 9,4,4

)

)

);

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE112

8997ch04.qxd 10/2/07 4:22 PM Page 112

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Until now, we have described how to create buildings as solid and multisolid geometries. As
shown in Figure 4-31, the windows and doors, however, are surface-type geometries that need to be
associated with a building. How do you store the solid structure of the building along with the asso-
ciated windows and doors as a single entity? The answer is to model it as a (heterogeneous) collection
geometry. One element of this collection can be the composite solid representing the different wings
of the building, and the other elements can be surfaces representing the windows.

Figure 4-31. Modeling the entire building (with windows, doors) as a (heterogeneous) collection

Listing 4-44 shows the SQL for the building in Figure 4-31. You can observe that SDO_GTYPE is set
to 3004 (heterogeneous collection). Elements of the collection are specified one after the other. First
the composite solid element (along with its constituting solid elements) is specified. Then the window
is specified as a polygon element, followed by the door as another polygon element.

Listing 4-44. Example SQL for Buildings Modeled As a Collection

SQL> INSERT INTO geometry_examples (name, description, geom) VALUES

(

'3-D Building as a Collection’,

'3-dimensional collection as combination of a composite solid and 2 surfaces',

SDO_GEOMETRY

(

3004, -- SDO_GTYPE format: D00T. Set to 3004 for a 3-dimensional Collection

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, 1008, 4, --- Descriptor for a composite solid of 4 simple solids

1, 1007, 3, --Simple solid as a solid Box

7, 1007, 3, -- Simple solid as a solid box

13, 1007, 3, -- Simple solid as a solid box

19, 1007, 3, -- Simple solid as a solid box,

25, 1003, 3, -- Descriptor for Door as a polygon

31, 1003, 3 -- Descriptor for Window as a polygon

),

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE 113

8997ch04.qxd 10/2/07 4:22 PM Page 113

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_ORDINATE_ARRAY

(

-- min-corner and max-corner for the West wing

2,0,2, 2.5,2,4,

--

-- min-corner and max-corner for the East wing,

3.5, 0,2, 4,2,3.5,

--

-- min-corner and max-corner for the North wing,

2.5,0,2, 3.5,2,2.5,

--

-- min-corner and max-corner for the South wing,

2.5,0,3.5, 4,2,4,

--

-- min-corner and max-corner for the door,

2.75, 0, 4, 3.25, 1, 4,

--

-- min-corner and max-corner for the window,

2.5, 2, 4, 3.5, 3, 4

)

)

);

Summary
This chapter demonstrated that the SDO_GEOMETRY data type is a powerful structure in Oracle. You
can use this data type to store point, line, polygon, surface, and solid geometries, as well as homog-
enous and heterogeneous collections of such geometries. The SDO_GTYPE attribute of SDO_GEOMETRY
specifies the type (shape), and the SDO_ELEM_INFO and SDO_ORDINATES attributes together specify the
ordinate information and connectivity for the shape object. The SDO_POINT attribute stores the loca-
tion for two- or three-dimensional points. In short, you can store as an SDO_GEOMETRY any of the
various two-dimensional types mentioned in OGC Simple Features Specification12 or a major subset
of the three-dimensional types (excluding parametric curves and surfaces) mentioned in the OGC
GML 2.0 and 3.0 specifications.

In addition to the geometric structure, you can associate spatial referencing using appropriate
coordinate systems with SDO_GEOMETRY objects. If the coordinate systems are based on the EPSG
model, you can define your own transformation paths between different coordinate systems.

In your applications, you can utilize the SDO_GEOMETRY data type to model locations of customers,
delivery sites, and competitors as two-dimensional points. You can model locations and the shapes
of streets and highways as line strings, and you can model the shapes of city boundaries as poly-
gons. For city-modeling or asset management applications, you can store not only the location but
the exact structure of buildings as three-dimensional solids or collections using SDO_GEOMETRY type
columns.

Having covered how to construct SDO_GEOMETRY objects for different types of spatial data, in the
next chapter we will explain how to insert and load such objects into an Oracle table.

CHAPTER 4 ■ THE SDO_GEOMETRY DATA TYPE114

12. The native SDO_GEOMETRY type conforms to the OGC Simple Feature Specification. The ST_GEOMETRY type that
is also supported in Oracle is compliant with the OGC Simple Feature Specification Object Model.

8997ch04.qxd 10/2/07 4:22 PM Page 114

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Loading, Transporting, and Validating
Spatial Data

To run the examples in this chapter, you need to import a dataset as shown in the following
spatial schema. Please refer to the introduction for instructions on creating the spatial
schema and other setup details.

imp spatial/spatial FILE=app_with_loc.dmp FULL=Y INDEXES=N

imp spatial/spatial FILE=city.dmp FULL=Y INDEXES=N

In the previous chapter, we introduced a new data type called SDO_GEOMETRY to store spatial data.
This data type can store a variety of spatial objects: points (including those obtained by geocoding
address strings), line strings, polygons, or more complex shapes. Points primarily represent the
locations of application-specific entities such as businesses, customers, or suppliers. Line strings
and polygons, on the other hand, represent the boundaries of geographical entities such as roads,
cities, or states. In CAD/CAM-type applications, line strings and polygons can represent different
entities such as the layouts of buildings, printed circuit boards, or shapes of different parts of an
automobile.

In Chapter 3, we described how to add SDO_GEOMETRY columns to existing (application-specific)
tables such as customers. We also described how to create tables with SDO_GEOMETRY columns to store
geographic data such as states, counties, and interstates. These tables could be part of an e-business
application or a variety of other spatial applications such as CAD/CAM, GIS, GPS, wireless, or telematics.

In this chapter, we work with our example business application, the tables for which we created
in Chapter 3, and we move on to describe how to populate these tables with data and how to ensure
that the data are valid and free of bugs. Specifically, we cover the following topics:

• Inserting into a table with SDO_GEOMETRY columns. We cover how to insert a single geometry
into a table with SDO_GEOMETRY. This may not be the right approach to populate the application-
specific and geographic tables because inserting geometries one by one may be time-consuming
and error-prone. A better approach is to bulk load the data.

• Loading and converting spatial data to and from Oracle databases. We describe how to use
Oracle utilities to bulk load spatial data into Oracle tables from operating system files or
Oracle Import/Export (.dmp) files. We also describe a utility to convert third-party formats
such as Environmental Systems Research Institute’s (ESRI’s) shapefiles to SQL*Loader files
and load the resulting files into Oracle.

115

C H A P T E R 5

■ ■ ■

8997ch05.qxd 9/28/07 10:00 AM Page 115

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Validating spatial data. We describe functions available to check whether the loaded spatial
data are in a valid Oracle Spatial format.

• Debugging spatial data. We explain how to identify and correct any invalid spatial data in
a table.

The functions that we describe in this chapter are part of two packages: SDO_GEOM and SDO_UTIL.
The SDO_GEOM functions that we use in this chapter are part of the Locator product (shipped for free
with Oracle Database Server). The SDO_UTIL package and the associated functions, however, are
included only in the priced option of Spatial.

Inserting Data into an SDO_GEOMETRY Column
Let’s create a table to model the sales regions of a business franchise. Listing 5-1 shows the SQL.

Listing 5-1. Creating the sales_regions Table

SQL> CREATE TABLE sales_regions

(

id NUMBER,

geom SDO_GEOMETRY

);

You can insert polygons representing sales regions into the geom column of this table.
Listing 5-2 shows an example.

Listing 5-2. Inserting a Polygon Geometry into the sales_regions Table

SQL> INSERT INTO sales_regions VALUES

(

10000, -- SALES_REGIONS ID

SDO_GEOMETRY -- use the SDO_GEOMETRY constructor

(

2003, -- A two-dimensional Polygon

8307, -- SRID is GEODETIC

NULL, -- SDO_POINT_TYPE is null as it is not a point

SDO_ELEM_INFO_ARRAY (1, 1003, 1), -- A polygon with just one ring

SDO_ORDINATE_ARRAY -- SDO_ORDINATES field

(

-77.04487, 38.9043742, -- coordinates of first vertex

-77.046645, 38.9040983, -- other vertices

-77.04815, 38.9033127, -77.049155, 38.9021368,

-77.049508, 38.9007499, -77.049155, 38.899363, -77.048149, 38.8981873,

-77.046645, 38.8974017, -77.04487, 38.8971258, -77.043095, 38.8974017,

-77.041591, 38.8981873, -77.040585, 38.899363, -77.040232, 38.9007499,

-77.040585, 38.9021368, -77.04159, 38.9033127, -77.043095, 38.9040983,

-77.04487, 38.9043742 -- coordinates of last vertex same as first vertex

)

)

);

Note that the second argument is the SDO_GEOMETRY constructor presented in the previous
chapter. You can insert any type of geometry into this column, be it a point, a line, a polygon, and so
on. In this example, the geometry is a two-dimensional polygon geometry. The vertices of this poly-
gon are stored in the SDO_ORDINATES attribute instantiated using the SDO_ORDINATE_ARRAY type. In
Chapter 4, we noted that for a polygon the first and last vertex coordinates should be same. Accordingly,

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA116

8997ch05.qxd 9/28/07 10:00 AM Page 116

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

in Listing 5-2, the coordinates for the first and last vertices (shown in the first and the last lines of
the SDO_ORDINATE_ARRAY object) are identical.

■Caution INSERT statements with an SDO_GEOMETRY constructor cannot take more than 1,000 numbers in the
SDO_ORDINATES array. One alternative is to create an SDO_GEOMETRY object in PL/SQL and bind this object in the
INSERT statement (refer to Chapter 14 for details).

Populating tables by inserting the data rows one by one (as in Listing 5-2) is very time-consuming.
In this chapter, we discuss how to load the data in bulk and how to check that the populated data
are in the required Oracle Spatial format.

Loading and Converting Spatial Data
Spatial data can be loaded from different formats, including text files, Oracle export formats, or
third-party proprietary formats. In the following sections, we describe each of these formats in
sequence.

Loading from Text Files Using SQL*Loader
SQL*Loader is an Oracle utility to load data from files into Oracle tables. This utility performs bulk
loading—that is, it can load more than one row into a table in one attempt.

■Tip Always drop any associated spatial indexes before bulk loading into a table. Otherwise, spatial indexes may
slow down the loading process.

SQL*Loader takes a control file that specifies how to break the file data into Oracle rows and
how to separate these records into individual columns. We do not discuss all the details of SQL*Loader
here. Instead, we highlight the object-specific issues that come into play when loading SDO_GEOMETRY
columns.

Loading Point Data
First, let’s look at how to insert data into the sales_regions table. Say the sales regions are point
data. You can directly insert the regions into the x,y components of the geom column (SDO_GEOMETRY
object) as described in the control file in Listing 5-3.

Listing 5-3. Control File for Loading “Point” sales_regions Data

LOAD DATA

INFILE *

INTO TABLE sales_regions

APPEND

FIELDS TERMINATED BY '|'

TRAILING NULLCOLS

(

id NULLIF ID = BLANKS,

geom COLUMN OBJECT

(

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 117

8997ch05.qxd 9/28/07 10:00 AM Page 117

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_GTYPE INTEGER EXTERNAL,

SDO_POINT COLUMN OBJECT

(

X FLOAT EXTERNAL,

Y FLOAT EXTERNAL

)

)

)

BEGINDATA

1|2001|-76.99022|38.888654|

2|2001|-77.41575|38.924753|

Notice that there is no need to specify the SDO_SRID, the SDO_ELEM_INFO_ARRAY, and the
SDO_ORDINATE_ARRAY components. These are automatically set to NULL. The control file in Listing 5-3
has two records, one with an ID of 1 and another with an ID of 2. Both records have the x,y compo-
nents specified as the last two fields. Just as in other SQL*Loader control files, the fields in each
record are terminated by the pipe symbol (because we specified fields terminated by |). We will use
this “control” file to load the sales_regions data as shown in Listing 5-4. A log of the operation that
records which rows are loaded and which are rejected is available in sales_regions.log.

Listing 5-4. Using SQL*Loader to Load Data into the sales_regions Table

SQLLDR spatial/spatial CONTROL=sales_regions.ctl

Note that the format for the data is specified in the initial part of the control file. The data are
specified in the same control file right after the BEGINDATA keyword. Instead of specifying the data in
the control file, you can store the data in a separate file, say sales_regions.dat. You can then specify
the data file at the command line, as shown in Listing 5-5.

Listing 5-5. Using SQL*Loader with a Data File

SQLLDR spatial/spatial CONTROL=sales_regions.ctl DATA=sales_regions.dat

Alternatively, you can specify the data file name in the control file (and load the data, as in
Listing 5-5). In the control file, you have to modify INFILE * to INFILE sales_regions.dat. The
modified control file is shown in Listing 5-6, and the corresponding data file is shown in Listing 5-7.
You can run the SQL*Loader command as in Listing 5-4 to load the data.

Listing 5-6. sales_regions.ctl File

LOAD DATA

INFILE sales_regions.dat

INTO TABLE sales_regions

APPEND

FIELDS TERMINATED BY '|'

TRAILING NULLCOLS

(

id NULLIF ID = BLANKS,

geom COLUMN OBJECT

(

SDO_GTYPE INTEGER EXTERNAL,

SDO_POINT COLUMN OBJECT

(

X FLOAT EXTERNAL,

Y FLOAT EXTERNAL

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA118

8997ch05.qxd 9/28/07 10:00 AM Page 118

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

)

)

)

Listing 5-7. sales_regions.dat File

1|2001|-76.99022|38.888654|

2|2001|-77.41575|38.924753|

Loading Nonpoint Data
What if the data you want to load contains nonpoint data? In that case, you need to populate the
SDO_ELEM_INFO and SDO_ORDINATES fields of the SDO_GEOMETRY column. The control file in Listing 5-8
shows an example of how to do this for the sales_regions table, where most of the sales_regions
are nonpoint geometries.

Listing 5-8. Control File for Loading Nonpoint SDO_GEOMETRY Data

LOAD DATA

INFILE *

CONTINUEIF NEXT(1:1)='#'

INTO TABLE sales_regions

APPEND

FIELDS TERMINATED BY '|'

TRAILING NULLCOLS

(

id CHAR(6),

geom COLUMN OBJECT

(

SDO_GTYPE INTEGER EXTERNAL,

SDO_SRID INTEGER EXTERNAL,

SDO_ELEM_INFO VARRAY terminated by '/' (E FLOAT EXTERNAL),

SDO_ORDINATES VARRAY terminated by '/' (O FLOAT EXTERNAL)

)

)

BEGINDATA

10000| 2003| 8307|

#1| 1003| 1|/

#-77.04487| 38.9043742| -77.046645| 38.9040983| -77.04815| 38.9033127|-77.049155|

#38.9021368| -77.049508| 38.9007499| -77.049155| 38.899363| -77.048149|

#38.8981873| -77.046645| 38.8974017| -77.04487| 38.8971258| -77.043095|

#38.8974017| -77.041591| 38.8981873| -77.040585| 38.899363| -77.040232|

#38.9007499| -77.040585| 38.9021368| -77.04159| 38.9033127| -77.043095|

#38.9040983| -77.04487| 38.9043742| -77.04487| 38.9043742|/

Note that SQL*Loader cannot process records that are more than 64KB in size if the data are
included in the control file (as in Listing 5-3). (If the data are in a separate data file, the default limit for
a record is 1MB, which can be increased up to 20MB by overriding the default using the READSIZE
parameter.) To work around this restriction, the record is split into multiple lines. The line CONTINUEIF
NEXT(1:1)='#' specifies that the record is continued if a hash mark (#) is the first character of each
line. Note that the SDO_ORDINATES field could contain up to 1 million numbers. This means SQL*Loader
will need to concatenate multiple records of a size less than 64KB to create one SDO_ORDINATE_ARRAY
containing up to 1 million numbers.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 119

8997ch05.qxd 9/28/07 10:00 AM Page 119

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Caution In direct path mode for SQL*Loader, spatial indexes that are associated with the tables being loaded
are not maintained. You need to rebuild or drop and re-create such spatial indexes (see Chapter 8 for details on
rebuilding/re-creating spatial indexes).

Transporting Spatial Data Between Oracle Databases
In the following sections, we discuss how to exchange spatial data between different Oracle databases.
Oracle provides a variety of ways to perform such exchanges. These include the Import/Export utilities
and the transportable tablespace mechanisms. In addition, Oracle Spatial provides a mechanism to
migrate some of the pre-10g spatial formats to current formats using the SDO_MIGRATE function.

Import/Export Utilities
The easiest method to load data is through the use of Oracle’s platform-independent .dmp files.
These files are used by Oracle’s Import/Export utilities. For instance, you can export the customers
table from the spatial schema as shown in Listing 5-9.

Listing 5-9. Exporting the customers Table into the customers.dmp File

EXP spatial/spatial FILE=customers.dmp TABLES=customers

You can later import this data (that is, the .dmp file) into another schema, say the scott schema,
using Oracle’s Import utility. Listing 5-10 shows an example.

Listing 5-10. Importing the customers Table into the scott Schema

IMP scott/tiger FILE=customers.dmp IGNORE=Y INDEXES=N TABLES=CUSTOMERS

ignore=y ignores any warnings if objects already exist in the schema. If you do not specify any
command-line arguments, the Import utility will prompt you to specify the import file name and
the tables you want to import. You can then choose only a subset of the tables in sample_data.dmp to
be imported.

Note that if the location column in the customers table had a spatial index before it was
exported, then after the import, the spatial index will be automatically created on this table. The
user scott in Listing 5-10 does not have to do anything specific in this instance to create the index.
In addition, the spatial index will also populate the spatial metadata for the corresponding spatial
layer (that is, the location column in the customers table) in the USER_SDO_GEOM_METADATA view. It
uses the metadata from the exported database.

You can also import data into the scott schema using the fromuser and touser command-line
arguments. The import command is run as a system account (system/manager). Listing 5-11 shows
an example.

Listing 5-11. Importing Using the fromuser and touser Arguments

IMP SYSTEM/MANAGER FROMUSER=spatial TOUSER=scott FILE=customers.dmp

If the customers table has a spatial index, this will be re-created on import (as in Listing 5-10).
Note that to re-create the index when you import with the touser argument, scott needs to have
the CREATE TABLE and CREATE SEQUENCE privileges. You can use the following SQL to grant these priv-
ileges to scott:

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA120

8997ch05.qxd 9/28/07 10:00 AM Page 120

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SQL> CONNECT SYSTEM/MANAGER

SQL> GRANT create table to SCOTT;

SQL> GRANT create sequence to SCOTT;

You want to import just the table data without any indexes. You can then import the data by
specifying indexes=n on the command line.

The Oracle Data Pump component provides alternate and more efficient mechanisms for
transferring data between databases. It provides the EXPDP and IMPDP utilities, which are equivalent
to the Export (EXP) and Import (IMP) utilities of Oracle.

Transportable Tablespaces
An alternate mechanism to transfer data between different Oracle databases is the use of trans-
portable tablespaces. In this case, you can transport an entire tablespace (along with its contents)
between two Oracle databases (10g or higher). For instance, if the customers table is part of a table-
space, TBS, then you can transport this tablespace. To ensure that any spatial indexes existing on the
customers table are also transported, you need to perform the following steps:

1. Execute SDO_UTIL.PREPARE_FOR_TTS('TBS') before transporting the tablespace TBS.

2. Execute SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS after transporting the tablespace TBS.

Listing 5-12 shows how to create the .dmp file for transporting the tablespace TBS from a source
database.

Listing 5-12. Transporting the Tablespace TBS from a Source Database

SQLPLUS spatial/spatial

EXECUTE SDO_UTIL.PREPARE_FOR_TTS('TBS');

CONNECT SYSTEM/MANAGER AS SYSDBA

EXECUTE DBMS_TTS.TRANSPORT_SET_CHECK('TBS', TRUE);

ALTER TABLESPACE TBS READ ONLY;

EXIT;

EXP USERID = "'SYS/<password>'" TRANSPORT_TABLESPACE=Y TABLESPACES=TBS

FILE=trans_ts.dmp

This will create the tablespace metadata in the file trans_ts.dmp. Copy this file and sdo_tts.dbf
(the data file for the tablespace) to the target database system. You should create the spatial schema
into which this data needs to be populated and then import the contents of trans_ts.dmp as shown
in Listing 5-13.

Listing 5-13. Creating the Transported Tablespace in the Target Database

<copy the file to new system with user spatial created>

IMP USERID = "'SYS/<password>'" TRANSPORT_TABLESPACE=Y FILE=trans_ts.dmp

DATAFILES='sdo_tts.dbf' TABLESPACES=tbs

This will create the tablespace and populate the contents in the target database. Note that the
tablespace should not already exist in the target database. This restricts the import operation to
being performed only once (as it creates the tablespace) in the target database.

After importing, you should alter the tablespace TBS to allow read/write operations and execute
the SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS procedure to enable spatial indexes. Listing 5-14 shows
the corresponding SQL.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 121

8997ch05.qxd 9/28/07 10:00 AM Page 121

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 5-14. Enabling Spatial Indexes for the Tables in the Transported Tablespace

SQLPLUS SYS/<password>

ALTER TABLESPACE TBS READ WRITE;

CONNECT spatial/spatial;

EXEC SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS;

The INITIALIZE_INDEXES_FOR_TTS function re-enables the spatial indexes that exist on the
tables in the transported tablespace. Spatial indexes, however, will work only if the endian format of
the source and the target databases remains the same. If the endian format is different, then the spa-
tial indexes need to be rebuilt using the ALTER INDEX REBUILD command. Listing 5-15 shows an
example for the customers_sidx index on the location column of the customers table. (Chapter 8
provides details on creating and rebuilding indexes.)

Listing 5-15. Rebuilding a Spatial Index After Transporting Across Endian Platforms

SQL> ALTER INDEX customers_sidx REBUILD;

Migrating from Prior Versions of Oracle Spatial
The SDO_GEOMETRY data type has evolved significantly over past releases of Oracle (see Chapter 2 for
details), and it may continue to change in future releases. The SDO_MIGRATE package has functions,
such as TO_CURRENT, to migrate spatial data from prior versions to the “current” version, whatever
that is. Listing 5-16 shows an example to migrate the geometry data in the location column data of
the customers table to Oracle10g (format). Note the third parameter specifies the commit interval as
100, which tells the database to commit after migration of every 100 rows of the customers table.

Listing 5-16. Migrating location Column Data in the customers Table to the Current Format (10g)

SQL> EXECUTE SDO_MIGRATE.TO_CURRENT('customers', 'location', 100);

This function has other signatures to accommodate migration of a single geometry instead of
a set of geometries in a table. You can refer to the Oracle Spatial User’s Guide for more details on this
package. These migration functions work in only one direction—that is, they migrate data from
older versions to the current version.

Loading from External Formats
Several GIS vendors have their own formats to store spatial data. The ESRI shapefile format is one
such example. Oracle Spatial does not understand these formats. A variety of third-party converters
are available to perform conversion between other formats and the Oracle Spatial format. A full dis-
cussion of these formats and the converters is beyond the scope of this book; however, to illustrate
the concept, we will use the free but unsupported Oracle utility called SHP2SDO, which reads ESRI
shapefiles and outputs SQL*Loader control and data files (see Listing 5-17). These files can then be
used to populate the SDO_GEOMETRY column in an Oracle table.

Listing 5-17. Using shp2sdo to Convert from ESRI Shapefiles

SHP2SDO customers -g location -x(-180,180) -y(-90,90) -s 8307 -t 0.5

Note that the command-line argument customers in Listing 5-17 indicates three different files as
input: customers.shp, customers.shx, and customers.dbf. These three files contain different compo-
nents of an ESRI shapefile named customers. The -x and -y arguments specify the extent of the data in
x- and y-dimensions. The -t argument specifies the tolerance for the dimensions. The -s argument
specifies the SRID (coordinate system) for the data.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA122

8997ch05.qxd 9/28/07 10:00 AM Page 122

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The SHP2SDO utility outputs three files:

• customers.sql: This file creates the customers table and loads spatial metadata for the
customers table (associated spatial layers). Listing 5-18 shows an example.

• customers.ctl: This file is the control file for SQL*Loader.

• customers.dat: This file contains the data for loading using SQL*Loader.

Listing 5-18. customers.sql File

DROPTABLE customers;

CREATE TABLE customers

(

id NUMBER,

datasrc_id NUMBER,

name VARCHAR2(35),

category VARCHAR2(30),

street_number VARCHAR2(5),

street_name VARCHAR2(60),

city VARCHAR2(32),

postal_code VARCHAR2(16),

state VARCHAR2(32),

phone_number VARCHAR2(15),

customer_grade VARCHAR2(15)

);

INSERT INTO USER_SDO_GEOM_METADATA VALUES

(

'CUSTOMERS', -- Table_name

'LOCATION', -- Column name

MDSYS.SDO_DIM_INFO_ARRAY -- Diminfo

(

MDSYS.SDO_DIM_ELEMENT('Longitude', -180, 180, 0.5), --Longitude dimension

MDSYS.SDO_DIM_ELEMENT('Latitude', -90, 90, 0.5) --Latitude dimension

),

8307 -- Geodetic SRID

);

■Note See Chapter 3 for more information on different values in the SQL INSERT statement in Listing 5-18.

The customers.ctl and customers.dat files will be similar to those shown in Listings 5-6 and 5-7,
respectively.

You can then load the data into the customers table in Oracle using SQL*Loader, as shown in
Listing 5-19. This will create the table in Oracle and load the data into the table.

Listing 5-19. Executing the Output Files from SHP2SDO to Load Data into Oracle

SQLPLUS spatial/spatial @customers.sql

SQLLDR spatial/spatial CONTROL=customers.ctl

For more details on this utility, you can run SHP2SDO -h.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 123

8997ch05.qxd 9/28/07 10:00 AM Page 123

www.it-ebooks.info

www.freepdf-books.com

mailto:@customers.sql
http://www.it-ebooks.info/

Converting Between SDO_GEOMETRY and WKT/WKB
SQL/MM is the ISO/IEC international standard for “Text, Spatial, Still Images, and Data Mining.”
SQL/MM specifies the well-known text (WKT) and the well-known binary (WKB) formats for specifying
geometries (see Chapter 4 for details). You can convert these formats to an SDO_GEOMETRY (and store
the data in Oracle Spatial), and vice versa. For instance, Listing 4-11 shows how to convert WKT to
an SDO GEOMETRY by taking the WKT and an SRID as parameters (you can also pass WKB and SRID as
parameters in that example). Listing 5-20 shows how to do the reverse—that is, how to convert an
SDO_GEOMETRY object to WKT format. This example uses the GET_WKT method of the SDO_GEOMETRY data
type and returns the well-known text as a character large object (CLOB). Listing 5-21 shows an alter-
native to get the same result using the SDO_UTIL.TO_WKTGEOMETRY function.

Listing 5-20. Converting from an SDO_GEOMETRY to WKT Format

SQL> SELECT a.location.GET_WKT() wkt FROM customers a WHERE id=1;

WKT

POINT (-76.9773898 38.8886508)

SQL> SELECT SDO_UTIL.TO_WKTGEOMETRY(a.location) wkt FROM customers a WHERE id=1;

WKT

POINT (-76.9773898 38.8886508)

Listing 5-21. Using TO_WKTGEOMETRY to Convert from an SDO_GEOMETRY to WKT Format

SQL> SELECT SDO_UTIL.TO_WKTGEOMETRY(a.location) wkt FROM customers a WHERE id=1;

WKT

POINT (-76.9773898 38.8886508)

SQL> SELECT SDO_UTIL.TO_WKTGEOMETRY(a.location) wkt FROM customers a WHERE id=1;

WKT

POINT (-76.9773898 38.8886508)

Analogously, the GET_WKB method of the SDO_GEOMETRY data type (or the equivalent SDO_UTIL.
TO_WKBGEOMETRY function) converts an SDO_GEOMETRY object to WKB format. This method returns the
result as a binary large object (BLOB).

Since WKT and WKB are standard formats for spatial data supported by many external spatial ven-
dors, the preceding conversion methods enable the easy exchange of spatial data between Oracle
Spatial (SDO_GEOMETRY) format and other external formats.

Converting SDO_GEOMETRY Data in GML
Geographic Markup Language (GML) is an XML-based encoding standard for spatial information.
You can convert SDO_GEOMETRY data to/from GML format using various functions in the SDO_UTIL
package. Note that the GML Specification (www.opengeospatial.org) has two major versions: GML 2.0
and GML 3.1.1. GML2.0 supports only two-dimensional data types. In contrast, GML 3.1.1 is quite
rich and supports three-dimensional data types. Oracle Spatial has different functions to cater to
each version of GML.

Converting to GML
To convert to GML 2.0, you can use the SDO_UTIL.TO_GMLGEOMETRY function. This function takes
a single argument of type SDO_GEOMETRY and returns a GML-encoded document fragment in the

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA124

8997ch05.qxd 9/28/07 10:00 AM Page 124

www.it-ebooks.info

www.freepdf-books.com

http://www.opengeospatial.org
http://www.it-ebooks.info/

form of a CLOB. This returned object contains information about the type of the geometry, the SRID,
and the coordinates specified using appropriate GML tags.

Listing 5-22 shows an example of converting a customer location into a GML document fragment.
The geometry information is specified between the <gml> and </gml> tags. The type is specified as
a POINT, and coordinates are included between the <gml:coordinates> and </gml:coordinates> tags.
Note that although we’re using the point locations in the customers table for illustration, this func-
tion can work with arbitrary types of geometries (for example, polygons in the sales_regions or
us_states table).

Listing 5-22. Converting an SDO_GEOMETRY to a GML Document

SQL> SELECT TO_CHAR(SDO_UTIL.TO_GMLGEOMETRY(location)) gml_location

FROM customers

WHERE id=1;

GML_LOCATION

<gml:Point srsName="SDO:8307" xmlns:gml="http://www.opengis.net/gml">

<gml:coordinates decimal="." cs="," ts=" ">

-76.99022,38.888654

</gml:coordinates>

</gml:Point>

To convert to GML 3.1.1, you can utilize the TO_GMLGEOMETRY311 function in the SDO_UTIL package.
Note the suffix 311 to indicate the GML version. Listing 5-23 shows how to convert an axis-aligned
solid box into GML311. Observe that the solid box is expanded, and all the six surfaces are repre-
sented as polygons of the exterior composite surface bounding the specified solid.

Listing 5-23. Converting a Three-Dimensional Solid SDO_GEOMETRY to GML311

SQL> SELECT TO_CHAR(SDO_UTIL.TO_GML311GEOMETRY(

SDO_GEOMETRY

(

3008, -- SDO_GTYPE format: D00T. Set to 3008 for a 3-dimensional Solid

NULL, -- No coordinate system

NULL, --- No data in SDO_POINT attribute

SDO_ELEM_INFO_ARRAY(

1, -- Offset of a Simple solid element

1007, --- Etype for a Simple solid

3 -- Indicates an axis-aligned box

),

SDO_ORDINATE_ARRAY

(

0,0,0, --min-corners for box

4,4,4 --min-corners for box

)

)

)) AS GML_GEOMETRY FROM DUAL;

GML_GEOMETRY

--

<gml:Solid srsName="SDO:" xmlns:gml="http://www.opengis.net/gml">

<gml:exterior>

<gml:CompositeSurface>

<gml:surfaceMember>

<gml:Polygon><gml:exterior>

<gml:LinearRing><gml:posList srsDimension="3">

0.0 0.0 0.0 0.0 4.0 0.0 4.0 4.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 125

8997ch05.qxd 9/28/07 10:00 AM Page 125

www.it-ebooks.info

www.freepdf-books.com

http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.it-ebooks.info/

</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>

</gml:surfaceMember>

<gml:surfaceMember><gml:Polygon><gml:exterior><gml:LinearRing>

<gml:posList srsDimension="3">

4.0 4.0 4.0 0.0 4.0 4.0 0.0 0.0 4.0 4.0 0.0 4.0 4.0 4.0 4.0

</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>

</gml:surfaceMember>

<gml:surfaceMember><gml:Polygon><gml:exterior><gml:LinearRing>

<gml:posList srsDimension="3">

0.0 0.0 0.0 4.0 0.0 0.0 4.0 0.0 4.0 0.0 0.0 4.0 0.0 0.0 0.0

</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>

</gml:surfaceMember>

<gml:posList srsDimension="3">

0.0 0.0 0.0 0.0 0.0 4.0 0.0 4.0 4.0 0.0 4.0 0.0 0.0 0.0 0.0

</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>

</gml:surfaceMember>

</gml:surfaceMember>

<gml:posList srsDimension="3">

4.0 4.0 4.0 4.0 4.0 0.0 0.0 4.0 0.0 0.0 4.0 4.0 4.0 4.0 4.0

</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>

</gml:surfaceMember>

</gml:surfaceMember>

<gml:posList srsDimension="3">

4.0 4.0 4.0 4.0 0.0 4.0 4.0 0.0 0.0 4.0 4.0 0.0 4.0 4.0 4.0

</gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>

</gml:surfaceMember>

</gml:CompositeSurface>

</gml:exterior>

</gml:Solid>

Listings 5-21 and 5-22 convert each SDO_GEOMETRY to a GML geometry. You can encode multiple
geometries in a GML document using the XMLFOREST function and other SQLX functions. Listing 5-24
shows an example using the XMLFOREST function. We refer interested readers to Oracle XML Database
Developer’s Guide or Oracle XML API Reference Guide for details on these functions.

Listing 5-24. Converting Multiple Geometries to a GML Document Fragment

SQL> SELECT xmlelement("State", xmlattributes(

'http://www.opengis.net/gml' as "xmlns:gml"),

xmlforest(state as "Name", totpop as "Population",

xmltype(sdo_util.to_gmlgeometry(geom)) as

"gml:geometryProperty"))

AS theXMLElements

FROM spatial.us_states

WHERE state_abrv in ('DE', 'UT');

THEXMLELEMENTS

<State xmlns:gml="http://www.opengis.net/gml">

<Name>Delaware</Name> <Population>666168</Population>

<gml:geometryProperty><gml:Polygon srsName="SDO:8307"

xmlns:gml="http://www.opengis.net/gml">

<gml:outerBoundaryIs> <gml:LinearRing>

<gml:coordinates decimal="." cs="," ts=" ">

-75.788704,39.721699 ...

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA126

8997ch05.qxd 9/28/07 10:00 AM Page 126

www.it-ebooks.info

www.freepdf-books.com

http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.it-ebooks.info/

Converting GML to SDO_GEOMETRY
Listings 5-21 to 5-23 illustrated how to convert an SDO_GEOMETRY to GML. Now, we’ll show how to per-
form the reverse operation: converting GML geometry fragments to SDO_GEOMETRY. You can find two
functions in the SDO_UTIL package for this purpose: FROM_GMLGEOMETRY and FROM_GML311GEOMETRY.
Listing 5-25 shows the SQL for converting the GML_GEOMETRY output of Listing 5-23 back to an SDO_
GEOMETRY.

Listing 5-25. Converting a GML Solid Geometry into an SDO_GEOMETRY

SQL> SELECT SDO_UTIL.FROM_GML311GEOMETRY(

TO_CLOB(

'<gml:Solid srsName="SDO:" xmlns:gml="http://www.opengis.net/gml">

<gml:exterior>

<gml:CompositeSurface>

<gml:surfaceMember>

<gml:Polygon>

<gml:exterior>

<gml:LinearRing>

<gml:posList srsDimension="3">

0.0 0.0 0.0 0.0 4.0 0.0 4.0 4.0 0.0 4.0 0.0 0.0 0.0 0.0 0.0

</gml:posList>

</gml:LinearRing>

</gml:exterior>

</gml:Polygon>

</gml:surfaceMember>

<gml:surfaceMember>

<gml:Polygon>

<gml:exterior>

<gml:LinearRing>

<gml:posList srsDimension="3">

4.0 4.0 4.0 0.0 4.0 4.0 0.0 0.0 4.0 4.0 0.0 4.0 4.0 4.0 4.0

</gml:posList>

</gml:LinearRing>

</gml:exterior>

</gml:Polygon>

</gml:surfaceMember>

<gml:surfaceMember>

<gml:Polygon>

<gml:exterior>

<gml:LinearRing>

<gml:posList srsDimension="3">

0.0 0.0 0.0 4.0 0.0 0.0 4.0 0.0 4.0 0.0 0.0 4.0 0.0 0.0 0.0

</gml:posList>

</gml:LinearRing>

</gml:exterior>

</gml:Polygon>

</gml:surfaceMember>

<gml:surfaceMember>

<gml:Polygon>

<gml:exterior>

<gml:LinearRing>

<gml:posList srsDimension="3">

0.0 0.0 0.0 0.0 0.0 4.0 0.0 4.0 4.0 0.0 4.0 0.0 0.0 0.0 0.0

</gml:posList>

</gml:LinearRing>

</gml:exterior>

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 127

8997ch05.qxd 9/28/07 10:00 AM Page 127

www.it-ebooks.info

www.freepdf-books.com

http://www.opengis.net/gml
http://www.opengis.net/gml
http://www.it-ebooks.info/

</gml:Polygon>

</gml:surfaceMember>

<gml:surfaceMember>

<gml:Polygon>

<gml:exterior>

<gml:LinearRing>

<gml:posList srsDimension="3">

4.0 4.0 4.0 4.0 4.0 0.0 0.0 4.0 0.0 0.0 4.0 4.0 4.0 4.0 4.0

</gml:posList>

</gml:LinearRing>

</gml:exterior>

</gml:Polygon>

</gml:surfaceMember>

<gml:surfaceMember>

<gml:Polygon>

<gml:exterior>

<gml:LinearRing>

<gml:posList srsDimension="3">

4.0 4.0 4.0 4.0 0.0 4.0 4.0 0.0 0.0 4.0 4.0 0.0 4.0 4.0 4.0

</gml:posList>

</gml:LinearRing>

</gml:exterior>

</gml:Polygon>

</gml:surfaceMember>

</gml:CompositeSurface>

</gml:exterior>

</gml:Solid>'

)) GEOM FROM DUAL;

GEOM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

--

SDO_GEOMETRY(3008, NULL, NULL,

SDO_ELEM_INFO_ARRAY(

1, 1007, 1, -- 1 Exterior Composite Surface (with explicit surfaces;

not a box representation)

1, 1006, 6, -- Composite surface with 6 polygons

1, 1003,1 16, 1003, 1, 31, 1003, 1, 46, 1003, 1, 61, 1003, 1, 76, 1003, 1

),

SDO_ORDINATE_ARRAY(

0, 0, 0, 0, 4, 0, 4, 4, 0, 4, 0, 0, 0, 0, 0,

4, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 4, 4, 4, 4,

0, 0, 0, 4, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 0,

0, 0, 0, 0, 0, 4, 0, 4, 4, 0, 4, 0, 0, 0, 0,

4, 4, 4, 4, 4, 0, 0, 4, 0, 0, 4, 4, 4, 4, 4,

4, 4, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 4, 4, 4

)

)

Note that although we started off in Listing 5-23 with a simple axis-aligned box solid format,
what we got in Listing 5-25 from the GML fragment is the explicit representation of the solid by its
six faces. This will be the behavior always: when a three-dimensional geometry is output as a result
of a function in Oracle, it will be output in the full representation using all the components (no axis-
aligned rectangles and no solid boxes will be used in the output).

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA128

8997ch05.qxd 9/28/07 10:00 AM Page 128

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

For three-dimensional city models, the CityGML specification1 describes an explicit set of
entities to model the buildings, parks, vegetation, city furniture (lamp posts, and so on), and other
architectural elements. Oracle provides a simple conversion tool for storing CityGML documents
in the demo directory ($ORACLE_HOME/md/demo/CityGML/examples). You can compile and run the
CGMLToSDO Java class to scan an input CityGML.gml file and store the geometry components as
SDO_GEOMETRY columns in the database.

Extruding a Two-Dimensional Geometry to Three
Dimensions
Many applications store the two-dimensional footprints of buildings and other three-dimensional
objects. You can use the EXTRUDE function in the SDO_UTIL package to erect a building on the two-
dimensional footprint. What you need to do is specify the ground height and the top height for each
vertex of the two-dimensional geometry. Figure 5-1 shows an example of a two-dimensional geom-
etry and how it looks when each vertex is extruded along the z-dimension by specifying a ground
height of –1 and top height of 1.

Figure 5-1. (a) Example of a two-dimensional solid with the top heights and ground heights specified,
and (b) the extruded solid

The EXTRUDE function has the signature shown in Listing 5-26.

Listing 5-26. Signature of the EXTRUDE Function

SDO_UTIL.EXTRUDE

(

geometry IN SDO_GEOMETRY,

groundheights IN SDO_NUMBER_ARRAY,

topheights IN SDO_NUMBER_ARRAY,

topheights

(0,0)

(2,2)

(0,0,-1)

(2,2,-1)

(0,2)

(2,0)

(0,2,-1)

(2,0,-1)

(2,0,1)

(0,0,1) (0,2,1)

(2,2,1)

(a) (b)

X

Y

Z

groundheights

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 129

1. www.citygml.org. The specification is still under review by the Open Geospatial Consortium (OGC). It could
be accepted as a standard for city models in the future.

8997ch05.qxd 9/28/07 10:00 AM Page 129

www.it-ebooks.info

www.freepdf-books.com

http://www.citygml.org
http://www.it-ebooks.info/

result_to_be_validated IN VARCHAR2

tolerance IN NUMBER

) RETURN SDO_GEOMETRY

The arguments are as follows:

• geometry: This specifies the input two-dimensional SDO_GEOMETRY object that needs to be
extruded.

• groundheights: This is an array of numbers, one each for each vertex for use as the ground
height (minimum z value). If only one number is specified, then all vertices get the same
value (that is specified here).

• topheights: This is an array of numbers, one each for each vertex for use as the top height
(minimum z value). If only one number is specified, then all vertices get the same value (that
is specified here).

• result_to_be_validated: This is a character string that can be set to either 'TRUE' or 'FALSE'.
This string informs Oracle whether to validate the resulting geometry.

• tolerance: This specifies the tolerance to use to validate the geometry (see Chapter 3 for
details on tolerance).

A simple example is to specify a ground height and a top height for all the vertices. Listing 5-27
shows an example of how to extrude the two-dimensional polygon of Figure 5-1 (a) by specifying
the ground height as –1 and top height as 1. You can observe that the solid returned corresponds to
the one in Figure 5-1 (b).

Listing 5-27. Extruding a Polygon to a Three-Dimensional Solid

SELECT SDO_UTIL.EXTRUDE(

SDO_GEOMETRY -- first argument to validate is geometry

(

2003, -- 2-D Polygon

NULL,

NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 1 -- A polygon element

),

SDO_ORDINATE_ARRAY (0,0, 2,0, 2,2, 0,2, 0,0) -- vertices of polygon

),

SDO_NUMBER_ARRAY(-1), -- Just 1 ground height value applied to all vertices

SDO_NUMBER_ARRAY(1), -- Just 1 top height value applied to all vertices

'FALSE', -- No need to validate

0.5 -- Tolerance value

) EXTRUDED_GEOM FROM DUAL;

EXTRUDED_GEOM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINA

--

SDO_GEOMETRY(

3008, -- 3-Dimensional Solid Type

NULL, NULL,

SDO_ELEM_INFO_ARRAY(

1, 1007, 1, -- Solid Element

1, 1006, 6, -- 1 Outer Composite Surface made up of 6 polygons

1, 1003, 1, -- First polygon element starts at offset 1 in SDO_ORDINATES array

16, 1003, 1, -- second polygon element starts at offset 16

31, 1003, 1, -- third polygon element starts at offset 31

46, 1003, 1, -- fourth polygon element starts at offset 46

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA130

8997ch05.qxd 9/28/07 10:00 AM Page 130

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

61, 1003, 1, -- fifth polygon element starts at offset 61

76, 1003, 1), -- sixth polygon element starts at offset 76

SDO_ORDINATE_ARRAY(-- ordinates storing the vertices of the polygons

0, 0, -1, 0, 2, -1, 2, 2, -1, 2, 0, -1, 0, 0, -1,

0, 0, 1, 2, 0, 1, 2, 2, 1, 0, 2, 1, 0, 0, 1, 0, 0,

-1, 2, 0, -1, 2, 0, 1, 0, 0, 1, 0, 0, -1, 2, 0,

-1, 2, 2, -1, 2, 2, 1, 2, 0, 1, 2, 0, -1, 2, 2,

-1, 0, 2, -1, 0, 2, 1, 2, 2, 1,2, 2, -1, 0, 2,

-1, 0, 0, -1, 0, 0, 1, 0, 2, 1, 0, 2, -1))

The SQL script in Listing 5-28 uses the SDO_UTIL.EXTRUDE function to populate the GEOM column
of the buildings table. As shown in the listing, you use the footprints in the building_footprints
table and appropriate groundheight and topheight values for different groups of buildings. You can
utilize this city_buildings data for indexing and analysis in Chapters 8 and 9.

Listing 5-28. Script for Extruding Three-Dimensional Buildings from Their Footprints

-- For buildings 4,5,9,13,16,17, set topheight to 500

insert into city_buildings select id, type,

sdo_util.extrude(footprint,

SDO_NUMBER_ARRAY(0),

SDO_NUMBER_ARRAY(500),

'TRUE', 0.05) from building_footprints

where id in (4,5, 9, 13, 16, 17);

-- For buildings 3,10,15, set topheight to 400

insert into city_buildings select id, type,

sdo_util.extrude(footprint,

SDO_NUMBER_ARRAY(0),

SDO_NUMBER_ARRAY(400),

'TRUE', 0.05) from building_footprints

where id in (3, 10, 15);

-- For buildings 14, set topheight to 900

insert into city_buildings select id, type,

sdo_util.extrude(footprint,

SDO_NUMBER_ARRAY(0),

SDO_NUMBER_ARRAY(900),

'TRUE', 0.05) from building_footprints

where id=14 ;

-- For buildings 6,7,8,11,12, set topheight to 650

insert into city_buildings select id, type,

sdo_util.extrude(footprint,

SDO_NUMBER_ARRAY(0),

SDO_NUMBER_ARRAY(650),

'TRUE', 0.05) from building_footprints

where id in (6, 7, 8, 11, 12) ;

-- For rest of buildings set topheight to 600

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 131

8997ch05.qxd 9/28/07 10:00 AM Page 131

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

insert into city_buildings select id, type,

sdo_util.extrude(footprint,

SDO_NUMBER_ARRAY(0),

SDO_NUMBER_ARRAY(600),

'TRUE', 0.05) from building_footprints

where id in (17, 18, 19) ;

-- Update the srid to 7407 and commit

update city_buildings a set a.geom.sdo_srid=7407;

commit;

Validating Spatial Data
Since the beginning of this chapter, you have seen numerous ways to populate the SDO_GEOMETRY
columns in Oracle tables. Once the SDO_GEOMETRY data are in Oracle tables, you need to check
whether they are in valid Spatial format. Otherwise, you may get wrong results, errors, or failures
when performing spatial queries (discussed in Chapters 8 and 9).2

Validation Functions
Oracle Spatial provides two validation functions: VALIDATE_GEOMETRY_WITH_CONTEXT, which operates
on a single geometry, and VALIDATE_LAYER_WITH_CONTEXT, which operates on a table of geometries.
Both functions operate on two-dimensional as well as three-dimensional data and return an error
string if the input geometry is invalid. These validation functions (and also the debugging functions
described in next section) utilize a user-specified numeric value called tolerance to determine
whether a geometry is valid. In Chapter 3, we described the significance of this parameter and how
to set it. As explained there, this tolerance parameter is also stored in the DIMINFO column of the
USER_SDO_GEOM_METADATA view. We’ll cover the signature of these functions next.

VALIDATE_GEOMETRY_WITH_CONTEXT
This function is part of the SDO_GEOM package. It checks that a single specified geometry is in valid
(Oracle Spatial) format. It has the two signatures, as shown in Listing 5-29, both of which return
a VARCHAR2 string.

Listing 5-29. Signatures of the VALIDATE_GEOMETRY_WITH_CONTEXT Function

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(

geometry IN SDO_GEOMETRY,

tolerance IN NUMBER

) RETURN VARCHAR2;

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(

geometry IN SDO_GEOMETRY,

diminfo IN SDO_DIM_ARRAY

) RETURN VARCHAR2;

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA132

2. Oracle does not perform a full validation in spatial queries (Chapters 8 and 9) as such validation substantially
increases the execution time for spatial queries.

8997ch05.qxd 9/28/07 10:00 AM Page 132

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The arguments are as follows:

• geometry: This specifies the input SDO_GEOMETRY object that needs to be validated.

• tolerance: This specifies the tolerance to use to validate the geometry (see Chapter 3 for
details on tolerance).

• diminfo: This specifies dimension (bounds) information and tolerance information.

The function returns the string 'TRUE' if the geometry is valid. If it is invalid, it returns the Ora-
cle error number if it is known; otherwise, it returns 'FALSE'.

VALIDATE_LAYER_WITH_CONTEXT
Instead of validating geometries one by one, you can validate the geometries in an entire table using
the VALIDATE_LAYER_WITH_CONTEXT procedure. This procedure is also part of the SDO_GEOM package
and has the signature in Listing 5-30.

Listing 5-30. Signature of the VALIDATE_LAYER_WITH_CONTEXT Procedure

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT

(

table_name IN VARCHAR2,

column_name IN VARCHAR2,

result_table IN VARCHAR2

[,

commit_interval IN NUMBER

]

)

The arguments are as follows:

• table_name and column_name: These specify the names of the table and column storing the
SDO_GEOMETRY data.

• result_table: This specifies the table where the validation results, specifically the ROWIDs of
invalid geometries, will be stored. This table should have been created with the following
fields prior to the execution of this function. The SDO_ROWID field stores the ROWID, and STATUS
stores either a specific validation error or the string 'FALSE' (to indicate that the row is invalid).

SDO_ROWID ROWID

STATUS VARCHAR2(2000)

• commit_interval: This optional argument specifies the frequency at which the updates to the
results table are to be committed. If this argument is set to 100, then the validation results
are committed to result_table after validating every 100 geometries.

Validation Criteria
How does Oracle determine whether a geometry is valid or invalid? First, Oracle looks at the
SDO_GTYPE of the geometry for validation. For various elements in a geometry, the SDO_ETYPE is used
as a guide. From the class diagram in Figure 4-2, recall that an SDO_GEOMETRY can store a wide variety
of geometry types—points, line strings, rings, surfaces (polygons and composite surfaces), and
solids (simple and composite). Next, we’ll go over the different validation rules for each of these
types based on the topology of the geometry with some specific examples.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 133

8997ch05.qxd 9/28/07 10:00 AM Page 133

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Point
Note that the second signature to the VALIDATE_GEOMETRY_WITH_CONTEXT function specifies diminfo
instead of tolerance as a second parameter. This signature/usage has an advantage: in addition to
basic validation, the function checks whether all the coordinates are within the bounds specified in
the diminfo attribute. This is the only validation rule for a point geometry. Consider the point geom-
etry with longitude=–80 and latitude=20. If the diminfo is set to (0, 50) for both dimensions, then
the point will be invalid, as shown in Listing 5-31. The SQL returns the ORA-13011 error. This error
implies that the longitude value of –80 is out of range (0 to 50) for that dimension.

Listing 5-31. Using the diminfo Parameter in the VALIDATE_GEOMETRY_WITH_CONTEXT Function

SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(

SDO_GEOMETRY -- first argument to validate is geometry

(

2001, -- point type

NULL,

SDO_POINT_TYPE(-80,20,NULL), -- point is <-80,20> and is out of range.

NULL,

NULL

),

SDO_DIM_ARRAY -- second argument is diminfo (of type SDO_DIM_ARRAY)

(

SDO_DIM_ELEMENT('X', 0, 50, 0.5), -- lower, upper bound range is 0 to 50

SDO_DIM_ELEMENT('Y', 0, 50, 0.5) -- lower, upper bound range is 0 to 50

)

) is_valid FROM DUAL;

IS_VALID

--

13011 -- Coordinate value out of dimension range

If you don’t specify the SDO_DIM_ARRAY argument as second parameter and specify just the toler-
ance, the previous point will be returned as “valid.” Listing 5-32 shows the corresponding SQL.

Listing 5-32. Using the tolerance Parameter in the VALIDATE_GEOMETRY_WITH_CONTEXT Function

SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(

SDO_GEOMETRY -- first argument to validate is geometry

(

2001, -- point type

NULL,

SDO_POINT_TYPE(-80,20,NULL), --point not out of range as no range specified

NULL,

NULL

),

0.5

) is_valid FROM DUAL;

IS_VALID

--

TRUE

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA134

8997ch05.qxd 9/28/07 10:00 AM Page 134

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Line String
A line string should satisfy the following validation rules. Listing 5-33 shows the result of validating
a line string with duplicate points:

• All points in the line are distinct.

• A line should have two or more points.

Listing 5-33. Validating a Line String with Duplicate Points

SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(

SDO_GEOMETRY -- first argument to validate is geometry

(

2002, -- Line String type

NULL,

NULL,

SDO_ELEM_INFO_ARRAY(1,2,1), -- Line String

SDO_ORDINATE_ARRAY (

1,1, -- first vertex

2,2, -- second vertex

2,2 -- third vertex: same as second

)

),

0.5 -- second argument: tolerance

) is_valid FROM DUAL;

2 3 4 5 6 7 8 9 10 11 12

IS_VALID

--

13356 [Element <1>] [Coordinate <2>]

The return string '13356' corresponds to ORA-13356 (adjacent points in a geometry are redun-
dant). The return string also indicates which element has the error and the vertex (coordinate) that
has this error. In this case, the error is on the second vertex (or coordinate).

Polygons
Polygons define a contiguous area bounded by one outer ring on the exterior and by zero or
more inner rings on the interior. A ring is a planar closed line string. Polygons have the following
characteristics:

• Validity of rings: The rings in a polygon are valid. This means each satisfies the following
rules:

• Closedness: The first and last vertices of the ring are identical.

• Planarity: All vertices of the ring are on the same plane (within a planarity-tolerance
error).

• Nonintersection of edges: If edge ei connects vertices <Vi, Vi+1> and edge ej connects
<Vj, Vj+1>, then ei and ej have the following properties:

• If (j=i+1 mod n), where n is the number of distinct vertices, then ei and ej touch
only at vertex Vj.

• Otherwise, ei and ej do not intersect.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 135

8997ch05.qxd 9/28/07 10:00 AM Page 135

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Linestring: The ring is a valid line string (that is, adjacent vertices Vi, Vi+1 should not represent
the same point in space. Vi, Vi+1 are considered to duplicates of the same point if the distance
between Vi, and Vi+1 is less than a tolerance error).

• Co-planarity of rings: Since the polygon defines an area in a plane, all rings are on the same
plane (within the specified tolerance).

• Proper orientation: The inner rings (if any) must have the opposite orientation compared to
the outer ring.

• Single contiguous area: Together the outer ring and the interior rings define a single area.
This means the inner rings cannot partition the polygon into disjoint areas.

• Nonoverlapping rings: No two rings can overlap (tolerance) with each other, but the rings
can touch at a point (without violating the single contiguous area condition).

• Inner-outer disjointedness: Every inner ring must be inside the outer ring and can touch
(tolerance) at only a single point (under the single contiguous area condition).

• For two-dimensional polygons, the outer ring should be specified in a counterclockwise
manner, and inner rings should be specified in a clockwise manner. For three-dimensional
polygons, there is no such restriction.

Figure 5-2 shows examples of invalid polygons. Listing 5-34 illustrates what happens when the
geometry in Figure 5-2 (a) is validated.

Figure 5-2. Invalid polygons: invalid due to (a) edges of the ring of the polygon cross each other,
(b) inner-outer ring intersect more than at one point, and (c) inner rings overlap

Listing 5-34. Validation on a Self-Crossing Geometry in Figure 5-2 (a)

SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(

SDO_GEOMETRY

(

2003, -- 2-D Polygon

NULL,

NULL,

SDO_ELEM_INFO_ARRAY

(

1, 1003,1 -- Polygonal ring connected by lines

),

SDO_ORDINATE_ARRAY

(

2,2, -- first vertex

3,3.5, -- second vertex. Edge 1 is between previous and this vertex.

2,5,

(a) (b) (c)

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA136

8997ch05.qxd 9/28/07 10:00 AM Page 136

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

5,5,

3,3.5, -- fifth vertex. Edge 4 is between previous and this vertex.

5,2,

2,2

)

),

0.000005

)

FROM dual;

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(MDSYS.SDO_GEOMETRY(200

3,NULL,NULL,MDSYS.

--

13349 [Element <1>] [Ring <1>][Edge <1>][Edge <4>]

The result indicates that element 1 is invalid. For this element, edge 1 connecting (2, 2) with (3, 3.5)
and edge 4 connecting (5, 5) and (3, 3.5) are self-crossing (in other words, the polygon boundary crosses
itself).

Composite Surfaces
A composite surface defines a single contiguous area formed by 1 or more adjacent planar polygons.
The validation rules are defined as follows:

• Validity of polygons: Each of the polygons has to be a valid polygon.

• Nonoverlapping but edge-sharing nature: Any two polygons Pi and Pj should not overlap. In
other words, if Pi and Pj are in the same plane, the area of intersection of the two polygons
has to be zero. However, two polygons may touch (tolerance) in a (part of a) line/edge.

• Contiguous area: Every polygon in the composite should be reachable from any other poly-
gon by appropriate tracing of the shared (parts of) edges.

Figure 5-3 shows examples of invalid composite surfaces. Listing 5-35 shows the result of vali-
dating the geometry in Figure 5-3 (a).

Figure 5-3. Invalid composite surfaces: invalid due to violation of (a) nonoverlapping polygon rule
and (b) single contiguous area rule

(0,0,0)

(1,1,0)

(2,2,0)

(3,3,0)

(0,0,0) (3,0,0)

(2,2,0) (5,2,0)

(a) (b)

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 137

8997ch05.qxd 9/28/07 10:00 AM Page 137

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 5-35. Validation on the Composite Surface in Figure 5-3 (a)

SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(

SDO_GEOMETRY -- first argument to validate is geometry

(

3003, -- 3-D Polygon/Surface type

NULL,

NULL,

SDO_ELEM_INFO_ARRAY(1, 1006, 2, -- Composite Surface with 2 Polygons

1, 1003, 1, -- 1st polygon

16, 1003, 1 -- 2nd polygon

),

SDO_ORDINATE_ARRAY (

0,0,0, 2,0,0, 2,2,0, 0,2,0, 0,0,0, -- vertices of first polygon

1,1,0, 3,1,0, 3,3,0, 1,3,0, 1,1,0 -- vertices of second polygon

)

),

0.5 -- second argument: tolerance

) is_valid FROM DUAL;

IS_VALID

--

54515 Point:0,Edge:2,Ring:1,Polygon:1,

Observe that Oracle returns ORA-54515: “Outer rings in a composite surface intersect.” It also
indicates that the second edge from vertex (2,0,0) to vertex (2,2,0) from first polygon intersecting
with another edge (you need to identify that edge manually).

Simple Solid
A solid in Oracle defines a single contiguous volume bounded by one composite surface on the exte-
rior and zero or more inner composite surfaces on the interior. Based on this definition, the validation
rules are as follows:

• Single volume check: The volume should be contiguous.

• Closedness test: The boundary has to be closed. This is verified by checking that every edge is
traversed twice in the solid.

• Connectedness test: This means each component (surface, solid) of the solid should be reach-
able from any other component. Inner boundaries can never intersect but only touch under
the condition that the solid remains connected (see the preceding bulleted item).

• Inner-outer check: Every surface marked as an inner boundary should be inside the solid
defined by the exterior boundary.

• Orientation check: The polygons in the surfaces are always oriented such that the normals of
the polygons point outward from the solid that they bound. The normal of a planar surface is
defined by the “right thumb” rule (if the fingers of the right hand curl in the direction of the
sequence of the vertices, the thumb points in the direction of the normal).

• Validity of composite surfaces: Every specified surface is a valid surface.

• No inner ring in polygons: In the composite surfaces of a solid, no inner rings are allowed.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA138

8997ch05.qxd 9/28/07 10:00 AM Page 138

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 5-4 shows a solid that is not closed (the top face on the y=4 plane is missing). Likewise,
in Figure 5-5 (a), the solid has two exterior components (shown as dark boxes) and six inner compo-
nents (shown in faded lines). The six inner components are attached to each of the smaller dark box
and in that sense separate it from the outer solid. This solid is invalid because the volume is sepa-
rated into two pieces (one each in the dark solids). By adding a small connecting solid between the
two dark boxes as in Figure 5-5 (b), the solid becomes a valid solid because the two volumes are now
connected.

Figure 5-4. The solid geometry is invalid because it is not closed on the top side.

Figure 5-5. (a) Invalid solid because the volume in the dark boxes (thick lines) is separated by the holes
defined as boxes with thin lines. (b) The solid becomes valid because the volume is connected by adding
a conduit between the two disjoint volumes.

You can run validation on the solid in Figure 5-4 using the SQL in Listing 5-36. The SQL returns
error ORA-542502: “Solid is not closed.” It also indicates that the solid is open at the edge connect-
ing (0,4,0) and (4,4,0). In other words, this edge is not traversed twice (once each in opposite directions
in two polygons) in the solid specification.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 139

8997ch05.qxd 9/28/07 10:00 AM Page 139

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 5-36. Validating the Simple Solid in Figure 5-4

SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(

SDO_GEOMETRY(3008, NULL, NULL,

SDO_ELEM_INFO_ARRAY(

1, 1007, 1, -- Solid element

1, 1006, 5, -- Composite surface with 5 polygons

1, 1003,1, 16, 1003, 1, 31, 1003, 1, 46, 1003, 1, 61, 1003, 1

),

SDO_ORDINATE_ARRAY(

0, 0, 0, 0, 4, 0, 4, 4, 0, 4, 0, 0, 0, 0, 0,

4, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 4, 4, 4, 4,

0, 0, 0, 4, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 0,

0, 0, 0, 0, 0, 4, 0, 4, 4, 0, 4, 0, 0, 0, 0,

4, 4, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 4, 4, 4

)

),

0.5

) is_valid FROM DUAL;

IS_VALID

--

54502 Point:0,Edge:2,Ring:1,Polygon:1,Comp-Surf:1,

Composite Solids
A composite solid defines a single contiguous volume formed by a combination of one or more sim-
ple solids. Composite solids have the following characteristics:

• Component validity: Each component simple solid of a composite is valid.

• Shared-face but no-volume intersection: Intersection of two simple solid components of
a composite solid has to be a zero volume (can be non-zero area).

• Connectedness: The volume of the composite is contiguous. In other words, you can go from
any point in one component to any other component without going out of the composite
solid.

Figure 5-6 shows examples of some invalid composite solids. Figure 5-6 (a) is invalid because
the two simple solids that compose the composite solid are overlapping and their intersection has
a non-zero volume. Figure 5-6 (b) is invalid because the two components are not connected (that is,
the composite is not a single volume).

Figure 5-6. Composite solids invalid due to (a) overlapping volume and (b) not being a single volume
(violate connectedness)

(a) (b)

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA140

8997ch05.qxd 9/28/07 10:00 AM Page 140

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that composite solids are just for convenience: every composite solid can be represented
by a single simple solid by removing the shared faces in the representation of the solids. Figure 5-7
shows an example.

Figure 5-7. Composite solid and an equivalent simple solid

Collections
For collections of multiple elements, Oracle requires that all the individual elements are valid. In
addition, if the collection is a homogenous collection such as multipoint, multiline string, multisur-
face (multipolygon), or multisolid, the elements of the collection have to be of the same conforming
type.

Until now, all the examples are performing validation on a single geometry. What if you want to
validate all the geometries in a table? You use the VALIDATE_LAYER_WITH_CONTEXT function. To illus-
trate the usage with an example, run this procedure on the sales_regions table. Listing 5-37 shows
the corresponding SQL.

Listing 5-37. Using the VALIDATE_LAYER_WITH_CONTEXT Procedure

SQL> CREATE TABLE validate_results(sdo_rowid ROWID, status VARCHAR2(2000));

Table created.

SQL>

BEGIN

SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT

(

'SALES_REGIONS',

'GEOM',

'VALIDATE_RESULTS'

);

END;

/

SQL> SELECT * FROM validate_results;

SDO_ROWID STATUS

-------------------- ---

AAALctAADAAATRvAAA 13356 [Element <1>] [Coordinate <17>][Ring <1>]

Note that this returns the ROWID of the geometry with ID=10000, which is invalid. The reason is
that the coordinates of vertex 17 and the subsequent one are duplicates.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 141

8997ch05.qxd 9/28/07 10:00 AM Page 141

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Debugging Spatial Data
How do you remove the duplicate vertices? Oracle Spatial provides a number of functions to debug
and clean data loaded into an SDO_GEOMETRY column. In the following sections, we describe these
functions, because they will be useful in cleaning spatial data. These functions are part of the
SDO_UTIL package.

REMOVE_DUPLICATE_VERTICES
This function removes duplicate vertices from an SDO_GEOMETRY object. It takes in an SDO_GEOMETRY
and a tolerance value as input and returns a new SDO_GEOMETRY that does not have duplicate vertices.
The SQL in Listing 5-38 shows its usage.

Listing 5-38. Example of Removing Duplicate Vertices in a Geometry

SQL> SELECT geom, SDO_UTIL.REMOVE_DUPLICATE_VERTICES(sr.geom,0.5) nodup_geom

FROM sales_regions sr

WHERE id=1000;

GEOM

SDO_GEOMETRY

(

2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1),

SDO_ORDINATE_ARRAY

(

-77.04487, 38.9043742, -77.046645, 38.9040983, -77.04815, 38.9033127,

-77.049155, 38.9021368, -77.049508, 38.9007499, -77.049155, 38.899363,

-77.048149, 38.8981873, -77.046645, 38.8974017, -77.04487, 38.8971258,

-77.043095, 38.8974017, -77.041591, 38.8981873, -77.040585, 38.899363,

-77.040232, 38.9007499, -77.040585, 38.9021368, -77.04159, 38.9033127,

-77.043095, 38.9040983, -77.04487, 38.9043742, -77.04487, 38.9043742

)

)

NODUP_GEOM

SDO_GEOMETRY

(

2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 1),

SDO_ORDINATE_ARRAY

(

-77.04487, 38.9043742, -77.046645, 38.9040983, -77.04815, 38.9033127,

-77.049155,38.9021368, -77.049508, 38.9007499, -77.049155, 38.899363,

-77.048149, 38.8981873,-77.046645, 38.8974017, -77.04487, 38.8971258,

-77.043095, 38.8974017, -77.041591,38.8981873, -77.040585, 38.899363,

-77.040232, 38.9007499, -77.040585, 38.9021368, -77.04159, 38.9033127,

-77.043095, 38.9040983, -77.04487, 38.9043742

)

)

Notice that the last two vertices (look at the bold four numbers) of the original geometry are
the same. After invoking the REMOVE_DUPLICATE_VERTICES function, the duplicate vertex (which is the
18th in this case) is removed (both ordinates of this vertex are removed) from the geometry. If you
rerun the VALIDATE_GEOMETRY_WITH_CONTEXT function on this result geometry as shown in Listing 5-39,
it returns the string 'TRUE'. Since the geometry is a polygon (sdo_gtype=2003), observe that the first
point (at –77.04487, 38.9043742) and the last point (at –77.04487, 38.9043742) are the same.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA142

8997ch05.qxd 9/28/07 10:00 AM Page 142

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 5-39. Validating After Removing the Duplicate Vertices

SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(

SDO_UTIL.REMOVE_DUPLICATE_VERTICES(a.geom, 0.5),

0.5

) is_valid

FROM sales_regions a

WHERE id=10000;

IS_VALID

--

TRUE

EXTRACT
This function extracts a specific element from an SDO_GEOMETRY object. It comes in handy while
debugging multielement geometries such as multipolygons. This function takes as arguments an
SDO_GEOMETRY, an element number, and, optionally, a ring number (within the element). It returns
the extracted element as an SDO_GEOMETRY object.

Listing 5-40 shows an example of how to extract the second element of a multipolygon geome-
try. Note that the second argument, 2, in the EXTRACT function specifies that the second element is
to be fetched. Looking at SDO_ELEM_INFO_ARRAY (1,1003,3, 5, 1003,1), you have two element descrip-
tor triplets (1,1003,3) for the first element (specifying a rectangle polygon; see Figure 4-10 and the
accompanying listing for examples) and (5, 1003,1) for the second element. This means the second
element starts at ordinate 5 (that is, the third vertex). This is the element that will be extracted.

■Caution The EXTRACT function described here is for use only with two-dimensional geometries. For three-
dimensional geometries, there is a separate function called EXTRACT3D that we describe at the end of the section.

Listing 5-40. Extracting the Second Element from a Geometry

SQL> SELECT SDO_UTIL.EXTRACT

(

SDO_GEOMETRY

(

2007, -- multipolygon collection type geometry

NULL,

NULL,

SDO_ELEM_INFO_ARRAY

(

1,1003,3, -- first element descriptor triplet: for rectangle polygon

-- (see Figure 4-10 and the accompanying listing in Chapter 4)

5, 1003, 1 -- second element descriptor triplet:

-- starting offset 5 means it starts at the 5th ordinate

),

SDO_ORDINATE_ARRAY

(

1,1,2,2, -- first element ordinates (four for mbr)

3,3, 4, 3, 4,4, 3,4, 3,4,3,3 -- second element starting at 5th ordinate:

-- this second element is returned

)

), -- End of the Geometry

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 143

8997ch05.qxd 9/28/07 10:00 AM Page 143

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

2 -- specifies the element number to extract

) second_elem

FROM dual;

SECOND_ELEM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATE

--

SDO_GEOMETRY

(

2003,

NULL,

NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 1),

SDO_ORDINATE_AR RAY

(

3, 3, -- first vertex coordinates

4, 3, -- second vertex coordinates

4, 4, -- third vertex coordinates

3, 4, -- fourth vertex coordinates

3, 4, -- fifth vertex coordinates

3, 3 -- sixth vertex coordinates (same as first for polygon)

)

)

After extracting the appropriate element, you can perform validation on the specific element to
identify what is wrong with it. Listing 5-41 shows an example.

Listing 5-41. Validation of an Extracted Geometry

SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(

SDO_UTIL.EXTRACT

(

SDO_GEOMETRY

(

2007, null, null,

SDO_ELEM_INFO_ARRAY(1,1003,3, 5, 1003, 1),

SDO_ORDINATE_ARRAY

(

1,1,2,2, -- first element of multipolygon geometry

3,3, 4, 3, 4,4, 3,4, 3,4,3,3 -- second element of multipolygon geometry

)

),

2 -- element number to extract

),

0.00005

)

FROM dual;

Note that the highlighted (bold) portion of the SQL in Listing 5-41 is the same as the SQL in
Listing 5-40. That means Listing 5-41 is equivalent to performing the validation check on the result
of Listing 5-40. Listing 5-42 shows the SQL rewritten using the result of Listing 5-40.

Listing 5-42. Validation on the Result of SDO_UTIL.EXTRACT

SQL> SELECT SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

(

SDO_GEOMETRY

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA144

8997ch05.qxd 9/28/07 10:00 AM Page 144

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

(

2003, NULL, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 1),

SDO_ORDINATE_ARRAY

(

3, 3, -- first vertex coordinates

4, 3, -- second vertex coordinates

4, 4, -- third vertex coordinates

3, 4, -- fourth vertex coordinates

3, 4, -- fifth vertex coordinates

3, 3 -- sixth vertex coordinates (same as first for polygon)

)

),

0.00005 -- tolerance

) FROM dual;

SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT(SDO_UTIL.EXTRACT(SDO_GE

OMETRY(2007,NULL,

--

13356 [Element <1>] [Coordinate <4>][Ring <1>]

The result of 13356 <Coordinate 4> indicates a duplicate vertex at the fourth (and fifth) vertex
coordinates of the SDO_ORDINATE_ARRAY5. The ordinate array is (3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 3, 3), and the
fourth and fifth vertexes (coordinates) are at (3, 4) and (3, 4), which are duplicates. You can remove
this duplicate coordinate using the REMOVE_DUPLICATE_VERTICES function, as shown in Listing 5-43.
This function removes the duplicate vertex from the geometry.

Listing 5-43. Removing Duplicate Vertices

SQL> SELECT SDO_UTIL.REMOVE_DUPLICATE_VERTICES

(

SDO_UTIL.EXTRACT

(

SDO_GEOMETRY

(

2007, NULL, NULL,

SDO_ELEM_INFO_ARRAY(1,1003,3, 5, 1003, 1),

SDO_ORDINATE_ARRAY

(

1,1,2,2,

3,3, 4, 3, 4,4, 3,4, 3,4,3,3

)

),

2

),

0.00005

)

FROM dual;

SDO_UTIL.REMOVE_DUPLICATE_VERTICES(SDO_UTIL.EXTRACT(SDO_GEOMETRY(

2007,NULL,NULL,

--

SDO_GEOMETRY

(

2003,

NULL,

NULL,

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 145

8997ch05.qxd 9/28/07 10:00 AM Page 145

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_ELEM_INFO_ARRAY(1, 1003, 1),

SDO_ORDINATE_ARRAY

(

3, 3, -- first vertex coordinates

4, 3, -- second vertex coordinates

4, 4, -- third vertex coordinates

3, 4, -- fourth vertex coordinates (duplicate (3,4) at fifth removed)

3, 3 -- fifth vertex coordinates (same as first for polygon)

)

)

■Tip You can directly run REMOVE_DUPLICATE_VERTICES on the collection geometry, and that will remove the
duplicate vertex. Listing 5-41 uses SDO_UTIL.EXTRACT mainly for illustration.

APPEND
How do you recombine the new element after removing the duplicate with element 1? The SDO_
UTIL.APPEND function combines multiple geometries as long as they do not intersect. This function
takes two geometries and a tolerance and appends them into a single geometry. Listing 5-44 shows
an example. This function first expands the first element, specified as a rectangle polygon (see
Figure 4-10 in Chapter 4 for example) using the triplet <1,1003,3> in SDO_ELEM_INFO_ARRAY to five
vertices for the polygon (four vertices for each corner and the first vertex repeated as the fifth vertex
repeated for closure of the ring). The function then performs an append of the vertices of the first
element and the second element, removing any duplicates automatically in that process.

Listing 5-44. Example of SDO_UTIL.APPEND

SQL> SELECT

SDO_UTIL.APPEND

(

SDO_UTIL.EXTRACT

(

SDO_GEOMETRY

(

2007, NULL, NULL,

SDO_ELEM_INFO_ARRAY(1,1003,3, -- First element is as a rectangle polygon

5, 1003, 1),

SDO_ORDINATE_ARRAY(1,1,2,2,

3,3, 4, 3, 4,4, 3,4, 3,4,3,3)

),

1

),

SDO_UTIL.REMOVE_DUPLICATE_VERTICES

(

SDO_GEOMETRY

(

2007, NULL, NULL,

SDO_ELEM_INFO_ARRAY(1,1003,3, 5, 1003, 1),

SDO_ORDINATE_ARRAY

(

1,1,2,2,

3,3, 4, 3, 4,4, 3,4, 3,4,3,3

)

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA146

8997ch05.qxd 9/28/07 10:00 AM Page 146

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

),

0.00005

)

) combined_geom

FROM dual;

COMBINED_GEOM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

SDO_GEOMETRY

(

2007, NULL, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 1, 11, 1003, 1),

SDO_ORDINATE_ARRAY

(1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 3, 3, 4, 3, 4, 4, 3, 4, 3, 3)

)

GETNUMELEM, GETNUMVERTICES, and GETVERTICES
These functions allow you to inspect the number of elements or vertices or get the set of vertices in
an SDO_GEOMETRY object. These functions are also part of the SDO_UTIL package. The SQL in Listing 5-45
shows an example of the usage of the first two functions.

Listing 5-45. Finding the Number of Elements in a Geometry

SQL> SELECT SDO_UTIL.GETNUMELEM(geom) nelem

FROM sales_regions

WHERE id=10000;

NELEM

1

SQL> SELECT SDO_UTIL.GETNUMVERTICES(geom) nverts

FROM sales_regions

WHERE id=10000;

NVERTS

18

EXTRACT3D
The EXTRACT function described earlier takes an input geometry and at most two additional numeric
parameters. This function works only with two-dimensional geometries. For three-dimensional
geometries, you may need to specify more than two parameters to get a point or an edge, for example,
of a solid geometry. For working with three-dimensional geometries, you can use the EXTRACT3D func-
tion. This function takes an input three-dimensional geometry and a LABEL string that uniquely
identifies each element of the input geometry. The LABEL string is a comma-delimited string of ID num-
bers specifying the subset geometry to be returned, and they should be of the form PointID, EdgeId,
RingID, PolygonID, CSurfId, SolidId, MultiID. You can specify values for these IDs as follows:

• PointID: ID of the point to be retrieved. Specify 0 if you do not want to retrieve a point but
you want to retrieve a higher-level element such as an edge, ring, polygon, surface, solid, or
multisolid.

• EdgeID: ID of the edge to be retrieved. Specify 0 if you do not want to retrieve an edge but you
want to retrieve a higher-level element such as a ring, polygon, surface, solid, or multisolid.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 147

8997ch05.qxd 9/28/07 10:00 AM Page 147

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• RingID: ID of the ring to be retrieved. Specify 0 if you do not want to retrieve a ring but you
want to retrieve a higher-level element such as a polygon, surface, solid, or multisolid.

• PolygonID: ID of the polygon to be retrieved. Specify 0 if you do not want to retrieve a poly-
gon but you want to retrieve a higher-level element such as a composite surface, solid, or
multisolid.

• CSurfID: ID of the surface in a solid to be retrieved. Specify 0 otherwise. This ID is used to
identify a specific surface in the set of outer and inner composite surfaces that make up
a solid element. You specify a value of 1 for the outer surface and values greater than 1 for the
inner surfaces of the solid element.

• SolidID: ID of the solid component of a composite solid element to be retrieved. Specify 0
otherwise.

• MultiID: ID of the component in a collection to be retrieved.

The MultiID will be useful only in the case of collections, and it can be omitted otherwise.
Likewise, you can specify as many of the elements as apply for the specific geometry type (that is,
you do not have to specify solidId if the geometry is a point, line polygon, or surface).

Using this function, let’s identify the edge that caused the problem in Listing 5-36. The error
string was “Point:0, Edge:2, Ring:1, Polygon:1, Csurf:1.” You can plug in the same values of point_id=0
(this means you are not interested in this but instead a higher-level element such as a line or poly-
gon), edgeID=2, RingID=1, PolygonID=1, and CsurfID=1 as the LABEL string for the EXTRACT3D function.
Listing 5-46 shows the corresponding SQL. As mentioned in the discussion for Listing 5-36, the edge
that is not closed is the edge from (0,4,0) to (4,4,0) (corresponding to one of the edges on the top
face of the solid of Figure 5-4 mentioned in Listing 5-36).

Listing 5-46. Extracting the Invalid Edge for Listing 5-36

SQL> SELECT SDO_UTIL.EXTRACT3D

(

SDO_GEOMETRY(3008, NULL, NULL,

SDO_ELEM_INFO_ARRAY(

1, 1007, 1, -- Solid element

1, 1006, 5, -- Composite surface with 5 polygons

1, 1003,1, 16, 1003, 1, 31, 1003, 1, 46, 1003, 1, 61, 1003, 1

),

SDO_ORDINATE_ARRAY(

0, 0, 0, 0, 4, 0, 4, 4, 0, 4, 0, 0, 0, 0, 0, -- Vertices of 2nd edge bold

4, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 4, 4, 4, 4,

0, 0, 0, 4, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 0,

0, 0, 0, 0, 0, 4, 0, 4, 4, 0, 4, 0, 0, 0, 0,

4, 4, 4, 4, 0, 4, 4, 0, 0, 4, 4, 0, 4, 4, 4

)

),

'0,2,1,1,1' -- LABEL String for extracting the

-----2nd edge of Ring1, Polygon1,Comp Surface1

) edge FROM DUAL;

EDGE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

--

SDO_GEOMETRY(3002, NULL, NULL, SDO_ELEM_INFO_ARRAY(1, 2, 1), SDO_ORDINATE_ARRAY(

0, 4, 0, 4, 4, 0))

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA148

8997ch05.qxd 9/28/07 10:00 AM Page 148

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Miscellaneous Functions
The SDO_UTIL package has a number of other functions to manipulate SDO_GEOMETRY objects. The fol-
lowing is a list of functions that may aid in debugging or cleaning up spatial data. We will discuss
other functions at appropriate times throughout the book.

• SDO_CONCAT_LINES: This function concatenates two line string geometries. The line strings are
expected to be nonintersecting. Because of this assumption, this function executes much
faster than the SDO_UNION function, which we will discuss in Chapter 9.

• SDO_REVERSE_LINESTRING: This function reverses the order of vertices in a line string. Such
functions may be useful in routing and other navigation applications.

• SDO_POLYGONTOLINE: This function converts a polygon to a line string geometry.

In short, the SDO_UTIL and SDO_GEOM packages provide a rich set of functions to validate and
debug SDO_GEOMETRY data.

Summary
In this chapter, we described how to load data into and out of SDO_GEOMETRY columns. We discussed
how to load from text files using SQL*Loader and how to load using the Oracle utilities such as
Import/Export and transportable tablespaces. We also described how to convert SDO_GEOMETRY data
to GML format.

Once data are loaded into SDO_GEOMETRY columns, the data need to be validated. We described
how to perform validation to check for conformity with Oracle Spatial formats. In case of invalid
data, we described a set of functions that are helpful in debugging such geometries and correcting
the inaccuracies.

We also explained how to import data into the example application described in Chapter 3. In
the next chapter, we will describe how to derive the SDO_GEOMETRY data from the address columns of
an application’s table. You can use this alternate method to populate the columns in application-
specific tables such as branches and customers. Once the spatial data is populated in the tables, we
will describe how to perform analysis and visualization in Chapters 8 to 11.

CHAPTER 5 ■ LOADING, TRANSPORTING, AND VALIDATING SPATIAL DATA 149

8997ch05.qxd 9/28/07 10:00 AM Page 149

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997ch05.qxd 9/28/07 10:00 AM Page 150

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Geocoding

To run the examples in this chapter, you need to import the following dataset. For complete
details on creating this user and loading the data, refer to the introduction.

imp spatial/spatial file=gc.dmp ignore=y full=y

In preceding chapters, we discussed how to perform spatial searches and analysis. In each example,
the entities manipulated (customers, ATMs, stores, and so on) were spatially located. They all
included an SDO_GEOMETRY column containing their spatial location using geographical coordinates
(longitude and latitude).

But how did this happen? Where did this information come from? Certainly, you cannot ask
your customers to give their geographical coordinates when they register with you or when they
place an order! We used a process called geocoding—we geocoded addresses and stored the result-
ing locations as SDO_GEOMETRY objects.

By geocoding, we mean a process that converts an address (for example, “3746 Connecticut
Avenue NW, Washington, D.C. 20008, United States”) to geographical coordinates (longitude =
–77.060283, latitude = 38.9387083). In addition, geocoding may also normalize and correct the input
address (HouseNumber=3746; StreetName=Connecticut Avenue NW; City=Washington; State=D.C.;
Zip=20008; Country=US).

In this chapter, we describe the functionality of the geocoder in Oracle Spatial and how to use it to
location-enable a business application. We start with a brief overview of the geocoding process. This
will give you an understanding of how the conversion from addresses to SDO_GEOMETRY objects happens.

Next, we discuss how to set up the reference data used by the geocoder. This reference data is
used to determine/extrapolate the location for a specified address. You can obtain this data from
a data provider such as NAVTEQ.

Then we describe different geocoding functions that use the reference data. We provide generic
examples to illustrate their functionality.

We go on to describe how to add SDO_GEOMETRY columns to application data and how to popu-
late them using the Oracle geocoder. We illustrate this using different functions/APIs of the geocoder.

Finally, we show how to set up and use the Geocoding web service, provided with Oracle Spatial
since 10g Release 2.

What Is Geocoding?
Geocoding serves two purposes. The main purpose is to associate geographical coordinates with an
address. Listing 6-1 shows an example of how to get the coordinates from an address using the sim-
ple GEOCODE_AS_GEOMETRY function that returns a point SDO_GEOMETRY object. That object contains the
geographical coordinates that the geocoder associated with this address.

151

C H A P T E R 6

■ ■ ■

8997ch06.qxd 9/28/07 10:01 AM Page 151

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 6-1. Geocoding an Address

SQL> SELECT SDO_GCDR.GEOCODE_AS_GEOMETRY

(

'SPATIAL',

SDO_KEYWORDARRAY

(

'3746 CONNECTICUT AVE NW',

'WASHINGTON, DC 20008'

),

'US'

) geom

FROM DUAL;

GEOM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-77.060283, 38.9387083, NULL), NULL, NULL)

What would happen if the address were misspelled? This brings us to the second purpose of
geocoding, which is to correct various errors in addresses. This process is often called address nor-
malization, and it involves structuring and cleaning the input address.

Address normalization is important: it corrects mistakes and ensures that all address informa-
tion is complete, well structured, and clean. A set of clean and normalized addresses is necessary to
derive meaningful location information and to remove duplicates.

It is common, for instance, to find variations of the same customer address in a customer data-
base. The same customer might provide the information at different occasions in slightly different
ways, and without normalization, this would lead to semantic duplicates that are treated as sepa-
rate entries in the customer database.

Listing 6-2 shows how to obtain corrections for a misspelled address using the GEOCODE function.
“Connecticut” is spelled as “Connectict” here, and the postal code is incorrect.

Listing 6-2. Geocoding and Normalizing an Address

SQL> SELECT SDO_GCDR.GEOCODE

(

'SPATIAL',

SDO_KEYWORDARRAY

(

'3746 CONNECTICT AVE NW',

'WASHINGTON, DC 20023'

),

'US',

'DEFAULT'

) geom

FROM DUAL;

GEOM(ID, ADDRESSLINES, PLACENAME, STREETNAME, INTERSECTSTREET, SECUNIT,

SETTLEM

SDO_GEO_ADDR

(0, SDO_KEYWORDARRAY(NULL), NULL, 'CONNECTICUT AVE NW', NULL, NULL,

'WASHINGTON', NULL, 'DC', 'US', '20008', NULL, '20008', NULL, '3746', 'CONNECT

ICUT', 'AVE', 'F', 'F', NULL, 'NW', 'L', .944444444, 18571166, '????#E?UT?B281C

??', 10, 'DEFAULT', -77.060283, 38.9387083)

CHAPTER 6 ■ GEOCODING152

8997ch06.qxd 9/28/07 10:01 AM Page 152

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The result of this function is a fairly complex structure of type SDO_GEO_ADDR. For now, we merely
note that the structure contains the correct street name and the correct postal code. Later in this
chapter, we cover the structure in more depth, and you will see how to format it in a readable way.

Architecture of the Oracle Geocoder
How is geocoding done? Figure 6-1 illustrates this process. First, the geocoder requires reference
data—a list of addresses with known coordinates such as roads and streets but also towns, postal
codes, and so on, with their geographical locations and shapes.

With this reference data, the geocoder performs the following three steps:

1. Parse the input address.

2. Search for an address with a matching name.

3. Compute a location (spatial coordinates) for the address that was found.

Let’s examine these three steps in detail.

Figure 6-1. Oracle geocoder architecture

Parsing the Input Address
The geocoder first recognizes the parts of a street address and separates them into recognizable ele-
ments such as street name, street type (street, avenue, boulevard, and so on), house number, postal
code, and city.

This process can be tricky—there are many ways to write the same address, especially in differ-
ent countries, cultures, and languages. For example, the street type can precede (such as Rue de la
Paix), follow (such as Elm Square), or be attached to the street name (such as Bahnhofstraße).

CHAPTER 6 ■ GEOCODING 153

8997ch06.qxd 9/28/07 10:01 AM Page 153

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The Oracle geocoder recognizes a variety of address formats in various countries and languages.
The formats are defined in one table, GC_PARSER_PROFILEAFS, in the reference data. Table 6-1 illustrates
the effect of parsing some common international addresses.

Table 6-1. Parsing International Addresses

CHAPTER 6 ■ GEOCODING154

Address Element United States Germany France

Full address 3746 Connecticut Avenue NW Arabellastraße 6 12, Avenue Robert Soleau
Washington, D.C. 20008 D-81925 München 06600 Antibes

House number 3746 6 12

Street base name Connecticut Arabella Robert Soleau

Street type Avenue Strasse Avenue

Street suffix NW

City Washington München Antibes

Postal code 20008 81925 06600

Region D.C

■Note Postal organizations have defined an official way to format addresses. The Universal Postal Union
(www.upu.int) compiles and publishes this information.

Searching for the Address
Once the address has been parsed into recognizable elements, the geocoder can search the list of
street names for the one that most closely matches the given address.

This search is fuzzy, meaning it finds a match even if the input address is misspelled (such as
“avenue” spelled as “avnue” or “Van Ness” spelled as “Van Neus”) or represented differently from the
stored addresses (such as “street” entered as “st.” or “strasse” entered as “straße”).

The various keywords used in an address, with their multiple spellings (including common
spelling errors), are stored in the GC_PARSER_PROFILES table in the reference data. For example,
JUNCTION can be spelled JCT, JCTN, JUNCTN, or even JCTION or JUNCTON.

The search may also be “approximate”—that is, if the exact street cannot be found, then the
geocoder will fall back to the postal code or city name. The user is able to specify whether this is
acceptable by passing a matching mode parameter. We will cover the various possible modes later in
the chapter.

In some cases, there may be multiple matches. For example, the chosen street name “Warren
Street” may not exist, but “Warren Place” and “Warren Avenue” might. In such a case, both results
will be returned. It is up to the calling application to decide which result to choose or, more likely, to
let the user of the application choose.

One important result of the address search is a cleaned-up address, with the correct formatting
and spelling of the street name, complete with elements that were missing from the input address,
such as the postal code.

Computing the Spatial Coordinates
Once the proper street has been located, the geocoder needs to convert it into a geographical point.
Let’s examine this final step of the geocoding process.

8997ch06.qxd 9/28/07 10:01 AM Page 154

www.it-ebooks.info

www.freepdf-books.com

http://www.upu.int
http://www.it-ebooks.info/

The geocoding reference data used by the Oracle geocoder holds the house numbers at each
end of a street segment, on each side of that street. When the input address contains a house num-
ber, the geocoder computes the geographical position of the house number by interpolation.

Figure 6-2 illustrates this process. The figure shows a section of Elm Street. Only the numbers of
houses at each end are known: numbers 10 and 11 are at one end, and numbers 18 and 19 are at the
other end. Where, then, is “13 Elm St”? The Oracle geocoder assumes that houses are regularly spaced
along the linear geometry that represents the street segment, and positions (that is, interpolates)
house number 13 accordingly.

Figure 6-2. Interpolation example

When there is a good correlation between the house numbers and the distance along the road,
the result will be quite precise. Otherwise, it will be approximate and may be erroneous. Even in the
latter case, the margin of error is generally small.

■Note Streets are modeled as line strings, the “centerline” of the actual street. The Oracle geocoder actually
positions houses on the centerline—that is, the actual coordinates are in the middle of the street!

Note that the input address may be incomplete. This is what happens when the input address
has missing components:

• When no house number is given in the address, the geocoder returns the midpoint of the
street. The reference data of the Oracle geocoder stores the precomputed location of the
house number at the midpoint.

• When no street is given in the input address or when the street is not found, the geocoder falls
back to the postal code or city (built-up area, settlement, or municipality). In those cases, it
returns a geographical point that corresponds to the “center” of the postal code or city.

Note that the required precision of a geographical location for a given address varies with the
application:

• For an application that returns the current weather at a chosen location, geocoding at the
postal code or city level is quite sufficient.

• For an application that compares customer locations with branch (business) locations or
sales territories, geocoding at the street level is generally sufficient.

• For a pizza delivery or taxi pickup application, geocoding at the house level is nice, but just
knowing the street segment (that is, the city block) and the side of the street is generally
sufficient.

CHAPTER 6 ■ GEOCODING 155

8997ch06.qxd 9/28/07 10:01 AM Page 155

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Note The coordinates returned by the geocoder are always in the coordinate system used in the reference
data. For most data providers (as is the case for NAVTEQ) this will be longitude, latitude (WGS84) but the geocoder
will work with any coordinate system.

In the next section, we discuss how to set up the reference data for the geocoder. We then illustrate
the previously discussed geocoding process with appropriate examples.

Setting Up the Reference Data for the Geocoder
The reference data used by the Oracle geocoder is a set of tables with a specific structure. All the
tables start with the GC_ prefix. There are two kinds of tables:

• Parameter tables control the operation of the geocoder.

• Data tables contain the place names and their geographical coordinates.

The way you load those tables depends on the way your data supplier provides them. At the
time of this writing, only NAVTEQ supplies the reference data for the geocoder, in Oracle export
(.dmp) files or transportable tablespaces. Other suppliers may choose other mechanisms, such as
SQL*Loader and SQL scripts, to provide their data.

For the examples in this book, we use the sample data that NAVTEQ provides, which covers San
Francisco, California, and Washington, D.C. For ease of use, the data is provided to you as a single
Oracle export file.

Loading this reference data for the Oracle geocoder is as easy as running the following import
command. This will create all tables (parameter as well as data) and populate them.

imp spatial/spatial file=gc.dmp full=y ignore=y

For real geocoder reference data, you will most likely need to perform multiple such imports,
because the data for each country is provided as one or more dump files. Note that you can load the
data for different countries in the same Oracle schema or in different schemas. The data for each
country uses different tables. See the “Data Tables” section of this chapter for details.

The rest of this section describes the overall structure and purpose of all tables in the reference
data. You do not need to understand the details of the tables to use the geocoder.

Parameter Tables
Three tables contain information about the structuring of addresses in each country supported by
the Oracle geocoder. You should not change the content of these tables.

GC_COUNTRY_PROFILE
This table contains general information about each country known to the Oracle geocoder, such as
the definition of administrative levels for that country. One important piece of information is the
suffix of the data tables for that country (more on this later).

GC_PARSER_PROFILEAFS
This table describes the structuring of the addresses for each country supported by the Oracle
geocoder. There is one row per country, with the address structure defined in an XML notation.

CHAPTER 6 ■ GEOCODING156

8997ch06.qxd 9/28/07 10:01 AM Page 156

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

GC_PARSER_PROFILES
The Oracle geocoder uses this table to recognize some address elements. It defines address elements
with their synonyms, including possible misspellings. For example, it defines that AV, AVE, AVEN, AVENU,
AVN, and AVNUE are all possible spellings for AVENUE. It also defines 1ST and FIRST as synonyms.

Data Tables
The data tables have names with a country-specific suffix (defined in the GC_COUNTRY_PROFILE table).
For example, the reference data for France is in tables with the FR suffix, while the data for the United
States is in tables with the US suffix. The xx in the following descriptions represents this suffix.

GC_AREA_xx
This table stores information on all administrative areas. The Oracle geocoder defines three levels of
administrative areas: REGION, MUNICIPALITY, and SETTLEMENT. The way administrative areas are mapped
to those levels varies from country to country.

For the United States, the administrative areas correspond to states, counties, and cities. For
the United Kingdom, they correspond to counties, postal towns, and localities.

Note that the same area can appear multiple times—this is the case when an area has multiple
names in different languages.

GC_POSTAL_CODE_xx
This table describes all postal codes, and it also contains the coordinates of the center point for each
postal code. The center point is the point returned by the geocoder when the street name in the
input address is invalid (or the input address contains no street name).

GC_POI_xx
This table contains a selection of points of interest (hospitals, airports, hotels, restaurants, parking
garages, ATMs, and so on). The number of points of interest (POIs) and their classification varies
among data suppliers.

GC_ROAD_xx
This is the main table used for address searches. It contains one row per road per settlement and
postal code. If a road crosses multiple postal codes, then it will appear multiple times in this table.

GC_ROAD_SEGMENT_xx
This table provides the information needed to compute the coordinates of an address by interpola-
tion. It contains one row for each segment of a road with the geometric shape of that road segment
(an SDO_GEOMETRY type), as well as the house numbers on each side, at each end of the segment.

GC_INTERSECTION_xx
When multiple road segments meet, they form an intersection. This table defines one row for each
couple of such road segments.

CHAPTER 6 ■ GEOCODING 157

8997ch06.qxd 9/28/07 10:01 AM Page 157

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Using Geocoder Functions
The geocoding API is simple: it is composed of a PL/SQL package (SDO_GCDR) with only a few func-
tions. All of them accept an address as input and return geographical coordinate information as the
geocoded result. The difference between the functions is in the amount of information they return
as well as the format of the input address. Table 6-2 summarizes the functions and their behaviors.

Table 6-2. Comparing the Geocoding Functions

Address Address
Function Conversion Correction Description

GEOCODE_AS_GEOMETRY Yes No Returns a geometric point (with the geo-
graphical coordinates) for the address. It
returns no indication as to the precision or
quality of the result. This is best used when
the addresses are known to be valid.

GEOCODE Yes Yes Returns the geographical coordinates and
a corrected address with detailed indications
of the quality of the result. The input is an
unstructured address, passed as a set of
address lines.

GEOCODE_ADDR Yes Yes Same as GEOCODE, but uses a structured
address as input.

GEOCODE_ALL Yes Yes Like GEOCODE, but can return multiple matches
if the input address is ambiguous. This is best
used for interactive applications, when the end
user chooses which of the matches is correct.

GEOCODE_ADDR_ALL Yes Yes Like GEOCODE_ALL, but uses a structured address
as input.

In the rest of this section, we cover each function in detail with examples.

■Note The first call to a geocoding function in a session requires more time (is longer) than the subsequent
calls. This is because the function needs to load and parse the profile tables.

GEOCODE_AS_GEOMETRY
This is the simplest function to use. You just pass it the address to geocode, and it returns an
SDO_GEOMETRY object with the corresponding geographical location for that address. Recall that we
used this function to illustrate geocoding in Chapters 2 and 3.

Here is the syntax of the function:

SDO_GCDR.GEOCODE_AS_GEOMETRY (

username IN VARCHAR2,

addr_lines IN SDO_KEYWORDARRAY,

country IN VARCHAR2

) RETURN SDO_GEOMETRY;

Function Parameters
The following sections outline the parameters for the GEOCODE_AS_GEOMETRY function.

CHAPTER 6 ■ GEOCODING158

8997ch06.qxd 9/28/07 10:01 AM Page 158

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

username

This is the name of the Oracle schema that contains the geocoding tables for the specified country.
It is a required argument. If the data is in the same schema as the one that calls the function, then
you can also use the SQL built-in USER.

■Note If the geocoding tables are in a different schema than the one you are connected as, then you must have
the SELECT access right on those tables.

addr_lines

The type SDO_KEYWORDARRAY is a simple array (VARRAY) of character strings that is used to pass address
lines to the geocoding functions. Fill each array entry with one line of the street address to geocode
as illustrated in the list that follows.

The lines of the address must be passed according to the structure described in GC_PARSER_
PROFILEAFS. They should be in the order defined and formatted properly. This formatting varies
from country to country. If an address is incorrectly formatted, then the geocoder will reject it (that
is, it will return NULL).

There is, however, a certain degree of flexibility in the formatting. For example, all of the follow-
ing are valid ways to format the U.S. address “1250 Clay Street, San Francisco, CA 94108”:

• The state and postal code are on separate lines:

SDO_KEYWORDARRAY (

'1250 Clay St',

'San Francisco',

'CA',

'94108'

)

• The state and postal code are together on a separate line:

SDO_KEYWORDARRAY (

'1250 Clay St',

'San Francisco',

'CA 94108'

)

• The city, state, and postal code are on the same line:

SDO_KEYWORDARRAY (

'1250 Clay St',

'San Francisco CA 94108'

)

The following, however, is incorrect:

• The address is on one line:

SDO_KEYWORDARRAY (

'1250 Clay St, San Francisco CA 94108'

)

country

This is the two-letter ISO code for the country to which the address to be geocoded belongs.

CHAPTER 6 ■ GEOCODING 159

8997ch06.qxd 9/28/07 10:01 AM Page 159

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Function Result: SDO_GEOMETRY
The result of the function is a simple SDO_GEOMETRY object that contains a point geometry.

If the function is unable to parse the input address (because it is incorrectly formatted) or if it is
unable to geocode the address (because it could not find any place at all with the provided informa-
tion), then it returns a NULL geometry.

Let’s look at a few examples.

Examples
Listing 6-3 shows how to geocode a street address in San Francisco.

Listing 6-3. Using the GEOCODE_AS_GEOMETRY Function

SQL> SELECT SDO_GCDR.GEOCODE_AS_GEOMETRY

(

'SPATIAL',

SDO_KEYWORDARRAY('1250 Clay Street', 'San Francisco, CA'),

'US'

)

FROM DUAL;

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE -122.41356, 37.7932878, NULL), NULL, NULL)

The result is a simple point geometry object that contains the geographical coordinates for that
address. The coordinates may not point exactly to number 1250 on Clay Street; they are computed
by interpolation between known house numbers.

If the house number does not exist, such as in the example in Listing 6-4 (the highest house
number on Clay Street is 3999), you still get a valid geometry pointing to a house on the street, but
you have no indication of the exact house on which the geocoder positioned the coordinates.

Listing 6-4. Using the GEOCODE_AS_GEOMETRY Function with an Invalid House Number

SQL> SELECT SDO_GCDR.GEOCODE_AS_GEOMETRY

(

'SPATIAL',

SDO_KEYWORDARRAY('4500 Clay Street', 'San Francisco, CA'),

'US'

)

FROM DUAL;

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.41437, 37.79318, NULL), NULL, NULL)

The geocoder tries its best to always return a geographic location. If the street does not exist at
all, then you get a location in the middle of the town (or postal code if one was specified). If the town
does not exist, then you will get a location in the middle of the state (for U.S. addresses). If nothing
is found at all, then you will get a NULL geometry back. This is illustrated in Listing 6-5.

Listing 6-5. Using the GEOCODE_AS_GEOMETRY Function with an Invalid Street Name

SQL> SELECT SDO_GCDR.GEOCODE_AS_GEOMETRY

(

'SPATIAL',

SDO_KEYWORDARRAY('Cloy Street', 'San Francisco, CA'),

'US'

)

FROM DUAL;

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.49586, 37.77904, NULL), NULL, NULL)

CHAPTER 6 ■ GEOCODING160

8997ch06.qxd 9/28/07 10:01 AM Page 160

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The drawback of this function is that you have no indication of the quality of the result—the
address you passed may contain a house number that does not exist. In this case, the address may
have been matched to the house halfway down the street, but you have no way of knowing that. Or
the street may not exist, and the address is then positioned in the middle of the postal code area or
city. You also have no way to tell the geocoder what precision level (match mode) to use; it always
uses the DEFAULT mode. The previous example is a good illustration of this problem: the location
returned is actually a point in the middle of San Francisco (as stored in the GC_AREA_US table). This is
probably not what you want.

Therefore, you will mostly use the GEOCODE_AS_GEOMETRY function on addresses that you know
are valid, such as the existing shipping addresses of your customers.

On the other hand, sometimes you cannot be sure that the input address is valid, for example,
when you register a new customer in your database in your order-entry system or when a user
types an address to find the nearest store to that address. In those cases, you will use the GEOCODE or
GEOCODE_ALL function, which we describe next.

GEOCODE
GEOCODE is the main geocoding function. Contrary to the GEOCODE_AS_GEOMETRY function, which
returns only coordinates, the GEOCODE function also returns a fully formatted address and codes that
tell you precisely how the address matched.

This is the syntax of the GEOCODE function:

SDO_GCDR.GEOCODE

(

username IN VARCHAR2,

addr_lines IN SDO_KEYWORDARRAY,

country IN VARCHAR2

match_mode IN VARCHAR2

) RETURN SDO_GEO_ADDR;

Function Parameters
The following sections outline the parameters for the GEOCODE function. They are the same as those
of the GEOCODE_AS_GEOMETRY function, except for the additional MATCH_MODE parameter.

username

This is the name of the Oracle schema that contains the geocoding tables for the specified country.
It is a required argument. If the data is in the same schema as the one that calls the function, then
you can also use the SQL built-in USER.

addr_lines

This is a simple array (VARRAY) of character strings that is used to pass address lines. See the
GEOCODE_AS_GEOMETRY function for a detailed explanation.

country

This is the two-letter ISO code for the country to which the address to be geocoded belongs.

CHAPTER 6 ■ GEOCODING 161

8997ch06.qxd 9/28/07 10:01 AM Page 161

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

match_mode

The match mode lets you decide how closely the elements of an input address must match the data
in the geocoding catalog. Note that you do not specify this parameter for the GEOCODE_AS_GEOMETRY
function—it always uses the DEFAULT mode.

The match mode can be specified as shown in Table 6-3.

Table 6-3. Match Modes and Their Meanings

Match Mode Meaning

EXACT All fields provided must match exactly.

RELAX_STREET_TYPE The street type can be different from the official street type.

RELAX_POI_NAME The POI name does not have to match exactly.

RELAX_HOUSE_NUMBER The house number and street type do not have to match.

RELAX_BASE_NAME The street (base) name, house number, and street type do not have to
match.

RELAX_POSTAL_CODE The postal code (if provided), street (base) name, house number, and
street type do not have to match.

RELAX_BUILTUP_AREA This mode searches the address outside the city specified, but within
the same county, and includes RELAX_POSTAL_CODE.

RELAX_ALL Same as RELAX_BUILTUP_AREA.

DEFAULT Same as RELAX_POSTAL_CODE.

You will see the effect of the various modes in the upcoming examples.

Function Result: SDO_GEO_ADDR
This structure contains the detailed results of a geocoding operation. See Table 6-4 for the exact
content of the structure.

As you can see, this structure is quite rich and contains many pieces of information. They can
be summarized as follows:

• LONGITUDE and LATITUDE: The coordinates of the address.

• MATCHCODE and ERRORMESSAGE: Together, they indicate how close the match is. The possible
values are detailed later.

• SIDE: The side of the street on which this address lies (L for left; R for right).

• PERCENT: The relative position of the address on the road segment when traveling from lower
to higher numbered addresses. This is expressed as a percentage. A setting of 50 percent
indicates that the address is halfway down the road segment.

• EDGE_ID: The ID of the road segment on which this address is located.

The other attributes hold the cleansed and completed address, broken down into individual
components. This includes settlement, municipality, and region names; postal code; and street base
name, suffix, prefix, and so on.

CHAPTER 6 ■ GEOCODING162

8997ch06.qxd 9/28/07 10:01 AM Page 162

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Table 6-4. SDO_GEO_ADDR Object Structure

Column Name Data Type

ID NUMBER

ADDRESSLINES SDO_KEYWORDARRAY

PLACENAME VARCHAR2(200)

STREETNAME VARCHAR2(200)

INTERSECTSTREET VARCHAR2(200)

SECUNIT VARCHAR2(200)

SETTLEMENT VARCHAR2(200)

MUNICIPALITY VARCHAR2(200)

REGION VARCHAR2(200)

COUNTRY VARCHAR2(100)

POSTALCODE VARCHAR2(20)

POSTALADDONCODE VARCHAR2(20)

FULLPOSTALCODE VARCHAR2(20)

POBOX VARCHAR2(100)

HOUSENUMBER VARCHAR2(100)

BASENAME VARCHAR2(200)

STREETTYPE VARCHAR2(20)

STREETTYPEBEFORE VARCHAR2(1)

STREETTYPEATTACHED VARCHAR2(1)

STREETPREFIX VARCHAR2(20)

STREETSUFFIX VARCHAR2(20)

SIDE VARCHAR2(1)

PERCENT NUMBER

EDGEID NUMBER

ERRORMESSAGE VARCHAR2(20)

MATCHCODE NUMBER

MATCHMODE VARCHAR2(30)

LONGITUDE NUMBER

LATITUDE NUMBER

MATCHVECTOR VARCHAR2(20)

Interpreting the Results of a Geocode Operation

The results of the GEOCODE function indicate the way the input address was matched with the list of
addresses from the reference data. All that was returned from the GEOCODE_AS_GEOMETRY function
was a geographical point. The GEOCODE function allows you to find out whether there were any mis-
takes in the input address. Three attributes of the SDO_GEO_ADDR structure give you this information:
MATCHCODE, ERRORMESSAGE, and MATCHVECTOR.

CHAPTER 6 ■ GEOCODING 163

8997ch06.qxd 9/28/07 10:01 AM Page 163

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

MATCHCODE

The MATCHCODE attribute indicates the general “quality” of the match and is described in Table 6-5.

Table 6-5. Match Codes and Their Meanings

Match Code Meaning

1 Exact match. The city name, postal code, street base name, street
type/suffix/prefix, and house number are all matched.

2 The city name, postal code, street base name, and house number are
matched, but the street type and suffix or prefix is not matched.

3 The city name, postal code, and street base name are matched, but the
house number is not matched.

4 The postal code and city name are matched, but the street address is
not matched.

10 The city name is matched, but the postal code is not matched.

11 The postal code is matched, but the city name is not matched.

Note that the code specifies how close the match is with only those address elements that are
specified in the input address. It does not consider the ones that are not passed. For example, an
address such as “Clay St, San Francisco, CA” receives a match code of 1, even though no house num-
ber or postal code was specified. On the other hand, an address such as “9650 Clay St, San Francisco,
CA 92306” receives a match code of 10, which indicates that neither the postal code nor the house
number matched.

ERRORMESSAGE

The ERRORMESSAGE attribute further details the quality and precision of the match by telling you how
each individual address element matched.

The error message is a character string in which each character specifies how each address element
was matched. When the address element is not matched, then its corresponding character position con-
tains a question mark (?). Table 6-6 shows the meaning of each position in the ERRORMESSAGE string.

Table 6-6. Detailed ERRORMESSAGE Structure

Position Meaning Value When Matched

5 House or building number #

6 Street prefix E

7 Street base name N

8 Street suffix U

9 Street type T

10 Secondary unit S

11 Built-up area or city B

14 Region 1

15 Country C

16 Postal code P

17 Postal add-on code A

CHAPTER 6 ■ GEOCODING164

8997ch06.qxd 9/28/07 10:01 AM Page 164

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Used together, the MATCHCODE and ERRORMESSAGE attributes let your application decide whether
to accept the results of a geocode operation or reject the results and flag the containing record for
later resolution by a human. Common reasons for rejecting a geocode are as follows:

• The geocoder was unable to correct errors in the address (such as an invalid house number).

• The application wants all addresses to be geocoded at the street level at a minimum, but the
address was geocoded at the postal code or city level.

MATCHVECTOR

The ERRORMESSAGE attribute allows you to find out about any errors in the input address; for exam-
ple, the postal code may be incorrect, or the street name may be misspelled. But it does not give any
indication as to the accuracy of the result.

For example, an address may be supplied without any house number. In this case, we will match
it to a random location on the specified street (actually, we will just use the coordinates for the center
house number specified in the GC_ROAD_xx table). This will be diagnosed as an “exact match”: the
MATCHCODE attribute will be set to 1, and the ERRORMESSAGE vector will indicate that the house number
was found.

However, this may not be satisfactory for your application. If you want to use the location and
address for home deliveries, then an address without any house number is not useful. The MATCHVECTOR
attribute will tell you not just whether an address element matched but also whether it was present.

Like ERRORMESSAGE, the MATCHVECTOR attribute contains a string. Each character of this string
indicates the match status of an address attribute. Table 6-7 shows the meaning of each position in
the MATCHVECTOR string.

Table 6-7. Detailed MATCHVECTOR Structure

Position Meaning

5 House or building number

6 Street prefix

7 Street base name

8 Street suffix

9 Street type

10 Secondary unit

11 Built-up area or city

14 Region

15 Country

16 Postal code

17 Postal add-on code

Each character position in the MATCHVECTOR string can have one of the values detailed in
Table 6-8.

CHAPTER 6 ■ GEOCODING 165

8997ch06.qxd 9/28/07 10:01 AM Page 165

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Table 6-8. Codes Used in the MATCHVECTOR Structure

Value Meaning Example

0 MATCHED = The address element was specified and Your address contained the correct
was successfully matched. postal code.

1 ABSENT = The address element was not specified Your address did not contain any
and not replaced. postal code, and the geocoder did

not supply one.

2 CORRECTED = The address element was specified but Your address contained an invalid
was not matched and was replaced by a different postal code, which was replaced with
value from the database. the correct one.

3 IGNORED = The address element was specified but Your address has a house number,
was not matched and not replaced. but the street could not be found, so

the house number was ignored.

4 SUPPLIED = The address element was not specified Your address did not specify any
and was filled with a value from the database postal code. The correct postal code

was supplied from the database.

Examples
Let’s look at a various examples. We start with valid addresses, and then we move on to show what
happens when addresses contain various errors.

A Street Address Without a House Number

Listing 6-6 shows the geocoding of a street address in San Francisco. The address specifies the street
name and town but no postal code.

Listing 6-6. Example of Calling the GEOCODE Function

SQL> SELECT SDO_GCDR.GEOCODE

(

'SPATIAL',

SDO_KEYWORDARRAY('Clay Street', 'San Francisco, CA'),

'US',

'DEFAULT'

)

FROM DUAL;

SDO_GEO_ADDR(0, SDO_KEYWORDARRAY(NULL), NULL, 'CLAY ST', NULL, NULL, 'SAN

FRANCISCO',

NULL, 'CA', 'US', '94108', NULL, '94108', NULL, '978', 'CLAY', 'ST', 'F',

'F', NULL,

NULL, 'L', 0, 1, 23600689, 'nul?#ENUT?B281CP?', 1, 'DEFAULT', -122.40904, 37.79385)

The result is hard to read, so we will write a PL/SQL stored procedure that will format and dis-
play the result in a more readable way. Procedure FORMAT_GEO_ADDR takes an SDO_GEO_ADDR object as
input and formats it using the DBMS_OUTPUT package. Listing 6-7 details the procedure.

Listing 6-7. FORMAT_GEO_ADDR Procedure

SQL>

CREATE OR REPLACE PROCEDURE format_geo_addr

(

address SDO_GEO_ADDR

)

CHAPTER 6 ■ GEOCODING166

8997ch06.qxd 9/28/07 10:01 AM Page 166

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

AS

BEGIN

dbms_output.put_line ('- ID ' || address.ID);

dbms_output.put_line ('- ADDRESSLINES');

if address.addresslines.count() > 0 then

for i in 1..address.addresslines.count() loop

dbms_output.put_line ('- ADDRESSLINES['||i||'] ' ||

address.ADDRESSLINES(i));

end loop;

end if;

dbms_output.put_line ('- PLACENAME ' || address.PLACENAME);

dbms_output.put_line ('- STREETNAME ' || address.STREETNAME);

dbms_output.put_line ('- INTERSECTSTREET ' || address.INTERSECTSTREET);

dbms_output.put_line ('- SECUNIT ' || address.SECUNIT);

dbms_output.put_line ('- SETTLEMENT ' || address.SETTLEMENT);

dbms_output.put_line ('- MUNICIPALITY ' || address.MUNICIPALITY);

dbms_output.put_line ('- REGION ' || address.REGION);

dbms_output.put_line ('- COUNTRY ' || address.COUNTRY);

dbms_output.put_line ('- POSTALCODE ' || address.POSTALCODE);

dbms_output.put_line ('- POSTALADDONCODE ' || address.POSTALADDONCODE);

dbms_output.put_line ('- FULLPOSTALCODE ' || address.FULLPOSTALCODE);

dbms_output.put_line ('- POBOX ' || address.POBOX);

dbms_output.put_line ('- HOUSENUMBER ' || address.HOUSENUMBER);

dbms_output.put_line ('- BASENAME ' || address.BASENAME);

dbms_output.put_line ('- STREETTYPE ' || address.STREETTYPE);

dbms_output.put_line ('- STREETTYPEBEFORE ' || address.STREETTYPEBEFORE);

dbms_output.put_line ('- STREETTYPEATTACHED ' || address.STREETTYPEATTACHED);

dbms_output.put_line ('- STREETPREFIX ' || address.STREETPREFIX);

dbms_output.put_line ('- STREETSUFFIX ' || address.STREETSUFFIX);

dbms_output.put_line ('- SIDE ' || address.SIDE);

dbms_output.put_line ('- PERCENT ' || address.PERCENT);

dbms_output.put_line ('- EDGEID ' || address.EDGEID);

dbms_output.put_line ('- ERRORMESSAGE ' || address.ERRORMESSAGE);

dbms_output.put_line ('- MATCHVECTOR ' || address.MATCHVECTOR);

dbms_output.put_line ('- '|| substr (address.errormessage,5,1) ||' '||

substr (address.matchvector,5,1) ||' House or building number');

dbms_output.put_line ('- '|| substr (address.errormessage,6,1) ||' '||

substr (address.matchvector,6,1) ||' Street prefix');

dbms_output.put_line ('- '|| substr (address.errormessage,7,1) ||' '||

substr (address.matchvector,7,1) ||' Street base name');

dbms_output.put_line ('- '|| substr (address.errormessage,8,1) ||' '||

substr (address.matchvector,8,1) ||' Street suffix');

dbms_output.put_line ('- '|| substr (address.errormessage,9,1) ||' '||

substr (address.matchvector,9,1) ||' Street type');

dbms_output.put_line ('- '|| substr (address.errormessage,10,1) ||' '||

substr (address.matchvector,10,1) ||' Secondary unit');

dbms_output.put_line ('- '|| substr (address.errormessage,11,1) ||' '||

substr (address.matchvector,11,1) ||' Built-up area or city');

dbms_output.put_line ('- '|| substr (address.errormessage,14,1) ||' '||

substr (address.matchvector,14,1) ||' Region');

dbms_output.put_line ('- '|| substr (address.errormessage,15,1) ||' '||

substr (address.matchvector,15,1) ||' Country');

dbms_output.put_line ('- '|| substr (address.errormessage,16,1) ||' '||

substr (address.matchvector,16,1) ||' Postal code');

dbms_output.put_line ('- '|| substr (address.errormessage,17,1) ||' '||

substr (address.matchvector,17,1) ||' Postal add-on code');

dbms_output.put_line ('- MATCHCODE ' ||

CHAPTER 6 ■ GEOCODING 167

8997ch06.qxd 9/28/07 10:01 AM Page 167

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

address.MATCHCODE || ' = ' ||

case address.MATCHCODE

when 1 then 'Exact match'

when 2 then 'Match on city, postal code, street base name and number'

when 3 then 'Match on city, postal code and street base name'

when 4 then 'Match on city and postal code'

when 10 then 'Match on city but not postal code'

when 11 then 'Match on postal but not on city'

end

);

dbms_output.put_line ('- MATCHMODE ' || address.MATCHMODE);

dbms_output.put_line ('- LONGITUDE ' || address.LONGITUDE);

dbms_output.put_line ('- LATITUDE ' || address.LATITUDE);

END;

/

show errors

Listing 6-8 shows how to use the procedure with the previous example.

Listing 6-8. Example of Using the FORMAT_GEO_ADDR Procedure

SQL> SET SERVEROUTPUT ON

SQL> BEGIN

FORMAT_GEO_ADDR (

SDO_GCDR.GEOCODE (

'SPATIAL',

SDO_KEYWORDARRAY('Clay Street', 'San Francisco, CA'),

'US',

'DEFAULT'

)

);

END;

/

- ID 0

- ADDRESSLINES

- PLACENAME

- STREETNAME CLAY ST

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY US

- POSTALCODE 94108

- POSTALADDONCODE

- FULLPOSTALCODE 94108

- POBOX

- HOUSENUMBER 978

- BASENAME CLAY

- STREETTYPE ST

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE L

- PERCENT 0

- EDGEID 23600689

CHAPTER 6 ■ GEOCODING168

8997ch06.qxd 9/28/07 10:01 AM Page 168

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

- ERRORMESSAGE ????#ENUT?B281CP?

- MATCHVECTOR ????4101010??004?

- # 4 House or building number

- E 1 Street prefix

- N 0 Street base name

- U 1 Street suffix

- T 0 Street type

- ? 1 Secondary unit

- B 0 Built-up area or city

- 1 0 Region

- C 0 Country

- P 4 Postal code

- ? ? Postal add-on code

- MATCHCODE 1 = Exact match

- MATCHMODE DEFAULT

- LONGITUDE -122.40904

- LATITUDE 37.79385

We receive a geographical point that lies on Clay Street. We also receive a corrected address
with the street name as CLAY ST, and a ZIP code, 94108. The house number returned (978) corre-
sponds to the middle point of the part of Clay Street that lies in ZIP code 94108 (Clay Street actually
spreads over five postal codes, as shown in Listing 6-9).

The MATCHCODE returned is 1, indicating that we had a full match, including street type. The
ERRORMESSAGE is ????#ENUT?B281CP?, and the MATCHVECTOR is ????4101010??004?. Their combination
indicates how address elements matched. Table 6-9 shows the details.

Table 6-9. Matching Elements in the ERRORMESSAGE and MATCHVECTOR

Code Match Address Element Explanation

4 House or building number No house number specified, filled by
the geocoder

E 1 Street prefix No street prefix, none in the database

N 0 Street base name Street name found

U 1 Street suffix No street suffix

T 0 Street type Street type found

B 0 Built-up area or city City name found

1 0 Region State name found

C 0 Country Country found

P 4 Postal code No postal code specified, filled by the
geocoder

Notice the letter T in the error message code. It indicates a match on the street type, even though
the input address used “Street” and the actual type is “St.”

However, the ERRORMESSAGE also contains the characters # and P, which indicate matches on the
house number and postal code, despite that the input address contained no house number or
postal code. The MATCHVECTOR correctly reflects this; the value 4 for house number and postal code
indicates they were missing from the input address.

CHAPTER 6 ■ GEOCODING 169

8997ch06.qxd 9/28/07 10:01 AM Page 169

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Caution The indication of a positive match for an address element in ERRORMESSAGE does not necessarily
mean that the corresponding address element actually matched—the address element may simply be missing
from the input address. Use MATCHVECTOR to determine this.

Dissecting Clay Street

For the following examples, it is useful to know more about the house numbers on Clay Street. This
will help you understand the preceding example as well as those that follow. Listing 6-9 shows how
to find out the house numbers for a street.

Listing 6-9. Getting Street Details from the Geocode Reference Data

SQL> SELECT road_id, name, postal_code, start_hn, center_hn, end_hn

FROM gc_road_us

WHERE name = 'CLAY ST' AND postal_code like '94%'

ORDER BY start_hn;

ROAD_ID NAME POSTAL START_HN CENTER_HN END_HN

---------- -------------------- ------ ---------- ---------- ----------

767 CLAY ST 94111 1 398 699

427 CLAY ST 94108 700 978 1299

505 CLAY ST 94109 1300 1698 1999

1213 CLAY ST 94115 2200 2798 3299

1446 CLAY ST 94118 3300 3698 3999

The results show the house numbers on Clay Street for each postal code: the first house num-
ber, the last house number, and the number of the house halfway down the street.

Since our address did not include any explicit postal code, the geocoder picked the one with
the smallest number (94108) and then the center house number (978).

A Street Address with a House Number

The example in Listing 6-10 includes a house number but does not specify the street type. Note that
we use the FORMAT_GEO_ADDR procedure to make the results clearer.

Listing 6-10. Using the GEOCODE Function with a Valid House Number

SQL> SET SERVEROUTPUT ON

SQL> BEGIN

FORMAT_GEO_ADDR (

SDO_GCDR.GEOCODE (

'SPATIAL',

SDO_KEYWORDARRAY('1350 Clay', 'San Francisco, CA'),

'US',

'DEFAULT'

)

);

END;

/

- ID 0

- ADDRESSLINES

- PLACENAME

- STREETNAME CLAY ST

- INTERSECTSTREET

CHAPTER 6 ■ GEOCODING170

8997ch06.qxd 9/28/07 10:01 AM Page 170

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY US

- POSTALCODE 94109

- POSTALADDONCODE

- FULLPOSTALCODE 94109

- POBOX

- HOUSENUMBER 1350

- BASENAME CLAY

- STREETTYPE ST

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE L

- PERCENT .49

- EDGEID 23600696

- ERRORMESSAGE ????#ENU??B281CP?

- MATCHVECTOR ????0101410??004?

- # 0 House or building number

- E 1 Street prefix

- N 0 Street base name

- U 1 Street suffix

- ? 4 Street type

- ? 1 Secondary unit

- B 0 Built-up area or city

- 1 0 Region

- C 0 Country

- P 4 Postal code

- ? ? Postal add-on code-

- MATCHCODE 2 = Street type not matched

- MATCHMODE DEFAULT

- LONGITUDE -122.4152166

- LATITUDE 37.7930729

This time, the MATCHCODE returned is 2. This is because we did not match on the street type (we
specified only the street base name). The letter T no longer appears in the error message code, and
the match vector value of 4 for street type indicates it was not specified in the input address but was
filled in the output address.

Notice also that we received the correct postal code (94109) that corresponds to the house num-
ber we specified. Number 1350 is in the range of houses from 1300 to 1999, in postal code 94109.

Correcting Invalid Addresses

If the house number does not exist on this street, you still get a successful match, as shown in
Listing 6-11.

Listing 6-11. Using the GEOCODE Function with an Invalid House Number

SQL> SET SERVEROUTPUT ON

SQL> BEGIN

FORMAT_GEO_ADDR (

SDO_GCDR.GEOCODE (

'SPATIAL',

CHAPTER 6 ■ GEOCODING 171

8997ch06.qxd 9/28/07 10:01 AM Page 171

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_KEYWORDARRAY('4500 Clay Street', 'San Francisco, CA'),

'US',

'DEFAULT'

)

);

END;

/

- ID 0

- ADDRESSLINES

- PLACENAME

- STREETNAME CLAY ST

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY US

- POSTALCODE 94108

- POSTALADDONCODE

- FULLPOSTALCODE 94108

- POBOX

- HOUSENUMBER 1299

- BASENAME CLAY

- STREETTYPE ST

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE R

- PERCENT 0

- EDGEID 23600695

- ERRORMESSAGE ?????ENUT?B281CP?

- MATCHVECTOR ????2101010??004?

- ? 2 House or building number

- E 1 Street prefix

- N 0 Street base name

- U 1 Street suffix

- T 0 Street type

- ? 1 Secondary unit

- B 0 Built-up area or city

- 1 0 Region

- C 0 Country

- P 4 Postal code

- ? ? Postal add-on code

- MATCHCODE 3 = House number not matched

- MATCHMODE DEFAULT

- LONGITUDE -122.41437

- LATITUDE 37.79318

This time, the MATCHCODE returned is 3, confirming that the house number did not match. The
coordinates returned are positioned on the highest house number in the first segment of the street
(that is, the postal code with the smallest number): house 1299 in postal code 94108. The MATCHVECTOR
value of 2 for the house number indicates that the original house number in the input address was
replaced by one coming from the database.

Contrast this with the “naive” use of the GEOCODE_AS_GEOMETRY function in Listing 6-4, where we
received coordinates but had no way of knowing that the house number was actually invalid and

CHAPTER 6 ■ GEOCODING172

8997ch06.qxd 9/28/07 10:01 AM Page 172

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

that the coordinates were pointing elsewhere. The GEOCODE function gives us this indication, allowing
our application to reject the address or flag it as requiring human correction.

Let’s see what happens if the postal code in the address is invalid. As illustrated in Listing 6-12,
we still get the right answer, including a corrected postal code.

Listing 6-12. Using the GEOCODE Function with an Invalid Postal Code

SQL> SET SERVEROUTPUT ON

SQL> BEGIN

FORMAT_GEO_ADDR (

SDO_GCDR.GEOCODE (

'SPATIAL',

SDO_KEYWORDARRAY('1350 Clay St', 'San Francisco, CA 99130'),

'US',

'DEFAULT'

)

);

END;

/

- ID 0

- ADDRESSLINES

- PLACENAME

- STREETNAME CLAY ST

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY US

- POSTALCODE 94109

- POSTALADDONCODE

- FULLPOSTALCODE 94109

- POBOX

- HOUSENUMBER 1350

- BASENAME CLAY

- STREETTYPE ST

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE L

- PERCENT .49

- EDGEID 23600696

- ERRORMESSAGE ????#ENUT?B281C??

- # House or building number

- E Street prefix

- N Street base name

- U Street suffix

- T Street type

- B Built-up area or city

- 1 Region

- C Country

- MATCHCODE 10 = Match on city but not postal code

- MATCHMODE DEFAULT

- LONGITUDE -122.4152166

- LATITUDE 37.7930729

CHAPTER 6 ■ GEOCODING 173

8997ch06.qxd 9/28/07 10:01 AM Page 173

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The resulting MATCHCODE is 10, indicating that the postal code was not matched. However, the
coordinates are correctly positioned on number 1350 Clay Street, and the correct postal code (94109)
is given back to us.

Using the EXACT Match Mode

All the previous examples use the default match mode, RELAX_BASE_NAME. However, if we repeat
the last geocode using a stricter match mode such as EXACT, then the operation fails, as shown in
Listing 6-13.

Listing 6-13. Using the GEOCODE Function with an Invalid Postal Code (in EXACT Mode)

SQL> SET SERVEROUTPUT ON

SQL> BEGIN

FORMAT_GEO_ADDR (

SDO_GCDR.GEOCODE (

'SPATIAL',

SDO_KEYWORDARRAY('1350 Clay St', 'San Francisco, CA 99130'),

'US',

'EXACT'

)

);

END;

/

- ID 0

- ADDRESSLINES

- PLACENAME

- STREETNAME

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT

- MUNICIPALITY

- REGION

- COUNTRY

- POSTALCODE

- POSTALADDONCODE

- FULLPOSTALCODE

- POBOX

- HOUSENUMBER

- BASENAME

- STREETTYPE

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE

- PERCENT 0

- EDGEID 0

- ERRORMESSAGE Not found

- MATCHCODE 0 =

- MATCHMODE DEFAULT

- LONGITUDE 0

- LATITUDE 0

Here the MATCHCODE is 0 and the ERRORMESSAGE is Not found.

CHAPTER 6 ■ GEOCODING174

8997ch06.qxd 9/28/07 10:01 AM Page 174

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Geocoding on Business Name

This final example demonstrates a powerful technique: instead of specifying an address, we specify
the name of a POI. This allows us to find POIs by just specifying their name, for example, “City Hall,”
“Central Station,” or “General Hospital.” The result will be not only the coordinates of the POI, but
also its full address.

Listing 6-14 shows how to find the location and address of the Transamerica Pyramid in San
Francisco.

Listing 6-14. Using the GEOCODE Function to Find a POI

SQL> SET SERVEROUTPUT ON

SQL> BEGIN

FORMAT_GEO_ADDR (

SDO_GCDR.GEOCODE (

'SPATIAL',

SDO_KEYWORDARRAY('Transamerica Pyramid', 'San Francisco, CA'),

'US',

'DEFAULT'

)

);

END;

/

- ID 0

- ADDRESSLINES

- PLACENAME TRANSAMERICA PYRAMID

- STREETNAME MONTGOMERY ST

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY US

- POSTALCODE 94111

- POSTALADDONCODE

- FULLPOSTALCODE 94111

- POBOX

- HOUSENUMBER 600

- BASENAME

- STREETTYPE

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE R

- PERCENT 0

- EDGEID 23611721

- ERRORMESSAGE ????#ENUT?B281CP?

- MATCHVECTOR ????4101110??004?

- # 4 House or building number

- E 1 Street prefix

- N 0 Street base name

- U 1 Street suffix

- T 1 Street type

- ? 1 Secondary unit

- B 0 Built-up area or city

- 1 0 Region

CHAPTER 6 ■ GEOCODING 175

8997ch06.qxd 9/28/07 10:01 AM Page 175

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

- C 0 Country

- P 4 Postal code

- ? ? Postal add-on code

- MATCHCODE 1 = Exact match

- MATCHMODE DEFAULT

- LONGITUDE -122.40305

- LATITUDE 37.79509

The response contains the exact address of the Transamerica Pyramid: 600 Montgomery Street,
San Francisco, CA 94111, as well as its geographical position (longitude and latitude).

The GEOCODE function is powerful, but it has a limitation: it returns only one match. When the
input address results in multiple matches, the GEOCODE function returns only the first one. The
GEOCODE_ALL function returns all matches.

GEOCODE_ALL
Some addresses may be ambiguous and result in multiple matches. For example, the address
“12 Presidio, San Francisco, CA” is ambiguous—there are several matching streets. Is “12 Presidio
Avenue” intended or “12 Presidio Boulevard”? Perhaps “12 Presidio Terrace”? The GEOCODE function
returns only one of them. To see them all, use the GEOCODE_ALL function.

Another cause for ambiguity is when a street extends into multiple postal codes and no house
number or postal code is passed to refine the match. Finally, when geocoding to a POI, the name of
that POI may be that of the brand or a chain with multiple branches (such as “Bank of America” or
“Hertz”).

The GEOCODE_ALL function is similar to the GEOCODE function; it takes the same input arguments.
However, instead of returning a single match in an SDO_GEO_ADDR object, it returns an array of
SDO_GEO_ADDR objects as an object of type SDO_ADDR_ARRAY.

The syntax of the GEOCODE_ALL function is as follows:

SDO_GCDR.GEOCODE_ALL (

username IN VARCHAR2,

addr_lines IN SDO_KEYWORDARRAY,

country IN VARCHAR2

match_mode IN VARCHAR2

) RETURN SDO_ADDR_ARRAY;

Function Parameters
The following sections outline the parameters for the GEOCODE_ALL function. They are the same as
those of the GEOCODE function.

username

This is the name of the Oracle schema that contains the geocoding tables for the specified country.
It is a required argument. If the data is in the same schema as the one that calls the function, then
you can also use the SQL built-in USER.

addr_lines

This is a simple array (VARRAY) of character strings that is used to pass address lines. See the
GEOCODE_AS_GEOMETRY function for a detailed explanation.

country

This is the two-letter ISO code for the country to which the address to be geocoded belongs.

CHAPTER 6 ■ GEOCODING176

8997ch06.qxd 9/28/07 10:01 AM Page 176

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

match_mode

The match mode lets you decide how closely the elements of an input address must match the data
in the geocoding catalog. For a detailed explanation of possible values and their meanings, see the
GEOCODE function.

Function Result: SDO_ADDR_ARRAY
This is a VARRAY of up to 1,000 SDO_GEO_ADDR objects. Each SDO_GEO_ADDR object contains the details
about one matching address. The structure of each SDO_GEO_ADDR is the same as the one returned by
the GEOCODE function.

Examples
Before running the actual examples, we create a stored procedure that will help in decoding the
results of a call to the GEOCODE_ALL function. That procedure calls the procedure FORMAT_GEO_ADDR
that we created previously, and it is shown in Listing 6-15.

Listing 6-15. FORMAT_ADDR_ARRAY Procedure

CREATE OR REPLACE PROCEDURE format_addr_array

(

address_list SDO_ADDR_ARRAY

)

AS

BEGIN

IF address_list.count() > 0 THEN

FOR i in 1..address_list.count() LOOP

dbms_output.put_line ('ADDRESS['||i||']');

format_geo_addr (address_list(i));

END LOOP;

END IF;

END;

/

show errors

Our first example is to geocode the ambiguous address “12 Presidio.” Listing 6-16 shows this
operation.

Listing 6-16. Using GEOCODE_ALL Over an Ambiguous Address

SQL> SET SERVEROUTPUT ON SIZE UNLIMITED

SQL> BEGIN

FORMAT_ADDR_ARRAY (

SDO_GCDR.GEOCODE_ALL (

'SPATIAL',

SDO_KEYWORDARRAY('12 Presidio', 'San Francisco, CA'),

'US',

'DEFAULT'

)

);

END;

/

ADDRESS[1]

- ID 1

- ADDRESSLINES

CHAPTER 6 ■ GEOCODING 177

8997ch06.qxd 9/28/07 10:01 AM Page 177

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

- PLACENAME

- STREETNAME PRESIDIO AVE

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY US

- POSTALCODE 94115

- POSTALADDONCODE

- FULLPOSTALCODE 94115

- POBOX

- HOUSENUMBER 12

- BASENAME PRESIDIO

- STREETTYPE AVE

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE R

- PERCENT .8877551020408163

- EDGEID 23614728

- ERRORMESSAGE ????#ENU??B281CP?

- MATCHVECTOR ????0101410??004?

- # 0 House or building number

- E 1 Street prefix

- N 0 Street base name

- U 1 Street suffix

- ? 4 Street type

- ? 1 Secondary unit

- B 0 Built-up area or city

- 1 0 Region

- C 0 Country

- P 4 Postal code

- ? ? Postal add-on code

- MATCHCODE 2 = Street type not matched

- MATCHMODE DEFAULT

- LONGITUDE -122.44757091836735

- LATITUDE 37.7915968367347

ADDRESS[2]

- ID 1

- ADDRESSLINES

- PLACENAME

- STREETNAME PRESIDIO BLVD

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY US

- POSTALCODE 94129

- POSTALADDONCODE

- FULLPOSTALCODE 94129

- POBOX

- HOUSENUMBER 12

- BASENAME PRESIDIO

CHAPTER 6 ■ GEOCODING178

8997ch06.qxd 9/28/07 10:01 AM Page 178

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

- STREETTYPE BLVD

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE L

- PERCENT .7931034482758621

- EDGEID 23622533

- ERRORMESSAGE ????#ENU??B281CP?

- MATCHVECTOR ????0101410??004?

- # 0 House or building number

- E 1 Street prefix

- N 0 Street base name

- U 1 Street suffix

- ? 4 Street type

- ? 1 Secondary unit

- B 0 Built-up area or city

- 1 0 Region

- C 0 Country

- P 4 Postal code

- ? ? Postal add-on code

- MATCHCODE 2 = Street type not matched

- MATCHMODE DEFAULT

- LONGITUDE -122.45612528011925

- LATITUDE 37.798262171909265

ADDRESS[3]

- ID 1

- ADDRESSLINES

- PLACENAME

- STREETNAME PRESIDIO TER

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY US

- POSTALCODE 94118

- POSTALADDONCODE

- FULLPOSTALCODE 94118

- POBOX

- HOUSENUMBER 12

- BASENAME PRESIDIO

- STREETTYPE TER

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE R

- PERCENT .6428571428571429

- EDGEID 28488847

- ERRORMESSAGE ????#ENU??B281CP?

- MATCHVECTOR ????0101410??004?

- # 0 House or building number

- E 1 Street prefix

- N 0 Street base name

- U 1 Street suffix

CHAPTER 6 ■ GEOCODING 179

8997ch06.qxd 9/28/07 10:01 AM Page 179

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

- ? 4 Street type

- ? 1 Secondary unit

- B 0 Built-up area or city

- 1 0 Region

- C 0 Country

- P 4 Postal code

- ? ? Postal add-on code

- MATCHCODE 2 = Street type not matched

- MATCHMODE DEFAULT

- LONGITUDE -122.46105691438208

- LATITUDE 37.788768523050976

The result of the function is an array of three SDO_GEO_ADDR objects, each describing one match,
complete with normalized address and geographical location.

So, what do we do with this result? Which of the matches is the right one for the address passed
as input? There is no way for a program to decide that. The proper approach is to ask the end user. If
the geocoding request is done in an interactive application (web or client/server), then the applica-
tion can display the list of matches and allow the user to pick the right one. This would be the case
for a call-center application where the operator asks the caller to clarify his or her address.

If the geocoding request is done in batch mode (that is, without direct user interaction), then
the application program should just flag the record for later manual investigation or write it out to
a “rejected addresses” table or report.

Our second example is to geocode a POI whose name appears multiple times in the geocoding
reference data, such as a chain brand name (hotel, car rental company, and so on) or a common
name. The geocoder then returns a list of those POIs that match the given name.

The example in Listing 6-17 (still using the FORMAT_ADDR_ARRAY function) shows how to get the
full address and geographical location of the two YMCAs in San Francisco.

Listing 6-17. Using GEOCODE_ALL Over an Ambiguous Address

SQL> SET SERVEROUTPUT ON SIZE 10000

SQL> BEGIN

FORMAT_ADDR_ARRAY (

SDO_GCDR.GEOCODE_ALL (

'SPATIAL',

SDO_KEYWORDARRAY('YMCA', 'San Francisco, CA'),

'US',

'DEFAULT'

)

);

END;

/

ADDRESS[1]

- ID 1

- ADDRESSLINES

- PLACENAME YMCA

- STREETNAME GOLDEN GATE AVE

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY US

- POSTALCODE 94102

- POSTALADDONCODE

CHAPTER 6 ■ GEOCODING180

8997ch06.qxd 9/28/07 10:01 AM Page 180

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

- FULLPOSTALCODE 94102

- POBOX

- HOUSENUMBER 220

- BASENAME

- STREETTYPE

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE L

- PERCENT 0

- EDGEID 23605184

- ERRORMESSAGE ????#ENUT?B281CP?

- MATCHVECTOR ????4101110??004?

- # 4 House or building number

- E 1 Street prefix

- N 0 Street base name

- U 1 Street suffix

- T 1 Street type

- ? 1 Secondary unit

- B 0 Built-up area or city

- 1 0 Region

- C 0 Country

- P 4 Postal code

- ? ? Postal add-on code

- MATCHCODE 1 = Exact match

- MATCHMODE DEFAULT

- LONGITUDE -122.41412

- LATITUDE 37.78184

ADDRESS[2]

- ID 1

- ADDRESSLINES

- PLACENAME YMCA

- STREETNAME SACRAMENTO ST

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY US

- POSTALCODE 94108

- POSTALADDONCODE

- FULLPOSTALCODE 94108

- POBOX

- HOUSENUMBER 855

- BASENAME

- STREETTYPE

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE R

- PERCENT 0

- EDGEID 23615793

- ERRORMESSAGE ????#ENUT?B281CP?

- MATCHVECTOR ????4101110??004?

CHAPTER 6 ■ GEOCODING 181

8997ch06.qxd 9/28/07 10:01 AM Page 181

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

- # 4 House or building number

- E 1 Street prefix

- N 0 Street base name

- U 1 Street suffix

- T 1 Street type

- ? 1 Secondary unit

- B 0 Built-up area or city

- 1 0 Region

- C 0 Country

- P 4 Postal code

- ? ? Postal add-on code

- MATCHCODE 1 = Exact match

- MATCHMODE DEFAULT

- LONGITUDE -122.40685

- LATITUDE 37.7932

The response contains two matches (that is, two SDO_GEO_ADDR objects): one for the YMCA at
220 Golden Gate Avenue and the other for the YMCA at 855 Sacramento Street (with, of course, their
geographical coordinates).

■Caution Do not use the GEOCODE_ALL function as a way to search for businesses in a city. The proper way is
to perform proximity searches (“within distance” or “nearest neighbor”) on POI tables using the techniques described
in Chapter 8.

Geocoding Using Structured Addresses
The GEOCODE and GEOCODE_ALL functions work on unformatted addresses: you pass the address as an
array of strings, where each string represents one line of the address. The geocoder then needs to
parse those lines into distinct address components.

Sometimes, however, your database already contains formatted addresses. For example, your
customer table contains columns such as STREET_NAME, HOUSE_NUMBER, ZIP_CODE, CITY_NAME, ..., or
your input form to your web application breaks down an address into the same elements.

In those cases, it will be simpler and more efficient to provide the address elements to the
geocoding functions in a structured way: the geocoder will no longer need to parse the address, and
your multinational application will no longer need to worry about formatting the address lines cor-
rectly for each country.

To use this technique, just call the GEOCODE_ADDR or GEOCODE_ADDR_ALL functions. They are iden-
tical to the GEOCODE and GEOCODE_ALL functions, respectively, except for their input arguments.

GEOCODE_ADDR
GEOCODE_ADDR is identical to the GEOCODE function, except it takes an SDO_GEO_ADDR object as input,
instead of an SDO_KEYWORDARRAY. Note that the other parameters (country and match_mode) are now
also passed inside the SDO_GEO_ADDR object.

This is the syntax of the GEOCODE_ADDR function:

SDO_GCDR.GEOCODE_ADDR

(

username IN VARCHAR2,

address IN SDO_GEO_ADDR

) RETURN SDO_GEO_ADDR;

CHAPTER 6 ■ GEOCODING182

8997ch06.qxd 9/28/07 10:01 AM Page 182

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Using the SDO_GEO_ADDR Object
Filling an SDO_GEO_ADDR object using its full constructor is difficult because of all its attributes. The
attributes must all be filled explicitly, most of them with nulls. But you can use a simplified constructor,
as illustrated in Listing 6-18.

Listing 6-18. Example of Calling the GEOCODE_ADDR Function

SQL> SELECT SDO_GCDR.GEOCODE_ADDR

(

'SPATIAL',

SDO_GEO_ADDR

(

'US', -- COUNTRY

'DEFAULT', -- MATCHMODE

'1200 Clay Street', -- STREET

'San Francisco', -- SETTLEMENT

NULL, -- MUNICIPALITY

'CA', -- REGION

'94108' -- POSTALCODE)

)

FROM DUAL;

Note that you must specify a value for all arguments to the SDO_GEO_ADDR constructor. If you do
not have a value for some argument, then specify the NULL value.

If you want to geocode a point of interest for which you do not have any address, then you
can use your own stored function to populate the PLACENAME attribute of the SDO_GEO_ADDR object.
Listing 6-19 shows an example of such a function.

Listing 6-19. A Function Producing an SDO_GEO_ADDR Object

SQL> CREATE OR REPLACE FUNCTION geo_addr_poi (

country VARCHAR2,

poi_name VARCHAR2

)

RETURN SDO_GEO_ADDR

AS

geo_addr SDO_GEO_ADDR := SDO_GEO_ADDR();

BEGIN

geo_addr.country := country;

geo_addr.placename := poi_name;

geo_addr.matchmode := 'DEFAULT';

return geo_addr ;

end;

/

The example in Listing 6-20 illustrates how to use this function in order to find the location of
the Moscone Center.

Listing 6-20. Example of Calling the GEOCODE_ADDR Function

SQL> SELECT SDO_GCDR.GEOCODE_ADDR

(

'SPATIAL',

GEO_ADDR_POI

(

'US', -- COUNTRY

CHAPTER 6 ■ GEOCODING 183

8997ch06.qxd 9/28/07 10:01 AM Page 183

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

'Moscone Center' -- POI_NAME

)

)

FROM DUAL;

SDO_GEO_ADDR(0, SDO_KEYWORDARRAY(NULL), 'MOSCONE CENTER', 'HOWARD ST', NULL, NULL,

'SAN FRANCISCO', NULL, 'CA', 'US', '94103', NULL, '94103', NULL, '747', NULL, NULL,

'F', 'F', NULL, NULL, 'R', 0, 23607005, '????#ENUT?B281CP?', 1, 'DEFAULT',

-122.40137, 37.7841, '????4141114??404?')

GEOCODE_ADDR_ALL
GEOCODE_ADDR_ALL is identical to the GEOCODE_ALL function, except it takes an SDO_GEO_ADDR object as
input, instead of an SDO_KEYWORDARRAY. Note that the other parameters (country and match_mode) are
now also passed inside the SDO_GEO_ADDR object.

This is the syntax of the GEOCODE_ADDR_ALL function:

SDO_GCDR.GEOCODE_ADDR _ALL

(

username IN VARCHAR2,

address IN SDO_GEO_ADDR

) RETURN SDO_GEO_ADDR_ARRAY;

Reverse Geocoding
As the name implies, reverse geocoding performs the reverse operation of geocoding; given a spatial
location (coordinates of a point), it returns the corresponding street address.

Reverse geocoding is useful for many applications. For example, GPS devices may be used to
track buses or delivery vehicles. The reverse geocoding process will allow you to know approximately
at what street address the bus or truck currently is.

Another common use is to identify locations from a click on a map. The click is first converted
into geographical coordinates (MapViewer will do this automatically), then the reverse geocoding
returns the corresponding street address.

The reverse geocoder performs four steps:

1. Locate the road segment. This is done using a nearest neighbor search, that is, using the
SDO_NN spatial operator that you will see in Chapter 8.

2. Project the input location on the road segment, that is, find the point on the road segment
that corresponds to the shortest distance between the input location and the road segment.

3. Compute the house number at that point by interpolation between the known house num-
bers at each end of the road segment. The house number returned will be on the same side
of the road as the geographical point given as input.

4. Find all other address details (street name, postal code, city, and so on).

To perform reverse geocodings, use the REVERSE_GEOCODE function.

REVERSE_GEOCODE
Here is the syntax of the REVERSE_GEOCODE function:

SDO_GCDR.REVERSE_GEOCODE

(

username IN VARCHAR2,

location IN SDO_GEOMETRY,

CHAPTER 6 ■ GEOCODING184

8997ch06.qxd 9/28/07 10:01 AM Page 184

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

country IN VARCHAR2

) RETURN SDO_GEO_ADDR;

Function Parameters
The following sections outline the parameters for the REVERSE_GEOCODE function.

username

This is the name of the Oracle schema that contains the geocoding tables for the specified country.
It is a required argument. If the data is in the same schema as the one that calls the function, then
you can also use the SQL built-in USER.

location

This is the geographic point to locate.

country

This is the two-letter ISO code for the country to which the address to be geocoded belongs.

Function Result: SDO_GEO_ADDR
This structure contains the detailed results of a geocoding operation. See Table 6-4 and the discussion
of the GEOCODE function for the exact content of the structure and how to use it.

■Note The table GC_ROAD_SEGMENT_xx must have a spatial index in order to allow reverse geocoding.

Examples
The example in Listing 6-21 illustrates the REVERSE_GEOCODE function. To make the result more read-
able, we will format them using the FORMAT_GEO_ADDR procedure.

Listing 6-21. Example of Calling the REVERSE_GEOCODE Function

SQL> SET SERVEROUTPUT ON

SQL> BEGIN

FORMAT_GEO_ADDR (

SDO_GCDR.REVERSE_GEOCODE (

'SPATIAL',

SDO_GEOMETRY (

2001,

8307,

SDO_POINT_TYPE (-122.4152166, 37.7930, NULL),

NULL, NULL

),

'US'

)

);

END;

/

CHAPTER 6 ■ GEOCODING 185

8997ch06.qxd 9/28/07 10:01 AM Page 185

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

- ID 0

- ADDRESSLINES

- PLACENAME

- STREETNAME CLAY ST

- INTERSECTSTREET

- SECUNIT

- SETTLEMENT SAN FRANCISCO

- MUNICIPALITY

- REGION CA

- COUNTRY US

- POSTALCODE 94109

- POSTALADDONCODE

- FULLPOSTALCODE 94109

- POBOX

- HOUSENUMBER 1351

- BASENAME CLAY

- STREETTYPE ST

- STREETTYPEBEFORE F

- STREETTYPEATTACHED F

- STREETPREFIX

- STREETSUFFIX

- SIDE R

- PERCENT .484531914156248

- EDGEID 23600696

- ERRORMESSAGE

- MATCHVECTOR ????4141414??404?

- 4 House or building number

- 1 Street prefix

- 4 Street base name

- 1 Street suffix

- 4 Street type

- 1 Secondary unit

- 4 Built-up area or city

- 4 Region

- 0 Country

- 4 Postal code

- ? Postal add-on code

- MATCHCODE 1 = Exact match

- MATCHMODE DEFAULT

- LONGITUDE -122.415225677046

- LATITUDE 37.7930717518897

Notice that the coordinates returned are different from the ones passed. This is because the
input point is some distance away from the line that represents the centerline of the road.

Geocoding Business Data
Now that you know how to use the geocoder, how can you use it to location-enable business data—
that is, the customers, branches, and competitors tables?

Adding the Spatial Column
The first step is to add a spatial column (type SDO_GEOMETRY) to the tables. You can easily do this using
an ALTER statement, as shown in Listing 6-22. We previously explained the process in Chapter 3.

CHAPTER 6 ■ GEOCODING186

8997ch06.qxd 9/28/07 10:01 AM Page 186

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 6-22. Adding a Spatial Column

SQL> ALTER TABLE customers ADD (location SDO_GEOMETRY);

SQL> ALTER TABLE branches ADD (location SDO_GEOMETRY);

SQL> ALTER TABLE competitors ADD (location SDO_GEOMETRY);

Geocoding the Addresses: The “Naive” Approach
As you have seen, geocoding an address is really quite simple when you are certain that the address
is valid. Just use the result of the GEOCODE_AS_GEOMETRY function to update the location column you
just added, as shown in Listing 6-23 for the branches table. The process is identical for the other
tables (they all have the same structure).

Listing 6-23. Populating the location Column of the branches Table

SQL> UPDATE branches

SET location = SDO_GCDR.GEOCODE_AS_GEOMETRY

(

'SPATIAL',

SDO_KEYWORDARRAY

(street_number || ' ' || street_name, city || ' ' || state || ' '

|| postal_code),

'US'

);

SQL> COMMIT;

The GEOCODE_AS_GEOMETRY function expects the input address to be passed as a series of format-
ted lines. However, the branches table already contains a structured address (that is, it has address
elements in multiple columns):

STREET_NUMBER VARCHAR2(5)

STREET_NAME VARCHAR2(60)

CITY VARCHAR2(32)

POSTAL_CODE VARCHAR2(16)

STATE VARCHAR2(32)

All you need is to construct a multiline address using this information. You can do this simply
by concatenating the address elements:

• First address line: street_number || ' ' || street_name

• Second address line: city || ' ' || state || ' ' || postal_code

Then, just pass each resulting string as one element to the SDO_KEYWORDARRAY object constructor.
We assume that all addresses are U.S. addresses, but this may not be the case. Addresses in dif-

ferent countries must be formatted according to the formatting rules of addresses in those countries
before being passed to the geocoder.

For example, if you were geocoding German addresses, Listing 6-24 shows what the previous
code becomes.

Listing 6-24. Populating the location Column of the branches Table for German Addresses

SQL> UPDATE branches

SET location = SDO_GCDR.GEOCODE_AS_GEOMETRY

(

'SPATIAL',

SDO_KEYWORDARRAY

(street_name || ' ' || street_number || postal_code || ' ' || city),

CHAPTER 6 ■ GEOCODING 187

8997ch06.qxd 9/28/07 10:01 AM Page 187

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

'DE'

);

SQL> COMMIT;

The address lines are now formatted according to the German rules: the house number follows
the street name, and the postal code precedes the city. There is no state. The country code (DE) passed
indicates that this is a German address. Note that we assume that the geocoding reference data
tables (GC_ROAD_DE and so on) are in the database schema called SPATIAL.

However, the better way to handle multinational addresses is to use the structured addressing
mechanism, that is, passing address elements in an SDO_GEO_ADDR structure.

■Note For U.S. addresses, the state is optional if the address contains a postal code.

Address Verification and Correction
The preceding approach is simple to use, but it has limitations:

• You cannot be sure of the quality of the geocoding result (that is, there may be errors in the
input addresses). Failed or ambiguous addresses should be flagged for later manual correc-
tion, but status information is not returned from the GEOCODE_AS_GEOMETRY function.

• If an address contains errors (such as an invalid postal code), you should be able to update it
with the corrected information.

• For large data sets, it is not practical to do the update as a single transaction. You may need
to perform intermediate commits.

To overcome these limitations, you need to use PL/SQL. The procedure in Listing 6-25
geocodes the addresses in the customers table.

Listing 6-25. Address Geocoding and Correction

SET SERVEROUTPUT ON SIZE 32000

DECLARE

type match_counts_t is table of number;

input_address sdo_geo_addr; -- Input address to geocode

geo_addresses sdo_addr_array; -- Array of matching geocoded addresses

geo_address sdo_geo_addr; -- Matching address

geo_location sdo_geometry; -- Geographical location

address_count number; -- Addresses processed

geocoded_count number; -- Addresses successfully geocoded

corrected_count number; -- Addresses geocoded and corrected

ambiguous_count number; -- Ambiguous addresses (multiple matches)

error_count number; -- Addresses rejected

match_counts match_counts_t -- Counts per matchcode

:= match_counts_t();

update_address boolean; -- Should update address ?

CHAPTER 6 ■ GEOCODING188

8997ch06.qxd 9/28/07 10:01 AM Page 188

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

BEGIN

-- Clear counters

address_count := 0;

geocoded_count := 0;

error_count := 0;

corrected_count := 0;

ambiguous_count := 0;

match_counts.extend(20);

for i in 1..match_counts.count loop

match_counts(i) := 0;

end loop;

-- Range over the customers

for b in

(select * from customers)

loop

-- Format the input address

input_address := sdo_geo_addr();

input_address.streetname := b.street_name;

input_address.housenumber := b.street_number;

input_address.settlement := b.city;

input_address.postalcode := b.postal_code;

input_address.region := b.state;

input_address.country := 'US';

input_address.matchmode := 'DEFAULT';

-- Geocode the address

geo_addresses := sdo_gcdr.geocode_addr_all (

'SPATIAL',

input_address

);

-- Check results

update_address := false;

address_count := address_count + 1;

if geo_addresses.count() > 1 then

-- Address is ambiguous: reject

geo_location := NULL;

ambiguous_count := ambiguous_count + 1;

else

-- Extract first or only match

geo_address := geo_addresses(1);

-- Keep counts of matchcodes seen

match_counts(geo_address.matchcode) :=

match_counts(geo_address.matchcode) + 1;

-- The following matchcodes are accepted:

-- 1 = exact match

-- 2 = only street type or suffix/prefix is incorrect

-- 10 = only postal code is incorrect

CHAPTER 6 ■ GEOCODING 189

8997ch06.qxd 9/28/07 10:01 AM Page 189

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

if geo_address.matchcode in (1,2,10) then

-- Geocoding succeeded: construct geometric point

geo_location := sdo_geometry (2001, 8307, sdo_point_type (

geo_address.longitude, geo_address.latitude, null),

null, null);

geocoded_count := geocoded_count + 1;

-- If wrong street type or postal code (matchcodes 2 or 10)

-- accept the geocode and correct the address in the database

if geo_address.matchcode <> 1 then

update_address := true;

corrected_count := corrected_count + 1;

end if;

else

-- For all other matchcodes, reject the geocode

error_count := error_count + 1;

geo_location := NULL;

end if;

end if;

-- Update location and corrected address in database

if update_address then

update customers

set location = geo_location,

street_name = geo_address.streetname,

postal_code = geo_address.postalcode

where id = b.id;

else

update customers

set location = geo_location

where id = b.id;

end if;

end loop;

-- Display counts of records processed

dbms_output.put_line ('Geocoding completed');

dbms_output.put_line (address_count || ' Addresses processed');

dbms_output.put_line (geocoded_count || ' Addresses successfully geocoded');

dbms_output.put_line (corrected_count || ' Addresses corrected');

dbms_output.put_line (ambiguous_count || ' ambiguous addresses rejected');

dbms_output.put_line (error_count || ' addresses with errors');

for i in 1..match_counts.count loop

if match_counts(i) > 0 then

dbms_output.put_line ('Match code '|| i || ': ' || match_counts(i));

end if;

end loop;

END;

/

Let’s now look at some of the important parts of that procedure.

CHAPTER 6 ■ GEOCODING190

8997ch06.qxd 9/28/07 10:01 AM Page 190

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The following is where you do the actual geocoding of each address. The address elements are
stored in a SDO_GEO_ADDR structure passed to the GEOCODE_ADDR_ALL function, which returns a list of
matches.

-- Format the input address

input_address := sdo_geo_addr();

input_address.streetname := b.street_name;

input_address.housenumber := b.street_number;

input_address.settlement := b.city;

input_address.postalcode := b.postal_code;

input_address.region := b.state;

input_address.country := 'US';

input_address.matchmode := 'DEFAULT';

-- Geocode the address

geo_addresses := sdo_gcdr.geocode_addr_all (

'SPATIAL',

input_address

);

If the function returned multiple results in the SDO_ADDR_ARRAY, that means the address is
ambiguous and we reject it.

if geo_addresses.count() > 1 then

-- Address is ambiguous: reject

geo_location := NULL;

ambiguous_count := ambiguous_count + 1;

else

...

If the function returned one result, we can find out the quality of the result by looking at the
MATCHCODE for that result. Match codes 1, 2, and 10 are accepted. Match code 1 indicates an exact
match—the address was found and a geographical location was returned.

Match code 2 indicates that the street type, prefix, or suffix is in error. This is a common mistake.
For example, the address is stored as “1250 Clay Avenue,” when it should really be “1250 Clay Street.”

Match code 10 indicates that the postal code is incorrect. This is also an easy mistake to make,
especially for streets that span multiple postal codes. For example, for the address “1250 Clay Street,
San Francisco, CA 94109” the correct postal code is 94108.

In both cases, we choose to accept the corrected information returned by the geocoder, and we
use it to update the address in the table.

We also construct an SDO_GEOMETRY object using the coordinates returned. Notice that the coor-
dinate system is set to 8307 (longitude/latitude, WGS84), which we know is the coordinate system
used for the geocoding reference data.1

Finally, if the match code is anything else, we reject the result.

if geo_address.matchcode in (1,2,10) then

-- Geocoding succeeded: construct geometric point

geo_location := sdo_geometry (2001, 8307, sdo_point_type (

geo_address.longitude, geo_address.latitude, null),

null, null);

geocoded_count := geocoded_count + 1;

-- If wrong street type or postal code (matchcodes 2 or 10)

-- accept the geocode and correct the address in the database

CHAPTER 6 ■ GEOCODING 191

1. We know this because NAVTEQ, the supplier of the geocoder reference data, uses this coordinate system.

8997ch06.qxd 9/28/07 10:01 AM Page 191

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

if geo_address.matchcode <> 1 then

update_address := true;

corrected_count := corrected_count + 1;

end if;

else

-- For all other matchcodes, reject the geocode

error_count := error_count + 1;

geo_location := NULL;

end if;

end if;

We can now update the table row inside the database. If the address error (if any) can be cor-
rected, we do so. We replace the street_name and postal_code columns with the values returned by
the geocoder.

In all cases, we update the location column with the geographical point object that contains
the coordinates of the address. If the address was ambiguous or if the geocoder indicated a problem
that we chose not to correct automatically, then the location column is set to NULL to indicate failure.

-- Update location and corrected address in database

if update_address then

update customers

set location = geo_location,

street_name = geo_address.streetname,

postal_code = geo_address.postalcode

where id = b.id;

else

update customers

set location = geo_location

where id = b.id;

end if;

When all addresses have been processed, we print out some statistics. Those numbers are useful
to measure the quality of the input addresses. A hit rate can be computed as the ratio of successfully
geocoded addresses to the total addresses to process.

-- Display counts of records processed

dbms_output.put_line ('Geocoding completed');

dbms_output.put_line (address_count || ' Addresses processed');

dbms_output.put_line (geocoded_count || ' Addresses successfully geocoded');

dbms_output.put_line (corrected_count || ' Addresses corrected');

dbms_output.put_line (ambiguous_count || ' ambiguous addresses rejected');

dbms_output.put_line (error_count || ' addresses with errors');

Running the preceding code produces results like the following:

SQL> @geocode_customers.sql

Geocoding completed

3173 Addresses processed

3146 Addresses successfully geocoded

6 Addresses corrected

10 ambiguous addresses rejected

17 addresses with errors

Match code 1: 3140

Match code 2: 6

Match code 4: 9

Match code 11: 8

PL/SQL procedure successfully completed.

CHAPTER 6 ■ GEOCODING192

8997ch06.qxd 9/28/07 10:01 AM Page 192

www.it-ebooks.info

www.freepdf-books.com

mailto:@geocode_customers.sql
http://www.it-ebooks.info/

The hit rate for this run is 99.1 percent. Out of 3,173 addresses, 3,146 were successfully
geocoded, among which 6 had minor errors that were corrected. Twenty-seven addresses were
rejected; 10 addresses are ambiguous; and 17 addresses have various errors, for example, street
name errors (match code 4) or city name errors (match code 11).

The next step is for someone to look at those failed addresses and correct them manually.
Finding them is easy; we need look at only those rows where the location column is NULL. Once
those addresses are corrected, we can rerun the process, possibly on only the new addresses.

Further Refinements
You can build upon and improve the preceding code in several ways:

• Turn it into a stored procedure that takes a table_name column as input. Use dynamic SQL to
make the procedure work with any table.

• Perform periodic commits. This allows you to easily restart the process in case of failure by
just skipping those addresses that you already processed.

• Only geocode those addresses that have the location column set to NULL. This allows you to
use the same process after correcting the rejected addresses. It also enables you to restart the
process should it fail for any reason. It will skip those addresses that were already geocoded.

• Add a match_code column to the data tables and populate it with the match codes returned
by the geocoder. This can help the user who later corrects the addresses to better understand
the nature of each error.

Automatic Geocoding
The geocoder is invoked using simple function calls. Those function calls can be used from any-
where, including from triggers. This is a powerful mechanism—it allows addresses to be geocoded
automatically whenever an address is changed. Listing 6-26 shows a simple trigger that automati-
cally geocodes addresses in the branches table.

Listing 6-26. Automatic Geocoding of the branches Table Using a Simple Trigger

CREATE OR REPLACE TRIGGER branches_geocode

BEFORE INSERT OR UPDATE OF street_name, street_number, postal_code, city, state

ON branches

FOR EACH ROW

DECLARE

geo_location SDO_GEOMETRY;

BEGIN

geo_location := SDO_GCDR.GEOCODE_AS_GEOMETRY (

'SPATIAL',

SDO_KEYWORDARRAY (

:new.street_number || ' ' || :new.street_name,

:new.city || ' ' || :new.state || ' ' ||:new.postal_code),

'US'

);

:new.location := geo_location;

END;

/

This trigger uses the “naive” approach: the new location is accepted no matter what errors exist
in the new address. Consider the following example, in which the address of one of our branches is
changed. The branch is currently at 1 Van Ness Avenue.

CHAPTER 6 ■ GEOCODING 193

8997ch06.qxd 9/28/07 10:01 AM Page 193

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SQL> SELECT name, street_number, street_name, city, postal_code, location

FROM branches

WHERE id = 77;

NAME STREE STREET_NAME CITY POSTAL_CODE

-------------------- ----- -------------------- -------------- -------------------

LOCATION(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

--

BANK OF AMERICA 1 S VAN NESS AVE SAN FRANCISCO 94103

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.41915, 37.7751038, NULL), NULL, NULL)

The branch relocates to 1500 Clay Street:

SQL> UPDATE branches

SET street_name = 'Clay Street', street_number = 1500

WHERE id = 77;

1 row updated.

This is the result:

SQL> SELECT name, street_number, street_name, city, postal_code, location

FROM branches

WHERE id = 77;

NAME STREE STREET_NAME CITY POSTAL_CODE

-------------------- ----- -------------------- -------------- -------------------

LOCATION(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

-------------------- ----- -------------------- -------------- -------------------

BANK OF AMERICA 1500 Clay Street SAN FRANCISCO 94103

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.41768, 37.7927675, NULL), NULL, NULL)

The branch now has the new address, and the geographic coordinates point to the new
address. However, the address has the wrong postal code—we forgot to change it!

A better approach is to proceed as in the previous example—that is, use the GEOCODE_ALL proce-
dure and use the result to automatically correct the address in addition to simply geocoding it. The
trigger in Listing 6-27 illustrates this technique.

Listing 6-27. Automatic Geocoding with Address Correction

CREATE OR REPLACE TRIGGER branches_geocode

BEFORE INSERT OR UPDATE OF street_name, street_number, postal_code, city, state

ON branches

FOR EACH ROW

DECLARE

input_address SDO_GEO_ADDR;

geo_location SDO_GEOMETRY;

geo_addresses SDO_ADDR_ARRAY;

geo_address SDO_GEO_ADDR;

update_address BOOLEAN;

BEGIN

-- Format the input address

input_address := sdo_geo_addr();

input_address.streetname := :new.street_name;

input_address.housenumber := :new.street_number;

input_address.settlement := :new.city;

input_address.postalcode := :new.postal_code;

CHAPTER 6 ■ GEOCODING194

8997ch06.qxd 9/28/07 10:01 AM Page 194

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

input_address.region := :new.state;

input_address.country := 'US';

input_address.matchmode := 'DEFAULT';

-- Geocode the address

geo_addresses := sdo_gcdr.geocode_addr_all (

'SPATIAL',

input_address

);

-- Check results

if geo_addresses.count() > 1 then

-- Address is ambiguous: reject

geo_location := NULL;

else

-- Extract first or only match

geo_address := geo_addresses(1);

-- The following matchcodes are accepted:

-- 1 = exact match

-- 2 = only street type or suffix/prefix is incorrect

-- 10 = only postal code is incorrect

if geo_address.matchcode in (1,2,10) then

-- Geocoding succeeded: construct geometric point

geo_location := sdo_geometry (2001, 8307, sdo_point_type (

geo_address.longitude, geo_address.latitude, null),

null, null);

-- If wrong street type or postal code (matchcodes 2 or 10)

-- accept the geocode and correct the address in the database

if geo_address.matchcode <> 1 then

update_address := true;

end if;

else

-- For all other matchcoded, reject the geocode

geo_location := NULL;

end if;

end if;

-- Update location

:new.location := geo_location;

-- If needed, correct address

:new.street_name := geo_address.streetname;

:new.postal_code := geo_address.postalcode;

END;

/

Once this trigger is created, let’s see what happens if we perform the same address change of
branch 77 from 1 Van Ness Avenue to 1500 Clay Street:

SQL> UPDATE branches

SET street_name = 'Clay Street', street_number = 1500

WHERE id = 77;

1 row updated.

CHAPTER 6 ■ GEOCODING 195

8997ch06.qxd 9/28/07 10:01 AM Page 195

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

This is the result:

SQL> SELECT name, street_number, street_name, city, postal_code, location

FROM branches WHERE id = 77;

NAME STREE STREET_NAME CITY POSTAL_CODE

-------------------- ----- -------------------- -------------- -------------------

LOCATION(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

BANK OF AMERICA 1500 CLAY ST SAN FRANCISCO 94109

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.41768, 37.7927675, NULL), NULL, NULL)

The geographical location is the same as computed previously, but notice that the street name
was corrected to match the name in the reference data and, more important, the postal code is now
the right one for that location.

Let’s say the branch moves again, this time to 1200 Montgomery Street:

SQL> UPDATE branches SET street_name = 'Montgommery street', street_number = 1200

WHERE id = 77;

Notice that again we did not specify any postal code, but we also made a typing mistake: Mont-
gommery instead of Montgomery. The result of the update is as follows:

SQL> SELECT name, street_number, street_name, city, postal_code, location

FROM branches

WHERE id = 77;

NAME STREE STREET_NAME CITY POSTAL_CODE

-------------------- ----- -------------------- -------------- -------------------

LOCATION(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

BANK OF AMERICA 1200 MONTGOMERY ST SAN FRANCISCO 94133

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-122.40405, 37.8001438, NULL), NULL, NULL)

The street name was automatically corrected, and the postal code is also now correct for that
section of Montgomery Street.

If the address given cannot be corrected or is ambiguous, then the location column is auto-
matically set to NULL.

The major benefit of this approach is that it allows addresses to be automatically geocoded and
corrected without needing any changes to the existing applications.

The Geocoding Server
Using SQL calls to geocode addresses is nice but requires a tight coupling between your application
and the database via JDBC connections. Another possibility is to set up a web service that will per-
form the geocoding calls on your behalf. This is the role of the Geocoding Server web service: you
send it geocoding requests, expressed in XML, and it returns the results also in XML.

Architecture
The architecture of the Geocoding Server is illustrated in Figure 6-3. The Geocoding Server is a pure
Java server component (a Java servlet) that needs a Java application server environment. You can
deploy it in the Oracle Application Server, as well as any J2EE-compliant application server.

CHAPTER 6 ■ GEOCODING196

8997ch06.qxd 9/28/07 10:01 AM Page 196

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 6-3. Oracle Geocoding Server architecture

The Geocoding Server does not use the geocoding procedures that you saw in previous sections.
Rather, it runs the geocoding logic directly and uses JDBC only to read from the database geocoding
data tables. It uses its own local copy of the parser profiles, instead of the GC_PARSER_PROFILES and
GC_PARSER_PROFILEAFS tables. It does, however, load country profiles from the GC_COUNTRY_PROFILE
table.

Figure 6-4 illustrates the way your application talks to the Geocoding Server. Your application
must first format the geocoding request in XML and then send it to the server. Once the server has
found a matching location, it will send another XML document back to your application, which you
then need to parse and use.

Figure 6-4. Oracle Geocoding Server request/response flow

The geocode request contains the address to process. You can pass it unstructured, as a set of
address lines, or (for U.S. addresses) among a small number of semistructured encodings. The
geocode response contains essentially the same information as the SDO_GEO_ADDR structure you
learned about earlier.

CHAPTER 6 ■ GEOCODING 197

8997ch06.qxd 9/28/07 10:01 AM Page 197

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Installation and Configuration
The Geocoding Engine is provided as a standard J2EE archive (EAR) format. See the introduction for
details on how to install and configure OC4J and how to deploy applications using the OC4J console.
The installation EAR file for the Geocoding Engine is provided in $ORACLE_HOME/md/jlib/geocoder.ear.

Once installed, you need to configure the geocoding server. Do this by manually editing the
geocodercfg.xml file in $OC4J_HOME/j2ee/home/applications/geocoder/web/WEB-INF/config. To make
the geocoder use your modified configuration, you need to restart it. You can do so by stopping and
restarting the geocoder application using the OC4J administration console.

■Tip You can also edit the configuration file and restart the geocoder using its own administration tool. You can
access it from the Geocoder’s home page, shown in Figure 6-5.

■Caution The geocodercfg.xml file provided with the Geocoding Engine contains a database connection defini-
tion that points to a nonexistent database. This will make the engine fail the first time it starts, right after deployment.

The following is an example of a configuration file. All settings are the ones in the initial config-
uration. The only parameters you must change are those that define the database connection.

<GeocoderConfig >

<logging log_level="finest" log_thread_name="false" log_time="true">

</logging>

<geocoder>

<database name="local"

host="localhost"

port="1521"

sid="orcl"

mode="thin"

user="gc"

password="gc" />

<data_source name="NAV" />

<parameters cache_admin="false"

cache_postcode="false"

fuzzy_string_distance="70"

fuzzy_leading_char_match="4"

debug_level="0"/>

</geocoder>

<addressparser>

<parameters debug_level="0" />

</addressparser>

</GeocoderConfig>

Logging
The Geocoding Server can generate a log of its operation. The <logging> element enables you to
control how detailed this logging should be. The following is an example setting:

<logging log_level="info" log_thread_name="true" log_time="true">

</logging>

CHAPTER 6 ■ GEOCODING198

8997ch06.qxd 9/28/07 10:01 AM Page 198

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The element contains the following attributes:

• log_level: This attribute defines the level of detail to log. It can range from less detailed
(fatal) to very detailed (finest). The default (info) is a good compromise. The debug and
finest settings are useful only to help in diagnosing problems or to better understand the
operation of the geocoder. The finest level involves each request and response getting
logged. Do not use it in production.

• log_thread_name: When this attribute is set to true, the name of each geocoder thread is
logged with each message.

• log_time: When this attribute is set to true, a time stamp is logged with each message.

Note that you have no way to decide where the information is logged. It goes on the OC4J console,
as well as to a file: $OC4J_HOME/j2ee/home/applications/geocoder/web/WEB-INF/log/geocoder.log.

■Caution The log file gets reset every time the geocoding server starts or restarts.

Database Connection
The following lets you define the connection to your database:

<database name="local"

host="localhost"

port="1521"

sid="orcl"

mode="thin"

user="gc"

password="gc"

/>

where the following is true:

• name is a name for this database.

• host is the name or IP address of the system hosting the Oracle database.

• port is the port on which the database is listening. By default, databases listen on port 1521.

• sid is the name of the database.

• mode defines the kind of JDBC driver to use (specify as thin or oci).

• user is the user name to connect to the database.

• password is the password of the user connecting to the database.

Geocoding Parameters
The following lets you exercise some control on the behavior of the geocoder.

<parameters

cache_admin="false"

cache_postcode="false"

fuzzy_string_distance="70"

fuzzy_leading_char_match="4"

load_db_parser_profiles="false"

/>

CHAPTER 6 ■ GEOCODING 199

8997ch06.qxd 9/28/07 10:01 AM Page 199

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

where the following is true:

• cache_admin: This specifies whether to cache the admin areas in memory.

• cache_postcode: This specifies whether to cache the postal codes in memory.

• fuzzy_string_distance: The geocoder assigns a score (0–100) to each candidate street name.
The score 100 means an exact match. A lower score means the name is less like the input name.
This parameter sets the minimum string match score for qualified candidate street names. Only
names with score equal or greater than this value will be considered possible match candidates.

• fuzzy_leading_char_match: This is the number of leading characters in a street base name
that are required to match.

• load_db_parser_profiles: Set this to true to load the parser profiles from the database
instead of the local ppr files.

Using the Geocoder: XML Queries and Responses
You should now be able to start submitting geocoding requests.

Go to http://oc4j_server:8888/geocoder using your web browser, where oc4j_server is
the name or IP address of the machine where you installed OC4J. For example, you would use
http://127.0.0.1:8888/ geocoder if you installed OC4J on your desktop machine. You should see
the page shown in Figure 6-5.

Figure 6-5. The Geocoding Server home page

CHAPTER 6 ■ GEOCODING200

8997ch06.qxd 9/28/07 10:01 AM Page 200

www.it-ebooks.info

www.freepdf-books.com

http://oc4j_server:8888/geocoder
http://127.0.0.1:8888
http://www.it-ebooks.info/

From this page, you can choose links to various examples. If you click the link “XML geocoding
request page,” you will be taken to the page shown in Figure 6-6. This page allows you to enter any
XML geocoding request and send it to the server.

Figure 6-6. Geocoding request page

Just click the submit button for the first example. You should get a page back that looks like the
one shown in Figure 6-7. Congratulations, you just completed your first geocoding request.

CHAPTER 6 ■ GEOCODING 201

8997ch06.qxd 9/28/07 10:01 AM Page 201

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 6-7. Geocoding response

Notice that the geocoder did not find the exact address (Oracle Parkway). This is because the
dataset does not cover this area.

Geocoding Requests
The following is a simple geocoding request:

<geocode_request>

<address_list>

<input_location id="1" >

<input_address>

<unformatted country="US" >

<address_line value="1250 Clay St" />

<address_line value="San Francisco, CA 94108" />

</unformatted >

</input_address>

</input_location>

</address_list>

</geocode_request>

This request uses the generic, unformatted notation for street addresses. The geocoder sup-
ports a few alternate formats, specifically for U.S. addresses. For example, the request in Figure 6-7
uses one of those formats. The response is like this:

<geocode_response>

<geocode id="1" match_count="1">

<match sequence="0" longitude="-122.4135615" latitude="37.7932878"

match_code="1"

error_message="????#ENUT?B281CP?"

match_vector="????0101010??000?">

<output_address name="" house_number="1250" street="CLAY ST"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94108"

postal_addon_code=""

side="L" percent="0.49" edge_id="23600695" />

</match>

</geocode>

</geocode_response>

You will notice that the response contains the same information as that returned by the
SDO_GCDR.GEOCODE() function in the SDO_GEO_ADDR structure.

CHAPTER 6 ■ GEOCODING202

8997ch06.qxd 9/28/07 10:01 AM Page 202

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The following request is ambiguous; you do not specify the house number you want on Clay
Street, and you do not specify any ZIP code:

<geocode_request>

<address_list>

<input_location id="1" >

<input_address>

<unformatted country="US" >

<address_line value="Clay St" />

<address_line value="San Francisco, CA" />

</unformatted >

</input_address>

</input_location>

</address_list>

</geocode_request>

Since Clay Street has several ZIP codes, you get a list of matches back:

<geocode_response>

<geocode id="1" match_count="5">

<match sequence="0" longitude="-122.42093" latitude="37.79236"

match_code="1" error_message="????#ENUT?B281CP?"

match_vector="????4101010??004?">

<output_address name="" house_number="1698" street="CLAY ST"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94109"

postal_addon_code=""

side="L" percent="0.0" edge_id="23600700" />

</match>

<match sequence="1" longitude="-122.40904" latitude="37.79385"

match_code="1" error_message="????#ENUT?B281CP?"

match_vector="????4101010??004?">

<output_address name="" house_number="978" street="CLAY ST"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94108"

postal_addon_code=""

side="L" percent="0.0" edge_id="23600689" />

</match>

<match sequence="2" longitude="-122.40027" latitude="37.79499"

match_code="1" error_message="????#ENUT?B281CP?"

match_vector="????4101010??004?">

<output_address name="" house_number="398" street="CLAY ST"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94111"

postal_addon_code=""

side="L" percent="0.0" edge_id="23600678" />

</match>

<match sequence="3" longitude="-122.43909" latitude="37.79007"

match_code="1" error_message="????#ENUT?B281CP?"

match_vector="????4101010??004?">

<output_address name="" house_number="2798" street="CLAY ST"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94115"

postal_addon_code=""

side="L" percent="0.0" edge_id="23600709" />

</match>

<match sequence="4" longitude="-122.45372" latitude="37.78822"

match_code="1" error_message="????#ENUT?B281CP?"

CHAPTER 6 ■ GEOCODING 203

8997ch06.qxd 9/28/07 10:01 AM Page 203

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

match_vector="????4101010??004?">

<output_address name="" house_number="3698" street="CLAY ST"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94118"

postal_addon_code=""

side="L" percent="0.0" edge_id="23600718" />

</match>

</geocode>

</geocode_response>

Batch Geocoding
You probably noticed the <address_list> tag in the geocoding request. As you may have guessed,
this allows you to geocode multiple addresses in one single request, like this:

<geocode_request>

<address_list>

<input_location id="0" >

<input_address>

<unformatted country="US" >

<address_line value="747 Howard Street" />

<address_line value="San Francisco, CA" />

</unformatted >

</input_address>

</input_location>

<input_location id="1" >

<input_address>

<unformatted country="US" >

<address_line value="1300 Columbus" />

<address_line value="San Francisco, CA" />

</unformatted >

</input_address>

</input_location>

<input_location id="2" >

<input_address>

<unformatted country="US" >

<address_line value="1450 California St" />

<address_line value="San Francisco, CA" />

</unformatted >

</input_address>

</input_location>

<input_location id="3" >

<input_address>

<unformatted country="US" >

<address_line value="800 Sutter Street" />

<address_line value="San Francisco, CA" />

</unformatted >

</input_address>

</input_location>

</address_list>

</geocode_request>

The response, predictably, contains multiple <geocode> elements. Note that if an address is
ambiguous, then its <geocode> element would include multiple <match> elements. Notice also that
the id parameter lets you relate each result unambiguously with an input address.

CHAPTER 6 ■ GEOCODING204

8997ch06.qxd 9/28/07 10:01 AM Page 204

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<geocode_response>

<geocode id="0" match_count="1">

<match sequence="0" longitude="-122.4014128" latitude="37.7841193"

match_code="1" error_message="????#ENUT?B281CP?"

match_vector="????0101010??004?">

<output_address name="" house_number="747" street="HOWARD ST"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94103"

postal_addon_code=""

side="R" percent="0.53" edge_id="23607005" />

</match>

</geocode>

<geocode id="1" match_count="1">

<match sequence="0" longitude="-122.41833266666666" latitude="37.80600866666666"

match_code="2" error_message="????#ENU??B281CP?"

match_vector="????0101410??004?">

<output_address name="" house_number="1300" street="COLUMBUS AVE"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94133"

postal_addon_code=""

side="R" percent="0.03333333333333333" edge_id="23601015" />

</match>

</geocode>

<geocode id="2" match_count="1">

<match sequence="0" longitude="-122.4181062" latitude="37.790823100000004"

match_code="1" error_message="????#ENUT?B281CP?"

match_vector="????0101010??004?">

<output_address name="" house_number="1450" street="CALIFORNIA ST"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94109"

postal_addon_code=""

side="L" percent="0.49" edge_id="23599392" />

</match>

</geocode>

<geocode id="3" match_count="1">

<match sequence="0" longitude="-122.4134665" latitude="37.788557899999994"

match_code="1" error_message="????#ENUT?B281CP?"

match_vector="????0101010??004?">

<output_address name="" house_number="800" street="SUTTER ST"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94109"

postal_addon_code=""

side="L" percent="0.99" edge_id="23618424" />

</match>

</geocode>

</geocode_response>

Reverse Geocoding
To do a reverse geocoding, that is, to obtain the address that corresponds to a spatial location, use
the following:

<geocode_request>

<address_list>

<input_location id="1" country="us"

CHAPTER 6 ■ GEOCODING 205

8997ch06.qxd 9/28/07 10:01 AM Page 205

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

longitude="-122.4014128" latitude="37.7841193" />

</address_list>

</geocode_request>

The result shows that we correctly matched back to the original address.

<geocode_response>

<geocode id="1" match_count="1">

<match sequence="0" longitude="-122.4014128" latitude="37.7841193"

match_code="1" error_message="" match_vector="????4141414??404?">

<output_address name="" house_number="747" street="HOWARD ST"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94103"

postal_addon_code=""

side="R" percent="0.53" edge_id="23607005" />

</match>

</geocode>

</geocode_response>

Summary
In this chapter, you learned how to location-enable your data by converting street addresses into
geographical locations that you can then use for spatial searches and various analyses. This is the
first step in adding spatial intelligence to your applications.

You also learned that the geocoder can do much more than just generate geographical coordi-
nates; it can also correct and clean errors in the input addresses.

The next step is to use the geocoded locations for spatial analysis. In the next few chapters, we
describe spatial operators and functions to perform this spatial analysis.

CHAPTER 6 ■ GEOCODING206

8997ch06.qxd 9/28/07 10:01 AM Page 206

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Manipulating SDO_GEOMETRY in
Application Programs

So far, you have seen how to define and load spatial objects using the SDO_GEOMETRY type. You have
also seen how to read spatial objects from SQL using SQL*Plus. In this chapter, we cover how to
manipulate SDO_GEOMETRY types in the PL/SQL and Java programming languages.

Note that there are actually few occasions when you need to write explicit code to manipu-
late SDO_GEOMETRY types in your application. In most cases, you can directly examine the contents
of an SDO_GEOMETRY in SQL. For instance, you can obtain the geographical coordinates from an
SDO_GEOMETRY object as shown in Listing 7-1.

Listing 7-1. Extracting Coordinates

SQL> SELECT b.name,

b.location.sdo_point.x b_long,

b.location.sdo_point.y b_lat

FROM branches b

WHERE b.id=42 ;

NAME B_LONG B_LAT

----------------------------------- ---------- ----------

BANK OF AMERICA -122.4783 37.7803596

This example illustrates a simple yet powerful technique for extracting information from objects:
dot notation. You can use this technique to extract any scalar value from geometry objects—in other
words, the geometry type (SDO_GTYPE); spatial reference system ID (SDO_SRID); and the X, Y, and Z
attributes of the point structure (SDO_POINT.X, .Y, and .Z).

This technique is generic; it applies to all object types, not just the SDO_GEOMETRY type. The
advantage of this technique is that the result set produced does not include any object types—only
native types—so it can be processed using any application tool, without the need to manipulate
objects.

■Caution To use this technique, you must use a table alias (b in Listing 7-1). If you forget, your query will fail
with the “ORA-00904: invalid identifier” error.

In most application scenarios, you will be either extracting information from SDO_GEOMETRY as
in Listing 7-1 or selecting data based on spatial relationships using spatial operators and functions
(as discussed in Chapters 8 and 9). Listing 7-2 shows the selection of customers within a quarter-mile

207

C H A P T E R 7

■ ■ ■

8997ch07.qxd 9/28/07 10:03 AM Page 207

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

distance of a specific branch. All you need for such spatial selection is a spatial operator, called
SDO_WITHIN_DISTANCE, in the WHERE clause of the SQL statement.

Listing 7-2. Simple Spatial Query

SELECT c.name, c.phone_number

FROM branches b, customers c

WHERE b.id=42

AND SDO_WITHIN_DISTANCE (c.location,b.location,'distance=0.25 unit=mile')

= 'TRUE';

NAME PHONE_NUMBER

----------------------------------- ---------------

GLOWA GARAGE 415-7526677

PUERTOLAS PERFORMANCE 415-7511701

TOPAZ HOTEL SERVICE 415-9744400

CLEMENT STREET GARAGE 415-2218868

ST MONICA ELEMENTARY SCHOOL NULL

Including SQL statements such as the ones in Listing 7-1 or Listing 7-2 in your application is no
different from including any regular query. They may include spatial predicates (operators or func-
tions, as discussed in Chapters 8 and 9) but return regular data types. They can be submitted and
processed from any programming language.

Nonetheless, there are cases in which you need to deploy specific functionalities. In these
cases, it may be necessary to develop specific code to read or write SDO_GEOMETRY types. This is typi-
cally an advanced use of Oracle Spatial but one that makes the difference in practice.

Typical cases in which you may need to manipulate SDO_GEOMETRY data are as follows:

• Advanced location analysis: You may want to create geometries for new branch locations, for
appropriate sales regions, or for tracking the route of a delivery truck in a business application.
In addition to creating geometries, you may need to know how to update existing geometries.
You may want to create new functions for such creation/manipulation.

• Data conversion: You may need to load data that comes in a format for which no standard
converter exists. Many commercial tools provide format-translation facilities, but there are
still numerous cases in which legacy databases store spatial and/or attribute data in specific
proprietary formats. This is also a relatively frequent issue when importing CAD/CAM dia-
grams in Oracle Spatial. In all these cases, you need to create interfaces between the external
format and the Oracle Spatial objects.

• Visualization analysis: You may decide to write your own graphical map renderer and not
use a standard component for this, such as Oracle MapViewer. This may not be a frequent
need, but be aware that there are many specific viewing tools that fetch objects from Oracle
Spatial for display on computer, handheld, and phone displays. The companies that create
these tools need to develop software that has in-depth access to the spatial objects in the
SDO_GEOMETRY column to perform efficient visualizations.

These tasks may require more than issuing SQL statements from application programs—you
may need to know how to manipulate Oracle objects (because SDO_GEOMETRY is an object type) in the
programming language in which the application is coded. In the rest of this chapter, we cover how
to manipulate SDO_GEOMETRY data in detail in PL/SQL and then Java. The types of manipulations that
we describe include the following:

• Mapping the object into corresponding data structures for that language

• Reading/writing SDO_GEOMETRY objects into an application program

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS208

8997ch07.qxd 9/28/07 10:03 AM Page 208

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Extracting information from SDO_GEOMETRY objects

• Creating new SDO_GEOMETRY objects in the program

• Modifying existing SDO_GEOMETRY objects (PL/SQL)

Whenever possible, we illustrate these types of manipulations using typical tasks in a business
application, such as creating a new branch location, creating a new sales region, updating delivery
routes, and so on. However, such manipulation can be used for a variety of other different purposes
in different applications, as described earlier.

Manipulating Geometries Using PL/SQL
Listing 7-3 shows a sample application using SDO_GEOMETRY objects in PL/SQL. This PL/SQL code
creates a new branch location, computes a rectangular sales region, creates a delivery route for its
business, and extends the delivery route as the delivery truck moves on.

Listing 7-3. Sample Application in PL/SQL

SQL>

DECLARE

b_long NUMBER;

b_lat NUMBER;

new_long NUMBER;

new_lat NUMBER;

new_branch_loc SDO_GEOMETRY;

sales_region SDO_GEOMETRY;

route SDO_GEOMETRY;

BEGIN

-- Obtain old location for branch id=1

SELECT br.location.sdo_point.x, br.location.sdo_point.y

INTO b_long, b_lat

FROM branches br

WHERE id=1;

-- Compute new coordinates: say the location is displaced by 0.0025 degrees

new_long := b_long+ 0.0025;

new_lat := b_lat + 0.0025;

-- Create new branch location using old location

new_branch_loc :=

point

(

X=> new_long,

Y=> new_lat,

SRID=> 8307

) ;

-- Compute sales region for this branch

sales_region :=

rectangle

(

CTR_X=> new_long,

CTR_Y=> new_lat,

EXP_X=> 0.005,

EXP_Y=> 0.0025,

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 209

8997ch07.qxd 9/28/07 10:03 AM Page 209

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SRID=> 8307

) ;

-- Create Delivery Route

route :=

line

(

FIRST_X=> -122.4804,

FIRST_Y=> 37.7805222,

NEXT_X=> -123,

NEXT_Y=> 38,

SRID=> 8307

) ;

-- Update Delivery Route by adding new point

route :=

add_to_line

(

GEOM=> route,

POINT => POINT(-124, 39, 8307)

) ;

-- Perform additional analysis such as length of route

-- or # of customers in sales region (we give examples in Chapters 8 and 9)

-- ...

-- Update geometry in branches table

UPDATE branches SET LOCATION = new_branch_loc WHERE id=1;

END;

/

First, note that all SQL types can be directly used in PL/SQL, so no explicit mapping needs to be
done to use an SDO_GEOMETRY in PL/SQL. As you can observe in Listing 7-3, you use the SDO_GEOMETRY
type in your code in the same way as you use native types (NUMBER, VARCHAR, and so on). In general,
you can do the following:

• Declare variables of type SDO_GEOMETRY to hold geometry objects. For instance, we have
declared three variables, new_branch_loc, sales_region, and route, in Listing 7-3, each of
type SDO_GEOMETRY.

• Use regular PL/SQL operations to extract information from these geometry objects or to
modify their structure. Listing 7-3 shows an example of how to extract the x and y coordi-
nates of an SDO_GEOMETRY object.

• Use SDO_GEOMETRY objects as bind (or result) variables in static or dynamic SQL statements.
This allows SDO_GEOMETRY objects to be read from and written to database tables. Listing 7-3
shows how to pass an SDO_GEOMETRY object to a SQL statement that updates the location of
a branch.

• Create stored functions that may take SDO_GEOMETRY type arguments and/or return SDO_
GEOMETRY objects. For instance, in Listing 7-3, the point function is a stored function that
takes scalar (numeric) arguments and returns an SDO_GEOMETRY object. The add_to_line
function has an SDO_GEOMETRY as the first argument and returns an SDO_GEOMETRY.

Next we will fill the gaps in Listing 7-3 and describe how to code some of the stored functions
in Listing 7-3. The code for the point, rectangle, and line stored functions illustrates how to create
new geometries in PL/SQL, and the code for the add_to_line function shows how to modify existing
geometries.

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS210

8997ch07.qxd 9/28/07 10:03 AM Page 210

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Since an SDO_GEOMETRY object contains two VARRAY structures, SDO_ELEM_INFO and SDO_ORDINATES
(as described in Chapter 4), it would be wise for us to take a detour here and present a primer on
manipulating VARRAYs. These VARRAY structures are primarily used to store polygons and line strings,
such as the sales region of a branch or the route of the delivery truck in our application. If you are
already familiar with how to manipulate VARRAYs in PL/SQL, you can skip to the “Reading and Writ-
ing SDO_GEOMETRY Objects” section.

VARRAY Manipulation Primer
VARRAYs (short for varying arrays) behave pretty much like arrays in any programming language:
they hold a fixed number of elements, but they can be extended and shrunk. They also have a maxi-
mum capacity beyond which you cannot extend them. They use sequential numbers as subscripts,
starting from 1. They also have a number of methods that allow you to manipulate the entries in the
array. Methods are called by appending them to the name of the VARRAY variable.

VARRAYs (as well as NESTED TABLES, another collections form) are not really new; they have been
available in the Oracle database since version 8.0. They are a fundamental part of the object/relational
aspects of Oracle. They make it possible to define multivalued attributes: and so to overcome a fun-
damental characteristic (some would say limitation) of the relational model, an attribute (for example,
a column) can hold only one value per row.

What makes VARRAYs especially powerful is that their elements can themselves be object types.
And those objects can themselves contain other VARRAYs. This makes it possible to construct complex
structures such as collections or matrices and therefore represent complex objects. The SDO_GEOMETRY
type, however, does not use such complex structures. It contains only two VARRAYs of NUMBERs.

Another important property of VARRAYs is that they are ordered. This is especially useful for geo-
metric primitives, since the order in which points are defined is important—a shape defined by points
A, B, C, and D is obviously not the same as one defined by A, C, B, and D.

The code in Listing 7-4 illustrates various array manipulations.

Listing 7-4. Manipulating VARRAYs

SET SERVEROUTPUT ON

DECLARE

-- Declare a type for the VARRAY

TYPE MY_ARRAY_TYPE IS VARRAY(10) OF NUMBER;

-- Declare a VARRAY variable

V MY_ARRAY_TYPE;

-- Other variables

I NUMBER;

K NUMBER;

L NUMBER;

ARRAY_CAPACITY NUMBER;

N_ENTRIES NUMBER;

BEGIN

-- Initialize the array

V := MY_ARRAY_TYPE (1,2,3,4);

-- Get the value of a specific entry

DBMS_OUTPUT.PUT_LINE('* Values for specific array entries');

K := V(3);

DBMS_OUTPUT.PUT_LINE('V(3)='|| V(3));

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 211

8997ch07.qxd 9/28/07 10:03 AM Page 211

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

I := 2;

L := V(I+1);

DBMS_OUTPUT.PUT_LINE('I=' || I);

DBMS_OUTPUT.PUT_LINE('V(I+1)=' || V(I+1));

-- Find the capacity of a VARRAY:

DBMS_OUTPUT.PUT_LINE('* Array capacity');

ARRAY_CAPACITY := V.LIMIT();

DBMS_OUTPUT.PUT_LINE('Array Capacity: V.LIMIT()='||V.LIMIT());

N_ENTRIES := V.COUNT();

DBMS_OUTPUT.PUT_LINE('Current Array Size: V.COUNT()='||V.COUNT());

-- Range over all values in a VARRAY

DBMS_OUTPUT.PUT_LINE('* Array Content');

FOR I IN 1..V.COUNT() LOOP

DBMS_OUTPUT.PUT_LINE('V('||I||')=' || V(I));

END LOOP;

FOR I IN V.FIRST()..V.LAST() LOOP

DBMS_OUTPUT.PUT_LINE('V('||I||')=' || V(I));

END LOOP;

I := V.COUNT();

WHILE I IS NOT NULL LOOP

DBMS_OUTPUT.PUT_LINE('V('||I||')=' || V(I));

I := V.PRIOR(I);

END LOOP;

-- Extend the VARRAY

DBMS_OUTPUT.PUT_LINE('* Extend the array');

I := V.LAST();

V.EXTEND(2);

V(I+1) := 5;

V(I+2) := 6;

DBMS_OUTPUT.PUT_LINE('Array Capacity: V.LIMIT()='||V.LIMIT());

DBMS_OUTPUT.PUT_LINE('Current Array Size: V.COUNT()='||V.COUNT());

FOR I IN 1..V.COUNT() LOOP

DBMS_OUTPUT.PUT_LINE('V('||I||')='|| V(I));

END LOOP;

-- Shrink the VARRAY

DBMS_OUTPUT.PUT_LINE('* Trim the array');

V.TRIM();

DBMS_OUTPUT.PUT_LINE('Array Capacity: V.LIMIT()='||V.LIMIT());

DBMS_OUTPUT.PUT_LINE('Current Array Size: V.COUNT()='||V.COUNT());

FOR I IN 1..V.COUNT() LOOP

DBMS_OUTPUT.PUT_LINE('V('||I||')='|| V(I));

END LOOP;

-- Delete all entries from the VARRAY

DBMS_OUTPUT.PUT_LINE('* Empty the array');

V.DELETE();

DBMS_OUTPUT.PUT_LINE('Array Capacity: V.LIMIT()='||V.LIMIT());

DBMS_OUTPUT.PUT_LINE('Current Array Size: V.COUNT()='||V.COUNT());

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS212

8997ch07.qxd 9/28/07 10:03 AM Page 212

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

FOR I IN 1..V.COUNT() LOOP

DBMS_OUTPUT.PUT_LINE('V('||I||')='|| V(I));

END LOOP;

END;

/

Let’s look at this code in detail next.

Declaring and Initializing VARRAY Variables
You cannot declare a VARRAY variable directly. You must first declare a type that includes the maximum
capacity of the array:

TYPE MY_ARRAY_TYPE IS VARRAY(10) OF NUMBER;

You can then declare your VARRAY variable using this type:

V MY_ARRAY_TYPE;

Before you can do anything with the array, it must be initialized. You can do this at the same
time as you declare it, or you can initialize it later by assigning it a value. The following shows the
simultaneous declaration and initialization of an array:

V MY_ARRAY_TYPE := MY_ARRAY_TYPE ();

Getting the Value of a Specific Entry
Just use the number of the entry as a subscript. The subscript can be any expression that returns an
integer equal to or less than the number of entries in the array, for example:

K := V(3);

I := 2;

L := V(I+1);

Finding the Capacity of a VARRAY
Use the COUNT() method on the VARRAY variable. Note that you do not have to specify the parenthe-
ses, since this method takes no arguments:

N_ENTRIES := V.COUNT();

This tells you the number of entries currently in use in the array. A VARRAY also has a maximum
capacity that was specified when the type was declared. You can find out that capacity using the
LIMIT() method:

ARRAY_CAPACITY := V.LIMIT();

Ranging Over All Values in a VARRAY
You can use several techniques. The simplest is to use a FOR loop:

FOR I IN 1..V.COUNT() LOOP

DBMS_OUTPUT.PUT_LINE('V('||I||')=' || V(I));

END LOOP;

You can also use the FIRST() and LAST() methods. FIRST() returns the subscript of the first
entry in the array (which is always 1), and LAST() returns the subscript of the last entry in the array
(which is always the same as COUNT):

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 213

8997ch07.qxd 9/28/07 10:03 AM Page 213

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

FOR I IN V.FIRST()..V.LAST() LOOP

DBMS_OUTPUT.PUT_LINE('V('||I||')=' || V(I));

END LOOP;

You could also use the PRIOR(n) and NEXT(n) methods, which return the subscript of the entry
that precedes or follows a given entry, respectively. For example, use this to range backward over the
array:

I := V.COUNT();

WHILE I IS NOT NULL LOOP

DBMS_OUTPUT.PUT_LINE('V('||I||')=' || V(I));

I := V.PRIOR(I);

END LOOP;

PRIOR(n) is really the same as n-1, and NEXT(n) is the same as n+1, but PRIOR(1) and
NEXT(V.COUNT()) return NULL.

Extending a VARRAY
Use the EXTEND(k) method. This method adds k new entries at the end of the VARRAY. When k is not
specified, the array is extended by a single entry. The new entries have no value yet (they are set to
NULL), but they can now be initialized. The COUNT() and LAST() methods now reflect the new capac-
ity of the VARRAY. The following adds two entries to the array and initializes them:

I := V.LAST();

V.EXTEND(2);

V(I+1) := 5;

V(I+2) := 6;

Note that you cannot extend a VARRAY beyond its maximum capacity (returned by the LIMIT()
method). Note also that the VARRAY must be instantiated before you can extend it. The following
does not work:

VT MY_ARRAY_TYPE;

VT.EXTEND(5);

but the following does work:

VT MY_ARRAY_TYPE;

VT := MY_ARRAY_TYPE();

VT.EXTEND(5);

Shrinking a VARRAY
Use the TRIM(k) method. This method removes the last k entries from the end of the VARRAY. When k
is not specified, the last entry of the array is removed. The values of the removed entries are lost.
COUNT() and LAST() reflect the new capacity. The following removes the last entry from the VARRAY:

V.TRIM;

You can trim all entries from the array, like this:

V.TRIM(V.COUNT());

or you can use the DELETE() method, which has the same effect. It removes all entries from the array
and sets its capacity to zero (that is, V.COUNT() now returns 0).

V.DELETE()

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS214

8997ch07.qxd 9/28/07 10:03 AM Page 214

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Now that you know how to manipulate VARRAYs, let’s apply those techniques to the SDO_GEOMETRY
type. We will start by covering the techniques to extract information from an SDO_GEOMETRY object,
and then we will present an example of how to update an SDO_GEOMETRY object.

Next, we will revert to our original discussion on how to read/write SDO_GEOMETRY data, how to
create new geometries, how to extract information from existing ones, and how to modify existing
geometries. We cover each of these topics in a separate subsection.

Reading and Writing SDO_GEOMETRY Objects
Reading and writing SDO_GEOMETRY data in a PL/SQL program is easy. You define new variables of
SDO_GEOMETRY and read from or write to these variables while executing a SQL statement. Listing 7-3
shows an example of both reading the x,y components of a branch location and updating the new
location in the branches table.

Creating New Geometries
In this section, we illustrate how to create new geometries using stored functions, as described in
Listing 7-3. These functions simplify the writing of some SQL statements and hide some of the
complexities in dealing with geometries. You can use these constructors to populate new branch
locations or to create new sales regions, for example.

Point Constructor
Inserting point geometries using the SDO_GEOMETRY constructor may seem unduly complicated.
Listing 7-5 shows a simple stored function that makes this operation easier by hiding some of the
complexity of spatial objects from developers and/or end users.

Listing 7-5. Point Constructor Function

CREATE OR REPLACE FUNCTION point (

x NUMBER, y NUMBER, srid NUMBER DEFAULT 8307)

RETURN SDO_GEOMETRY

DETERMINISTIC

IS

BEGIN

RETURN SDO_GEOMETRY (

2001, srid, SDO_POINT_TYPE (x,y,NULL), NULL, NULL);

END;

/

As you can see, you just declare the function to return an SDO_GEOMETRY type. It is then a simple
matter to use the standard constructor of SDO_GEOMETRY to generate a proper point object using the
arguments provided (X, Y, and an optional spatial reference system).

You can then use this new constructor to simplify your SQL statements. For example, here is
how to update the geographical location of a new branch using the constructor in Listing 7-5:

UPDATE branches

SET location = point (-122.48049, 37.7805222, 8307)

WHERE id = 1;

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 215

8997ch07.qxd 9/28/07 10:03 AM Page 215

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Tip Always use the DETERMINISTIC keyword when the result of the function depends only on the input argu-
ments (and not on the database state). This will help you reuse cached evaluations of the function when the same
arguments are passed in, and it also results in better overall performance.

Rectangle Constructor
Listing 7-3 uses the rectangle function to create a new geometry to represent a sales region around
a branch location. You can code this function to define a region around the branch location by expand-
ing from the location by a specified amount in each of the two dimensions. Listing 7-6 shows the
corresponding SQL. Note that rectangles are used extensively in visualization; many interactions
that select objects to include on a map use rectangles to define the area of interest. As for the point
constructor, the goal here is to simplify the writing of SQL statements that need to use rectangles.

Listing 7-6 shows how to define a rectangular shape. The function takes the coordinates of the
center of the rectangle, the distances from the center to each side, and optionally a spatial reference
system ID. As shown in Listing 7-6, the SDO_ORDINATES attribute in the SDO_GEOMETRY constructor
stores the lower-left and upper-right points. Note that all you do here is create a new object using
the SDO_GEOMETRY constructor, populate it with the appropriate information, and return the object
as the function result.

Listing 7-6. Rectangle Constructor

CREATE OR REPLACE FUNCTION rectangle (

ctr_x NUMBER, ctr_y NUMBER, exp_x NUMBER, exp_y NUMBER, srid NUMBER)

RETURN SDO_GEOMETRY

DETERMINISTIC

IS

r SDO_GEOMETRY;

BEGIN

r := SDO_GEOMETRY (

2003, srid, NULL,

SDO_ELEM_INFO_ARRAY (1, 1003, 3),

SDO_ORDINATE_ARRAY (

ctr_x - exp_x, ctr_y - exp_y,

ctr_x + exp_x, ctr_y + exp_y));

RETURN r;

END;

/

You can use this function anywhere in your SQL statements. For example, the following code
counts the number of customers in a rectangular window, grouped by grade. Without the rectangle
function, you would have to use the more complex generic SDO_GEOMETRY constructor.

SELECT count(*), customer_grade

FROM customers WHERE SDO_INSIDE (location,

rectangle (-122.47,37.79, 0.01, 0.01, 8307)) = 'TRUE'

GROUP BY customer_grade;

COUNT(*) CUSTOMER_GRADE

---------- ---------------

307 GOLD

4 PLATINUM

457 SILVER

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS216

8997ch07.qxd 9/28/07 10:03 AM Page 216

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Line Constructor
In Listing 7-3, we used the line function to create a new line geometry with a start point and an end
point. Listing 7-7 shows how to write such a function.

Listing 7-7. Line Constructor

CREATE OR REPLACE FUNCTION line (

first_x NUMBER, first_y NUMBER, next_x NUMBER, next_y NUMBER, srid NUMBER)

RETURN SDO_GEOMETRY

DETERMINISTIC

IS

l SDO_GEOMETRY;

BEGIN

l := SDO_GEOMETRY (

2002, srid, NULL,

SDO_ELEM_INFO_ARRAY (1, 2, 1),

SDO_ORDINATE_ARRAY (

first_x, first_y,

next_x, next_y));

RETURN l;

END;

/

Extracting Information from Geometries
In this section, we illustrate the manipulation of geometries with two examples. The first is simple
and demonstrates how to find out the number of points in a geometry. The second is a slightly more
complex example in which we show how to write a function to extract a specific point from a line
geometry.

The functions we present here are intended primarily to illustrate the techniques you can use
to manipulate geometry objects in PL/SQL.

Counting the Number of Points in a Geometry
The get_num_points function in Listing 7-8 computes the number of points in a geometry by divid-
ing the count of elements in the SDO_ORDINATES array (that is, the total number of ordinates) by the
dimensionality of the geometry (that is, the number of ordinates per point).

Listing 7-8. Counting the Number of Points in a Geometry

CREATE OR REPLACE FUNCTION get_num_points (

g SDO_GEOMETRY)

RETURN NUMBER

IS

BEGIN

RETURN g.SDO_ORDINATES.COUNT() / SUBSTR(g.SDO_GTYPE,1,1);

END;

/

You can use the function as follows to find out the number of points in a geometry:

SELECT get_num_points(geom) FROM us_states WHERE state = 'California';

GET_NUM_POINTS(GEOM)

1146

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 217

8997ch07.qxd 9/28/07 10:03 AM Page 217

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Extracting a Point from a Line
Let’s assume you have an application that keeps track of the route followed by a delivery truck.
When the truck is moving, it reports its position every minute. Those points are stringed together to
form a line geometry that represents the route followed by the truck so far. (This operation is
described later in this chapter.)

Listing 7-9 shows a function that extracts a selected point from a geometry. The function takes
two input arguments: a geometry object and the number of the point in that geometry. The first
point in the geometry is point number 1. It then returns a new geometry object that contains only
the selected point.

Listing 7-9. Function to Extract a Point from a Geometry

CREATE OR REPLACE FUNCTION get_point (

geom SDO_GEOMETRY, point_number NUMBER DEFAULT 1

) RETURN SDO_GEOMETRY

IS

g MDSYS.SDO_GEOMETRY; -- Updated Geometry

d NUMBER; -- Number of dimensions in geometry

p NUMBER; -- Index into ordinates array

px NUMBER; -- X of extracted point

py NUMBER; -- Y of extracted point

BEGIN

-- Get the number of dimensions from the gtype

d := SUBSTR (geom.SDO_GTYPE, 1, 1);

-- Verify that the point exists

IF point_number < 1

OR point_number > geom.SDO_ORDINATES.COUNT()/d THEN

RETURN NULL;

END IF;

-- Get index in ordinates array

p := (point_number-1) * d + 1;

-- Extract the X and Y coordinates of the desired point

px := geom.SDO_ORDINATES(p);

py := geom.SDO_ORDINATES(p+1);

-- Construct and return the point

RETURN

MDSYS.SDO_GEOMETRY (

2001,

geom.SDO_SRID,

SDO_POINT_TYPE (px, py, NULL),

NULL, NULL);

END;

/

In this function, you perform some error checking. If the number of the point is larger than the
number of points in the object, then you return a NULL object. If the point number is not specified,
then you just return the first point of the geometry. Notice that the extracted point is always returned
as a two-dimensional point (even if the geometry is three- or four-dimensional). The returned point
is always in the same coordinate system as the input geometry.

Further refinements to the function could be to make it throw an exception if the point num-
ber is incorrect or if the geometry is not a line.

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS218

8997ch07.qxd 9/28/07 10:03 AM Page 218

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 7-10 shows some examples of how to use this function to get the first, middle, and last
points of a line string (the line that represents Interstate 95).

Listing 7-10. Getting the First, Middle, and Last Points of a Line String

-- Getting the first point of a line string

SELECT get_point(geom) p

FROM us_interstates

WHERE interstate='I95';

P(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-80.211761, 25.74876, NULL), NULL, NULL)

-- Getting the last point of a line string

SELECT get_point(geom, get_num_points(geom)) p

FROM us_interstates

WHERE interstate='I95';

P(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-74.118584, 40.754608, NULL), NULL, NULL)

-- Getting the middle point of a line string

SELECT get_point(geom, ROUND(get_num_points(geom)/2)) p

FROM us_interstates

WHERE interstate='I95';

P(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-68.118683, 46.120701, NULL), NULL, NULL)

Modifying Existing Geometries
Array manipulation techniques are most useful when updating geometries. In this section, we
present a few examples. They are all stored functions that take an SDO_GEOMETRY object as input and
return a new SDO_GEOMETRY object.

Removing a Point from a Line
A common editing operation on geometries is to add and remove points from a geometry, which
is what this and the next stored function do. First you’ll look at the removal of a point using the
remove_point function in Listing 7-11.

Listing 7-11. remove_point Function

CREATE OR REPLACE FUNCTION remove_point (

geom SDO_GEOMETRY, point_number NUMBER

) RETURN SDO_GEOMETRY

IS

g MDSYS.SDO_GEOMETRY; -- Updated Geometry

d NUMBER; -- Number of dimensions in geometry

p NUMBER; -- Index into ordinates array

i NUMBER; -- Index into ordinates array

BEGIN

-- Get the number of dimensions from the gtype

d := SUBSTR (geom.SDO_GTYPE, 1, 1);

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 219

8997ch07.qxd 9/28/07 10:03 AM Page 219

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

-- Get index in ordinates array

-- If 0 then we want the last point

IF point_number = 0 THEN

p := geom.SDO_ORDINATES.COUNT() - d + 1;

ELSE

p := (point_number-1) * d + 1;

END IF;

-- Verify that the point exists

IF p > geom.SDO_ORDINATES.COUNT() THEN

RETURN NULL;

END IF;

-- Initialize output line with input line

g := geom;

-- Step 1: Shift the ordinates "up"

FOR i IN p..g.SDO_ORDINATES.COUNT()-d LOOP

g.SDO_ORDINATES(i) := g.SDO_ORDINATES(i+d);

END LOOP;

-- Step 2: Trim the ordinates array

g.SDO_ORDINATES.TRIM (d);

-- Return the updated geometry

RETURN g;

END;

/

Just like in the get_point() function, you begin by converting the number of the point to be
removed into the index of the SDO_ORDINATE element where the ordinates of the point start (p).

Figure 7-1 illustrates the subsequent process. You first remove the point by shifting the ordi-
nates “up.” Assume you want to remove the third point (point C) from the line string. Its index in the
ordinate array is 5. The ordinates for points D, E, and F are then shifted up from elements 7–12 into
elements 5–10. This is step 1 in the figure.

Figure 7-1. Removing a point from a line

Original Ordinates Step 1 Step 2

Xa1

Ya2

Xb3

Yb4

Xc5

Yc6

Xd7

Yd8

Xe9

Ye10

Xf11

Yf12

Xa1

Ya2

Xb3

Yb4

Xd5

Yd6

Xe7

Ye8

Xf9

Yf10

Xf11

Yf12

Xa1

Ya2

Xb3

Yb4

Xd5

Yd6

Xe7

Ye8

Xf9

Yf10

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS220

8997ch07.qxd 9/28/07 10:03 AM Page 220

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Then, you trim the array by removing the last elements you no longer need. This is step 2 in the
figure.

You can use this function, for example, to remove the last point from I-95:

UPDATE US_INTERSTATES

SET GEOM = REMOVE_POINT (GEOM, 0)

WHERE INTERSTATE = 'I95';

Adding a Point to a Line
This is the reverse of the previous operation: you now insert a new point into a line string. The func-
tion needs the geometry to update, the geometry of the point to insert, and an indication of where
to insert the new point in the line. You do this by passing the number of the point before which the
new point should be inserted.

To insert the point at the start of the line, pass the value 1. To append it at the end of the line,
pass the value 0. Listing 7-12 shows the SQL.

Listing 7-12. Adding a Point in a Line String (add_to_line in Listing 7-3)

CREATE OR REPLACE FUNCTION add_to_line (

geom SDO_GEOMETRY,

point SDO_GEOMETRY,

point_number NUMBER DEFAULT 0

) RETURN SDO_GEOMETRY

IS

g SDO_GEOMETRY; -- Updated geometry

d NUMBER; -- Number of dimensions in line geometry

t NUMBER; -- Geometry type

p NUMBER; -- Insertion point into ordinates array

i NUMBER;

BEGIN

-- Get the number of dimensions from the gtype

d := SUBSTR (geom.SDO_GTYPE, 1, 1);

-- Get index in ordinates array

-- If 0, then we want the last point

IF point_number = 0 THEN

p := geom.SDO_ORDINATES.COUNT() + 1;

ELSE

p := (point_number-1) * d + 1;

END IF;

-- Verify that the insertion point exists

IF point_number <> 0 THEN

IF p > geom.SDO_ORDINATES.LAST()

OR p < geom.SDO_ORDINATES.FIRST() THEN

RAISE_APPLICATION_ERROR (-20000, 'Invalid insertion point');

END IF;

END IF;

-- Initialize output line with input line

g := geom;

-- Step 1: Extend the ordinates array

g.SDO_ORDINATES.EXTEND(d);

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 221

8997ch07.qxd 9/28/07 10:03 AM Page 221

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

-- Step 2: Shift the ordinates "down".

FOR i IN REVERSE p..g.SDO_ORDINATES.COUNT()-d LOOP

g.SDO_ORDINATES(i+d) := g.SDO_ORDINATES(i);

END LOOP;

-- Step 3: Store the new point

g.SDO_ORDINATES(p) := point.SDO_POINT.X;

g.SDO_ORDINATES(p+1) := point.SDO_POINT.Y;

IF d = 3 THEN

g.SDO_ORDINATES(p+2) := point.SDO_POINT.Z;

END IF;

-- Return the new line string

RETURN g;

END;

/

Again, you begin by converting the place to insert the new point into the index of the first
SDO_ORDINATE element of the point before you want to insert the new point.

Figure 7-2 illustrates the process for inserting the point. You begin, in step 1, by extending the
SDO_ORDINATE array by the number of elements needed to represent a point, according to the dimen-
sionality (two-, three-, or four-dimensional) of the line string. Then in step 2, you make room for the
new point by shifting the ordinates “down.” Assume you want to insert a new point (point G) before
point D (the fourth point). The index of point D in the ordinate array is 7. The ordinates for points D,
E, and F are then shifted down from elements 7–12 into elements 9–14. Finally, in step 3 you fill ele-
ments 7 and 8 with the x and y of the new point G.

Figure 7-2. Inserting a point into a line

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS222

8997ch07.qxd 9/28/07 10:03 AM Page 222

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Note The previous example assumes you add a point to an already existing valid line. Constructing the line
from scratch is left as an exercise to the reader.

Manipulating Geometries in Java
As you have seen, spatial objects are stored in database tables as SDO_GEOMETRY types. To process
them in Java, you must first read them from the database using JDBC, and then you need to map
them to Java classes.

Mapping an SDO_GEOMETRY type into a Java class is easy, thanks to the API provided with Oracle
Spatial. The API itself is simple: it contains one main package (oracle.spatial.geometry) that con-
tains two main classes (JGeometry and J3D_Geometry). The API has been significantly enhanced in
Oracle Database 11g. It now comes with a number of geometry processing functions, as well as util-
ity functions that allow you to convert geometries to/from some standard formats (GML, WKT, ESRI
shapefiles). Those are in a package called oracle.spatial.util.

The Java API for Oracle Spatial is distributed in two JAR files (sdoapi.jar and sdoutl.jar) located
in the Oracle installation (at $ORACLE_HOME/md/jlib1). To use the API in your applications, be sure to
include them in your classpath. You will also need the JDBC driver, as well as the XML parser (this is
only for processing GML). Here is how your classpath setting would look in a Windows environment:

C:\>set classpath=.;%ORACLE_HOME%\jdbc\lib\ojdbc14.jar;

%ORACLE_HOME%\md\jlib\sdoapi.jar;%ORACLE_HOME%\md\jlib\sdoutl.jar;

%ORACLE_HOME%\lib\xmlparserv2.jar;

The documentation (Javadoc) is available with the full Oracle documentation set, as well as in
your Oracle installation, in the files $ORACLE_HOME/md/doc/sdoapi.zip and sdoutl.zip.

On the Apress website you will find a number of complete examples that illustrate how to read,
write, and process geometries in Java. Table 7-1 lists the programs.

Table 7-1. Example Programs

Program Information Returned

SdoPrint.java Prints the structure of geometries in any table

SdoExport.java Exports all or some geometries from a table into a flat file in a choice of
formats (WKT, WKB, GML, etc.)

SdoImport.java Imports previously exported geometries back into a table

Using the JGeometry Class
The main tool to manipulate geometries in Java is the JGeometry class. It allows you to read and write
geometries from and to the database, but it also allows you to inspect the geometries, to create new
geometries, and even to perform a number of transformations on those geometries.

Reading and Writing Geometries
When you read an object type (such as the SDO_GEOMETRY type) using a SQL SELECT statement, JDBC
returns a Java structure—more precisely, an oracle.sql.STRUCT object. To write an object type

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 223

1. Note that in version 10g of the Oracle Database, the JAR files were in $ORACLE_HOME/md/lib.

8997ch07.qxd 9/28/07 10:03 AM Page 223

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

(using an INSERT or UPDATE statement), you are also expected to pass an oracle.sql.STRUCT object.
Decoding and constructing STRUCTs is rather complex, and the main goal of the Oracle Spatial Java
API (the JGeometry class) is to make that task easy.

The JGeometry class provides two methods to convert a STRUCT into a JGeometry object:

• The load() method reads the STRUCT and returns a JGeometry object. Use it when you convert
the geometries returned by a SELECT statement.

• The store() method performs the reverse conversion to the load() method. It converts
a JGeometry object into a STRUCT that you can then write back to the database using an INSERT
or UPDATE statement.

Figure 7-3 illustrates this conversion process.

Figure 7-3. Reading and writing geometries in Java

In Oracle Database 11g, the load() and store() methods have been enhanced to provide their
own “pickling”2 and “unpickling” methods optimized for geometry objects and so should perform
better. For reading a geometry, read the object into a byte array and pass that array to the load()
method. Figure 7-4 illustrates the process.

Figure 7-4. Reading and writing geometries in Java using the optimized “pickler”

The following is an example. First use the getObject() method of the result set to extract the
geometry object for each row into a STRUCT and then use the static load() method of JGeometry to
convert it into a JGeometry object.

byte[]

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS224

2. Pickling is the process by which an object is serialized or converted into a byte stream. Unpickling is the
reverse process.

8997ch07.qxd 9/28/07 10:03 AM Page 224

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

STRUCT dbObject = (STRUCT) rs.getObject(1);

JGeometry geom = JGeometry.load(dbObject);

To use the optimized unpickler, first use the getBytes() method of the result set to extract the
geometry into a byte array. Then again use the static load() method of JGeometry to convert it to
a JGeometry object.

byte[] image = rs. getBytes (1);

JGeometry geom = JGeometry.load(image);

Inspecting Geometries
You can now use one of the many get() methods to extract information from the geometry object.
Table 7-2 summarizes the main methods. The additional is() methods listed in Table 7-3 detail the
nature of the geometry.

Table 7-2. Main JGeometry get() Methods

Method Information Returned

getType() Type of geometry (1 for a point, 2 for a line, and so on).

getDimensions() Dimensionality.

getSRID() Spatial reference system ID.

getNumPoints() Number of points in the geometry.

getPoint() Coordinates of the point object (if the geometry is a point).

getFirstPoint() First point of the geometry.

getLastPoint() Last point of the geometry.

getMBR() MBR of the geometry.

getElemInfo() Content of the SDO_ELEM_INFO array.

getOrdinatesArray() Content of the SDO_ORDINATES array.

getLabelPoint() Returns the coordinates of the SDO_POINT structure. When filled for
a line or polygon geometry, this is often used as a labeling point.

getJavaPoint() For a single-point object, returns the coordinates of the point as
a java.awt.geom.Point2D object.

getJavaPoints() For a multipoint object, returns an array of java.awt.geom.Point2D
objects.

getElements() Gets an array of JGeometry objects, each representing one element of
the geometry.

getElementAt() Extracts one element of the geometry as a JGeometry.

createShape() Converts the geometry into a java.awt.Shape object, ready for use by
the drawing and manipulation facilities of the java.awt package.

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 225

8997ch07.qxd 9/28/07 10:03 AM Page 225

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Table 7-3. Main JGeometry is() Methods

Method Information Returned

isPoint() Is this a point?

isOrientedPoint() Is this an oriented point?

isCircle() Is this a circle?

isGeodeticMBR() Is this a geodetic MBR?

isMultiPoint() Is this a multipoint?

isRectangle() Is this a rectangle?

hasCircularArcs() Does the geometry contain any arcs?

isLRSGeometry() Is this a “linear referenced” geometry?

Two of the methods in Table 7-3 (getElements() and getElementAt()) allow you to inspect the
structure of complex geometries: they allow you to extract individual elements as separate JGeometry
objects. The first method returns all elements into an array of separate JGeometry objects. The second
returns one specific element identified by its position in the geometry.

■Caution The term element must be understood as defined in the OGC Simple Features for SQL specification.
For example, a polygon with voids is considered as a single element, even though it is composed of multiple
rings (each being an element in the Oracle sense). The validation functions discussed in Chapter 5 (VALIDATE_
GEOMETRY_WITH_CONTEXT() and EXTRACT()) behave the same way. This means the getElements() method
will not allow you to extract a void from a polygon with voids.

■Caution The numbering of the elements starts at 1, not 0.

Creating Geometries
Writing a geometry to the database (in an INSERT or UPDATE statement) requires that you create
a new JGeometry object, convert it into a STRUCT using the static JGeometry.store() method, and
then pass the STRUCT to an INSERT or UPDATE statement. Just like for the load() method, you can also
use the faster spatial pickler. Figures 7-3 and 7-4 illustrate both methods.

The following is an example of both approaches. First use the static store() method of
JGeometry to convert it to a STRUCT, and then use the setObject() method to set it into the prepared
SQL statement.

STRUCT dbObject = JGeometry.store (geom, dbConnection);

stmt.setObject (1,dbObject);

Using the optimized pickler is very much the same except that the order of the arguments to
the store() method is reversed: first specify the database connection object and then the JGeometry
object!

STRUCT dbObject = JGeometry.store (dbConnection, geom);

stmt.setObject (1,dbObject);

There are two ways you can construct new JGeometry objects. One way is to use one of the
constructors listed in Table 7-4. The other way is to use one of the static methods that create various
geometries. Table 7-5 lists those methods.

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS226

8997ch07.qxd 9/28/07 10:03 AM Page 226

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Table 7-4. JGeometry Constructors

Constructor Purpose

JGeometry (double x, double y, Constructs a point
int srid)

JGeometry (double x, double y, Constructs a three-dimensional point
double z, int srid

JGeometry (double minX, double minY, Creates a rectangle
double maxX, double maxY, int srid)

JGeometry (int gtype, int srid, Constructs a generic geometry
int[] elemInfo, double[] ordinates)

Table 7-5. Static JGeometry Creation Methods

Creation Method Purpose

createPoint(double[] coord, Creates a point
int dim, int srid)

createLinearLineString Creates a simple line string
(double[] coords,
int dim, int srid)

createLinearPolygon Creates a simple polygon
(double[] coords,
int dim, int srid)

createMultiPoint Creates a multipoint object
(java.lang.Object[] coords,
int dim, int srid)

createLinearMultiLineString Creates a multiline string object
(java.lang.Object[] coords,
int dim, int srid)

createLinearPolygon Creates a multipolygon
(java.lang.Object[] coords,
int dim, int srid)

createCircle(double x1, Creates a circle using three points on its circumference
double y1, double x2,
double y2, double x3,
double y3, int srid)

createCircle(double x, Creates a circle using a center and radius
double y, double radius,
int srid)

Modifying Existing Geometries
The JGeometry class does not provide any method that lets you modify a geometry. For example,
there is no method to remove a point from a line or to add one more point to a line. To perform
those updates, you need to extract the list of points using a method such as getOrdinatesArray(),
then update the resulting Java arrays, and then create a new JGeometry object with the results.

To write the modified geometries to the database, proceed as discussed previously: convert the
JGeometry object into a STRUCT using the store() method, and then pass the STRUCT to your SQL
INSERT or UPDATE statement.

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 227

8997ch07.qxd 9/28/07 10:03 AM Page 227

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Processing Geometries
The Java API also provides you with a number of methods that perform various transformations on
geometries. Table 7-6 lists the main ones. They take a JGeometry object as input and generate a new
geometry as a result. Note that most of those functions are also provided via PL/SQL calls in the
database that will be discussed in detail in Chapter 9.

Table 7-6. Geometry-Processing Functions

Method Purpose

buffer(double bufferWidth) Generates a buffer around a geometry

simplify(double threshold) Simplifies a geometry

densifyArcs(double arc_tolerance) Densifies all arcs in a geometry

clone() Duplicates a geometry

affineTransforms(...) Applies affine transformations on the input
geometry based on the parameters supplied:
translation, scaling, rotation, shear, reflection

projectToLTP(double smax, double flat) Projects a geometry from longitude/latitude to
a local tangent plane

projectFromLTP() Projects a geometry from a local tangent plane to
longitude/latitude

The API also provides some helper methods, summarized in Table 7-7. Those functions (except
for equals) do not deal with JGeometry objects but are provided to help certain processing tasks.

The equals() method compares two JGeometry objects and determines whether they are the
same. However, the comparison is based on the internal encoding of the geometry: two geometries
will be considered as equal if the coordinates of all their points are the same and in the same sequence.
The method does not perform a true geometric comparison involving tolerance.

Table 7-7. Geometry Helper Functions

Method Purpose

equals() Determines whether two geometries are identical

computeArc(double x1, Computes the center, radius, and angles for this arc from the
double y1, double x2, three coordinate points
double y2, double x3,
double y3)

linearizeArc(double x1, Converts an arc into an array of 2D line segments
double y1, double x2,
double y2, double x3,
double y3)

reFormulateArc(double[] d) Reformulates an arc by recomputing the angles

expandCircle(double x1, Linearizes the circle by converting it into an array of 2D segments
double y1, double x2,
double y2, double x3,
double y3)

monoMeasure(double[] coords, Determines whether a line has increasing or decreasing measures
int dim ()

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS228

8997ch07.qxd 9/28/07 10:03 AM Page 228

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Using 3D Geometries: the J3D_Geometry Class
One of the major new capabilities in Oracle Database 11g is the ability to model complex 3D objects:
surfaces and solids. The new J3D_Geometry class will help you manipulate those structures. Notice it
is a subclass of JGeometry, so all the methods you have seen so far are applicable.

To read J3D_Geometry objects from the database, proceed the same way as with JGeometry, and
then construct a J3D_Geometry from the JGeometry object. For example:

byte[] image = rs. getBytes (1);

JGeometry geom = JGeometry.load(image);

J3D_Geometry geom3D = new J3D_Geometry (

geom.getType(), geom.getSRID(),

geom.getElemInfo(), geom.getOrdinatesArray()

);

To write J3D_Geometry objects to the database, just use the regular JGeometry.store() method:

STRUCT dbObject = JGeometry.store (dbConnection, geom3d);

stmt.setObject (1,dbObject);

Just like JGeometry, it provides you with a number of methods that allow you to manipulate the
geometry in various ways. Table 7-8 summarizes those methods.

Table 7-8. 3D Geometry Processing Functions

Method Purpose

anyInteract(J3D_Geometry A, Determines whether two three-dimensional geometries
double tolerance) interact in any way

extrusion(JGeometry polygon, Returns a three-dimensional geometry extruded from a two-
double grdHeight, double height, dimensional polygon
Connection conn, boolean cond,
double tolerance)

closestPoints(J3D_Geometry A, Computes the closest points of approach between two
double tolerance) three-dimensional geometries

getMBH(J3D_Geometry geom) Returns the three-dimensional bounding box of a three-
dimensional geometry3

validate(double tolerance) Verifies the validity of a three-dimensional geometry.

area(double tolerance) Computes the area of a surface or of the sides of a solid

length(int count_shared_edges, Computes the length of a three-dimensional shape
double tolerance)

volume(double tolerance) Computes the volume of a three-dimensional solid

distance(J3D_Geometry A, Computes the distance between two three-dimensional
double tolerance) geometries

Extracting Elements from 3D Geometries: the ElementExtractor
Class
3D objects can be complex. This is especially the case for solids. A complex solid is formed of multiple
simple solids. The simple solids are formed from surfaces, some of them forming voids in the solid.
Surfaces themselves are formed of elements, which are formed of rings.

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 229

3. This really returns a Minimum Bounding Hexahedron (MBH), that is, a solid with six faces, aligned with the
axis of the coordinate system.

8997ch07.qxd 9/28/07 10:03 AM Page 229

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The ElementExtractor class makes it easy for you to inspect a complex object and extract indi-
vidual components, such as one or more of the surfaces that form a solid. Note that you can also
use the extractor on regular two-dimensional geometries. This can be useful to extract, for example,
the linear contour of one of the rings in a complex polygon.

You can use the extractor in two ways: one is to extract one specific element. The other is to
iterate over all available elements.

■Tip The ElementExtractor class is not restricted to 3D geometries. It will also work on 2D geometries.
However, since its input must be a J3D_Geometry object, you must first convert your JGeometry object into
a J3D_Geometry.

Extracting a Single Element
All you need is to call the static getElementByLabel() method, passing it a “label” that uniquely
identifies the geometry element to extract. The label is a comma-delimited string of ID numbers
that specify the subset geometry to be returned. Specify as many of the following elements as
apply. (For any null elements before the last specified element, enter a comma for the element.)

• Point ID

• Edge ID

• Ring ID

• Polygon ID

• Surface ID

• Solid ID

• Multisolid ID

Those ID numbers are really sequence numbers for each element at each level. The sequence
numbers begin with 1: the first polygon in a multipolygon is polygon 1. Its rings are numbered from
1 to N. The second polygon is polygon 2, and its rings are again numbered from 1.

For example, the following will return polygon number 3 in surface 2 of a simple solid:

J3D_Geometry ring = ElementExtractor.getElementByLabel (solid,"0,0,0,3,2");

Note that the validate() method of J3D_Geometry will return such a label when it finds an
error. You can then simply pass this label to ElementExtractor.getElementByLabel() to isolate the
element on which the error was detected.

Iterating Over Elements
Create an ElementExtractor object, passing it the parameters for your query. This will essentially cre-
ate an iterator that you initialize at a certain level of detail. You can then use its nextElement() method
to extract the components of the object one by one. You can then use another ElementExtractor object
to further inspect each of the elements you receive from the first loop.

The parameters to use when you create an ElementExtractor object are detailed in Table 7-9.
Those parameters control the way the extractor behaves.

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS230

8997ch07.qxd 9/28/07 10:03 AM Page 230

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Table 7-9. Parameters of the ElementExtractor

Parameter Purpose

geometry The 3D geometry to analyze.

firstElement The place to start the extraction, specified as an offset in the
SDO_ELEM_INFO array of the geometry. By default, this will be 0.

extractionLevel This is a code that indicates the way the iterator will process the
elements in the geometry. See the “Extraction Levels” section for
a detailed discussion.

allow_comp_sub_elements Specify as true (the default) or false. In MULTICOMP_TOSIMPLE
extraction level, users can also arrange to extract directly simple
geometries from multi or composite geometries by setting this
parameter to FALSE. The default value is TRUE, which means users
will extract composite geometry first (if any) from a multigeometry.

Extraction Levels
The extractionLevel parameter allows you to control the way the extractor operates. Specify it as
one of the following values. The names are those of the constants defined in the class.

• Level 0 = MULTICOMP_TOSIMPLE: This returns the successive elements in a multigeometry. For
example, it will return each solid in a multisolid or each polygon in a multipolygon. Think of
it as a “horizontal” scan through the elements.

• Level 1 = INNER_OUTER: This returns the inner/outer elements if any. For polygons, it returns
the outer ring first, followed by inner rings.

• Level 2 = LOWER_LEVEL: This returns the subelements; that is, it returns the elements at the
next level of hierarchy (for example, for a solid the next level will be surfaces, and for a poly-
gon the next level will be edges, and so on).

Let’s consider a simple example of a multipolygon where the polygons have multiple voids. To
fully decompose the geometry, use the MULTICOMP_TOSIMPLE scan first. This will break the multipoly-
gon into its constituent polygons.

The next step is to extract the rings of those polygons. For that, use the INNER_OUTER scan on
each of the polygons returned from the first step. For a polygon without voids, the result stays the
same. For those polygons that have voids, you will receive a polygon representing the outer ring
first, then one or more polygons representing the inner rings.

Finally, to further decompose the geometry, use the LOWER_LEVEL scan on each of the rings. This
scan will break each ring into a set of edges—a set of simple line strings with two vertices each.

Here is an example of using the extractor to break a multigeometry into its elements:

// Create new extractor

ElementExtractor e = new ElementExtractor (

geom3d, 0, ElementExtractor.MULTICOMP_TOSIMPLE);

// Geometry to receive extracted element(s)

J3D_Geometry g;

// Used to receive the type of element (1=outer, 2=inner)

int is_a_hole[] = {0};

// Extract the elements

while ((g = e.nextElement(is_a_hole)) != null) {

// Process extracted element

}

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 231

8997ch07.qxd 9/28/07 10:03 AM Page 231

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Notice that the nextElement() needs an output parameter that it will use to indicate whether
the element it returned is an “outer” element or an “inner” element. The parameter must be defined
as an int[] of one element, whose first element will be set to 1 (for an outer element) or 2 (for an
inner element). This applies only to a LOWER_LEVEL scan, but the output parameter is required in all
cases.

Recursive Decomposition
You do not have to specify the extractionLevel parameter. If you omit it, the extractor will automat-
ically determine the most appropriate level to use for the geometry to analyze. This makes it easy to
decompose a geometry recursively in its constituents, all the way to individual line segments. This
is illustrated in the following example:

void decomposeGeometry (J3D_Geometry geom, int level, int seq)

throws Exception

{

System.out.println ("Level: "+ level+" Sequence: "+seq);

if ((geom.getType() == geom.GTYPE_CURVE) ||

(geom.getType() == geom.GTYPE_POINT))

return;

MyElementExtractor e = new MyElementExtractor (geom);

int i = 0;

J3D_Geometry g;

int h[] = {0};

while ((g = e.nextElement(h)) != null) {

decomposeGeometry (g, level + 1, i+1);

i++;

}

}

Using Standard Notations: WKT, WKB, GML
In Chapter 5 we talked about PL/SQL functions and methods to convert between SDO_GEOMETRY types
and the standard notations defined by the Open Geospatial Consortium (OGC): Well-Known Text
(WKT), Well-Known Binary (WKB), and Geographic Markup Language (GML). We will now briefly
explain how to perform those conversions in Java.

The classes we will use to manipulate those formats are all in package oracle.spatial.util.
The SdoExport.java and SdoImport.java programs, available for download from the Apress website,
provide fully functional examples of reading and writing the WKT, WKB, and GML formats.

Reading and Writing WKT
The WKT notation is a structured textual notation for encoding geometries. It was originally
designed as a standard way for exchanging geometries between multiple environments. A point
encoded in WKT would look like this:

POINT (-111.870478 33.685992)

A simple polygon would look like this:

POLYGON ((-119.308006 37.778061, ... -119.308006 37.778061))

To convert a JGeometry object to the WKT notation, we will use method fromJGeometry() of
class WKT in package oracle.spatial.util. Note that this method actually produces a byte array,
which you may need to convert into a string before writing it out to a file. This is illustrated in the
following example:

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS232

8997ch07.qxd 9/28/07 10:03 AM Page 232

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

// Create a WKT processor

WKT wkt = new WKT();

...

// Convert the geometry to WKT

String s = new String(wkt.fromJGeometry(geom));

To convert WKT string back to a JGeometry object, just use method toJGeometry() of class WKT.
This method also uses a byte array as input. The process is illustrated in the following example:

// Create a WKT processor

WKT wkt = new WKT();

...

// Convert the WKT to geometry

JGeometry geom = wkt.toJGeometry(s.getBytes());

■Caution The WKT and WKB notations do not provide any mechanism for indicating the projection of the geom-
etry; this information is lost when converting a geometry to either of the formats. If you want to preserve it, you
need to write it separately and add it back to the geometry using the setSRID() method.

Reading and Writing WKB
The WKB encoding, as the name implies, encodes geometries in binary, a more compact format
than the WKT. Using it is similar to the way you proceeded previously. The fromJGeometry() method
of class WKB also produces a byte array, which you can then write to a file. We will show how to write
to a java DataOutputStream (called ds in the example) that allows you to write primitive Java data
types in a portable way.

First you convert the JGeometry object into WKB. This results in the creation of a byte array.
Then you write the size of this array to the output stream, followed by the SRID of the geometry.
Finally you write the byte array proper.

// Create a WKB processor

WKB wkb = new WKB(ByteOrder.BIG_ENDIAN);

...

// Convert JGeometry to WKB

byte[] b = wkb.fromJGeometry(geom);

// First write the number of bytes in the array

ds.writeInt(b.length);

// Then write the SRID of the geometry

ds.writeInt(geom.getSRID());

// Then write the binary array

ds.write(b);

Notice the ByteOrder.BIG_ENDIAN parameter. It indicates the kind of binary encoding to use: big
endian or little endian. The default is to produce a big endian encoding. You may need to adapt this
to the encoding accepted by the tools that will process the WKB. Note that the chosen encoding
method is itself flagged in the first byte of the binary result.

To convert a WKB back to a JGeometry object, just use method toJGeometry() of class WKB. This
method also uses a byte array as input. The following example illustrates this process. You can
assume that we’re reading the data from the file written previously. You first read the size of the WKB
and then the SRID of the geometry. Then you read exactly the number of bytes needed to rebuild
the WKB. Finally you convert the WKB to a JGeometry object and set the SRID back using the setSRID
method.

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 233

8997ch07.qxd 9/28/07 10:03 AM Page 233

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

// Create a WKB processor

WKB wkb = new WKB();

...

// Read the size of the byte array

int n = ds.readInt();

// Read the SRID of the geometry

int srid = ds.readInt();

// Read the byte array that contains the WKB

byte[] b = new byte[n];

int l = ds.read (b, 0, n);

// Convert to JGeometry

geom = wkb.toJGeometry(b);

// Add the SRID

geom.setSRID(srid);

We did not need to specify the style of binary encoding (big or little endian) to use. This is
because the toJGeometry() method recognizes the encoding automatically and handles both of
them transparently.

Reading and Writing GML
The WKT and WKB have many limitations: they support only simple 2D shapes. They do not sup-
port any 3D shapes, and they do not support arcs or circles. In addition, they have no way to specify
the projection of a geometry. For a more powerful solution, use Geographic Markup Language (GML),
which is an XML encoding for geographical information.

To read and write GML, we will show how to use a set of four classes and methods, summarized
in Table 7-10. The reason for having multiple classes is that the GML standard is evolving. There are
currently two major versions of the standard: GML2 and GML3, with GML3 providing support for
3D shapes (surfaces and solids) and other advanced facilities.

Table 7-10. Classes and Methods for GML Processing

GML Version Writing GML Reading GML

GML2 GML2.to_GMLGeometry() GML.fromNodeToGeometry()

GML3 GML3.to_GML3Geometry() GML3g.fromNodeToGeometry()

Note that GML3 is a superset of GML2, so any GML2-encoded geometries will be readable by
a GML3 reader. However, the reverse is not true.

Converting a JGeometry object to GML is easy, as shown in the following example:

// Create a GML2 Processor

GML2 gml = new GML2();

...

String s = gml.to_GMLGeometry(geom);

As you can see, the to_GMLGeometry() method returns a string that you can now directly write
out. You can also include the result (an XML string) in other XML documents. The previous example
uses GML2. To use GML3, just use the proper class and method.

Converting a GML string back to a JGeometry object is more convoluted. The conversion meth-
ods (GML.fromNodeToGeometry() and GML3g.fromNodeToGeometry()) do not take a GML string as input
but as a parsed document. So before using any of those methods, you must first parse the GML string
yourself. The following example shows this process:

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS234

8997ch07.qxd 9/28/07 10:03 AM Page 234

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

// Create a GML3 Processor

GML3 gml = new GML3g();

...

// Read GML string from input stream

String s = ds.readLine();

// Setup an XML DOM parser

DOMParser parser = new DOMParser();

// Parse the XML string

parser.parse(new StringReader(s));

// Get the parsed document

Document document = parser.getDocument();

// Get the top level node of the document

Node node = document.getDocumentElement();

// Convert to geometry

geom = gml.fromNodeToGeometry(node);

Note that this uses the GML3 processor. To use the GML2 processor, just switch to class GML
instead of GML3g.

■Caution Make sure not to mix up the class names involved in GML processing.

Using ESRI Shapefiles
The ESRI shapefile format is a popular format for transferring geographical data. In Chapter 5 we
used a simple command-line tool to convert shapefiles and load them into spatial tables. We will
now show how to read and write shapefiles in Java. For that we will use a set of classes from the
oracle.spatial.util package.

If all you need is to load an ESRI shapefile into a database table, then the oracle.spatial.util
package has just what you need. Just invoke class SampleShapefileToJGeomFeature and pass it the
appropriate parameters. If you don’t know them, just invoke it without any parameters, and it will
tell you. Here is an example that loads the content of shapefile shp_cities into table us_cities:

C:\>java oracle.spatial.util.SampleShapefileToJGeomFeature -h 127.0.0.1 -p 1521

-s orcl111 -u spatial -d spatial -t us_cities -f shp_cities -r 8307

host: 127.0.0.1

port: 1521

sid: orcl111

db_username: spatial

db_password: spatial

db_tablename: us_cities

shapefile_name: shp_cities

SRID: 8307

Connecting to Oracle10g using...

127.0.0.1, 1521, orcl111, spatial, spatial, us_cities, shp_cities, null, 8307

Dropping old table...

Creating new table...

Converting record #10 of 195

Converting record #20 of 195

Converting record #30 of 195

Converting record #40 of 195

Converting record #50 of 195

Converting record #60 of 195

Converting record #70 of 195

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 235

8997ch07.qxd 9/28/07 10:03 AM Page 235

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Converting record #80 of 195

Converting record #90 of 195

Converting record #100 of 195

Converting record #110 of 195

Converting record #120 of 195

Converting record #130 of 195

Converting record #140 of 195

Converting record #150 of 195

Converting record #160 of 195

Converting record #170 of 195

Converting record #180 of 195

Converting record #190 of 195

195 record(s) converted.

Done.

The class will create the table, load it, and insert the proper metadata in USER_SDO_GEOM_METADATA.

A Short Note on Shapefiles
The name shapefile is somewhat misleading. Each shapefile consists of a collection of at least three
files, all sharing the same file name, and they’re distinguished only by their file extensions. For exam-
ple, in the previous example, the shape file shp_cities is really a collection of the following files:

• shp_cities.shp: The “shape” file proper. This is the file that contains the actual geometry
definitions.

• shp_cities.shx: A spatial index on the shapes.

• shp_cities.dbf: A dBASE IV file containing the attributes for each geometry.

Some shapefiles can also come with other files, such as shp_cities.prj or shp_cities.sbn.
Those are ignored by the Oracle Spatial Java classes.

When specifying the name of a shapefile, do not include the .shp extension. All files that form
the shapefile must be stored together in the same directory.

Loading a Shapefile in Your Program
The oracle.spatial.util package contains three classes you can use from your own programs in
order to read and load shapefiles. Table 7-11 summarizes them.

Table 7-11. Classes for Shapefile Processing

Class Name Purpose

ShapefileReaderJGeom Provides all the functions you need to read shapes (geometries) from
the shapefile and convert them to JGeometry objects

DBFReaderJGeom Provides functions for reading attributes from the DBF file, as well as to
get the names and types of the attributes

ShapefileFeatureJGeom Uses the two reader classes to provide you with high-end functions to
create database tables and load them from a shapefile

The following example shows how to use the shapefile-processing classes to easily incorporate
a shapefile loader in your application. Start by opening the input files and setting up the helper
class. Remember that shapeFileName contains only the generic name of the shapefile, without any
extension.

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS236

8997ch07.qxd 9/28/07 10:03 AM Page 236

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

// Open SHP and DBF files

ShapefileReaderJGeom shpr = new ShapefileReaderJGeom(shapeFileName);

DBFReaderJGeom dbfr = new DBFReaderJGeom(shapeFileName);

ShapefileFeatureJGeom sf = new ShapefileFeatureJGeom();

Then extract the dimensions of the shapefile, that is, the minimum and maximum values of all
coordinates of the geometries in the file in all dimensions:

// Get shapefile bounds and dimension

double minX = shpr.getMinX();

double maxX = shpr.getMaxX();

double minY = shpr.getMinY();

double maxY = shpr.getMaxY();

double minZ = shpr.getMinZ();

double maxZ = shpr.getMaxZ();

double minM = shpr.getMinMeasure();

double maxM = shpr.getMaxMeasure();

int shpDims = shpr.getShpDims(shpFileType, maxM);

You can now construct the spatial metadata. Method getDimArray() will generate the proper
metadata definition based on the bounds and the dimensions of the data in the shapefile. Notice an
oddity in the usage of this method: the minimum and maximum values for the X and Y dimensions
must be passed as strings. The minimum and maximum for the Z and M dimensions are passed as
numbers.

// Construct the spatial metadata

String dimArray = sf.getDimArray(

shpDims, String.valueOf(tolerance),

String.valueOf(minX), String.valueOf(maxX),

String.valueOf(minY), String.valueOf(maxY),

minZ, maxZ, minM, maxM

);

Then you can create the table in the database. The method will drop the existing table first and
then create a new table using the proper Oracle data types that match the types of the attributes in
the DBF file. It will also insert the spatial metadata in USER_SDO_GEOM_METADATA. Specify the name to
be given to the SDO_GEOMETRY column (in geoColumn). You can also optionally specify the name of an
identification column (idColumn). This column will be automatically filled with sequential numbers
during the load.

// Create table before loading

sf.prepareTableForData(

dbConnection, dbfr, tableName, geoColumn, idColumn,

srid, dimArray

);

You can now load the data from the shapefile into the database table just created. The
insertFeatures method takes a number of arguments: the name of the identification column
(idColumn), the value to start numbering from (firstId), the commit frequency (commitFrequency),
and the frequency of the progress messages (printFrequency) printed during the load.

// Load the features

sf.insertFeatures(dbConnection, dbfr, shpr, tableName,

idColumn, firstId,

commitFrequency, printFrequency, srid,

dimArray

);

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 237

8997ch07.qxd 9/28/07 10:03 AM Page 237

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Finally, don’t forget to close the input files:

// Close input file

shpr.closeShapefile();

dbfr.closeDBF();

Building Your Own Loader
If you want more flexibility, such as the ability to choose which attributes to load, to rename them,
or to perform some processing on the geometries before loading, then you can use the low-level
methods of the ShapefileReaderJGeom and DBFReaderJGeom classes. Table 7-12 and Table 7-13 sum-
marize them.

Table 7-12. ShapefileReaderJGeom Methods

Method Purpose

getMinX() Returns the minimum value for the x-dimension

getMaxX() Returns the maximum value for the x-dimension

getMinY() Returns the minimum value for the y-dimension

getMaxY() Returns the maximum value for the y-dimension

getMinZ() Returns the minimum value for the z-dimension

getMaxZ() Returns the maximum value for the z-dimension

getMinMeasure() Returns the minimum value for the m-dimension

getMaxMeasure() Returns the maximum value for the m-dimension

getShpFileType() Returns the type of geometries contained in that shapefile: 1 for
points, 3 for lines, 5 for polygons

getShpDims() Returns the number of dimensions of the geometries

numRecords() Returns the number of records in the shapefile

getGeometryBytes(int nth) Extracts the nth geometry from the shape file as a byte array

getGeometry(byte[] recBuffer, Converts a geometry from the shape binary encoding into
int srid) () a JGeometry object

closeShapefile() Closes the shapefile

Table 7-13. DBFReaderJGeom Methods

Method Purpose

numRecords() Returns the number of records in the DBF file. This should
match the number of records in the shapefile proper.

numFields() Returns the number of attributes (= columns) in the DBF file.

getFieldName(int nth) Returns the name of the nth field as a string.

getFieldType(int nth) Returns the type of the nth field as a single-character code.

getFieldLength(int nth) Returns the length of the nth field (number of bytes it
occupies in the file).

getRecord(int nth) Returns the nth record in the file as a byte array.

getFieldData(int nth, byte[] rec) Extracts the value of the nth field from a binary record.

closeDBF() Closes the DBF file.

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS238

8997ch07.qxd 9/28/07 10:03 AM Page 238

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Using those methods, you can now extract the names, types, and size of the attributes stored in
the DBF file. Using that information, you have the complete flexibility to create a database table.
The following shows how to map the DBF data types into their Oracle equivalents:

int numFields = dbfr.numFields();

String[] fieldName = new String[numFields];

byte[] fieldType = new byte[numFields];

int[] fieldLength = new int[numFields];

String[] oracleType = new String[numFields];

for (int i=0; i<numFields; i++) {

fieldName[i] = dbfr.getFieldName(i);

fieldType[i] = dbfr.getFieldType(i);

fieldLength[i] = dbfr.getFieldLength(i);

switch (fieldType[i]) {

case 'C': // Character

oracleType[i] = "VARCHAR2(" + fieldLength[i] + ")";

break;

case 'L': // Logical

oracleType[i] = "CHAR(1)";

break;

case 'D': // Date

oracleType[i] = "DATE";

break;

case 'I': // Integer

case 'F': // Float

case 'N': // Numeric

oracleType[i] = "NUMBER";

break;

default:

throw new RuntimeException("Unsupported DBF field type " + fieldType[i]);

}

}

Creating the corresponding table is easy. Just assemble the CREATE TABLE statement by append-
ing the names of the attributes.

String createTableSql = "CREATE TABLE " + tableName + "(";

for (int i=0; i<numFields; i++)

createTableSql = createTableSql + fieldName[i] + " " + oracleType[i] + ",";

createTableSql = createTableSql + geoColumn + " SDO_GEOMETRY)";

Finally, reading and inserting the data into the database needs a loop to fetch and process each
SHP and DBF record one after the other. We assume that you built and prepared an INSERT statement
that takes one bind variable for each column to fill.

for (int rowNumber = 0; rowNumber < numRows; rowNumber++)

{

// Extract attributes values from current DBF record

byte[] a = dbfr.getRecord (rowNumber);

for (int i = 0; i< dbfr.numFields(); i++) {

stmt.setString (i+1,dbfr.getFieldData(i, a));

}

// Extract geometry from current SHP record

byte[] s = shpr.getGeometryBytes (rowNumber);

JGeometry geom = ShapefileReaderJGeom.getGeometry (s, srid);

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS 239

8997ch07.qxd 9/28/07 10:03 AM Page 239

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

// Convert JGeometry object into database object

Struct dbObject = JGeometry.store (dbConnection, geom);

stmt.setObject (numFields+1, dbObject);

// Insert row into the database table

stmt.execute();

}

Summary
In this chapter, you learned how to map geometry types into data structures that you can use in
application programs for PL/SQL and Java to read, write, and manipulate them. Note that there are
a few occasions when you will need to perform such manipulations, and Oracle Spatial provides
a rich set of operators and functions that should cover the majority of cases. We will cover those
operators and functions in the next two chapters.

CHAPTER 7 ■ MANIPULATING SDO_GEOMETRY IN APPLICATION PROGRAMS240

8997ch07.qxd 9/28/07 10:03 AM Page 240

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Spatial and Network
Analysis

P A R T 3

8997ch08.qxd 10/2/07 4:24 PM Page 241

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997ch08.qxd 10/2/07 4:24 PM Page 242

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Spatial Indexes and Operators

To run the examples in this chapter, you need to import the following datasets:

imp spatial/spatial file=app_with_loc.dmp full=y indexes=n

imp spatial/spatial file=map_large.dmp full=y

imp spatial/spatial file=citybldgs.dmp full=y

In previous chapters, we showed how to store location information in Oracle tables. We aug-
mented existing tables, such as branches, customers, and competitors, with an SDO_GEOMETRY
column to store locations of data objects. In this chapter, we describe how to use this spatial infor-
mation to perform proximity analysis.

Proximity analysis refers to query/analysis using the locations of data objects. Specifically, in
a business application, you might be interested in (but not limited to) the types of proximity analy-
sis shown in Table 8-1.

Table 8-1. Types of Proximity Analyses in a Business Application

Analysis Type Description

Customer analysis Identify customers nearest to, or within a specified radius from, a branch
or a competitor. For customers close to a competitor, you might provide
certain promotions to retain them. You may specifically target this
analysis on GOLD customers whom you want to retain at any cost.

Sales region analysis Build sales regions (that is, quarter-mile buffers) around branch and
competitor locations. Identify which of these overlap with one another
or with state and county boundaries. If sales regions of branches overlap
substantially, you could merge such branches.

We describe how to perform these (and additional) varieties of proximity analysis in detail in
this chapter. To perform efficient proximity analysis, you will use three basic elements of Oracle’s
spatial technology:

243

C H A P T E R 8

8997ch08.qxd 10/2/07 4:24 PM Page 243

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Spatial operators: Just as you can specify relational operators in a SQL statement, such as
< (less than), > (greater than), or = (equal to), and so on, you can likewise use a spatial opera-
tor to search the location (SDO_GEOMETRY) columns of a table for proximity with respect to
a query location.

The following SQL shows how to search the customers table using a spatial operator:

SELECT COUNT(*)

FROM branches b, customers c

WHERE b.id=1

AND SDO_WITHIN_DISTANCE

(c.location, b.location, 'DISTANCE=0.25 UNIT=MILE')='TRUE';

This example counts the customers within a quarter mile of a specified store (id=1). The
equality operator, b.id=1, selects only the row that has an ID of 1 from the branches table.
You then specify a spatial predicate using the SDO_WITHIN_DISTANCE operator, with which you
identify the customers that are within a quarter mile of the specified store.

• Spatial indexes: Analogous to B-tree indexes, spatial indexes facilitate fast execution of spa-
tial operators on SDO_GEOMETRY columns of Oracle tables. A B-tree index on the id column of
the branches table would facilitate searches based on branch ID. Similarly, a spatial index on
the location column of the customers table would facilitate fast execution of the SDO_WITHIN_
DISTANCE operator.

• Geometry processing functions: These functions perform a variety of operations, including
computation of the spatial interaction of two or more SDO_GEOMETRY objects. Spatial func-
tions do not use spatial indexes, and they enable a more rigorous analysis of spatial data
than is possible with spatial operators.

In this chapter, we focus on only the first two topics listed previously: spatial indexes and spatial
operators. We will describe the third topic, geometry processing functions, in Chapter 9. A majority of
the functionality of spatial indexes and spatial operators is part of Oracle Locator (included in all
editions of the Oracle Database). This means all Oracle applications can leverage the functionality
described in this chapter.

The remainder of the chapter is structured as follows:

• First, we discuss how to create spatial indexes on SDO_GEOMETRY columns.

• Then, we describe spatial operators that perform different types of proximity analysis and
how to use these operators in a SQL statement.

• Finally, we cover more advanced topics regarding spatial indexing and spatial queries. These
include function-based spatial indexing, parallel and partitioned indexing, and spatial joins.
Function-based spatial indexing allows spatial indexes to be created on functions that return
SDO_GEOMETRY values. Partitioned indexing allows local indexes to be created for each parti-
tion of a partitioned table. Parallel indexing allows the creation of a spatial index in parallel.
Spatial joins enable fast joining of multiple tables based on a spatial criterion. Some of these
advanced topics, such as partitioned indexes, are included only in the Enterprise Edition of
Oracle (as priced options).

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS244

8997ch08.qxd 10/2/07 4:24 PM Page 244

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Spatial Indexes
Spatial operators enable proximity analysis on SDO_GEOMETRY columns. Listing 8-1 shows how to
search for customers within a half mile of a branch location.

Listing 8-1. SDO_WITHIN_DISTANCE Spatial Operator in SQL

SQL> SELECT COUNT(*)

FROM branches b , customers c

WHERE b.id=1

AND SDO_WITHIN_DISTANCE

(c.location, b.location, 'DISTANCE=0.5 UNIT=MILE')='TRUE';

ERROR at line 1:

ORA-13226: interface not supported without a spatial index

ORA-06512: at "MDSYS.MD", line 1723

ORA-06512: at "MDSYS.MDERR", line 8

ORA-06512: at "MDSYS.SDO_3GL", line 387

The error in Listing 8-1 indicates that to use spatial operators, you first need to create a spatial
index on the location column of the customers table. As an application developer, creating spatial
indexes on the SDO_GEOMETRY columns is one of the first steps to undertake when enabling proximity
analysis in your application.

As noted earlier, spatial indexes in Oracle are analogous to conventional indexes such as B-trees.
Just as a B-tree index on a name column speeds up queries of the sort where name = 'Larry', so do
spatial indexes enable fast searching on the indexed SDO_GEOMETRY columns. Spatial indexes are
required to ensure effective response times for queries that use spatial operators, such as the one in
Listing 8-1. You will learn of how they are structured and how they work in the “Spatial Index Concepts”
section. But first we’ll cover how to create the spatial index.

Just like B-tree indexes, spatial indexes are created using SQL. For instance, you can create
a spatial index on the location column of the customers table, as shown in Listing 8-2.

Listing 8-2. Creating an Index

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Note that the statement is similar to creating a B-tree index except that the INDEXTYPE IS
MDSYS.SPATIAL_INDEX clause specifies that the index to be created is a spatial index instead of a regu-
lar B-tree index.

However, this statement may fail, as illustrated in the following code, if you have not already
populated the appropriate metadata for the spatial layer (corresponding to <customers table,
location column>):

ERROR at line 1:

ORA-29855: error occurred in the execution of ODCIINDEXCREATE routine

ORA-13203: failed to read USER_SDO_GEOM_METADATA view

ORA-13203: failed to read USER_SDO_GEOM_METADATA view

ORA-06512: at "MDSYS.SDO_INDEX_METHOD_10I", line 10

ORA-06512: at line 1

■Caution Always insert metadata for a spatial layer (table_name, column_name) prior to creating a spatial index.

You may recall that we discussed how to add spatial metadata for a spatial layer in Chapter 3.
We briefly recap that discussion in the next section.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 245

8997ch08.qxd 10/2/07 4:24 PM Page 245

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Inserting Metadata for a Spatial Layer Prior to Indexing
Spatial metadata for a spatial layer (identified by <table_name, column_name>) is inserted in the
USER_SDO_GEOM_METADATA1 view. This view has the fields shown in Listing 8-3 that need to be popu-
lated appropriately.

Listing 8-3. USER_SDO_GEOM_METADATAView

SQL> DESCRIBE USER_SDO_GEOM_METADATA;

Name Null? Type

----------------------- -------- -------------------

TABLE_NAME NOT NULL VARCHAR2(32)

COLUMN_NAME NOT NULL VARCHAR2(1024)

DIMINFO MDSYS.SDO_DIM_ARRAY

SRID NUMBER

You can populate these fields as shown in Listing 8-4.

Listing 8-4. Inserting Metadata for the Spatial Layer Corresponding to the location Column of the
customers Table

SQL> INSERT INTO user_sdo_geom_metadata

(table_name, column_name, srid, diminfo)

VALUES

(

'CUSTOMERS', -- TABLE_NAME

'LOCATION', -- COLUMN_NAME

8307, -- SRID specifying a geodetic coordinate system

SDO_DIM_ARRAY -- DIMINFO attribute for storing dimension bounds, tolerance

(

SDO_DIM_ELEMENT

(

'LONGITUDE', -- DIMENSION NAME for first dimension

-180, -- SDO_LB for the dimension: -180 degrees

180, -- SDO_UB for the dimension: 180 degrees

0.5 -- Tolerance of 0.5 meters (not 0.5 degrees: geodetic SRID)

),

SDO_DIM_ELEMENT

(

'LATITUDE', -- DIMENSION NAME for second dimension

-90, -- SDO_LB for the dimension: -90 degrees

90, -- SDO_UB for the dimension: 90 degrees

0.5 -- Tolerance of 0.5 meters (not 0.5 degrees: geodetic SRID)

)

)

);

The table_name and column_name fields, which identify the spatial layer, are set to customers and
location, respectively. The srid field is set to 8307 to indicate a geodetic coordinate system. The diminfo
field specifies the bounds and tolerance for each dimension. It is set using an SDO_DIM_ARRAY object
containing two elements. The first element specifies the longitude dimension as dimension_name

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS246

1. Although we loosely refer to USER_SDO_GEOM_METADATA as a view, it is an updatable view based on an underly-
ing table SDO_INDEX_METADATA_TABLE in the MDSYS schema. Inserts, deletes, and updates on the view are
implemented as instead-of triggers on the underlying table.

8997ch08.qxd 10/2/07 4:24 PM Page 246

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

and –180 (degrees) and 180 (degrees) as the lower and upper bounds for this dimension. The toler-
ance is set to 0.5 (meters). The second element specifies the latitude dimension as dimension_name
and –90 (degrees) and 90 (degrees) as the lower and upper bounds for this dimension. The tolerance
is set again to 0.5 (meters).

Creating a Spatial Index
Now that you have populated the metadata, you can create the spatial index. However, if the index
creation failed earlier, you first need to drop the index that failed. Note that this behavior is different
from that of a B-tree (when B-tree index creation fails, you don’t need to explicitly drop the B-tree
index). The command to drop a spatial index, shown in Listing 8-5, is the same as that for other
indexes, such as B-trees.

Listing 8-5. Dropping a Spatial Index

SQL> DROP INDEX customers_sidx;

Now you are ready to re-create a spatial index on the location column of the customers table,
as shown in Listing 8-6.

Listing 8-6. Creating a Spatial Index on the location Column of the customers Table

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

■Note During index creation, Oracle checks whether the SDO_SRID in the column being indexed matches the
SRID in the USER_SDO_GEOM_METADATA for the corresponding spatial layer. If these values do not match, Oracle
raises the ORA-13365 error. Oracle, however, does not run any validation checks during index creation. You need to
explicitly run validation (see Chapter 5 for details) if you are unsure of the validity of the spatial data.

Spatial Indexing Concepts
You have created a spatial index on the location column of the customers table, and you know that
this will facilitate fast execution of spatial operator queries. However, before you move on to look at
some more examples, it is important to understand how a spatial index works.

The spatial_index is internally implemented as an R-tree index,2 a B-tree-like hierarchical
structure that stores rectangle approximations of geometries as key values. Figure 8-1 shows an
example of an R-tree spatial_index for customer locations represented by points.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 247

2. Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. “The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles.” Proceedings of the ACM SIGMOD International Confer-
ence on the Management of Data, 1990, p. 322–31.

8997ch08.qxd 10/2/07 4:24 PM Page 247

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 8-1. Example of an R-tree for a set of points

Say that the black dots in Figure 8-1 represent the locations of customers stored as point geometries
in the location (SDO_GEOMETRY) column of the customers table. For each SDO_GEOMETRY in the location
column, the R-tree computes a minimum bounding rectangle (MBR) enclosing the SDO_GEOMETRY, and it
creates a hierarchy of MBRs.

For instance, in Figure 8-1, the point locations are clustered into three nodes: A, B, and C. Each
node is associated with an MBR that encloses the locations of the data in the subtree. The left side
of Figure 8-1 shows the points and the MBRs for nodes A, B, and C. These nodes are further clustered
into a single “root” node. In this manner, an R-tree constructs a hierarchical tree structure using the
MBRs of the SDO_GEOMETRY data in a table. It then uses this hierarchy of MBRs to guide queries to
appropriate branches of the tree and finally to the rows of the data table.

Figure 8-2 illustrates how the R-tree index is stored in Oracle. The logical tree structure is stored
as an Oracle table that starts with the prefix MDRT. Each node of the tree structure is stored as a sepa-
rate row in this table.

Figure 8-2. Storage of a spatial (R-tree) index

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS248

8997ch08.qxd 10/2/07 4:24 PM Page 248

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The metadata for the spatial index is stored in the view USER_SDO_INDEX_METADATA. (You should
not confuse this view with the USER_SDO_GEOM_METADATA view that stores information about spatial
layers.) This view stores the spatial index name (as SDO_INDEX_NAME), the table storing the index (as
SDO_INDEX_TABLE), the root ROWID for the R-tree index, the branching factor or fanout (maximum
number of children) of an R-tree node, and other relevant parameters. You can consult this view to
identify the spatial index (MDRT) table (or SDO_INDEX_TABLE) corresponding to a specific spatial index.
As an alternative, you can consult the simpler USER_SDO_INDEX_INFO view.

■Note The USER_SDO_INDEX_INFO and USER_SDO_INDEX_METADATA views store all the VARCHAR2 fields in
uppercase. You should compare these fields with uppercase literals (as in Listing 8-7).

As shown in Listing 8-7, the SDO_INDEX_TABLE (that is, the spatial index table) has the name
MDRT_D81F$. Note that you may get a different name, but the name will always start with the prefix
MDRT. You can identify all spatial index tables by querying the SDO_INDEX_TABLE column in the
USER_SDO_INDEX_INFO view and take appropriate steps so that they are not moved around by an
unwary DBA.

Listing 8-7. Identifying the SDO_INDEX_TABLE That Stores the Spatial Index on the customers Table

SQL> SELECT SDO_INDEX_TABLE FROM USER_SDO_INDEX_INFO

WHERE TABLE_NAME = 'CUSTOMERS' AND COLUMN_NAME='LOCATION';

SDO_INDEX_TABLE

MDRT_D81F$

■Caution The SDO_INDEX_TABLE for a spatial index (for example, the one returned in the preceding SQL)
should never be treated as a regular Oracle table—that is, it should not be moved from one tablespace to another,
dropped, copied, and so on. Otherwise, this will render the spatial index invalid and could lead to the failure of sub-
sequent spatial query operators3 or spatial index rebuilding.

Spatial Index Parameters
In B-tree indexes, you can specify where to place the index data. Can you do that for the spatial
index table associated with a spatial index? Yes. The CREATE INDEX statement in Listing 8-6 can take
an additional PARAMETERS clause that can be used to specify a number of parameters, including
where to store the index information. Listing 8-8 shows the syntax for creating a spatial index,
including the PARAMETERS clause (in bold).

Listing 8-8. Syntax for Creating a Spatial Index

CREATE INDEX <indexname> ON <tablename>(<columnname>)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('parameter_string');

The parameter_string is a list of parameter_name=value pairs. Let’s examine some important
parameters that you’re likely to use in applications.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 249

3. In this context, operators are binary predicates that operate on an SDO_GEOMETRY column that is indexed and
a query SDO_GEOMETRY argument.

8997ch08.qxd 10/2/07 4:24 PM Page 249

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

TABLESPACE Parameter

You can specify which tablespace to use for storing the spatial index table with this parameter. For
instance, TABLESPACE=TBS_3 puts the spatial index table in the TBS_3 tablespace. Listing 8-9 shows an
example.

Listing 8-9. Creating a Spatial Index in Tablespace TBS_3

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('TABLESPACE=TBS_3');

You can specify the INITIAL and NEXT extents in addition to the TABLESPACE parameter, as shown
in Listing 8-10.

Listing 8-10. Creating an Index with the INITIAL and NEXT Extents for an Index Table

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('TABLESPACE=TBS_3 NEXT=5K INITIAL=10K');

If your tablespaces are locally managed (see the Oracle Reference for more details), you do not
need these parameters, and Oracle will ignore them even if specified.

■Note If the tablespace specified is an ASSM tablespace (you can verify this by checking that segment_space_
management is AUTO in user_tablespaces for the specified tablespace), the LOBs created in the index are
SECUREFILE LOBs. Otherwise, the LOBs created will be BASIC LOBs. Secure File LOBs are expected to be faster
than BASIC LOBs.

WORK_TABLESPACE Parameter

During index creation, the R-tree index performs sorting operations on the entire dataset. As
a result, it creates some working tables that are dropped at the end of index creation. Creating and
dropping many tables with different sizes can fragment the space in a tablespace. To avoid this, you
can specify a separate tablespace for these working tables using the WORK_TABLESPACE parameter, as
shown in Listing 8-11.

Listing 8-11. Creating an Index with WORK_TABLESPACE As TBS_3

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('WORK_TABLESPACE=SYSAUX');

In this example, WORK_TABLESPACE=TBS_3 places all working tables in tablespace TBS_3. This
ensures the existing tablespaces holding the index and/or data are not fragmented because of index
creation work. The total size (in bytes) used in such a “work tablespace” will be approximately 200–300
times the number of rows in the customers table.

■Note These working tables are regular tables and not “temporary” tables. You cannot use the temporary table-
space in Oracle for this purpose. Also note that if WORK_TABLESPACE is not specified, the working tables are created
in the same tablespace as the index.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS250

8997ch08.qxd 10/2/07 4:24 PM Page 250

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

LAYER_GTYPE Parameter

You can use this parameter to specify that the geometry data in the location column of the customers
table are specific-type geometries such as points (by default, all types are permitted). This will help
in integrity checking and sometimes in speeding up the query operators.

For instance, as shown in Listing 8-12, you can set the parameter string to LAYER_GTYPE = POINT
to indicate that the customers table has only point data. Trying to insert a line geometry into this
column will raise an error. In general, you can set the value to the names of the SDO_GTYPEs (point,
line, polygon, and so on), as discussed in Chapter 4.

Listing 8-12. Creating an Index for Specific-Type (Point) Geometries

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('LAYER_GTYPE=POINT');

SDO_INDX_DIMS Parameter

This parameter specifies that the dimensionality of the spatial_index. By default, this is set to 2.
The R-tree can index three- and four-dimensional geometries. Listing 8-13 shows an example for
setting the index dimensionality explicitly to 2. You can set this parameter to 3 or 4 to create a three-
or four-dimensional R-tree index.

Listing 8-13. Creating an R-tree Index with Dimensionality Specified

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('SDO_INDX_DIMS=2');

SDO_DML_BATCH_SIZE Parameter

Inserts and deletes to a table containing a spatial index are not directly incorporated in the spatial
index. Instead, they are incorporated in the index at commit time in batches. This parameter speci-
fies the batch size for the batched insert/delete/update in a transaction. (For transactions with large
number of inserts, set this parameter to 5000 or 10000.) Listing 8-14 shows an example.

Listing 8-14. Creating an Index with the SDO_DML_BATCH_SIZE Parameter

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('SDO_DML_BATCH_SIZE=5000');

This parameter, if not specified, is internally set to 1000. This means inserts in a transaction are
incorporated in the index in batches of 1,000. This is a good value for most transactions that have
a mix of queries and inserts, deletes, and updates. However, if your transactions have a large num-
ber of inserts, deletes, and updates (say, on the order of 5,000 or 10,000 or more), you may want to
set the SDO_DML_BATCH_SIZE parameter to a higher value, for example, 5000 or 10000. This will sub-
stantially improve the performance of the commit operation (that is, the incorporation of the updates
in the index at commit time). Note, however, that this might consume more memory and other sys-
tem resources. In general, you should always set this parameter to be in the range of 1 to 10000.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 251

8997ch08.qxd 10/2/07 4:24 PM Page 251

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Tip If you expect to perform a substantial number of insert (or delete or update) operations within a transaction
on a table having a spatial index, set the SDO_DML_BATCH_SIZE parameter to 5000 or 10000 in the CREATE INDEX
statement or in a subsequent ALTER_ INDEX REBUILD statement.

SDO_LEVEL Parameter

Instead of an R-tree index (which is the default), you can create a quadtree index by specifying the
SDO_LEVEL parameter in the PARAMETERS clause (search the documentation for Oracle Spatial Quadtree
Indexing). Quadtrees, unlike R-trees, need explicit tuning (the SDO_LEVEL parameter needs to be
tuned for best performance) and are discouraged. Quadtrees can index only two-dimensional non-
geodetic data. Listing 8-15 shows an example.

Listing 8-15. Creating a Quadtree Type of Spatial Index

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('SDO_LEVEL=8');

USER_SDO_INDEX_METADATA View
All the previously described parameters that can be used in the CREATE INDEX statement are stored
in the USER_SDO_INDEX_METADATA view. For instance, after creating a spatial index, you can check the
SDO_DML_BATCH_SIZE value for this index, as shown in Listing 8-16.

Listing 8-16. Examining the USER_SDO_INDEX_METADATAView for Index Parameters

SQL> SELECT SDO_DML_BATCH_SIZE FROM USER_SDO_INDEX_METADATA

WHERE SDO_INDEX_NAME = 'CUSTOMERS_SIDX';

SDO_DML_BATCH_SIZE

1000

■Note Again, observe that the USER_SDO_INDEX_METADATA view stores all its VARCHAR2 fields in uppercase.
You should compare these fields with uppercase literals (as in Listings 8-7 and 8-16).

Listing 8-16 shows that the SDO_DML_BATCH_SIZE parameter is set to the default value of 1,000.
Likewise, you can examine the SDO_TABLESPACE parameter (and other parameters) in the USER_SDO_
INDEX_METADATA view to verify that the index is stored in the tablespace you specified.

Spatial Index Size Requirements
For a set of N rows in a table, the R-tree spatial index roughly requires 100*3*N bytes of storage
space for the spatial index table. Also, during index creation, it requires an additional 200 3 N to 300
3 N bytes for temporary worktables. You can use the utility function in Listing 8-17 to roughly estimate
the size (in megabytes) of an R-tree spatial index table.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS252

8997ch08.qxd 10/2/07 4:24 PM Page 252

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 8-17. Estimating the Size of a Spatial Index on the location Column of the customers Table

SQL> SELECT sdo_tune.estimate_rtree_index_size

(

'SPATIAL', -- schema name

'CUSTOMERS', -- table name

'LOCATION' -- column name on which the spatial index is to be built

) sz

FROM dual;

SZ

1

The first parameter specifies the schema name, the second specifies the table name, and the
third specifies the column name on which the spatial index is to be built. For building a spatial
index on the location column of the customers table, this function indicates you need roughly 1MB
of space. Note that this is the final index size. You may need two to three times this space during the
index creation process

In addition, when you create a spatial index, the session parameter SORT_AREA_SIZE should be
set to 1MB to optimize the index creation process.

Given this background on spatial indexes, let’s move on to look at associated spatial operators
and how to perform proximity analysis using such operators.

Spatial Operators
In this section, we describe the different spatial operators that Oracle Spatial supports for perform-
ing spatial analysis. We start with an overview of spatial operators, their general syntax, their semantics
(along with any required privileges), and their evaluation using spatial indexes. Next, we take a closer
look at different spatial operators and describe how to perform different kinds of proximity analyses
(including those discussed in Table 8-1) using those operators. Then, we describe how specifying
appropriate “hints” can ensure faster evaluation of spatial operators.

Oracle Spatial supports a variety of spatial operators for performing proximity analysis. Just like
the relational operators <, >, and =, the spatial operators can be used in the WHERE clause of a regular
SQL statement. Let’s examine the syntax and the semantics of these operators.

Syntax of Spatial Operators
These operators have the generic syntax described in Listing 8-18.

Listing 8-18. General Syntax of Spatial Operators

<spatial_operator>

(

table_geometry IN SDO_GEOMETRY (or ST_GEOMETRY),

query_geometry IN SDO_GEOMETRY (or ST_GEOMETRY)

[, parameter_string IN VARCHAR2

[, tag IN NUMBER]]

)

='TRUE'

In Listing 8-18, the following is true:

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 253

8997ch08.qxd 10/2/07 4:24 PM Page 253

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• table_geometry is the SDO_GEOMETRY (or ST_GEOMETRY) column of the table on which the oper-
ator is applied.

• query_geometry is the query location. This could be an SDO_GEOMETRY (or ST_GEOMETRY) column
of another table, a bind variable, or a dynamically constructed object.

• parameter_string specifies the parameters specific to the spatial operator. As the opening
square bracket indicates, this argument is optional in some operators.

• tag specifies a number used only in specific spatial operators. Again, the opening square
bracket indicates that this argument is optional. This argument can be specified only in con-
junction with the parameter_string argument.

You should note three things in the preceding syntax and explanation. First, the table_geometry
column must be spatially indexed. Spatial operators raise an error otherwise. Second, the operator
should always be equated to the string 'TRUE' in the preceding signature. This makes it a predicate
to be evaluated with respect to every row of the indexed table. Finally, the columns can be either the
native SDO_GEOMETRY type defined in Oracle or the ST_GEOMETRY type or the subtypes of ST_GEOMETRY
such as ST_POINT, ST_LINESTRING, or ST_POLYGON that are mentioned in the “Spatial Data in SQL/MM
and OGC” section of Chapter 4. The ST_GEOMETRY and its subtypes conform to the exact defined types
in the SQL/MM standard. Although we describe all the operator examples with SDO_GEOMETRY
type in the rest of the chapter, you can also use the ST_GEOMETRY and its subtypes in these examples.

■Note When evaluating the spatial operators, Oracle Spatial sets the tolerance value to 0.005 if table_geometry
is of type ST_GEOMETRY or one of its subtypes. Otherwise (that is, if table_geometry is of type SDO_GEOMETRY),
Oracle obtains the tolerance value from the USER_SDO_GEOM_METADATA view for the specified table_geometry
column.

Semantics of Spatial Operators
When you specify a spatial operator in a SQL statement, Oracle selects only those rows for which
the operator evaluates to TRUE. This means the operator selects only those rows of the associated
table where the corresponding table_geometry (SDO_GEOMETRY column) values satisfy a specified
operator relationship with respect to the query_geometry (query location). This type of selection is
analogous to selection with relational operators using a specific predicate such as id>=10.

Let’s look at an example of spatial operator usage. Listing 8-19 shows our first spatial query
using the SDO_WITHIN_DISTANCE operator in the WHERE clause.

Listing 8-19. Spatial Operator Usage in a SQL Statement

SQL> SELECT COUNT(*)

FROM branches b, customers c

WHERE b.id=1

AND SDO_WITHIN_DISTANCE

(c.location, b.location, 'DISTANCE=0.5 UNIT=MILE') = 'TRUE';

COUNT(*)

108

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS254

8997ch08.qxd 10/2/07 4:24 PM Page 254

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The first column of the SDO_WITHIN_DISTANCE operator specifies the column name (that is, the
location column) that is indexed in the customers table. The second column specifies a query loca-
tion. In this case, the query location is selected from the branches table. The third argument specifies
the parameters for the operator. In the case of the SDO_WITHIN_DISTANCE operator, this parameter
specifies the distance (and the units) to search. The operator returns all rows of the customers table
where the location column satisfies the spatial-operator relationship with respect to the query
location. In this example, it returns all customers within 0.5 miles of the query location.

All spatial operators, including the SDO_WITHIN_DISTANCE operator in the previous example, use
the spatial index (associated with their first argument, the table_geometry) to prune irrelevant rows.
Unlike the geometry processing functions described in Chapter 9, spatial operators are tied to the
spatial index. In other words, they require that a spatial index exist on the table_geometry column
specified as the first argument of an operator. For instance, if you executed the SQL in Listing 8-6
after dropping the customers_sidx index, you would get an ORA-13226 (“Interface not supported
without a spatial index”) error.

Evaluation of Spatial Operators
Next, we briefly discuss how spatial operators are evaluated. An understanding of this will help
ensure the best execution strategies for a spatial operator.

Since spatial operators are tied to the spatial index, they are, in most cases, evaluated in a two-
stage filtering mechanism involving the spatial index. As shown in Figure 8-3, a spatial operator is
first evaluated using the spatial index. This evaluation using the index is referred to as the primary
filter. Here, the approximations in the index (the MBRs stored in the spatial index table) are used to
identify a candidate set of rows that satisfies the operator relationship with respect to the query loca-
tion. The identified rows are then passed through the Geometry Engine, referred to as the secondary
filter, to return the correct set of rows for the specified operator. Note that all of this processing is
transparent to the user: just specifying the operator in the WHERE clause of a SQL statement will
internally invoke the appropriate index (primary filter) and the Geometry Engine (secondary filter)
functionality to identify the correct set of rows.

Figure 8-3. Spatial operator evaluation using an associated spatial index

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 255

8997ch08.qxd 10/2/07 4:24 PM Page 255

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

In some cases, however, the optimizer may decide to bypass the spatial index. It then invokes
the secondary filter (that is, the Geometry Engine functions) directly on appropriate rows of the table.
(This might happen for a variety of reasons, including insufficient cost estimates for the spatial
operator. Note that Oracle Spatial provides only rough estimates for the spatial operator evaluation
with and without spatial indexes.) Not using the spatial index has the following implications:

• It might result in inefficient execution strategies whenever the SQL involves multiple tables
or spatial and nonspatial predicates on the same table. Such cases might need tuning by pro-
viding explicit hints to use appropriate indexes.

• Oracle Spatial requires that the SDO_NN operator be evaluated using a spatial index. Sometimes
you need explicit hints to ensure the use of a spatial index.

We discuss these cases and the remedies using explicit hints later in the “Hints for Spatial
Operators” section.

A Closer Look at Spatial Operators
Now that you have some background on how spatial operators are evaluated in Oracle, we next
describe the semantics of different spatial operators. Oracle Spatial provides different operators to
perform the following types of proximity analyses. These operators can be used to enable the differ-
ent analyses listed in Table 8-1 for a business application.

• Find all data within a specified distance from a query location: This operator is called
SDO_WITHIN_DISTANCE or simply the within distance operator. This operator will enable cus-
tomer analysis, as described in Table 8-1.

• Find the nearest neighbors to a query location: This operator is called SDO_NN or simply the
nearest-neighbor operator. This operator can be useful in performing customer analysis, as
described in Table 8-1.

• Find neighbors that interact with or relate to a query location: The primary operator to solve
this purpose is called SDO_RELATE. There are other variants for determining specific types of
relation. If only the index approximations are to be used, you can use a simpler variant (opera-
tor) called SDO_FILTER. These operators enable sales region analysis, as described in Table 8-1.

In this section of the chapter, we discuss each of these operators in sequence and how to use
them for performing analysis in a business application.

■Caution If the sdo_indx_dims is set to 3 as in Listing 8-13, only the following operators are supported:
SDO_FILTER, SDO_NN, SDO_WITHIN_DISTANCE, and SDO_RELATE with mask=ANYINTERACT (or the equivalent
SDO_ANYINTERACT operator) in Oracle 11 Release 1. The remaining operators such as SDO_CONTAINS, SDO_INSIDE,
SDO_TOUCH, and SDO_COVEREDBY are not supported.

SDO_WITHIN_DISTANCE Operator
First, we will describe the SDO_WITHIN_DISTANCE operator. This operator is one of the simplest spatial
operators, and you can start your proximity analysis with it. This operator facilitates analysis such
as the identification of customers within a quarter-mile radius of a store site.

Given a set of locations, the SDO_WITHIN_DISTANCE operator returns all locations that are within
a specified distance from a query location. Figure 8-4 shows an example. The SDO_WITHIN_DISTANCE

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS256

8997ch08.qxd 10/2/07 4:24 PM Page 256

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

operator specifies a distance d from the query location Q. The spatial index will retrieve the objects
A, B, and C that are within this specified distance d. Objects D and E are eliminated, because they
are farther than distance d from query location Q.

Figure 8-4. The SDO_WITHIN_DISTANCE operator specifies a maximum distance d.

The SDO_WITHIN_DISTANCE operator has the following syntax. You can observe that this operator
conforms to the generic spatial_operator syntax in Listing 8-18. The cutoff distance d is specified
in the third argument, parameter_string, using the parameter distance=d. Note that Oracle Spatial
stipulates that the operator always be evaluated to the string 'TRUE'.

SDO_WITHIN_DISTANCE

(

table_geom IN SDO_GEOMETRY,

query_geom IN SDO_GEOMETRY,

parameter_string IN VARCHAR2

)

='TRUE'

where the following is true:

• table_geom is the SDO_GEOMETRY column of the table that is searched.

• query_geom is the SDO_GEOMETRY specifying the query location. This could be a column of
another table, a bind variable, or a dynamically constructed object.

• parameter_string specifies the parameter distance and optionally the parameter unit (for
the distance specified). The string will be of the form 'DISTANCE=<numeric value>
[UNIT=<string>] [min_resolution=a] [max_resolution=b]'.

■Note The default unit for geodetic data is meter.

Listing 8-20 shows the usage of the SDO_WITHIN_DISTANCE operator. Here, the customers within
a quarter-mile distance of a specific competitor store (store id=1) are identified.

Listing 8-20. SDO_WITHIN_DISTANCE Operator Retrieving All Customers Within a Quarter-Mile Radius
of a Competitor Store

SQL> SELECT ct.id, ct.name

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_WITHIN_DISTANCE

(ct.location, comp.location, 'DISTANCE=0.25 UNIT=MILE ')='TRUE'

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 257

8997ch08.qxd 10/2/07 4:24 PM Page 257

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

ORDER BY ct.id;

ID NAME

---------- -----------------------------------

25 BLAKE CONSTRUCTION

28 COLONIAL PARKING

34 HEWLETT-PACKARD DC GOV AFFAIRS

41 MCGREGOR PRINTING

48 POTOMAC ELECTRIC POWER

50 SMITH HINCHMAN AND GRYLLS

270 METRO-FARRAGUT NORTH STATION

271 METRO-FARRAGUT WEST STATION

468 SAFEWAY

809 LINCOLN SUITES

810 HOTEL LOMBARDY

1044 MUSEUM OF THE THIRD DIMENSION

1526 INTERNATIONAL FINANCE

1538 MCKENNA AND CUNEO

2195 STEVENS ELEMENTARY SCHOOL

6326 HOTEL LOMBARDY

7754 EXECUTIVE INN

7762 PHILLIPS 66

7789 SEVEN BUILDINGS

7821 RENAISSANCE MAYFLOWER HOTEL

8138 ST GREGORY HOTEL

8382 EXXON

8792 DESTINATION HOTEL & RESORTS

23 rows selected.

Can you also report the distance of these returned customers from the corresponding store?
Yes, but you have to use a spatial function called SDO_GEOM.SDO_DISTANCE for this purpose. Listing 8-21
shows the corresponding SQL.

Listing 8-21. SDO_WITHIN_DISTANCE Operator Retrieving All Customers in a Quarter-Mile Radius of
a Competitor Store and Also Reporting Their Distances

SQL> col dist format 999

SELECT ct.id, ct.name,

SDO_GEOM.SDO_DISTANCE(ct.location, comp.location, 0.5, ' UNIT=YARD ') dist

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_WITHIN_DISTANCE

(ct.location, comp.location, 'DISTANCE=0.25 UNIT=MILE')='TRUE'

ORDER BY ct.id;

ID NAME DIST

---------- ----------------------------------- ----

25 BLAKE CONSTRUCTION 319

28 COLONIAL PARKING 398

34 HEWLETT-PACKARD DC GOV AFFAIRS 428

41 MCGREGOR PRINTING 350

48 POTOMAC ELECTRIC POWER 355

50 SMITH HINCHMAN AND GRYLLS 252

270 METRO-FARRAGUT NORTH STATION 345

271 METRO-FARRAGUT WEST STATION 272

468 SAFEWAY 252

809 LINCOLN SUITES 104

810 HOTEL LOMBARDY 313

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS258

8997ch08.qxd 10/2/07 4:24 PM Page 258

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

1044 MUSEUM OF THE THIRD DIMENSION 153

1526 INTERNATIONAL FINANCE 236

1538 MCKENNA AND CUNEO 97

2195 STEVENS ELEMENTARY SCHOOL 305

6326 HOTEL LOMBARDY 329

7754 EXECUTIVE INN 375

7762 PHILLIPS 66 303

7789 SEVEN BUILDINGS 355

7821 RENAISSANCE MAYFLOWER HOTEL 322

8138 ST GREGORY HOTEL 359

8382 EXXON 326

8792 DESTINATION HOTEL & RESORTS 159

23 rows selected.

Note that the SDO_GEOM.SDO_DISTANCE function takes as the first two arguments the locations of
a customer and a store that satisfy the SDO_WITHIN_DISTANCE predicate. The third argument specifies
the tolerance, and the fourth argument specifies the optional units parameter to retrieve the dis-
tances in appropriate units. In this case, the unit is set to yard. You will learn about this function in
more detail in Chapter 9.

■Note The SDO_GEOM.SDO_DISTANCE function is part of Locator.

Suppose you want to display the customers for the specified store on a map (the exact details
of map creation will be discussed in Chapter 11). To construct the map, you need to retrieve additional
background layers such as streets stored in the map_streets table. Listing 8-22 shows the SQL for
getting the street names.

Listing 8-22. Getting the Streets Around 0.25 Miles of the Competitor Store

SQL> SELECT s.street_name

FROM competitors comp, map_streets s

WHERE comp.id=1

AND SDO_WITHIN_DISTANCE

(s.geometry, comp.location,

'DISTANCE=0.25 UNIT=MILE ')='TRUE'

ORDER BY s.street_name;

STREET_NAME

18TH ST NW

19TH ST NW

20TH ST NW

21ST ST NW

CONSTITUTION CT NW

DESALES ST NW

EYE ST NW

H ST NW

JEFFERSON PL NW

L ST NW

10 rows selected.

Now what if you wanted to restrict the previous search to only streets that are not too small or
not too large? One way to do that is by obtaining the minimum bounding rectangle of the streets
and checking for the area. Another alternative is to specify the restriction in the parameters clause

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 259

8997ch08.qxd 10/2/07 4:24 PM Page 259

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

of the SDO_WITHIN_DISTANCE query. Starting in Oracle 11, two additional parameters can be specified
in parameter clause of the SDO_WITHIN_DISTANCE query:

• min_resolution = <a>. This criterion excludes too small data geometries from query result.

• max_resolution = . This criterion excludes too large data geometries from query result.

If min_resolution is specified as a, then all data whose minimum bounding rectangles have
both sides less than a units (for geodetic data, the units is meters) are not considered in the query.
Likewise, if max_resolution is specified as b, then all data whose MBRs have both sides greater than
b units are excluded. The query will be processed only on the data geometries that are not thus excluded.
The units for min_resolution and max_resolution are always the default units for the coordinate
system (for example, if the SRID attribute in street_name is 8307, it is meters) and are not affected by
the UNITS specified in the query. Listing 8-23 shows the SQL (modified from that of Listing 8-22) to
obtain only those streets that are at least 200 meters in length. Notice that distance units are speci-
fied in MILEs but the min_resolution units are in meters. The streets are at least 200m in length.

Listing 8-23. Getting the Streets Around 0.25 Miles of the Competitor Store

SQL> SELECT s.street_name

FROM competitors comp, map_streets s

WHERE comp.id=1

AND SDO_WITHIN_DISTANCE

(s.geometry, comp.location,

'DISTANCE=0.25 UNIT=MILE min_resolution=200 ')='TRUE'

ORDER BY s.street_name;

STREET_NAME

18TH ST NW

19TH ST NW

20TH ST NW

21ST ST NW

EYE ST NW

H ST NW

L ST NW

7 rows selected.

Now how do you eliminate streets that are larger than 500 meters? You can use the max_resolution
parameter for this purpose. Listing 8-24 shows the SQL (modified from Listing 8-23).

Listing 8-24. Getting the Streets Around 0.25 Miles of the Competitor Store

SQL> SELECT s.street_name

FROM competitors comp, map_streets s

WHERE comp.id=1

AND SDO_WITHIN_DISTANCE

(s.geometry, comp.location,

'DISTANCE=0.25 UNIT=MILE min_resolution=200 max_resolution=500 ')='TRUE'

ORDER BY s.street_name;

STREET_NAME

21ST ST NW

H ST NW

2 rows selected.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS260

8997ch08.qxd 10/2/07 4:24 PM Page 260

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The min_resolution and max_resolution parameters can be used only with SDO_FILTER,
SDO_WITHIN_DISTANCE, and SDO_RELATE operators. These two parameters cannot be used with SDO_NN
query.

SDO_NN Operator
The SDO_WITHIN_DISTANCE operator retrieves all objects within a specified distance d from a query
location. What if there are no objects within distance d? What if the nearest object is at distance 2 *
d? The SDO_WITHIN_DISTANCE operator is not appropriate when you need to obtain a specific number
of neighbors, no matter how far they are from the query location. For these cases, the SDO_NN operator
is appropriate.

Given a set of locations, the SDO_NN operator retrieves data in order of their distance to a query
location. Figure 8-5 shows an example. A, B, C, D, and E are locations in a table that is spatially
indexed. Q is a query location. The SDO_NN operator orders the items A, B, C, D, and E based on their
distance to Q and returns them in the order of distance. If only one neighbor is requested, then A is
returned. If two neighbors are requested, A and B are returned.

Figure 8-5. SDO_NN on five locations: A, B, C, D, and E

The SDO_NN operator has the following syntax. Observe that this syntax conforms to the generic
signature (for any <spatial_operator>) in Listing 8-6, with some minor modifications. Note again
that Oracle Spatial requires that the operator always evaluate to 'TRUE'.

SDO_NN

(

table_geometry IN SDO_GEOMETRY,

query_geometry IN SDO_GEOMETRY

[, parameter_string IN VARCHAR2

[, tag IN NUMBER]]

)

='TRUE'

where the following is true:

• table_geom specifies the SDO_GEOMETRY column of the table whose spatial index is to be used.

• query_geom specifies the SDO_GEOMETRY for the query location. This could be a column of
another table or a bind variable.

• parameter_string, an optional argument, specifies one of two tuning parameters, SDO_BATCH_
SIZE or SDO_NUM_RES. We discuss these parameters in the next sections.

• tag, another optional argument, allows the SDO_NN operator to be bound to an ancillary distance
operator. We discuss it in the later part of this section. Note that this tag can be specified only if
parameter_string is specified.

The SDO_NN operator facilitates proximity analysis in the business application. For instance, you
can use it to identify the nearest customers to a competitor store (whose ID is 1). Listing 8-25 shows
a simple example.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 261

8997ch08.qxd 10/2/07 4:24 PM Page 261

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 8-25. A Simple Example of the SDO_NN Operator

SQL> SELECT ct.id, ct.name

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_NN(ct.location, comp.location)='TRUE' ;

ID NAME

---------- -----------------------------------

1538 MCKENNA AND CUNEO

.......

3173 rows selected.

The query in Listing 8-25 returns all 3,173 customer ids (from the customers table) in order of
their distance from the location of the specified competitor store (id=1). But in general, we do not
want to look at all the customers; rather, we want to select only the closest five or ten. To enforce
this restriction, we specify ROWNUM<=N in the preceding SQL, where N is the number of neighbors that
we are interested in. Listing 8-26 shows the SQL when N is 5 (that is, it retrieves the five nearest cus-
tomers to the competitor id=1).

Listing 8-26. SDO_NN Operator Retrieving the Five Nearest Customers to a Specific Competitor

SQL> SELECT ct.id, ct.name, ct.customer_grade

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_NN(ct.location, comp.location)='TRUE'

AND ROWNUM<=5

ORDER BY ct.id;

ID NAME CUSTOMER_GRADE

---------- ----------------------------------- ---------------

809 LINCOLN SUITES GOLD

1044 MUSEUM OF THE THIRD DIMENSION SILVER

1526 INTERNATIONAL FINANCE SILVER

1538 MCKENNA AND CUNEO SILVER

8792 DESTINATION HOTEL & RESORTS GOLD

5 rows selected.

Note that the customers have been graded into GOLD, SILVER, PLATINUM, and other categories.
You want to retain the GOLD customers at any cost and should not let the competitors decrease your
market share by poaching these important customers. So, how do you identify these customers?
One mechanism is to focus on the nearest GOLD customers to each competitor. You can modify
Listing 8-26 to return the five nearest GOLD customers instead of any nearest five customers.

Listing 8-27 shows the SQL for competitor id=1. Note that the customer_grade='GOLD' predicate
is added to the WHERE clause.

Listing 8-27. SDO_NN Operator Retrieving the Five GOLD Customers Nearest to a Specific Competitor

SQL> SELECT ct.id, ct.name, ct.customer_grade

FROM competitors comp, customers ct

WHERE comp.id=1

AND ct.customer_grade='GOLD'

AND SDO_NN(ct.location, comp.location)='TRUE'

AND ROWNUM<=5

ORDER BY ct.id;

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS262

8997ch08.qxd 10/2/07 4:24 PM Page 262

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

ID NAME CUSTOMER_GRADE

---------- ----------------------------------- ---------------

809 LINCOLN SUITES GOLD

810 HOTEL LOMBARDY GOLD

6326 HOTEL LOMBARDY GOLD

7821 RENAISSANCE MAYFLOWER HOTEL GOLD

8792 DESTINATION HOTEL & RESORTS GOLD

5 rows selected.

Note that all the customers returned are GOLD customers. The SILVER customers are filtered out.
In general, you can use the SDO_NN operator in different applications. For instance, Chapter 2

has some examples for obtaining the five nearest restaurants (or, more specifically, the five nearest
Pizza Hut restaurants) to a certain highway.

The SDO_NN operator, as shown in Listing 8-27, can be used with other predicates in the same
SQL statement. However, there are some restrictions:

• The SDO_NN operator must always be evaluated using the spatial index. Otherwise, an Oracle
error is raised.

• If there is a nonspatial predicate on the same table (for example, customer_grade='GOLD')
and this column (customer_grade) has an index, then that index should not be used in the
execution.

Specifying appropriate hints such as ORDERED and INDEX will help ensure that the spatial index is
used. We cover how to specify these hints in the “Hints for Spatial Operators” section later in this
chapter.

SDO_BATCH_SIZE Tuning Parameter
Note that in the query in Listing 8-27, the five nearest GOLD customers are not the five nearest cus-
tomers to the specified competitor (see Listing 8-26). As a result, the spatial index will iteratively
return neighbors in batches until all the predicates in the WHERE clause are satisfied. For example, to
find the five nearest GOLD customers, the index will first return the ten nearest customers. If there are
fewer than five GOLD customers among these ten nearest customers, then the index will return the next
batch of ten customers. It continues returning the customers in batches until all the predicates in
the SQL are satisfied, including customer_grade='GOLD' and ROWNUM<=5.

The size of these batches is determined by the index. However, you can set this “batch” size
using the SDO_BATCH_SIZE parameter. For instance, if you know that the five nearest GOLD customers
are within the first 100 nearest customers, you can pass this information to the index by specifying
'SDO_BATCH_SIZE=100'. This may speed up the query processing.

Listing 8-28 shows the SQL of Listing 8-27 with the SDO_BATCH_SIZE parameter specified. Note
that even if the estimate is incorrect (that is, the fifth GOLD customer is the 101st neighbor), the query
returns correct results. SDO_BATCH_SIZE is set to 100.

Listing 8-28. SDO_NN Operator Retrieving the Five GOLD Customers Nearest to a Competitor

SQL> SELECT ct.id, ct.name, ct.customer_grade

FROM competitors comp, customers ct

WHERE comp.id=1

AND ct.customer_grade='GOLD'

AND SDO_NN(ct.location, comp.location, 'SDO_BATCH_SIZE=100')='TRUE'

AND ROWNUM<=5

ORDER BY ct.id;

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 263

8997ch08.qxd 10/2/07 4:24 PM Page 263

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

ID NAME CUSTOMER_GRADE

---------- ----------------------------------- ---------------

809 LINCOLN SUITES GOLD

810 HOTEL LOMBARDY GOLD

6326 HOTEL LOMBARDY GOLD

7821 RENAISSANCE MAYFLOWER HOTEL GOLD

8792 DESTINATION HOTEL & RESORTS GOLD

5 rows selected.

SDO_NUM_RES Tuning Parameter
In most cases, you do not have to qualify the neighbors being retrieved—that is, you may just be
interested in five nearest customers instead of five nearest GOLD customers. You already saw in
Listing 8-26 how to obtain the nearest neighbors in such cases. However, by specifying the SDO_NUM_
RES=<N> parameter, the SDO_NN operator returns exactly N neighbors and may be evaluated faster
than without the parameter (as in Listing 8-26).

■Note Since the spatial index returns exactly N neighbors, you do not have to prune the search with the
ROWNUM<=N predicate in the SQL.

Listing 8-29 shows the equivalent for Listing 8-26. Notice that there is no rownum<=5 predicate,
because the spatial index retrieves exactly five neighbors because of the additional parameter SDO_NUM_
RES=5 in the SDO_NN invocation. Also note that the order of the neighbors returned in Listing 8-29 is
not the same as in Listing 8-26 (although the same neighbors are returned in both).

Listing 8-29. SDO_NN Operator Retrieving the Five Customers Nearest to a Specific Competitor

SQL> SELECT ct.id, ct.name, ct.customer_grade

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_NN(ct.location, comp.location, 'SDO_NUM_RES=5')='TRUE' ;

ID NAME CUSTOMER_GRADE

---------- ----------------------------------- ---------------

809 LINCOLN SUITES GOLD

1044 MUSEUM OF THE THIRD DIMENSION SILVER

1526 INTERNATIONAL FINANCE SILVER

1538 MCKENNA AND CUNEO SILVER

8792 DESTINATION HOTEL & RESORTS GOLD

5 rows selected.

■Caution Using SDO_NUM_RES=<N> returns the N nearest neighbors to a specified query location, but the order
of neighbors in the result set may not correspond to their distance to the query location.

SDO_NN with the Ancillary SDO_NN_DISTANCE Operator
In Listings 8-23 and 8-26, you saw how to obtain the five customers nearest to a competitor. In
Listing 8-28, you saw how to obtain the five GOLD customers nearest to a competitor. In other words,
you saw how to combine the SDO_NN operator with other predicates in the same SQL statement.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS264

8997ch08.qxd 10/2/07 4:24 PM Page 264

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Instead of just identifying the nearest customers, why don’t you find out how far away they are?
In some cases, the first neighbor could be within 1 mile, but the next one could be 25 miles away.
Knowing the distances will help you better understand the results. Fortunately, you can know the
distances without paying any additional cost. The SDO_NN operator internally computes the distances
to identify the customers. You can retrieve these distances by using the SDO_NN_DISTANCE ancillary
operator.

To fully use the nearest-neighbor functionality, you augment the SDO_NN operator with an ancillary
operator to provide the distance of each neighbor. This ancillary operator, called SDO_NN_DISTANCE, is
specified as part of the SELECT list and is bound to an SDO_NN operator in the WHERE clause. Listing 8-30
shows how to augment the SQL of Listing 8-29 to retrieve the distances of the neighbors.

■Caution To use the ancillary operator, you will have to specify one of the tuning parameters, either
SDO_NUM_RES or SDO_BATCH_SIZE. In other words, you cannot use the SDO_NN_DISTANCE operator with the
two-argument signature in Listing 8-26. If you do not know to what value to set SDO_BATCH_SIZE, then set it to 0,
and the index will use the appropriate batch size internally.

Listing 8-30. SDO_NN Operator Retrieving the Five Customers Nearest to a Specific Competitor Along
with Their Distances

SQL> col dist format 999

SELECT ct.id, ct.name, ct.customer_grade, SDO_NN_DISTANCE(1) dist

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_NN(ct.location, comp.location, 'SDO_NUM_RES=5',1)='TRUE'

ORDER BY ct.id;

ID NAME CUSTOMER_GRADE DIST

---------- ----------------------------------- --------------- ----

809 LINCOLN SUITES GOLD 95

1044 MUSEUM OF THE THIRD DIMENSION SILVER 140

1526 INTERNATIONAL FINANCE SILVER 216

1538 MCKENNA AND CUNEO SILVER 89

8792 DESTINATION HOTEL & RESORTS GOLD 146

5 rows selected.

Note that SDO_NN_DISTANCE(1) specifies a numeric tag, 1, in braces. This numeric tag is also
specified as the fourth argument to the SDO_NN operator. This tag serves the purpose of binding the
SDO_NN_DISTANCE ancillary operator to an instance of the SDO_NN operator in the WHERE clause. As
a result, the SQL in Listing 8-30 returns the distances (to competitor id=1) along with the customer
ids. Likewise, you can augment Listing 8-28 to return the distances of the five nearest GOLD customers
and their distances. The resulting SQL is shown in Listing 8-31.

Listing 8-31. SDO_NN Operator Retrieving the Five GOLD Customers Nearest to a Specific Competitor
Along with Their Distances

SQL> SELECT ct.id, ct.name, ct.customer_grade, SDO_NN_DISTANCE(1) dist

FROM competitors comp, customers ct

WHERE comp.id=1

AND ct.customer_grade='GOLD'

AND SDO_NN(ct.location, comp.location, 'SDO_BATCH_SIZE=100', 1)='TRUE'

AND ROWNUM<=5

ORDER BY ct.id;

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 265

8997ch08.qxd 10/2/07 4:24 PM Page 265

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

ID NAME CUSTOMER_GRADE DIST

---------- ----------------------------------- --------------- ----

809 LINCOLN SUITES GOLD 95

810 HOTEL LOMBARDY GOLD 286

6326 HOTEL LOMBARDY GOLD 301

7821 RENAISSANCE MAYFLOWER HOTEL GOLD 295

8792 DESTINATION HOTEL & RESORTS GOLD 146

5 rows selected.

By the way, in which units are the distances? Meters, kilometers, or miles? In general, the dis-
tances returned will be in the units for the coordinate system (refer to the information on SRID of
the geometries and the MDSYS.CS_SRS tables in Chapter 4). Since the SRID for this dataset is 8307,
a geodetic coordinate system, the distances returned are in meters. However, you can specify the
desired units, such as miles, in the third argument, the parameter_string part of the query. Listing 8-32
and Listing 8-33 correspondingly modify the SQL in Listings 8-30 and 8-31 to return the distances in
miles. The 'UNIT=MILE' parameter is added to the parameter string of the SDO_NN operator in these
examples.

Listing 8-32. Rewriting Listing 8-30 with Mile As the Distance Unit

SQL> col dist format 9.99

SELECT ct.id, ct.name, ct.customer_grade, SDO_NN_DISTANCE(1) dist

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_NN(ct.location, comp.location, 'SDO_NUM_RES=5 UNIT=MILE',1)='TRUE'

ORDER BY ct.id;

ID NAME CUSTOMER_GRADE DIST

---------- ----------------------------------- --------------- ----

809 LINCOLN SUITES GOLD .06

1044 MUSEUM OF THE THIRD DIMENSION SILVER .09

1526 INTERNATIONAL FINANCE SILVER .13

1538 MCKENNA AND CUNEO SILVER .06

8792 DESTINATION HOTEL & RESORTS GOLD .09

5 rows selected.

Listing 8-33. Rewriting Listing 8-31 with Mile As the Distance Unit

SQL> col dist format 9.99

SELECT ct.id, ct.name, ct.customer_grade, SDO_NN_DISTANCE(1) dist

FROM competitors comp, customers ct

WHERE comp.id=1

AND ct.customer_grade='GOLD'

AND SDO_NN

(ct.location, comp.location, 'SDO_BATCH_SIZE=100 UNIT=MILE', 1)='TRUE'

AND ROWNUM<=5

ORDER BY ct.id;

ID NAME CUSTOMER_GRADE DIST

---------- ----------------------------------- --------------- ----

809 LINCOLN SUITES GOLD .06

810 HOTEL LOMBARDY GOLD .18

6326 HOTEL LOMBARDY GOLD .19

7821 RENAISSANCE MAYFLOWER HOTEL GOLD .18

8792 DESTINATION HOTEL & RESORTS GOLD .09

5 rows selected.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS266

8997ch08.qxd 10/2/07 4:24 PM Page 266

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that in the SDO_NN operator queries, the closest neighbors can be at 0.06 miles (as in
Listing 8-33) or sometimes at 200 miles. In the latter case, the neighbor found even though the
closest may not be worth targeting for a promotion. This means you need a mechanism to limit
the search space in the nearest neighbor query. In Oracle 11, Spatial allows the specification of
distance=<a> in an SDO_NN query in addition to the SDO_NUM_RES or SDO_BATCH_SIZE parameter.
Using this parameter, you can limit the search to a distance of 0.1 miles in Listing 8-32. Listing 8-34
shows the corresponding SQL.

Listing 8-34. Augmenting Listing 8-32 to Limit the Search Space to 0.1 Mile Distance

SQL> col dist format 9.99

SELECT ct.id, ct.name, ct.customer_grade, SDO_NN_DISTANCE(1) dist

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_NN(ct.location, comp.location, 'SDO_NUM_RES=5 DISTANCE=0.1 UNIT=MILE',

1)='TRUE' ORDER BY ct.id;

ID NAME CUSTOMER_GRADE DIST

---------- ----------------------------------- --------------- -----

809 LINCOLN SUITES GOLD .06

1044 MUSEUM OF THE THIRD DIMENSION SILVER .09

1538 MCKENNA AND CUNEO SILVER .06

8792 DESTINATION HOTEL & RESORTS GOLD .09

4 rows selected.

Note that only four rows are returned although sdo_num_res is set to 5. This is because of the
five closest customers, only four of them are within the specified 0.1 mile distance. Listing 8-33
using the SDO_BATCH_SIZE parameter can likewise be modified to include a cutoff distance of 0.1 miles.
Listing 8-35 shows the corresponding SQL.

Listing 8-35. Augmenting Listing 8-33 with a Limit of 0.1 Mile Distance

SQL> col dist format 9.99

SELECT ct.id, ct.name, ct.customer_grade, SDO_NN_DISTANCE(1) dist

FROM competitors comp, customers ct

WHERE comp.id=1

AND ct.customer_grade='GOLD'

AND SDO_NN

(ct.location, comp.location,

'SDO_BATCH_SIZE=100 DISTANCE=0.1 UNIT=MILE', 1)='TRUE'

AND ROWNUM<=5

ORDER BY ct.id;

ID NAME CUSTOMER_GRADE DIST

---------- ----------------------------------- --------------- -----

809 LINCOLN SUITES GOLD .06

8792 DESTINATION HOTEL & RESORTS GOLD .09

2 rows selected.

This refines the results of Listing 8-33 and returns only those rows that are within the 0.1 mile
distance specified in the query. Together, these examples illustrate the power of the SDO_NN operator
in performing various types of spatial analyses.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 267

8997ch08.qxd 10/2/07 4:24 PM Page 267

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Operators for Spatial Interactions (Relationships)
Until now, we have discussed how to identify interesting locations based on their distance to a query
location. Next let’s look at operators to find locations/geometries that interact with a query geome-
try. Such operators are used frequently in applications for analysis using buffer zones.

For example, you could precompute quarter-mile to 2-mile buffer zones around existing
branch or competitor locations. Say you have constructed quarter-mile buffer zones around com-
petitor locations using the SDO_GEOM.SDO_BUFFER function, as shown in Listing 8-36.

■Note We discuss the SDO_GEOM.SDO_BUFFER function in detail in Chapter 9.

This function takes the location of each competitor as the first argument and buffers it by 0.25
(the second argument) miles (specified in fourth argument). It takes the tolerance of 0.5 meters as
the third argument. Let this buffer region denote the sales region (or area of influence) of each com-
petitor. Likewise, you can compute the area of influence (or sale region) of each branch. Listing 8-36
shows the SQL for creating these tables.

Listing 8-36. Creating the Sales Region (Area of Influence) for Each Competitor/Branch

SQL> CREATE TABLE COMPETITORS_SALES_REGIONS AS

SELECT id, name, SDO_GEOM.SDO_BUFFER

(cmp.location, 0.25, 0.5, 'UNIT=MILE ARC_TOLERANCE=0.005') geom

FROM competitors cmp;

SQL> CREATE TABLE SALES_REGIONS AS

SELECT id, name, SDO_GEOM.SDO_BUFFER

(b.location, 0.25, 0.5, 'UNIT=MILE ARC_TOLERANCE=0.005') geom

FROM branches b;

Listing 8-37 shows the SQL to create spatial indexes on these tables.

Listing 8-37. Creating Indexes on Sales Regions of Competitors/Branches

Rem Metadata for Sales_regions table: copied from the metadata for Branches table

SQL> INSERT INTO USER_SDO_GEOM_METADATA

SELECT 'SALES_REGIONS','GEOM', DIMINFO, SRID

FROM USER_SDO_GEOM_METADATA

WHERE TABLE_NAME='BRANCHES';

Rem Metadata for Competitors_regions table:

Rem -- copied from the metadata for Branches table

SQL> INSERT INTO USER_SDO_GEOM_METADATA

SELECT 'COMPETITORS_SALES_REGIONS','GEOM', DIMINFO, SRID

FROM USER_SDO_GEOM_METADATA

WHERE TABLE_NAME='COMPETITORS';

Rem Index-creation for Sales_regions table

SQL> CREATE INDEX sr_sidx ON sales_regions(geom)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Rem Index-creation for Competitors_sales_regions table

SQL> CREATE INDEX cr_sidx ON competitors_sales_regions(geom)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS268

8997ch08.qxd 10/2/07 4:24 PM Page 268

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can then identify how many customers are inside the buffer regions of each competitor
(and target them for explicit promotions). Note that this functionality can also be accomplished by
the SDO_WITHIN_DISTANCE operator you saw in Listing 8-20. However, this buffer region–based
approach offers more rigorous analysis, such as how many customers are “inside”; how many, if
any, customers are on the border (that is, exactly at a distance of a quarter mile); and so on. Note
that this supplements all types of analyses in Table 8-1.

Additionally, you can perform analysis using demographic or transportation data such as city
and state boundaries and highway and transportation networks. For instance, you can identify
which sales regions intersect each another or city/county/state boundaries and possibly compute
the area of intersection, the number of customers in each such intersection area, and so on (see
Chapter 9 for details). This will help in detailed analysis, such as how many customers are from New
Hampshire versus how many are from Massachusetts for a specific branch. From among several
candidates, we can choose the region with best metrics. This enables the sales region analysis described
in Table 8-1.

Figure 8-6 shows an example of a circular buffer zone query Q. A, B, C, D, and E are arbitrarily
shaped data geometries. Using the interaction-based operators with Q as the query geometry, you
can identify geometries that intersect Q (A, C, and D), that are inside Q (A), and that touch Q (C).

Figure 8-6. Arbitrarily shaped data geometries (A, B, C, D, and E) are shown in black. A circular query
geometry (Q) is shown in gray.

There are two primary spatial operators for such interaction detection. Like the SDO_NN and
SDO_WITHIN_DISTANCE operators, these operators are evaluated using the index-based model of
Figure 8-3 and use the syntax of Listing 8-18.

• SDO_FILTER: This operator identifies all geometries whose MBRs intersect with the MBR of
a query geometry. This operator primarily uses the spatial index without invoking a Geome-
try Engine function.

• SDO_RELATE: This operator identifies all geometries that interact in a specified manner with
a query geometry. The specified type of interaction could involve intersection, touching the
boundaries, being completely inside, and so on.

• SDO_ANYINTERACT, SDO_CONTAINS, SDO_COVERS, SDO_COVEREDBY, SDO_EQUAL, SDO_INSIDE, SDO_ON,
SDO_OVERLAPS, and SDO_TOUCH: These operators are simplified variants of the SDO_RELATE oper-
ator for specific types of interactions. Instead of specifying the SDO_RELATE operator with an
appropriate parameter to identify a specific relationship, you can directly use the correspon-
ding simplified variant.

Next, we examine each of these operators in further detail.

SDO_FILTER Operator
The SDO_FILTER operator identifies all rows of a table where the MBRs of the column geometry inter-
sect with the MBR of a specified query geometry. This operator always returns a superset of results for
other interaction-based operators. In that sense, this operator is an approximation of other interaction-
based operators.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 269

8997ch08.qxd 10/2/07 4:24 PM Page 269

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 8-7 shows how the SDO_FILTER operator evaluates for the data of Figure 8-6. It computes
the MBRs around the data and the query geometries. It returns the data geometries A, B, C, and D as
the result, because their MBRs intersect the MBR of the circular query Q.

Figure 8-7. In SDO_FILTER, the MBRs of data/query geometries are compared.

The SDO_FILTER operator has the following syntax:

SDO_FILTER

(

table_geometry IN SDO_GEOMETRY,

query_geometry IN SDO_GEOMETRY

[, parameter_string IN VARCHAR2]

)

= 'TRUE'

where the following is true:

• table_geometry is the column name of the table whose spatial index is to be used.

• query_geometry is the query location. This could be a column of another table or a bind vari-
able.

• parameter_string is always set to querytype=window. This parameter is optional (as indicated
by the enclosing square brackets in the preceding syntax) and can be safely omitted in Oracle 10g
and newer versions. However, in prior releases, this parameter is mandatory. Additional
parameters that can be specified include min_resolution=<a> and max_resolution= to
eliminate too small or too large data geometries from the query result. You can find a detailed
discussion on their usage in the section on SDO_WITHIN_DISTANCE operators (Listings 8-22,
8-23, and 8-24).

Listing 8-38 shows the use of the SDO_FILTER operator to identify all customers within a com-
petitor’s area of influence. Note that this query may return more customers than those that actually
fall within a competitor’s service area.

Listing 8-38. SDO_FILTER Operator Retrieving All Customers Within a Competitor’s Service Area

SQL> SELECT ct.id, ct.name

FROM competitors_regions comp, customers ct

WHERE comp.id=1

AND SDO_FILTER(ct.location, comp.geom)='TRUE'

ORDER BY ct.id;

ID NAME

---------- -----------------------------------

25 BLAKE CONSTRUCTION

28 COLONIAL PARKING

34 HEWLETT-PACKARD DC GOV AFFAIRS

38 KIPLINGER WASHINGTON EDITORS

41 MCGREGOR PRINTING

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS270

8997ch08.qxd 10/2/07 4:24 PM Page 270

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

42 MCI COMMUNICATIONS

48 POTOMAC ELECTRIC POWER

50 SMITH HINCHMAN AND GRYLLS

270 METRO-FARRAGUT NORTH STATION

271 METRO-FARRAGUT WEST STATION

468 SAFEWAY

809 LINCOLN SUITES

810 HOTEL LOMBARDY

1044 MUSEUM OF THE THIRD DIMENSION

1081 GEORGE WASHINGTON UNIVERSITY

1178 AVIS RENT-A-CAR

1526 INTERNATIONAL FINANCE

1538 MCKENNA AND CUNEO

1901 CLUB QUARTERS WASHINGTON

2195 STEVENS ELEMENTARY SCHOOL

6326 HOTEL LOMBARDY

7387 ELLIPSE

7754 EXECUTIVE INN

7762 PHILLIPS 66

7789 SEVEN BUILDINGS

7821 RENAISSANCE MAYFLOWER HOTEL

8138 ST GREGORY HOTEL

8382 EXXON

8792 DESTINATION HOTEL & RESORTS

8793 LOEWS HOTELS REGIONAL

30 rows selected.

In general, the SDO_FILTER operator returns more candidates—30 rows in Listing 8-38—than
those that actually intersect a query geometry (23 rows, as you will see in Listing 8-40). Why would
anyone use this operator? The reasons are it is fast (compared to other spatial operators) and it does
prune a majority of the geometries (except the 30 returned out of 3,100+ rows) in the customers
table that do not fall in the neighborhood of the query geometry. In that sense, the SDO_FILTER oper-
ator works as a fast approximation of other interaction-detecting operators such as SDO_RELATE.

Applications such as map visualizers, which can tolerate such approximations in the result set,
use the SDO_FILTER operator to render maps. A typical query from Oracle MapViewer would look
like Listing 8-39.

Listing 8-39. Typical Query from MapViewer Using the SDO_FILTER Operator

SELECT location

FROM customers

WHERE SDO_FILTER

(

location,

SDO_GEOMETRY

(

2003, 8307, null,

SDO_ELEM_INFO_ARRAY(1, 1003, 3), -- Rectangle query window

SDO_ORDINATE_ARRAY(-122.43886,37.78284,-122.427195,37.79284)

)

) = 'TRUE';

Typically, the query window in such map-rendering applications would be a rectangle corre-
sponding to the window displayed on the screen. This window will be modified as the user navigates
(for example, zooms in and out, and pans) on the map.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 271

8997ch08.qxd 10/2/07 4:24 PM Page 271

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Tip Unlike all other operators, which work only for two-dimensional geometries, SDO_FILTER can work with
two-, three-, and four-dimensional geometries. The index can be three- or four-dimensional by setting the
SDO_INDX_DIMS parameter in the CREATE INDEX statement (see Listing 8-14).

SDO_RELATE Operator
As shown earlier in Figure 8-7, not all objects returned by the SDO_FILTER operator intersect with the
query geometry Q (for example, object B). The SDO_FILTER operator always returns the exact result
set and possibly more geometries (a superset). How do you find geometries that interact with the
query in a specified manner? The SDO_RELATE operator provides this functionality.

For example, as shown in Figure 8-6, you can specify the interaction to be ANYINTERACT (inter-
section), and the SDO_RELATE operator will return A, C, and D. If you specify the interaction to be
INSIDE, it returns A. If you specify the interaction to be TOUCH, it returns C. In general, the SDO_RELATE
operator has the following syntax. Note that the SDO_RELATE operator, as with other spatial operators,
should be compared to the string 'TRUE'.

SDO_RELATE

(

table_geometry IN SDO_GEOMETRY,

query_geometry IN SDO_GEOMETRY,

parameter_string IN VARCHAR2

)

= 'TRUE'

where the following is true:

• table_geometry is the column name of the table whose spatial index is to be used.

• query_geometry is the query location. This could be a column of another table or a bind variable.

• parameter_string is set to 'querytype=window MASK=<interaction-type> [min_resolution=<a>]
[max_resolution=]'. The SDO_RELATE operator is true if table_geometry has an <interaction-
type> relation with query_geometry (the query). The interaction-type or mask-type could be
one of several types, which we discuss next. Note that the parameters min_resolution=<a>
and max_resolution= can be specified to eliminate too small or too large data geometries
from the query result. You can find a detailed discussion on their usage in the section on
SDO_WITHIN_DISTANCE operators (Listings 8-22, 8-23, and 8-24).

Before we describe the different interactions for an SDO_RELATE operator, you should under-
stand what constitutes a geometry. Every geometry is composed of three parts:

• Boundary: This is the outer border for the geometry. Figure 8-8 shows the boundary in solid
black for different types of geometries. For a point geometry, there is only a boundary point.
For a line-string geometry, the two endpoints are the boundary. For a polygon (with or with-
out voids), the rings forming the polygon are the boundary.

• Interior: Everything in the geometry inside the boundaries is considered interior. This is
shown in gray in Figure 8-8.

• Exterior: This is everything outside the geometry. This is implicitly white in Figure 8-8.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS272

8997ch08.qxd 10/2/07 4:24 PM Page 272

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 8-8. The boundary is solid black, and the interior is gray for different types of geometries.

Interactions in SDO_RELATE

Now that you understand the interior and boundary parts of geometries, we’ll resume our discussion
on the different interaction types for the SDO_RELATE operator. Figure 8-9 illustrates these interac-
tions. The two geometries Q and A in Figure 8-9 correspond to query_geometry and table_geometry,
respectively, in the preceding signature for SDO_RELATE.

Figure 8-9. Interactions between a data geometry A and a query geometry Q for the SDO_RELATE operator

The different relationships/interactions between Q and A are due to different interactions
between the interior and boundary of one geometry with those of the other. Note that each of these
interactions has an equivalent simplified operator. You can use either the SDO_RELATE operator with
the appropriate mask specification or the corresponding simplified operator in your queries, as
shown in Table 8-2. Like all other operators, the SDO_RELATE and equivalent simplified operators
need to be evaluated to the string 'TRUE'.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 273

8997ch08.qxd 10/2/07 4:24 PM Page 273

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Table 8-2. Names, Semantics, and Operators of the Interactions in Figure 8-9

Interaction Description Simplified Operator

INSIDE This interaction holds if the boundary SDO_INSIDE (A, Q)
and interior of geometry A
(data geometries) are inside
the interior of the query Q.
In Figure 8-5, geometry A
is inside query Q.

CONTAINS This holds if the boundary and SDO_CONTAINS (Q, A)
interior of Q are inside the interior
of A (data geometry). This relationship
is the reverse of INSIDE (that is, if A
is inside Q, then Q contains A).

COVEREDBY A is COVEREDBY Q if the interior and SDO_COVEREDBY (A, Q)
boundary of A (data geometries)
are inside the interior of Q (query),
except that the boundaries overlap.

ON The interior and boundaries of A SDO_ON (A, Q)
interact exclusively with the
boundary of Q (line string
completely on the boundary
of a polygon). Note that A is a line
string here.

COVERS This interaction is true if the SDO_COVERS (A, Q)
interior and boundary of query Q
is inside the interior of A and the
boundaries overlap. This is the
reverse of COVEREDBY (i.e., if Q is
covered by A, then A covers Q).
Alternatively, you can use the
following operator for the same
semantics.

TOUCH This holds if the boundaries of two SDO_TOUCH (C, Q)
geometries touch, but the interiors
do not intersect. In Figure 8-5,
geometry C touches query Q.

OVERLAPBDYINTERSECT This holds if the boundaries and SDO_OVERLAPBDYINTERSECT (A, Q)
interiors of A and query Q intersect.

OVERLAPBDYDISJOINT This holds if the interior of one SDO_OVERLAPBDYDISJOINT (A, Q)
intersects the interior and
boundary of the other, but the two
boundaries do not intersect.

EQUAL This holds if the interior and SDO_EQUAL (A, Q)
boundary of A exactly match
those of Q.

ANYINTERACT This interaction is true if either the SDO_ANYINTERACT (A, Q)
boundary or interior of A intersects
with the boundary or interior of Q.
In other words, if there is any
intersection between the two
geometries (i.e., any of the previous
interactions are true). In Figure 8-5,
geometries A, C, and D have an
ANYINTERACT relation with query Q.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS274

8997ch08.qxd 10/2/07 4:24 PM Page 274

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SQL/MM (where MM stands for multimedia) is the extended standard for specifying spatial
and multimedia operators in SQL statements. This standard specifies a standard set of query rela-
tionships that start with the prefix ST. You can use these SQL/MM functions with the same name in
Oracle: ST_Contains, ST_Within, ST_Overlaps, ST_Crosses, ST_Intersects, ST_Touches, ST_Equals,
and ST_Disjoint. Each of these functions operates on a pair of ST_Geometry objects: a data geometry
and a query geometry. In Oracle, you can also use these relationships as operators, that is, operate
on a table of data geometries and a query geometry. Table 8-3 shows the SQL/MM relationships
(ISO IEC 13249) and the corresponding operators in Oracle Spatial.

Table 8-3. SQL/MM Spatial Relationships and the Equivalent Oracle Spatial Operators

SQL/MM Relationship Oracle Spatial Operator

ST_Contains SDO_RELATE operator with mask=CONTAINS+COVERS

ST_Within SDO_RELATE operator with mask=INSIDE+COVEREDBY

ST_Overlaps SDO_OVERLAPS operator

ST_Crosses (Only supported as ST_CROSSES function)

ST_Intersects SDO_RELATE operator with mask=ANYINTERACT (or SDO_ANYINTERACT operator)

ST_Touches SDO_RELATE operator with mask=TOUCH (or SDO_TOUCH operator)

ST_Equals SDO_RELATE operator with mask=EQUAL (or SDO_EQUAL operator)

ST_Disjoint Negation of SDO_ANYINTERACT (use MINUS to subtract SDO_ANYINTERACT
results from the entire set)

Now that we’ve covered the different spatial relationships determined by the SDO_RELATE operator
(or the equivalent simplified operators), we’ll describe how to use this operator to perform customer
analysis and sales region analysis, as described in Table 8-1.

First, we’ll use the SDO_RELATE operator for customer analysis. We’ll identify all customers inside
or on the boundary of the buffer zones of each competitor store using the ANYINTERACT interaction
mask. Listing 8-40 shows the SQL for a specific competitor (id=1).

Listing 8-40. SDO_RELATE Operator Retrieving All Customers in a Quarter-Mile Buffer Zone of
a Competitor Store

SQL> SELECT ct.id, ct.name

FROM competitors_sales_regions comp, customers ct

WHERE comp.id=1

AND SDO_RELATE(ct.location, comp.geom, 'MASK=ANYINTERACT ')='TRUE'

ORDER BY ct.id;

ID NAME

---------- -----------------------------------

25 BLAKE CONSTRUCTION

28 COLONIAL PARKING

34 HEWLETT-PACKARD DC GOV AFFAIRS

41 MCGREGOR PRINTING

48 POTOMAC ELECTRIC POWER

50 SMITH HINCHMAN AND GRYLLS

270 METRO-FARRAGUT NORTH STATION

271 METRO-FARRAGUT WEST STATION

468 SAFEWAY

809 LINCOLN SUITES

810 HOTEL LOMBARDY

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 275

8997ch08.qxd 10/2/07 4:24 PM Page 275

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

1044 MUSEUM OF THE THIRD DIMENSION

1526 INTERNATIONAL FINANCE

1538 MCKENNA AND CUNEO

2195 STEVENS ELEMENTARY SCHOOL

6326 HOTEL LOMBARDY

7754 EXECUTIVE INN

7762 PHILLIPS 66

7789 SEVEN BUILDINGS

7821 RENAISSANCE MAYFLOWER HOTEL

8138 ST GREGORY HOTEL

8382 EXXON

8792 DESTINATION HOTEL & RESORTS

23 rows selected.

To identify the DISJOINT relationship, use negation of ANYINTERACT (that is, subtract the results
of ANYINTERACT from the entire set). Listing 8-41 shows the SQL to identify all customers that are dis-
joint from competitor region (id=1):

Listing 8-41. Identifying a DISJOINT Relationship

SELECT ct1.id, ct1.name

FROM customers ct1

WHERE NOT EXISTS

(

SELECT 'X'

FROM competitors_sales_regions comp, customers ct2

WHERE comp.id=1

AND ct2.id = ct2.id

AND SDO_RELATE(ct2.location, comp.geom, 'MASK=ANYINTERACT')='TRUE'

);

Note that Listing 8-40 is the exact equivalent of Listing 8-20, except it executes a little slower
than Listing 8-20. In general, the following tip should be useful.

■Tip Specifying the ANYINTERACT mask in an SDO_RELATE query (with buffered regions) as in Listing 8-40 is
equivalent to Listing 8-20 with the SDO_WITHIN_DISTANCE operator. The question that arises is, which usage is
better and when? The solution is to use SDO_WITHIN_DISTANCE wherever possible. The SDO_WITHIN_DISTANCE
operator, in most cases, will be faster since it prunes based on distance rather than trying to check whether a cus-
tomer is inside, as in SDO_RELATE.

The next question to ask is, when is the SDO_RELATE operator useful? The SDO_RELATE operator
offers much more power than the SDO_WITHIN_DISTANCE operator. Instead of specifying the ANYINTERACT
relationship, you can specify a variety of other relationships such as INSIDE, TOUCH, OVERLAPBDYDISJOINT,
and so on. These relationships are especially useful while performing analysis with nonpoint data that
occur in geographic datasets such as the us_states or us_counties table. We referred to such analysis as
“sales region analysis” in Table 8-1.

For instance, you can analyze the influence of the competitors inside and outside the District
of Columbia (D.C.) region. Some competitor branches extend their area of influence to neighboring
states. First, look at how many competitor regions intersect the D.C. region. Listing 8-42 shows an
example.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS276

8997ch08.qxd 10/2/07 4:24 PM Page 276

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 8-42. SDO_RELATE Operator Identifying All Competitors in the D.C. Region

SQL> SELECT COUNT(*)

FROM us_states st, competitors_sales_regions comp

WHERE st.state_abrv='DC'

AND SDO_RELATE(comp.geom, st.geom, 'MASK=ANYINTERACT ')='TRUE';

COUNT(*)

286

1 row selected.

Not all these competitors sales regions are inside D.C. To get the competitors whose influence is
completely inside the D.C. area, you should use the SDO_RELATE operator with the INSIDE relationship.
Listing 8-43 shows the SQL.

Listing 8-43. SDO_RELATE Operator Identifying All Competitors in the D.C. Region

SQL> SELECT COUNT(*)

FROM us_states st, competitors_sales_regions comp

WHERE st.state_abrv='DC'

AND SDO_RELATE(comp.geom, st.geom, 'MASK=INSIDE ')='TRUE';

COUNT(*)

268

1 row selected.

For those competitors whose influence extends beyond but also overlaps the D.C. area, you
should use the SDO_RELATE operator with the OVERLAPBDYINTERSECT relationship. Listing 8-44 shows
the corresponding SQL.

Listing 8-44. SDO_RELATE Operator Identifying All Competitors That Overlap the D.C. Region

SQL> SELECT COUNT(*)

FROM us_states st, competitors_sales_regions comp

WHERE st.state_abrv='DC'

AND SDO_RELATE(comp.geom, st.geom, 'MASK=OVERLAPBDYINTERSECT ')='TRUE' ;

COUNT(*)

18

1 row selected.

From the examples in Listings 8-42 to 8-44, you can note that there are 286 competitor regions
in the D.C. area, of which 268 are completely inside and 18 overlap. You could use this analysis to
target the 18 competitors and the customers in their area of influence as you pursue business expan-
sion outside the D.C. area. Within D.C., you can target the 268 competitor regions.

■Caution In general, if the underlying tolerance associated with a table in the USER_SDO_GEOM_METADATA view
is modified, some of the relationships may change. For instance, a TOUCH relationship may become DISJOINT. Always
set the tolerance value to suit your application (see the related discussion in Chapter 3).

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 277

8997ch08.qxd 10/2/07 4:24 PM Page 277

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Next, we will show how to analyze which sales regions overlap. After identifying such sales regions,
you can possibly merge the corresponding branches if the overlap is significant. To this end, we will
identify all sales regions that overlap or touch the sales region of a specific branch (id=51). You can
perform similar analysis for other branches. Instead of specifying multiple masks, you can perform
this analysis using the ANYINTERACT mask in SDO_RELATE. Listing 8-45 shows the SQL to identify all
sales regions that intersect a specified sales region.

Listing 8-45. Identifying Sales Regions That Intersect a Specific Sales Region (id=51)

SQL> SELECT sr1.id

FROM sales_regions sr2, sales_regions sr1

WHERE sr2.id=51

AND sr1.id <> 51

AND SDO_RELATE(sr1.geom, sr2.geom, 'MASK=ANYINTERACT')='TRUE';

A.ID

63

54

72

69

43

66

50

75

76

9 rows selected.

■Tip In Oracle, specifying ANYINTERACT in SDO_RELATE (or using SDO_ANYINTERACT) is recommended over
specifying SDO_RELATE with the equivalent combination of multiple masks. Oracle optimizes the processing for the
ANYINTERACT mask.

Multiple Masks in SDO_RELATE

Before considering merging the sales regions returned in Listing 8-45 with the query sales region (id=51),
you should do further analysis to determine how many of these sales regions are “touching” and how
many are “overlapping” the query sales region (id=51). (Note that they won’t be inside or contain the
query region, because all sales regions are of the same size—that is, they’re constructed using quarter-
mile radius buffers.) You can determine the exact relationship by using the SDO_GEOM.RELATE function
discussed in Chapter 9. Here, we describe an alternate approach using just the SDO_RELATE operator
and appropriate masks to determine the type of intersection.

First you will see how many sales regions overlap the query sales region (id=51). This involves
specifying two masks, OVERLAPBDYDISJOINT and OVERLAPBDYINTERSECT, in the parameter_string of the
SDO_RELATE operator. You can combine multiple such masks using a plus sign (+) in the mask specifi-
cation. Listing 8-46 shows an example.

Listing 8-46. Identifying All Sales Regions That Overlap a Specific Sales Region (id=51)

SQL> SELECT sr1.id

FROM sales_regions sr2, sales_regions sr1

WHERE sr2.id=51

AND sr1.id <> 51

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS278

8997ch08.qxd 10/2/07 4:24 PM Page 278

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

AND SDO_RELATE

(sr1.geom, sr2.geom, 'MASK=OVERLAPBDYDISJOINT+OVERLAPBDYINTERSECT')='TRUE' ;

ID

63

54

72

69

43

66

50

75

8 rows selected.

Note that only eight out of the nine returned in Listing 8-45 are overlapping. This means the
other region, which intersected the query sales region (id=51), was actually “touching” it. You can
verify this using the query in Listing 8-47.

Listing 8-47. Verifying That a Sales Region Touches Another Sales Region (id=51)

SQL> SELECT a.id

FROM sales_regions b, sales_regions a

WHERE b.id=51

AND a.id <> 51

AND SDO_RELATE(a.geom, b.geom, 'MASK=TOUCH')='TRUE' ;

ID

76

Another useful combination is that of the INSIDE and COVEREDBY masks. For instance, you can
use the INSIDE+COVEREDBY mask in Listing 8-43 instead of just the INSIDE mask. This will retrieve all
sales regions of competitors that are inside and may also touch the border of the D.C. boundary.

■Tip In Oracle, the combination of INSIDE and COVEREDBY is optimized. The combination of CONTAINS and
COVERS is also optimized.

Together with the SDO_FILTER operator, the SDO_RELATE operator provides a rich set of function-
ality for use in a wide variety of applications. Whereas the SDO_NN and SDO_WITHIN_DISTANCE operators
provide simple and easy-to-use distance-based analysis, the SDO_RELATE operator provides a detailed
analysis of query geometry-data geometry relationships.

Tuning Parameter for SDO_RELATE on Nongeodetic Data Tables

During the evaluation of an SDO_RELATE query on nongeodetic data, an R-tree index in Oracle Spatial
uses the MBR of the query to internally compute tiles (by recursively subdividing the MBR) that
cover the query geometry (in that sense, the R-tree of Oracle Spatial is much different from the ones
published in research literature4). It then uses the tiles to eliminate candidate data geometries with-
out performing the expensive secondary filter (Geometry Engine) operations (see Figure 8-3). The

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 279

4. For an overview of the Oracle R-tree, see Ravikanth V. Kothuri and Siva Ravada. “Efficient Processing of Large
Spatial Queries using Interior Approximations.” Proceedings of the 7th International Symposium on Spatial
and Temporal Databases (SSTD), 2001.

8997ch08.qxd 10/2/07 4:24 PM Page 279

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

user does not have to do anything to invoke this optimization. The R-tree automatically invokes this
optimization. However, for some query geometries, there may be a need for fine-tuning. Figure 8-10
shows an example.

Figure 8-10. Example of a query geometry

Consider the query geometry in Figure 8-10. The area of the query geometry is substantially
(say 75 percent) less than the area of the MBR for the query geometry. In this case, specifying
SDO_LEVEL=6 in the parameter_string of the SDO_RELATE operator may improve the response time for
this operator. This is because of the elimination of more data prior to the expensive secondary filter.
Note that Oracle does not allow you to specify the SDO_LEVEL as 7 or higher, because this is likely
to degrade the performance because of an increase in the cost of tile generation. The queries implic-
itly use a value of 4 for SDO_LEVEL. Listing 8-48 shows an example that adds the tuning parameter to
Listing 8-43.

Listing 8-48. Adding the SDO_LEVEL=6 Parameter to an SDO_RELATE Query

SQL> SELECT COUNT(*)

FROM us_states st, competitors_sales_regions comp

WHERE st.state_abrv='DC'

AND SDO_RELATE(comp.geom, st.geom, 'MASK=INSIDE SDO_LEVEL=6')='TRUE' ;

Hints for Spatial Operators
Recall that during our discussion on operator evaluation, we noted that the optimizer cannot choose
the spatial index. This might happen when the spatial operator is used in conjunction with other
nonspatial operators (on the same table) or in a multitable join. Oracle Spatial does not provide cost
and selectivity estimates for spatial operators that are comparable to other operators in SQL. As a result,
the choice made by the optimizer to use or not to use the spatial index may be incorrect. Specifying
explicit hints will ensure an appropriate execution plan. In this section, we cover specific cases where
you may need appropriate hints and how to specify these hints.

To determine whether a spatial operator is evaluated using the spatial index, you can trace the
execution plan for the SQL statement involving the operator. Before tracing, you first have to load
the utlxplan script (once). You can then use SET AUTOTRACE ON to view the execution plan output (see
the Oracle Reference for more information). Alternatively, you can use the EXPLAIN PLAN statement.
Listing 8-49 illustrates this with an example.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS280

8997ch08.qxd 10/2/07 4:24 PM Page 280

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 8-49. Explaining the Execution Plan for a SQL Statement

SQL> @$ORACLE_HOME/rdbms/admin/utlxplan -- Load only once

SQL> SET AUTOTRACE ON

SQL> SELECT ct.id

FROM customers ct

WHERE SDO_WITHIN_DISTANCE

(

ct.location,

(SELECT location FROM competitors WHERE id=1),

'DISTANCE=0.25 UNIT=MILE '

)='TRUE' ;

The plan looks like the following:

Execution Plan

--

Plan hash value: 2227105339

--

| Id | Operation | Name | Rows | Bytes | Cost (%

CPU)| Time |

--

| 0 | SELECT STATEMENT | | 32 | 4864 | 5

(0)| 00:00:01 |

| 1 | TABLE ACCESS BY INDEX ROWID | CUSTOMERS | 32 | 4864 | 3

(0)| 00:00:01 |

|* 2 | DOMAIN INDEX | CUSTOMERS_SIDX | | |

| |

| 3 | TABLE ACCESS BY INDEX ROWID| COMPETITORS | 1 | 137 | 2

(0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | COMPETITORS_PK | 1 | | 1

(0)| 00:00:01 |

--

If you see a statement like DOMAIN INDEX of <index_name>, it means the optimizer is using the
spatial index referred to by <index_name>. The spatial index and other non-native indexes such as
the context index are referred to as domain indexes in Oracle. In most cases, you do not have to
specify any hints—the optimizer automatically picks the spatial domain index whenever it sees
a spatial operator. However, there are exceptions:

• When the SQL has multiple predicates on the same table

• When the SQL has multiple tables being joined

Let’s look at each of these cases and how the NO_INDEX, ORDERED, and INDEX hints can help.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 281

8997ch08.qxd 10/2/07 4:24 PM Page 281

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Spatial Operator with Other Predicates on the Same Table
Say the spatial operator is not an SDO_NN operator—that is, the operator is, for instance, an SDO_WITHIN_
DISTANCE operator. You do not have to do anything here. Otherwise, if the SQL has an SDO_NN operator
and one or more additional nonspatial predicates such as customer_grade='GOLD' on the same table,
you may need to specify explicit hints. Let’s look at this in detail in the following section.

Spatial Operator Is an SDO_NN Operator

Consider the examples in Listings 8-27, 8-28, and 8-31. Here you want to identify the five nearest cus-
tomers whose grade is GOLD. (Note that you cannot use the SDO_NUM_RES=5 parameter, as in Listing 8-29
or 8-30, to answer this query correctly because that query will return the five nearest customers, of
which two are not GOLD customers. In effect, it returns only three GOLD customers instead of the
required five.) Listings 8-27, 8-28, and 8-31 answer the query correctly and return the customers in
order of their distance to the query. Listing 8-50 repeats the SQL in Listing 8-31 for ease of reference.

Listing 8-50. SDO_NN Operator Retrieving the Five GOLD Customers Nearest to a Specific Competitor
Along with Their Distances

SQL> col dist format 999

SELECT ct.id, ct.customer_grade, SDO_NN_DISTANCE(1) dist

FROM competitors comp, customers ct

WHERE comp.id=1

AND ct.customer_grade='GOLD'

AND SDO_NN(ct.location, comp.location, 'SDO_BATCH_SIZE=100', 1)='TRUE'

AND ROWNUM<=5

ORDER BY ct.id;

ID CUSTOMER_GRADE DIST

---------- --------------- ----

809 GOLD 95

810 GOLD 286

6326 GOLD 301

7821 GOLD 295

8792 GOLD 146

5 rows selected.

The query works fine because there is no index on the customer_grade column (that is, on the col-
umn involved in the equality predicate). Now, say you have created an index on the customer_grade
column of the customers table. Then you re-execute the example in Listing 8-50, as shown in
Listing 8-51.

Listing 8-51. Creating an Index on customer_grade and Rerunning Listing 8-50

SQL> CREATE INDEX cust_grade ON customers(customer_grade);

SQL> col dist format 9999

SELECT ct.id, ct.customer_grade, SDO_NN_DISTANCE(1) dist

FROM competitors comp, customers ct

WHERE comp.id=1

AND ct.customer_grade='GOLD'

AND SDO_NN(ct.location, comp.location, 'SDO_BATCH_SIZE=100', 1)='TRUE'

AND ROWNUM<=5

ORDER BY ct.id;

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS282

8997ch08.qxd 10/2/07 4:24 PM Page 282

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

ID CUSTOMER_GRADE DIST

---------- --------------- -----

777 GOLD 2487

778 GOLD 3953

780 GOLD 552

781 GOLD 3950

796 GOLD 1466

Execution Plan

--

Plan hash value: 4235074169

--

| Id | Operation | Name | Rows | Bytes | C

ost (%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 5 | 1445 |

14 (15)| 00:00:01 |

| 1 | SORT ORDER BY | | 5 | 1445 |

14 (15)| 00:00:01 |

|* 2 | COUNT STOPKEY | | | |

| |

| 3 | NESTED LOOPS | | 11 | 3179 |

13 (8)| 00:00:01 |

| 4 | TABLE ACCESS BY INDEX ROWID | COMPETITORS | 1 | 137 |

2 (0)| 00:00:01 |

|* 5 | INDEX UNIQUE SCAN | COMPETITORS_PK | 1 | |

1 (0)| 00:00:01 |

| 6 | TABLE ACCESS BY INDEX ROWID | CUSTOMERS | 11 | 1672 |

13 (8)| 00:00:01 |

| 7 | BITMAP CONVERSION TO ROWIDS | | | |

| |

| 8 | BITMAP AND | | | |

| |

| 9 | BITMAP CONVERSION FROM ROWIDS| | | |

| |

| 10 | SORT ORDER BY | | | |

| |

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 283

8997ch08.qxd 10/2/07 4:24 PM Page 283

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

|* 11 | DOMAIN INDEX | CUSTOMERS_SIDX | | |

| |

| 12 | BITMAP CONVERSION FROM ROWIDS| | | |

| |

|* 13 | INDEX RANGE SCAN | CUST_GRADE | | |

3 (0)| 00:00:01 |

Listing 8-51 gives incorrect results (in fact, it may give different results at different times too).
This erroneous behavior happens for the following reason: the SDO_NN returns, say, the 100 nearest
neighbors in order of their distance to query geometry. The order, however, is lost when they are
bitmap-merged with the results of the B-tree index on customer_grade. This behavior is docu-
mented in the Oracle Spatial User’s Guide.

You can avoid the preceding erroneous behavior by ensuring the following hints in the “Hints
for the SDO_NN Operator” sidebar.

HINTS FOR THE SDO_NN OPERATOR

Here are some hints for the optimizer to ensure correct execution of SDO_NN:

• Force the optimizer to use the associated spatial index for the SDO_NN operator. This is required because the
SDO_NN operator is actually a distance-ordering operator and cannot be evaluated (in current releases) with-
out the spatial index (an Oracle error ORA-13249 will be raised if index is not chosen).

• Force the optimizer to not use indexes on other predicates on the same table as the SDO_NN operator
operates on. (Otherwise, it may return incorrect results, as shown in Listing 8-51.)

You can rewrite Listing 8-51 as shown in Listing 8-52 to ensure the preceding two criteria are satisfied. Spec-
ify the INDEX/NO_INDEX hints with the table alias (or table name) as the first argument and the index name as the
second. Listing 8-52 executes correctly and returns the customers in distance order. Note that these results are
identical to those of Listing 8-50 (or Listing 8-31).

Listing 8-52. Usage of Hints with SDO_NN and Other Operators on the Same Table

SQL> SELECT /*+ NO_INDEX(ct cust_grade) INDEX(ct customers_sidx) */

ct.id, ct.customer_grade, SDO_NN_DISTANCE(1) dist FROM

competitors comp, customers ct

WHERE comp.id=1

AND ct.customer_grade='GOLD'

AND SDO_NN(ct.location, comp.location, 'SDO_BATCH_SIZE=100', 1)='TRUE'

AND ROWNUM<=5

ORDER BY ct.id;

ID CUSTOMER_GRADE DIST

---------- --------------- -----

809 GOLD 95

810 GOLD 286

6326 GOLD 301

7821 GOLD 295

8792 GOLD 146

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS284

8997ch08.qxd 10/2/07 4:24 PM Page 284

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Execution Plan

--

Plan hash value: 2605535536

--

| Id | Operation | Name | Rows | Bytes | Cost (

%CPU)| Time |

--

| 0 | SELECT STATEMENT | | 5 | 1445 | 12

(9)| 00:00:01 |

| 1 | SORT ORDER BY | | 5 | 1445 | 12

(9)| 00:00:01 |

|* 2 | COUNT STOPKEY | | | |

| |

| 3 | NESTED LOOPS | | 11 | 3179 | 11

(0)| 00:00:01 |

| 4 | TABLE ACCESS BY INDEX ROWID| COMPETITORS | 1 | 137 | 2

(0)| 00:00:01 |

|* 5 | INDEX UNIQUE SCAN | COMPETITORS_PK | 1 | | 1

(0)| 00:00:01 |

|* 6 | TABLE ACCESS BY INDEX ROWID| CUSTOMERS | 11 | 1672 | 11

(0)| 00:00:01 |

|* 7 | DOMAIN INDEX | CUSTOMERS_SIDX | | |

| |

--

Spatial Operator with Multiple Tables in a SQL Statement

If the operator is an SDO_NN operator, you should apply the criteria and hints in the “Hints for
the SDO_NN Operator” sidebar. In addition, the following general guidelines apply for all spatial oper-
ators.

When a SQL statement has more than one table, the optimizer may or may not choose the spa-
tial index. If you want the spatial index to be used (for performance reasons), you should specify the
table whose spatial index is to be used as the inner table. You can enforce this by specifying this table
to be the last in the FROM clause of the SELECT statement and specifying the ORDERED hint. Listing 8-53
shows the usage with the customers and competitors tables. Note that you want to use the spatial
index on the customers table, so you specify it as the inner table (that is, the last table in the FROM
clause).

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 285

8997ch08.qxd 10/2/07 4:24 PM Page 285

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 8-53. Spatial Operator with Multiple Hints in a SQL Statement with Two Tables

SQL> SELECT /*+ ORDERED */ ct.id, ct.name

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_WITHIN_DISTANCE

(ct.location, comp.location, 'DISTANCE=0.25 UNIT=MILE ')='TRUE'

ORDER BY ct.id ;

ID NAME

---------- -----------------------------------

25 BLAKE CONSTRUCTION

28 COLONIAL PARKING

34 HEWLETT-PACKARD DC GOV AFFAIRS

41 MCGREGOR PRINTING

48 POTOMAC ELECTRIC POWER

50 SMITH HINCHMAN AND GRYLLS

270 METRO-FARRAGUT NORTH STATION

271 METRO-FARRAGUT WEST STATION

468 SAFEWAY

809 LINCOLN SUITES

810 HOTEL LOMBARDY

1044 MUSEUM OF THE THIRD DIMENSION

1526 INTERNATIONAL FINANCE

1538 MCKENNA AND CUNEO

2195 STEVENS ELEMENTARY SCHOOL

6326 HOTEL LOMBARDY

7754 EXECUTIVE INN

7762 PHILLIPS 66

7789 SEVEN BUILDINGS

7821 RENAISSANCE MAYFLOWER HOTEL

8138 ST GREGORY HOTEL

8382 EXXON

8792 DESTINATION HOTEL & RESORTS

23 rows selected.

Execution Plan

--

Plan hash value: 4243869098

--

| Id | Operation | Name | Rows | Bytes | Cost (%

CPU)| Time |

--

| 0 | SELECT STATEMENT | | 32 | 9248 | 5

(20)| 00:00:01 |

| 1 | SORT ORDER BY | | 32 | 9248 | 5

(20)| 00:00:01 |

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS286

8997ch08.qxd 10/2/07 4:24 PM Page 286

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

| 2 | NESTED LOOPS | | 32 | 9248 | 4

(0)| 00:00:01 |

| 3 | TABLE ACCESS BY INDEX ROWID| COMPETITORS | 1 | 137 | 2

(0)| 00:00:01 |

|* 4 | INDEX UNIQUE SCAN | COMPETITORS_PK | 1 | | 1

(0)| 00:00:01 |

| 5 | TABLE ACCESS BY INDEX ROWID| CUSTOMERS | 32 | 4864 | 4

(0)| 00:00:01 |

|* 6 | DOMAIN INDEX | CUSTOMERS_SIDX | | |

| |

--

Note the order of the tables in Listing 8-53. The customers table, whose index needs to be used,
is specified last (that is, as the inner table). In general, if the first argument of the spatial_operator
is from table A and the second is from table B, always ensure that table B precedes table A in the
FROM clause of the SQL statement. The ORDERED hint, in such a SQL, informs the optimizer to use
table B as the outer table and table A as the inner table.

You can generalize the preceding guidelines and specify the ORDERED, INDEX, and/or NO_INDEX
hints in a SQL with multiple tables or multiple indexed operators (domain index, B-tree, bitmap,
IOT operators) to ensure an appropriate execution.

Advanced Spatial Index Features
In the following sections, we cover some advanced spatial indexing features that are useful for large
spatial repositories. These include function-based indexing, online index rebuilds, three-dimensional
indexing, parallel indexing, and local partitioned indexing. For each of these features, we describe
how to create the associated spatial index and how to use spatial operators.

Function-Based Spatial Indexes
Oracle allows you to create a B-tree index on a function operating on one or more columns of a table.
You can do the same with a spatial index. Instead of creating indexes on a column of SDO_GEOMETRY,
you can create indexes on any deterministic function that returns an SDO_GEOMETRY using existing
columns of a table. For instance, you can indirectly use the SDO_GCDR.GEOCODE_AS_GEOMETRY function
that returns an SDO_GEOMETRY from the address fields of the customers table as described in Chapters 3
and 6. (Note that the SDO_GCDR package is available only in the priced option of Spatial—it is not avail-
able in Locator.) This means you do not have to explicitly materialize the location from the address
fields of the customers table to create spatial indexes. Instead, you can create functions that return
SDO_GEOMETRY from existing columns of a table.

Note that the SDO_GCDR.GEOCODE_AS_GEOMETRY function is not defined as a deterministic function.
So, you create a deterministic function, called gcdr_geometry, around the SDO_GCDR.GEOCODE_AS_
GEOMETRY, as shown in Listing 8-54. You can then use gcdr_geometry as the function in the function-
based spatial index.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 287

8997ch08.qxd 10/2/07 4:24 PM Page 287

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 8-54. Creating a Deterministic Function to Return an SDO_GEOMETRY Using Address Attributes of
the customers Table

CREATE or REPLACE FUNCTION gcdr_geometry(street_number varchar2,

street_name varchar2, city varchar2, state varchar2, postal_code varchar2)

RETURN MDSYS.SDO_GEOMETRY DETERMINISTIC is

BEGIN

RETURN (sdo_gcdr.geocode_as_geometry('SPATIAL',

sdo_keywordarray(street_number || ' ' ||street_name ,

city || ' ' || state || ' ' || postal_code), 'US'));

END;

/

As a side note, declaring a function to be deterministic helps with performance if the function
is called multiple times in the same SQL statement. Listing 8-55 shows a SQL statement with two
invocations of the gcdr_geometry function. The optimizer will evaluate this function just once if it is
declared as DETERMINISTIC.

Listing 8-55. SQL Example Where a Deterministic Function Is Evaluated Only Once Even When Called
Twice

SQL> SELECT

gcdr_geometry(street_number,street_name,city,state,postal_code).sdo_point.x,

gcdr_geometry(street_number,street_name,city,state,postal_code).sdo_point.y

FROM customers WHERE id=1;

You also need to populate the USER_SDO_GEOM_METADATA view that has the TABLE_NAME, COLUMN_NAME,
DIMINFO, and SRID columns. All columns except the column_name field can be populated as described in
Listing 8-4. The column_name to be inserted is not a regular column of the table. Instead, it is a pseudo-
column, obtained using the GCDR_GEOMETRY function. So, you set the column_name to be an invocation of
the function with associated arguments. The SQL for inserting this information into the metadata is
shown in Listing 8-56.

Listing 8-56. Inserting the Metadata for a <table, function-based pseudo-column>

SQL> INSERT INTO user_sdo_geom_metadata VALUES

(

'CUSTOMERS',

'SPATIAL.GCDR_GEOMETRY(street_number,street_name,city,state,postal_code)',

MDSYS.SDO_DIM_ARRAY

(

MDSYS.SDO_DIM_ELEMENT('X', -180, 180, 0.5),

MDSYS.SDO_DIM_ELEMENT('Y', -90, 90, 0.5)

),

8307

);

■Caution While inserting into the metadata view, do not include any spaces between the arguments of the
GCDR_GEOMETRY function—that is, do not have the arguments as street_number, <space> street_name.
This will cause errors during index creation. Also, make sure to put the schema owner of the function in the col-
umn name, that is, set the column name to 'spatial.gcdr_geometry...' and not as 'gcdr_geometry...'.
(To make your code more portable, you can dynamically obtain the schema owner instead of hard-coding it as
SPATIAL using the following: sys_context('userenv', 'CURRENT_SCHEMA')|| '.GCDR_GEOMETRY
(street_number,street_name,city,state,postal_code)'),.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS288

8997ch08.qxd 10/2/07 4:24 PM Page 288

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Now you can create an index on the customers table using the function-based virtual column.
This virtual column is a function, GCDR_GEOMETRY, that returns an SDO_GEOMETRY using the street_number,
street_name, city, state, and postal_code columns of the table. Listing 8-57 shows the correspon-
ding SQL.

Listing 8-57. Creating a Spatial Index on a Function Returning an SDO_GEOMETRY

SQL> CREATE INDEX customers_spatial_fun_idx ON customers

(

gcdr_geometry(street_number, street_name, city, state, postal_code)

)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('LAYER_GTYPE=POINT');

Note that you can augment the preceding CREATE INDEX with a parameter string to specify
appropriate parameters as in Listings 8-8 through 8-15. Specifically, 'LAYER_GTYPE=POINT' should be
used since the geocoded addresses will always be points.

As in the case of function-based indexes on B-trees, to create and use function-based spatial
indexes, the user needs to have the QUERY REWRITE privilege (GLOBAL QUERY REWRITE if creating index
in another schema). Besides, the QUERY_REWRITE_ENABLED parameter must be set to TRUE, and the
QUERY_REWRITE_INTEGRITY parameter must be set to TRUSTED. You can set them either in the parame-
ter file used at database start-up or in a particular session as shown in Listing 8-58.

Listing 8-58. Setting Session Parameters to Enable Query Rewrite on Function-Based Indexes (Not
Necessary in Oracle 10g (and Newer)

SQL> ALTER SESSION SET QUERY_REWRITE_INTEGRITY = TRUSTED;

SQL> ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE;

Once an index is created using a function-based index, the function will serve as the virtual
column for the table. You can use this column in spatial operators just like a regular SDO_GEOMETRY
column in a table. The SQL in Listing 8-59 shows an example using the SDO_NN operator. This exam-
ple is the equivalent of Listing 8-29, except it uses the function-based virtual column. The function
is specified as the first argument (that is, as the indexed column) to the spatial operator.

Listing 8-59. SDO_NN Operator Retrieving the Five Customers Nearest to Each Competitor Using the
Function-Based Index

SQL> SELECT /*+ ORDERED */ ct.id, ct.name, ct.customer_grade

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_NN

(

gcdr_geometry

(ct.street_number,ct.street_name, ct.city, ct.state, ct.postal_code),

comp.location,

'SDO_NUM_RES=5'

)='TRUE'

ORDER BY ct.id;

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 289

8997ch08.qxd 10/2/07 4:24 PM Page 289

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

ID NAME CUSTOMER_GRADE

---------- ----------------------------------- ---------------

809 LINCOLN SUITES GOLD

1044 MUSEUM OF THE THIRD DIMENSION SILVER

1526 INTERNATIONAL FINANCE SILVER

1538 MCKENNA AND CUNEO SILVER

8792 DESTINATION HOTEL & RESORTS GOLD

5 rows selected.

■Tip Always specify 'LAYER_GTYPE=POINT' in the CREATE INDEX statement if you are creating a spatial index
on a function that geocodes addresses to SDO_GEOMETRY objects. If you do not specify this parameter, queries
will be slow. A better alternative, then, would be to explicitly store the geocoded addresses as SDO_GEOMETRY
columns and index them.

To summarize, functional-based indexing could be used whenever the location data cannot be
explicitly materialized for various reasons (for example, if existing table definitions cannot be
changed), but the power and functionality of Oracle Spatial is desired.

Local Partitioned Spatial Indexes
Table partitioning, a priced option of Oracle, is an important Oracle feature to achieve scalability
and manageability in large databases. For instance, you can have the customers table partitioned on
the customer_grade attribute as illustrated in Listing 8-60.

Listing 8-60. Creating a Partitioned Table

SQL>

DROP INDEX customers_sidx; -- Drop the spatial index

RENAME customers TO customers_old; -- Store old data

CREATE TABLE customers

(

NAME VARCHAR2(64),

ID NUMBER,

STREET_NUMBER VARCHAR2(14),

STREET_NAME VARCHAR2(80),

CITY VARCHAR2(64),

STATE VARCHAR2(64),

POSTAL_CODE VARCHAR2(16),

CUSTOMER_GRADE VARCHAR2(15),

LOCATION SDO_GEOMETRY

)

PARTITION by RANGE(CUSTOMER_GRADE)

(

PARTITION GOLD VALUES LESS THAN ('GOLDZZZZZZ'),

PARTITION PLATINUM VALUES LESS THAN ('PLATINUMZZZZZZ'),

PARTITION SILVER VALUES LESS THAN ('SILVERZZZZZZ')

);

INSERT INTO customers

SELECT name, id, street_number, street_name, city, state,

postal_code, customer_grade, location FROM customers_old;

COMMIT;

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS290

8997ch08.qxd 10/2/07 4:24 PM Page 290

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

In Listing 8-60 partitions are created based on ranges. For instance, the first partition GOLD will
have all customers whose grade will be less than 'GOLDZZZZZZ'. This means the customer grade GOLD
(less than 'GOLDZZZZZZ') will be in this partition. You define other partitions analogously.

Creating Local Indexes on Partitioned Tables
If you create an index using the SQL in Listing 8-6, this will create a single global spatial index on all
the partitions. Alternatively, you can create a local index, one for each partition, by specifying the
keyword LOCAL at the end of the CREATE INDEX statement in Listing 8-6 and specifying some optional
partition-specific parameters. Listing 8-61 shows the SQL syntax for a local partitioned index.

Listing 8-61. Creating a Local Partitioned Spatial Index

CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

[PARAMETERS ('parameter_string')]

LOCAL [PARAMETERS(sequence of 'partition-specific parameters')] ;

■Caution You can create local spatial indexes only on range-partitioned tables (created as in Listing 8-60). You
cannot create local spatial indexes on list- or hash-partitioned tables.

What is the advantage of creating local indexes as opposed to creating one global index for all the
partitions? Manageability and scalability are two primary advantages of local partitioned indexing:

• Manageability: You can rebuild the local index associated with a specific partition without
affecting other partitions. As with B-tree indexes, you can take advantage of all the partitioning
features, such as exchange partitions and split partitions, while maintaining the associated
spatial indexes.

• Scalability: Queries can be targeted to specific partitions, improving performance. This means
you will be searching only a subset of the data as opposed to the entire set.

• By specifying different tablespaces for each partition and mapping each tablespace to
a different I/O device, you can obtain I/O parallelism in queries.

• Likewise, spatial indexes can be created on each partition in parallel.

In addition to the LOCAL keyword, you can specify partition-specific parameters. These parame-
ters will override the default parameters specified before the LOCAL keyword. Listing 8-62 shows an
example.

Listing 8-62. Creating a Local Partitioned Spatial Index with Partition-Specific Parameters

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('TABLESPACE=USERS')

LOCAL

(

PARTITION IP1 PARAMETERS('TABLESPACE=TBS_3'),

PARTITION IP2,

PARTITION IP3

);

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 291

8997ch08.qxd 10/2/07 4:24 PM Page 291

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that in the preceding CREATE INDEX statement, index partition names IP1, IP2, and IP3
correspond to the table partitions GOLD, SILVER, and PLATINUM, respectively (matched based on the
order/sequence of specification). The index for partition IP1 is placed in tablespace TBS_3, whereas
the indexes for all other partitions are placed in the default tablespace USERS specified before the
LOCAL keyword.

■Caution Parameters specified per partition must be compatible (the same type of index: R-tree or quadtree),
with the default parameters and the parameters for other partitions.

Querying Using Local Partitioned Indexes
If a table is partitioned and you have created a local partitioned index on it, there is nothing specific
to be done at the time of queries. There’s little overhead if the SQL contains only the spatial operator
without any partition key. If a partitioned key is specified in the WHERE clause of the SQL statement
along with a spatial operator, Oracle automatically prunes irrelevant partitions using the partition key
and applies the spatial operator only on relevant partitions. Listing 8-63 includes the partition
key in the query of Listing 8-20.

Listing 8-63. SDO_WITHIN_DISTANCE Operator on a Partitioned Table

SQL> SELECT /*+ ORDERED */ ct.id, ct.name

FROM competitors comp, customers ct

WHERE comp.id=1

AND customer_grade='GOLD'

AND SDO_WITHIN_DISTANCE

(ct.location, comp.location, 'DISTANCE=0.25 UNIT=MILE ')='TRUE'

ORDER BY ct.id;

ID NAME

---------- -----------------------------------

809 LINCOLN SUITES

810 HOTEL LOMBARDY

6326 HOTEL LOMBARDY

7821 RENAISSANCE MAYFLOWER HOTEL

8138 ST GREGORY HOTEL

8792 DESTINATION HOTEL & RESORTS

6 rows selected.

This query, instead of returning 23 rows as in Listing 8-20, returns only 6 rows. Since the majority
of the rows are eliminated in the search, the query may also execute faster. This example demonstrates
how local spatial indexes extend the performance advantages of table partitioning to spatial analysis.

For all partitions that satisfy the partitioning key (or all the partitions if there is no partition prun-
ing), the spatial operators execute using the local indexes on each partition, aggregate the results, and
return them to the user. As a consequence, the results for the SDO_WITHIN_DISTANCE, SDO_FILTER,
and SDO_RELATE operators would be the same as the results if the table were not partitioned.

The results for the SDO_NN operator differ, however. The SDO_NN operator will return the speci-
fied number of neighbors for each partition (instead of for all the partitions satisfying the query).
For example, if the query specifies SDO_NUM_RES=5 in the parameter string of the SDO_NN operator,
then each partition that satisfies the SQL returns the five nearest neighbors from its associated
local index. This means if there are three partitions, SDO_NN will return a total of 3 ⊇ 3 5 = 15 results
when SDO_NUM_RES=5 is specified. To get the five nearest neighbors, the SQL has to be modified as
shown in Listing 8-64. Note that the results match those in Listing 8-27.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS292

8997ch08.qxd 10/2/07 4:24 PM Page 292

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 8-64. Obtaining the Five Customers Nearest to Each Competitor When the customers Table Has
a Local Partitioned Index

SQL> SELECT id, name FROM

(

SELECT /*+ ORDERED */ a.id , a.name, SDO_NN_DISTANCE(1) dist

FROM competitors b, customers a

WHERE b.id=1

AND SDO_NN(a.location, b.location, 'SDO_NUM_RES=5' , 1)='TRUE' ORDER BY dist

)

WHERE ROWNUM<=5

ORDER BY id;

ID NAME

---------- -----------------------------------

809 LINCOLN SUITES

1044 MUSEUM OF THE THIRD DIMENSION

1526 INTERNATIONAL FINANCE

1538 MCKENNA AND CUNEO

8792 DESTINATION HOTEL & RESORTS

5 rows selected.

Parallel Indexing
Just as in the case of B-trees, you can create spatial indexes in parallel. For this, you can specify the
PARALLEL clause with an optional parallel_degree parameter at the end of the CREATE INDEX state-
ment, as shown in Listing 8-65.

Listing 8-65. Creating a Spatial Index with the PARALLEL Keyword

CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

[PARAMETERS ('parameter_string')] [LOCAL [Partition-specific parameters]]

PARALLEL [parallel_degree];

All optional parameters are specified in square brackets. The parallel_degree parameter, which
is also optional, specifies the degree of parallelism. This degree specifies the number of slaves to work
in parallel to create the index. If parallel_degree is omitted, Oracle uses the degree associated with
the table (this is stored in the USER_TABLES dictionary view). You can alter the degree to 2 (or more) for
a table using the SQL in Listing 8-66. You can do the same for a specific index too.

Listing 8-66. Setting the Degree of Parallelism to 2 for a Table and Creating the Index

SQL> ALTER TABLE customers PARALLEL 2 ; -- set degree

DROP INDEX customers_sidx; -- drop existing index

CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX PARALLEL; -- no need to specify degree

Whether the index being created is a local partitioned index or a global index, index creation is
performed in parallel if the parallel degree is more than 1. However, that is not the case with queries.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 293

8997ch08.qxd 10/2/07 4:24 PM Page 293

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Spatial indexes do not perform any explicit parallel processing at query time (except for the
parallelism for the underlying table scans). However, if the spatial index is a local partitioned index,
then the query processing on multiple partitions is performed in parallel. This means partitioning
and parallelism go hand in hand. Using partitioning and setting the table degree to more than 1 (as
in Listing 8-66) implicitly improves the performance of proximity analysis operations using spatial
indexes.

You will learn about some of the best practices relating to partitioning in Chapter 14.

Online Index Rebuilds
When there are too many deletes, typically 30 percent, from a spatially indexed table such as cus-
tomers, a rebuild of the associated spatial index may make the index quite compact and efficient for
subsequent queries. You can rebuild an index on a table, say customers, using the ALTER INDEX state-
ment, as shown in Listing 8-67.

Listing 8-67. Using ALTER INDEX ... REBUILD Statement to Rebuild the Entire Index

SQL> ALTER INDEX customers_sidx REBUILD ;

Just as in the case of a CREATE-INDEX statement, you can specify parameters such as layer_gtype,
tablespace, and sdo_indx_dims using a PARAMETERS clause, as shown in Listing 8-68. The effect of the
ALTER INDEX SQL is the same as a DROP INDEX followed by a CREATE INDEX with the specified parameters.

Listing 8-68. ALTER INDEX ... REBUILD with PARAMETERS Clause

SQL> ALTER INDEX customers_sidx REBUILD

PARAMETERS ('layer_gtype=POINT');

Note that the ALTER INDEX statement is a DDL statement and hence will commit any active
transaction in the current session. Besides, ALTER INDEX ... REBUILD is also a blocking statement.
This means if there are any concurrent DML (possibly in a separate session) executing on the index,
this command will block till it gets exclusive lock on the index (that is, the associated MDRT_<>$ table),
and if there are any concurrent DML statements that are issued against the table/index after the
rebuild starts, the DML will likewise be blocked. So, if a user issues a spatial operator query against
the table/index, that query could be blocked because of an ALTER INDEX ... REBUILD that is execut-
ing in a separate session.

One way to not block queries when the index is being rebuilt is to specify the keyword ONLINE in
the ALTER INDEX ... REBUILD statement.

Recollect from Figure 8-2 that the spatial index is stored as an Oracle table that starts with pre-
fix MDRT (the exact name is stored in the USER_SDO_INDEX_METADATA view). For the SQL in Listing 8-69,
the index is built using the existing data into a new table prefixed with MDOT while any concurrent
queries are still evaluated using the index information in the table with the MDRT prefix. This is shown
in Figure 8-11.

Listing 8-69. ALTER INDEX ... REBUILDWithout Blocking Any Concurrent Queries

SQL> ALTER INDEX customers_sidx REBUILD ONLINE

PARAMETERS ('layer_gtype=POINT');

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS294

8997ch08.qxd 10/2/07 4:24 PM Page 294

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 8-11. Online index rebuilding and concurrent query processing

At the end of the rebuild, the metadata is updated so that subsequent queries can use the latest
index information in the index table with MDOT prefix. Subsequent rebuilds can switch the index table
from MDOT prefix to MDRT prefix. This latest feature ensures queries are never blocked when the index
on a spatial column is being rebuilt with the ONLINE keyword specified.

Spatial Joins
Listing 8-20 identified all customers inside a quarter mile of a specific competitor (id=1). Say you now
want to look at all customers within 200 meters of all competitors. What if you wanted to perform this
operation for all competitors instead of just the one with id=1? You could remove the comp.id=1 predi-
cate in Listing 8-20 (and set the distance to 200 meters). This would result in the SQL shown in
Listing 8-70.

Listing 8-70. SDO_RELATE Operator Retrieving All Customers Inside (and Touching the Border of) Each
Competitor Region

SQL> SELECT COUNT(DISTINCT ct.id)

FROM competitors comp, customers ct

WHERE SDO_WITHIN_DISTANCE

(ct.location, comp.location, 'DISTANCE=200 UNIT=METER ')='TRUE';

COUNT(DISTINCTCT.ID)

1145

This query executes in a nested loop, performing the SDO_WITHIN_DISTANCE operation for each
row in the competitors table. What if there is a spatial index on the competitors table? You can use
this index in addition to the index on the customers in the preceding operation. This will speed up
the query significantly for large datasets.

To use both indexes, you need to use the SDO_JOIN table function. This function has the follow-
ing syntax:

ALTER INDEX ...
REBUILD ONLINE

Concurrent
Transaction T

Query Q1 Subsequent
Transaction R

Query Q2

Old Index
MDRT_table

Index
Rebuild
Process

SDO_Geometry col

New Index
MDOT_
table

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 295

8997ch08.qxd 10/2/07 4:24 PM Page 295

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_JOIN

(

table1 IN VARCHAR2,

col1 IN VARCHAR2,

table2 IN VARCHAR2,

col2 IN VARCHAR2

[, parameter_string IN VARCHAR2 DEFAULT NULL

[, preserve_join_order IN NUMBER DEFAULT 0

[, table1_partition IN VARCHAR2 DEFAULT NULL,

[, table2_partition IN VARCHAR2 DEFAULT NULL]]]]

)

RETURNS SDO_ROWIDSET

where the following is true:

• table1 and col1 refer to the first table name and the corresponding geometry column name.

• table2 and col2 refer to the second table name and the corresponding geometry column
name.

• parameter_string is optional. Just as in the SDO_RELATE and SDO_WITHIN_DISTANCE operators,
this parameter can specify either MASK=<mask-type> or DISTANCE=<val> [UNIT=<unit-spec>].
If the parameter_string is not specified, then SDO_JOIN will operate only as the primary filter
(that is, it will be equivalent to SDO_FILTER).

• preserve_join_order can be either 0 or 1. If the tables are of different sizes, then SDO_JOIN
may internally reorder the tables for join processing. You may set this to 1 only if you prefer
to override this reordering. For all practical purposes, just leave it as the default value of 0 (or
do not specify this parameter).

• table1_partition is optional. If not NULL, this parameter restricts the scope of the join to
a specified partition of table table1.

• table2_partition is optional. If not NULL, this parameter restricts the scope of the join to
a specified partition of table table2.

• The SDO_JOIN returns an SDO_ROWIDSET. This is the table of rowid pairs of the form <rowid1,
rowid2>. The first rowid, rowid1, corresponds to the rows of table1, and the second rowid,
rowid2, corresponds to the rows of the second table, table2.

Using this syntax for the SDO_JOIN, you can rewrite Listing 8-70 to use the indexes of both
tables. This query, shown in Listing 8-71, is likely to be faster than the query in Listing 8-70.

Listing 8-71. SDO_JOIN Operator Analyzing the Number of Customers Inside All the Competitor Regions

SQL> SELECT COUNT(DISTINCT ct.id)

FROM competitors comp, customers ct,

TABLE

(

SDO_JOIN

(

'competitors', 'location', -- first table and the SDO_GEOMETRY column

'customers', 'location', -- second table and the SDO_GEOMETRY column

'DISTANCE=200 UNIT=METER' -- specify mask relationship

)

) jn

WHERE ct.rowid=jn.rowid2 and comp.rowid = jn.rowid1;

COUNT(DISTINCTCT.ID)

1145

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS296

8997ch08.qxd 10/2/07 4:24 PM Page 296

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that SDO_JOIN is a table function and is included in the FROM clause of the SQL. In contrast, the
SDO_WITHIN_DISTANCE operator in Listing 8-70 is included in the WHERE clause of a SQL statement. In gen-
eral, the SDO_JOIN function will execute faster than the equivalent SDO_RELATE or the SDO_WITHIN_DISTANCE
operators, as SDO_JOIN uses both the spatial indexes.

Note that if the parameter_string is omitted, SDO_JOIN operates just like an SDO_FILTER opera-
tion. Listing 8-72 is therefore equivalent to Listing 8-73. However, since SDO_JOIN uses two spatial
indexes instead of one in SDO_FILTER, the SQL in Listing 8-73 (using SDO_JOIN) may run significantly
faster than that in Listing 8-72.

Listing 8-72. SDO_FILTER Operator Retrieving All Customers Whose MBRs Intersect Those of Competitor
Regions

SQL> SELECT COUNT(DISTINCT ct.id)

FROM competitors_sales_regions comp, customers ct

WHERE SDO_FILTER(ct.location, comp.geom)='TRUE';

COUNT(*)

2171

Listing 8-73. SDO_JOIN Operator Retrieving All Customers Whose MBRs Intersect the MBRs of Competitor
Regions (Filter Operation Is Used)

SQL> SELECT COUNT(DISTINCT ct.id)

FROM competitors_sales_regions comp, customers ct,

TABLE

(

SDO_JOIN

(

'competitors_sales_regions', 'geom', -- first table and column

'customers', 'location' -- second table and column

)

) jn

WHERE ct.rowid=jn.rowid2 AND comp.rowid = jn.rowid1;

COUNT(*)

2171

What if you wanted to restrict the scope to only GOLD customers rather than all customers?
Since the customers table is already partitioned on the customer_grade column, you can restrict the
join to just the GOLD partition of the customers table. To use the local index on the GOLD partition, you
will have to re-create the index as a local partitioned index for this purpose. Listing 8-74 rewrites the
SDO_JOIN query of Listing 8-73 to restrict the scope to just the GOLD customers. You can observe that
the query retrieves fewer results (and is also expected to execute faster).

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 297

8997ch08.qxd 10/2/07 4:24 PM Page 297

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 8-74. Rewriting Listing 8-73 to Restrict the Scope of SDO_JOIN to Just the Customers in the GOLD
Partition

SQL>

-- First, drop and re-create the index as a local partitioned index

DROP INDEX customers_sidx;

CREATE INDEX customers_sidx on customers(location)

INDEXTYPE IS mdsys.spatial_index LOCAL;

-- Now perform the query on a specific partition

SELECT COUNT(DISTINCT ct.id)

FROM competitors_sales_regions comp, customers PARTITION(GOLD) ct,

TABLE

(

SDO_JOIN

(

'competitors_sales_regions', 'geom', -- first table and column

'customers', 'location', -- second table and column

NULL, -- parameters list is set to NULL

0, -- preserve_join_order set to default value

NULL, -- competitors_sales_region is the entire table

'GOLD' -- GOLD partition of customers table

)

) jn

WHERE ct.rowid=jn.rowid2 AND comp.rowid = jn.rowid1;

COUNT(*)

498

■Note If a partitioned table has a local partitioned spatial index, you have to specify a valid partition in the
SDO_JOIN for that table (if a NULL is specified for the partition parameter in SDO_JOIN, Oracle raises an error).

Three-Dimensional Analysis
The preceding discussion mainly focused on analysis using two-dimensional data such as cus-
tomer locations or street networks. In certain applications such as city modeling, the data is not
two-dimensional but three-dimensional in nature. In Chapter 4, we examined how to build city
buildings and other architectural elements as three-dimensional solids, and three-dimensional
surfaces. With the onset of impressive visualization tools such as Google Earth, streaming and
visualizing the data in three dimensions has become a differentiating aspect of many successful
analyses. In this section, we cover how to index and query three-dimensional data that was dis-
cussed in Chapter 4.

Consider the three-dimensional buildings that you created in Chapter 5 and stored as the shape
column in the city_buildings table. Figure 8-12 shows a bird’s-eye view (two-dimensional top view)
of this data. The trajectory of a helicopter is also shown as a line geometry. To create a three-dimensional
spatial index on this column, first you need to insert extent information in the USER_SDO_GEOM_METADATA
view. Listing 8-75 shows the SQL.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS298

8997ch08.qxd 10/2/07 4:24 PM Page 298

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 8-12. Three-dimensional city buildings: a bird’s eye view. The black line shows the trajectory
a helicopter.

Listing 8-75. Inserting Metadata for the city_buildings Table (Extents in all Three Dimensions Are
Entered)

SQL> insert into user_sdo_geom_metadata values

('CITY_BUILDINGS', 'GEOM',

SDO_DIM_ARRAY(

SDO_DIM_ELEMENT('X', 29214140, 29219040, 0.05),

SDO_DIM_ELEMENT('Y', 43364000, 43372640, 0.05),

SDO_DIM_ELEMENT('Z', 0, 2000, 0.05)),

7407);

You can now create the three-dimensional spatial index as shown in Listing 8-76. Observe that
you need to specify 3 for parameter sdo_indx_dims to explicitly set the index dimensionality to three
dimensions in this CREATE INDEX statement.

Listing 8-76. Creating an R-tree Index on Three-Dimensional City Data

SQL> CREATE INDEX city_bldg_sidx ON city_buildings(geom)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('SDO_INDX_DIMS=3');

Once the index is built, you can perform a variety of proximity analyses using the three-
dimensional spatial index. These analyses come in handy in various situations.

19

3 4 7

5 6
8

2
9 12

11

13

15

14 16

18

17

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 299

8997ch08.qxd 10/2/07 4:24 PM Page 299

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

For instance, the CEO of a company has a meeting at Building 14 (in the city_buildings table).
His helicopter has a specific trajectory in or out of the city, which is stored in the trajectory column
of the trip_route table. You can identify buildings that need additional security by performing a variety
of proximity analyses using the spatial operators.

Relationship Analysis
One approach to identifying the approximate set of buildings that intersect the helicopter trajectory
is by using the SDO_FILTER operator. Listing 8-77 shows an example. Recall that the filter operation is
an approximate intersection operation. It compares the three-dimensional minimum bounding
volume (MBV) of the query with the MBV of the data. That is, even though the trajectory itself does
not intersect some buildings such as Building 12, the MBV does intersect the MBV of that building
and hence the building is included in the query result.

Listing 8-77. Identifying the Buildings Intersecting a Helicopter Trajectory Using SDO_FILTER Operator

SQL> SELECT id FROM trip_route t, city_buildings c

WHERE SDO_FILTER(c.geom, t.trajectory)='TRUE'

ORDER BY id;

ID

6

8

11

12

14

5 rows selected.

To perform an exact intersection operation using the three-dimensional geometries, you can
use the SDO_ANYINTERACT (or the equivalent SDO_RELATE with mask=ANYINTERACT) operator to get the
exact set of buildings that intersect the query window. Note that this returns only Building 14 as the
result. The reason is that the helicopter lands only on Building 14 and flies over all the other build-
ings (that is, the helicopter trajectory does not intersect all the “additional rows” that are in
Listing 8-77 but not in Listing 8-78).

Listing 8-78. Identifying the Exact Set of Buildings Intersecting a Helicopter Trajectory Using
SDO_ANYINTERACT Operator

SQL> SELECT id FROM trip_route t, city_buildings c

WHERE SDO_ANYINTERACT(c.geom, t.trajectory)='TRUE';

ID

14

1 row selected.

■Note You can always substitute the SDO_ANYINTERACT operator with the equivalent 'mask=ANYINTERACT'
type SDO_RELATE operator (that is, specify mask=ANYINTERACT in the third parameter of the SDO_RELATE oper-
ator).

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS300

8997ch08.qxd 10/2/07 4:24 PM Page 300

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Caution Relationship masks—CONTAINS, INSIDE, TOUCH, OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT,
and COVEREDBY—that are used in an SDO_RELATE operator (or the respective equivalent operators SDO_CONTAINS,
SDO_INSIDE, SDO_TOUCH, and so on) are not supported for three-dimensional spatial indexes.

Distance-Based Analysis
The problem with Listing 8-78 is that only Building 14 that intersects the trajectory is identified.
Buildings close to the trajectory are not included. For this type of analysis, you can use the SDO_NN
operator. Listing 8-79 identifies the three buildings that are close to the helicopter trajectory. The
distance to the trajectory is reported using the SDO_NN_DISTANCE ancillary operator. Note that you
can utilize the different variants of the SDO_NN operator (using the SDO_NUM_RES parameter or the
SDO_BATCH_SIZE parameter) for three-dimensional data too. Listing 8-79 shows the SQL using the
SDO_NUM_RES parameter. The SDO_BATCH_SIZE parameter can come in handy when screening for
buildings of a certain type.

Listing 8-79. Identifying the Five Closest Buildings to a Helicopter Trajectory

SQL> SET numformat 99999

SELECT id, SDO_NN_DISTANCE(1) dist FROM trip_route t, city_buildings c

WHERE SDO_NN(c.geom, t.trajectory, 'sdo_num_res=3', 1)='TRUE'

ORDER BY dist;

ID DIST

------ ------

14 0

16 187

10 321

3 rows selected.

Since we didn’t specify the UNITS parameter in the previous query, the distances reported in the
query result are in the default distance FEET. You can determine the units using the coordinate Sys-
tem Reference ID (SRID) for the data. In this case, the data has an SRID of 7407, a compound
coordinate system. As determined by Listing 8-80 (also check Listing 4-10), this compound system
combines a horizontal coordinate system (for first two dimensions) identified by CMPD_HORIZ_SRID
and a vertical coordinate system (for the third dimension) identified by CMPD_VERT_SRID.

Listing 8-80. Identifying the Component SRIDs for Compound Coordinate System 7407

SQL> SELECT srid, cmpd_horiz_srid, cmpd_vert_srid

FROM sdo_coord_ref_sys WHERE srid=7407;

SRID CMPD_HORIZ_SRID CMPD_VERT_SRID

------ --------------- --------------

7407 32037 5702

The horizontal coordinate system SRID is 32037, and the vertical coordinate system SRID is
5702.

You can then examine the wktext for the horizontal SRID in the cs_srs table and search for the
UNIT string as shown in Listing 8-81.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 301

8997ch08.qxd 10/2/07 4:24 PM Page 301

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 8-81. Identifying the Units for Horizontal Coordinate System SRID 32037

SQL> SELECT wktext FROM cs_srs WHERE srid=32037;

WKTEXT

--

PROJCS ["NAD27 / Texas North",

GEOGCS["NAD27",

DATUM ["North American Datum 1927 (EPSG ID 6267)",

SPHEROID

["Clarke 1866 (EPSG ID 7008)", 6378206.4,

294.978698213905820761610537123195175418],

-3, 142, 183, 0, 0, 0, 0],

PRIMEM ["Greenwich", 0.000000],

UNIT ["Decimal Degree", 0.01745329251994328]

],

PROJECTION ["Lambert Conformal Conic"], PARAMETER ["Latitude_Of_Origin", 34],

PARAMETER ["Central_Meridian", -101.5], PARAMETER ["Standard_Parallel_1", 34.65],

PARAMETER ["Standard_Parallel_2", 36.18333333333333333333333333333333333333],

PARAMETER ["False_Easting", 2000000],

PARAMETER ["False_Northing", 0],

UNIT ["U.S. Foot", .3048006096012192024384048768097536195072]

]

You can see in the last line that UNIT is U.S. Foot for the horizontal SRID 32037. You can then
identify the units for the vertical coordinate system by looking up the value after UoM in the result of
Listing 8-82. You can note that the unit is ftUS, which is the equivalent of USFoot for horizontal com-
ponent.

Listing 8-82. Identifying the Units for Vertical Coordinate System SRID 5702

SQL> SELECT coord_sys_name FROM sdo_coord_sys a, sdo_crs_vertical b

WHERE b.srid=5702 and a.coord_sys_id = b.coord_sys_id;

COORD_SYS_NAME

--

Gravity-related CS. Axis: height (H). Orientation: up. UoM: ftUS.

Although convoluted, the SQL examples in Listings 8-80 to 8-82 illustrate how to ascertain that
the default units in the horizontal and vertical coordinate systems of a compound coordinate sys-
tem are equivalent.

■Caution If the units of horizontal and vertical components of a compound coordinate system are different,
Oracle does not normalize the distances (in the first release of Oracle 11g‘5) , and the resulting distance computa-
tions using all three dimensions (two dimensions from the horizontal and one dimension from the vertical coordinate
system) may be incorrect.

What if you want to identify buildings within a specified distance from the trajectory? You can
utilize the SDO_WITHIN_DISTANCE operator for this purpose. Listing 8-83 shows the SQL for identifying
buildings that are within 200 units of distance from the trajectory.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS302

5. This may change in subsequent releases and patches of Oracle 11g.

8997ch08.qxd 10/2/07 4:24 PM Page 302

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 8-83. Identifying the Closest Buildings to a Helicopter Trajectory Within 200 Feet

SQL> SELECT id FROM trip_route t, city_buildings c

WHERE SDO_WITHIN_DISTANCE(c.geom, t.trajectory,

'distance = 200 unit=FOOT ')='TRUE'

ORDER BY id;

ID

14

16

2 rows selected.

■Caution If the data is in Geographic3D coordinate systems, the distance computation is on the geodetic surface
(that is, height is ignored). Only compound coordinate systems, such as SRID 7407, that use the projected 2D component
should be used for explicit consideration of the height as the third dimension. Please refer to Chapter 4 to understand
how to identify compound coordinate systems. You can refer to the Oracle Spatial User’s Guide for details on how to cre-
ate a new compound coordinate system that combines a specific projected coordinate system with a vertical coordinate
system.

Besides being useful in city modeling, medical, virtual reality, and gaming applications, three-
dimensional querying will come in handy when creating impressive three-dimensional visualization
scenarios using tools such as Google Earth, LandXplorer, 3D StudioMax, Maya, and Aristoteles.

Summary
In this chapter, we discussed how to perform proximity analysis using spatial indexes and associated
operators. We explained how to create spatial indexes on SDO_GEOMETRY columns of Oracle tables.
Once these indexes are created, they help in the fast processing of several spatial operators that are
useful in proximity analysis. These operators include SDO_NN and SDO_WITHIN_DISTANCE, which pro-
vide distance-based analysis, and SDO_RELATE and SDO_FILTER, which provide interaction-based
analysis.

The majority of the functionality described in this chapter (except that in the “Advanced Spatial
Index Features” section) is part of Locator, which is included with the Oracle Database Server. As
a result, most applications running on Oracle can readily leverage this functionality for supporting
proximity analysis. In the next chapter, we will complement this analysis with additional functions
on SDO_GEOMETRY objects.

CHAPTER 8 ■ SPATIAL INDEXES AND OPERATORS 303

8997ch08.qxd 10/2/07 4:24 PM Page 303

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997ch08.qxd 10/2/07 4:24 PM Page 304

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Geometry Processing Functions

To run the examples in this chapter, you need to import the following datasets:

imp spatial/spatial file=app_data_with_loc.dmp ignore=y full=y

imp spatial/spatial file=citybldgs.dmp full=y ignore=y

imp spatial/spatial file=map_large.dmp full=y ignore=y

In Chapter 8, we discussed how to perform proximity analysis using a spatial index and associated
spatial operators. In this chapter, we describe geometry processing functions, which are also referred
to as spatial functions (whenever there is no ambiguity), which complement this functionality. In
contrast to the spatial operators, these geometry processing functions

• do not require a spatial index,

• provide more detailed analyses than the spatial operators associated with a spatial index, and

• can appear in the SELECT list (as well as the WHERE clause) of a SQL statement.

We supplement the customer analysis and sales region analysis of Chapter 8 with the addi-
tional types of analyses presented in Table 9-1, which use the spatial functions described in this
chapter. The new analyses are shown in bold in the table.

The analyses in Table 9-1 are much more detailed than was possible in Table 8-1 using spatial
indexes and associated operators. In this chapter, you will learn about spatial functions that enable
such complex analysis on SDO_GEOMETRY objects. These spatial functions can be classified into the
following broad categories:

• Buffering functions: The SDO_BUFFER function creates a buffer around an existing SDO_GEOMETRY
object. The object can be of any type—point, line, polygon, or collection. For instance, you
can create buffers around the point locations in the branches table. The buffers created around
such business/branch locations may represent the sales regions for those businesses/branches.

• Relationship analysis functions: These functions determine the relationship between two
SDO_GEOMETRY objects. For example, using these functions, you can compute the distance
between a potential customer and a branch (business) location (then you can know whether the
customer is within a quarter-mile from the branch location). Alternatively, you can determine
whether a customer or a supplier is inside a specified buffer zone around a branch location.

305

C H A P T E R 9

■ ■ ■

8997ch09.qxd 9/28/07 10:06 AM Page 305

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Geometry combination functions: These functions perform intersection, union, and other
geometry combination functions on pairs of geometries. You can use these functions to
identify pairs of sales regions that intersect (or overlap) and find the intersection areas. You
can target customers in these intersection areas for specific promotions.

• Geometric analysis functions: These functions perform analysis such as area calculations on
individual geometric objects. For instance, for the overlap region of two sales regions, you
can compute the area and check whether this area (of the overlap region) is significantly
large. If it is, then the corresponding branch locations can be marked as potential candidates
for merging.

• Aggregate functions: The preceding analysis functions analyze individual or pairs of geome-
tries. Spatial also has aggregate functions that perform aggregation analyses on an arbitrary
set of geometries instead of individual or pairs of geometries. These sets of geometries can
result from any arbitrary selection criterion in the WHERE clause of a SQL statement.

Table 9-1. Augmenting Proximity Analyses from Table 8-1 Using Geometry Processing Functions

Analysis Type Description

Customer analysis Identify customers nearest to, or within a specified radius from,
a branch or a competitor. For customers close to a competitor, you
might provide certain promotions to retain them. You may specifically
target this analysis on GOLD customers whom you want to retain at any
cost. Identify appropriate regions to start a new branch (in other
words, a new business unit) to cater to a group of customers.

Sales region analysis Build sales regions (in other words, quarter-mile buffers) around
branch and competitor locations. Identify which of these overlap one
another or overlap state and county boundaries. If sales regions of
branches overlap substantially, you could merge such branches.
Create buffers around branches and competitors to indicate sales
regions or coverage. Identify the overlapping portion of two sales
regions, determine the area of the overlapping portion, examine the
customer population in this portion, and so on. If the area exceeds
a threshold and the number of customers is significant, you may
consider merging the sales regions (in other words, merging the
corresponding branches). Determine the total coverage of all the
branches (or store locations). This indicates in which parts of the
city/country the business has a presence and in which parts the
business is not represented. Identify the coverage of competitors (or
a specific competitor), and target customers who are in exclusive
regions of the coverage.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS306

8997ch09.qxd 9/28/07 10:06 AM Page 306

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

With the exception of the spatial aggregate functions, all other spatial functions discussed in this
chapter are part of the SDO_GEOM package. This means you can use them as SDO_GEOM.<function_name>
in SQL statements. These functions can appear wherever a user-defined function can occur in a SQL
statement. The spatial aggregate functions, on the other hand, can appear only in the SELECT list of
a SQL statement.

For three-dimensional objects, only the following relationship functions are supported in
Oracle 11g Release 1: distance (for computing the distance between two three-dimensional geome-
tries), closestpoints (for finding the closest pair of points on two geometries), and anyinteract (for
determining whether two three-dimensional geometries intersect). For three-dimensional objects,
only the following geometric analysis functions are supported: length, area, and volume. You can
use these functions via the SDO_GEOM PL/SQL package or via the J3D_Geometry class in the Java API.
The J3D_Geometry class (first discussed in Chapter 7) extends the JGeometry class for three-dimensional
objects and defines specific methods to implement this functionality.

Most of the spatial functions described previously take one or two SDO_GEOMETRY arguments, a
tolerance argument, and other optional arguments. The tolerance argument has the same mean-
ing as described in Chapter 8. To recap, tolerance in a geometry reflects the distance that two points
must be apart to be considered different (for example, to accommodate rounding errors). The toler-
ance for geodetic1 geometries (where interpolation between points is the shortest distance on the
surface of the earth) is specified in meters and is usually set to 0.1 or 0.5. For nongeodetic geome-
tries, this tolerance will be set based on the application.

In this chapter, we discuss each of the spatial functions in turn. We use these functions to
perform analyses on two sets of data:

• The branches and customers tables of the business application

• The us_states, us_counties, and us_parks tables that constitute the geographic data in the
business application

Buffering Functions
The first function we discuss is SDO_BUFFER. This function constructs a buffer around a specified
geometric object or a set of geometric objects. For instance, you can use this function to create
a quarter-mile buffer around a delivery site location. This buffer geometry will be a circle around
the delivery site with a radius of a quarter mile. Likewise, a buffer around an L-shaped road will be
the merged area of two sausage shapes (flattened ovals), one for each segment of the road.

Figure 9-1 shows examples of the constructed buffers for different types of geometries, with the
pre-buffered geometries shown. Note that only simple geometries are shown here. The SDO_BUFFER
function can work with complex SDO_GEOMETRY objects, such as compound polygons and collections.
Note that if the input geometric object has a large enough interior hole, the resultant buffer zone
may also have an interior hole (but one that is shrunk in size, as shown in the polygon with a hole in
Figure 9-1).

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 307

1. To determine whether a geometry is geodetic, look at the SRID value, and compare it to those in the
MDSYS.GEODETIC_SRIDS table.

8997ch09.qxd 9/28/07 10:06 AM Page 307

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 9-1. Geometric objects and buffered geometries for some simple types

Next, let’s examine how to construct these buffers using the SDO_BUFFER function. This function
has the following syntax:

SDO_BUFFER

(

geometry IN SDO_GEOMETRY,

distance IN NUMBER,

tolerance IN NUMBER

[, params IN VARCHAR2]

)

RETURNS an SDO_GEOMETRY

where the following is true:

• geometry is a parameter that specifies an SDO_GEOMETRY object to be buffered.

• distance is a parameter that specifies a numerical distance to buffer the input geometry.

• tolerance is a parameter that specifies the tolerance.

• params is the optional fourth argument that specifies two parameters, unit=<value_string>
and arc_tolerance=<value_number>.

The unit=<value_string> parameter specifies the unit in which the distance is specified. You
can obtain possible values for the units by consulting the MDSYS.SDO_DIST_UNITS table.

The arc_tolerance=<value_number> parameter is required if the geometry is geodetic (in other
words, if SDO_SRID in the geometry is set to a geodetic SRID such as 8307 or 8265). In geodetic space,
arcs are not permitted. Instead, they are represented using straight-line approximations. The arc
tolerance parameter specifies the maximum distance between an arc and its straight-line approxi-
mation. Figure 9-2 shows this arc tolerance.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS308

8997ch09.qxd 9/28/07 10:06 AM Page 308

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 9-2. The arc tolerance is the maximum distance between the arc and the lines approximating
the arc.

You should note the following:

• arc_tolerance always has to be greater than the tolerance for the geometry.

• The tolerance is specified in units of meters for geodetic data. arc_tolerance, however, is
always in the units specified in parameter_string.

• The units parameter, if specified, applies to both arc_tolerance and the buffer distance.

Using this signature, you can construct a quarter-mile buffer around each branch location in
the branches table, as shown in Listing 9-1. We’re storing these buffers in a sales_regions table for
use in subsequent analysis.

Listing 9-1. Creating Buffers Around Branches

SQL> CREATE TABLE sales_regions AS

SELECT id,

SDO_GEOM.SDO_BUFFER(b.location, 0.25, 0.5, 'arc_tolerance=0.005 unit=mile') geom

FROM branches b

Note that the first parameter is the geometry to be buffered. The second parameter specifies
the buffer distance as 0.25. The third parameter specifies the tolerance to be 0.5 meters, which is the
tolerance unit for geodetic geometries. The parameter_string parameter in the fourth argument
specifies the units for the buffer distance (of 0.25). In this case, the units are miles. The buffer distance,
then, is 0.25 miles. Additionally, the parameter_string parameter also specifies an arc tolerance of
0.005. Since the units are miles, the arc tolerance will be interpreted as 0.005 miles (equivalent to
26.4 feet or 8.1 meters).

Likewise, you can create buffers around competitor stores, as shown in Listing 9-2.

Listing 9-2. Creating Buffers Around Competitor Locations

SQL> CREATE TABLE COMPETITORS_SALES_REGIONS AS

SELECT id,

SDO_GEOM.SDO_BUFFER(cmp.location, 0.25, 0.5, 'unit=mile arc_tolerance=0.005') geom

FROM competitors cmp

Note that you need to create spatial indexes for both tables. You can refer to Chapter 8 for details
on how to create the metadata and the spatial index. Here, we provide the script to do just that:

Rem Metadata for Sales_regions table

SQL> INSERT INTO user_sdo_geom_metadata

SELECT 'SALES_REGIONS',

'GEOM', diminfo, srid FROM user_sdo_geom_metadata

WHERE table_name='BRANCHES';

Rem Metadata for Competitors_sales_regions table

SQL> INSERT INTO user_sdo_geom_metadata

SELECT 'COMPETITORS_SALES_REGIONS',

'GEOM', diminfo, srid FROM user_sdo_geom_metadata

WHERE table_name='COMPETITORS';

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 309

8997ch09.qxd 9/28/07 10:06 AM Page 309

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Rem Index-creation for Sales_regions table

SQL> CREATE INDEX sr_sidx ON sales_regions(geom)

INDEXTYPE IS mdsys.spatial_index;

Rem Index-creation for Competitors_sales_regions table

SQL> CREATE INDEX cr_sidx ON competitors_sales_regions(geom)

INDEXTYPE IS mdsys.spatial_index;

Relationship Analysis Functions
In the following sections, we cover two functions to analyze the relationship between two SDO_GEOMETRY
objects. The first function is SDO_DISTANCE. This function determines how far apart two geometries
are. The second function is RELATE. This function determines whether two geometries interact in
any specified manner. For instance, you can use this function to identify whether there are any
customers inside the buffers created in Listing 9-2.

SDO_DISTANCE
The SDO_DISTANCE function computes the minimum distance between any two points on the two
geometries. Figure 9-3 shows some examples. This distance computation takes into account both
vertices and the interpolated curves of each geometry. In the line geometry example, one of the ver-
tices of the line is closest to the second (point) geometry. In the polygon example, one of the curves
is closest to the second (point) geometry.

Figure 9-3. The SDO_DISTANCE function for different pairs of geometric objects

The SDO_DISTANCE function has the following syntax:

SDO_DISTANCE

(

geometry1 IN SDO_GEOMETRY,

geometry2 IN SDO_GEOMETRY,

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS310

8997ch09.qxd 9/28/07 10:06 AM Page 310

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

tolerance IN NUMBER

[, params IN VARCHAR2]

)

RETURNS a NUMBER

where the following is true:

• geometry1 and geometry2 are the first two arguments, and they specify SDO_GEOMETRY objects.

• tolerance specifies the tolerance for the dataset. For geodetic data, this is usually 0.5 or 0.1
(0.5 meters or 0.1 meters). For nongeodetic data, this is set appropriately to avoid rounding
errors (see Chapter 8 for details).

• params is the optional fourth parameter in a string of the form 'unit=<value_string>'. This
specifies the units in which the distance should be returned. You can obtain possible values
for the units by consulting the MDSYS.SDO_DIST_UNITS table.

This function returns the minimum distance between geometry1 and geometry2 in the units
specified. If no unit is specified, the default unit for the coordinate system is used (this can be deter-
mined by inspecting the SDO_SRID attribute in the SDO_GEOMETRY objects and looking at the WKTEXT
attribute in the MDSYS.CS_SRS table for that SRID).

Using this function, you can identify the customers within a quarter-mile radius of a competitor
location, as shown in Listing 9-3.

Listing 9-3. Identifying Customers Within a Quarter-Mile of a Competitor Location

SQL> SELECT ct.id, ct.name

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_GEOM.SDO_DISTANCE(ct.location, comp.location, 0.5, 'unit=mile') < 0.25

ORDER BY ct.id;

ID NAME

---------- -----------------------------------

25 BLAKE CONSTRUCTION

28 COLONIAL PARKING

34 HEWLETT-PACKARD DC GOV AFFAIRS

41 MCGREGOR PRINTING

48 POTOMAC ELECTRIC POWER

50 SMITH HINCHMAN AND GRYLLS

270 METRO-FARRAGUT NORTH STATION

271 METRO-FARRAGUT WEST STATION

468 SAFEWAY

809 LINCOLN SUITES

810 HOTEL LOMBARDY

1044 MUSEUM OF THE THIRD DIMENSION

1526 INTERNATIONAL FINANCE

1538 MCKENNA AND CUNEO

2195 STEVENS ELEMENTARY SCHOOL

6326 HOTEL LOMBARDY

7754 EXECUTIVE INN

7762 PHILLIPS 66

7789 SEVEN BUILDINGS

7821 RENAISSANCE MAYFLOWER HOTEL

8138 ST GREGORY HOTEL

8382 EXXON

8792 DESTINATION HOTEL & RESORTS

23 rows selected.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 311

8997ch09.qxd 9/28/07 10:06 AM Page 311

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that the preceding query will have the same semantics as Listing 8-20, which uses the
SDO_WITHIN_DISTANCE operator. The SDO_WITHIN_DISTANCE operator in Listing 8-20 uses the spatial
index, but the SDO_GEOM.SDO_DISTANCE function does not. As a result, Listing 9-3 will be much slower
in comparison. You should use the SDO_WITHIN_DISTANCE operator wherever possible. You should use
the SDO_DISTANCE function to do only the following:

• To operate on nonindexed tables

• To augment the SDO_WITHIN_DISTANCE operator

Here is an example of where the SDO_DISTANCE function will come in handy. In Listing 9-4, the
SDO_WITHIN_DISTANCE operator identifies the rows that are within a specified distance. The SDO_DISTANCE
function in the SELECT list of the SQL identifies the exact distance of each of these rows to the query
geometry. Note that the unit is specified as yard in the SDO_DISTANCE function. As a result, the
distances are returned in yards.

Listing 9-4. Using the SDO_DISTANCE Function with the SDO_WITHIN_DISTANCE Spatial Operator in SQL

SQL> SELECT ct.id, ct.name,

SDO_GEOM.SDO_DISTANCE(ct.location, comp.location, 0.5, 'unit=yard') distance

FROM competitors comp, customers ct

WHERE comp.id=1

AND SDO_WITHIN_DISTANCE

(ct.location, comp.location, 'distance=0.25 unit=mile')='TRUE'

ORDER BY ct.id;

ID NAME DISTANCE

---------- ----------------------------------- ----------

25 BLAKE CONSTRUCTION 319.038526

28 COLONIAL PARKING 398.262506

34 HEWLETT-PACKARD DC GOV AFFAIRS 427.660664

41 MCGREGOR PRINTING 350.463038

48 POTOMAC ELECTRIC POWER 354.721567

50 SMITH HINCHMAN AND GRYLLS 252.366911

270 METRO-FARRAGUT NORTH STATION 344.955038

271 METRO-FARRAGUT WEST STATION 271.905717

468 SAFEWAY 252.001358

809 LINCOLN SUITES 103.915921

810 HOTEL LOMBARDY 313.088568

1044 MUSEUM OF THE THIRD DIMENSION 152.658273

1526 INTERNATIONAL FINANCE 235.987835

1538 MCKENNA AND CUNEO 96.9728115

2195 STEVENS ELEMENTARY SCHOOL 304.662483

6326 HOTEL LOMBARDY 329.301433

7754 EXECUTIVE INN 374.571287

7762 PHILLIPS 66 302.628637

7789 SEVEN BUILDINGS 354.721567

7821 RENAISSANCE MAYFLOWER HOTEL 322.143941

8138 ST GREGORY HOTEL 359.219279

8382 EXXON 326.165809

8792 DESTINATION HOTEL & RESORTS 159.234843

23 rows selected.

You can also use the SDO_DISTANCE function on three-dimensional objects. Listing 9-5 shows the
SQL for determining the distance between a helicopter trajectory and, say, one of the closest build-
ings, building 16 (from Figure 8-12). Since the buildings are modeled as three-dimensional solids
and the helicopter trip route is modeled as a three-dimensional line string, the distance will be the

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS312

8997ch09.qxd 9/28/07 10:06 AM Page 312

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

three-dimensional distance. From Listing 9-5, you can understand that building 16 is 150.0003 feet
away from the helicopter trajectory.

Listing 9-5. Using the SDO_DISTANCE Function to Determine the Distance Between Building 16 and the
Helicopter Trajectory

SQL> SELECT cbldg.id,

SDO_GEOM.SDO_DISTANCE(cbldg.geom, tr.trajectory, 0.05, 'UNIT=foot') dist

FROM trip_route tr, city_buildings cbldg

WHERE cbldg.id=16;

ID DIST

---------- ----------

16 187.258607

In Java, you can perform the same distance operation using the distance method in the
J3D_Geometry class. As described in Chapter 7, to read J3D_Geometry objects from the database, pro-
ceed the same way as with JGeometry, and then construct a J3D_Geometry object from the JGeometry
object. You can then compute the distance between the J3D_Geometry objects, traj and bldg16, cor-
responding to the helicopter trajectory and building 16. Listing 9-6 shows the code snippet that is
equivalent to Listing 9-5. Note the second argument to the distance function is the value for the tol-
erance (see Chapter 3 for appropriate values).

Listing 9-6. Using the J3D_Geometry.DISTANCE Method to Determine the Distance Between Building 16
and the Helicopter Trajectory

// Assume traj and bldg16 represent the J3D_Geometry objects

// for trajectory and building 16

double dist = traj.distance(bldg16, tol);

■Note For three-dimensional geodetic geometries, the distance computed is always the two-dimensional
(ground) distance.

SDO_CLOSEST_POINTS
In the previous examples, you computed the distance between two geometries. In Listings 9-5 and
9-6, the geometries are three-dimensional city buildings and a helicopter trajectory. (Likewise, in
Listing 9-4, the geometries are two-dimensional locations of competitor businesses and customers.)
What if you want not just the distance but also the closest point of approach? In other words, what if
you want to find the specific points on the building and the trajectory that are the closest? You can
obtain such closest points using the SDO_CLOSEST_POINTS procedure (notice that it is not a function)
in the SDO_GEOM package in PL/SQL. The syntax for this procedure is as follows:

SDO_CLOSEST_POINTS

(

geometry1 IN SDO_GEOMETRY,

geometry2 IN SDO_GEOMETRY,

tolerance IN NUMBER,

params IN VARCHAR2,

dist OUT NUMBER,

pt1 OUT SDO_GEOMETRY,

pt2 OUT SDO_GEOMETRY

)

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 313

8997ch09.qxd 9/28/07 10:06 AM Page 313

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

where the following is true:

• geometry1 and geometry2 are the SDO_GEOMETRY objects for which you want the distance and
the closest points computed.

• tolerance specifies the tolerance for the dataset. For geodetic data, this is usually 0.5 or 0.1
(0.5 meters or 0.1 meters). For nongeodetic data, this is set appropriately to avoid rounding
errors (see Chapter 8 for details).

• params is a string of the form 'unit=<value_string>'. This specifies the units in which the
distance should be returned. You can obtain possible values for the units by consulting the
MDSYS.SDO_DIST_UNITS table.

The procedure returns the following values:

• dist is the distance between geometry1 and geometry2.

• pt1 is the point on geometry1 that contributes to this distance.

• pt2 is the point on geometry2 that contributes to this distance.

You can use this function to compute the closest points on building 16 and the helicopter tra-
jectory as in Listing 9-7. (Note that the SRIDs were set to NULL because this procedure is returning an
error with the default SRID of 7407 (bug 6201938). Observe that the procedure returns a distance of
150 feet and the closest points on building 16 and the helicopter trajectory that have this distance.

■Note If there are multiple pairs satisfying the same closest distance, any one of those pairs is returned.

Listing 9-7. Obtaining the Closest Points on Building 16 and Helicopter Trajectory

set serverout on

declare

traj sdo_geometry;

bldg16 sdo_geometry;

dist number;

trajpt sdo_geometry;

bldg16pt sdo_geometry;

begin

select geom INTO bldg16 from city_buildings where id=16;

select trajectory into traj from trip_route where rownum<=1;

bldg16.sdo_srid:=null; -- Workaround for Bug 6201938

traj.sdo_srid:=null; -- Workaround for Bug 6201938

sdo_geom.sdo_closest_points(traj, bldg16, 0.05, 'UNIT=FOOT',

dist, trajpt, bldg16pt);

dbms_output.put_line('Distance= ' || TO_CHAR(dist));

dbms_output.put_line('Pt on Trajectory:' ||

TO_CHAR(trajpt.sdo_point.x) || ', ' ||

TO_CHAR(trajpt.sdo_point.y) || ', ' ||

TO_CHAR(trajpt.sdo_point.z));

dbms_output.put_line('Pt on Bldg16:' ||

TO_CHAR(bldg16pt.sdo_point.x) || ', ' ||

TO_CHAR(bldg16pt.sdo_point.y) || ', ' ||

TO_CHAR(bldg16pt.sdo_point.z));

end;

/

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS314

8997ch09.qxd 9/28/07 10:06 AM Page 314

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Distance= 187.258232

Pt on Trajectory:29217975.2129243, 43368860.78637, 685.800311

Pt on Bldg16:29217954.2883524, 43368850.4882017, 500

PL/SQL procedure successfully completed.

The corresponding method in the J3D_Geometry class is called closestPoints. Given an input
geometry and tolerance value as arguments, this method computes the closest points on the refer-
ence geometry and the input geometry and returns them as an ArrayList. In contrast to the PL/SQL
procedure, the equivalent closestPoints in the Java API does not return the distance. You have to
call distance separately to get the distance. Listing 9-8 shows the Java code snippet for Listing 9-7.

Listing 9-8. Finding the Closest Points Using the J3D_Geometry Java API

// Assume traj and bldg16 represent the J3D_Geometry objects

// for trajectory and building 16

ArrayList closest_pts = traj.closestPoints(bldg16, tol); // tol is the tolerance

J3D_Geometry pt1 = (J3D_Geometry) closest_pts.get(0);

J3D_Geometry pt2 = (J3D_Geometry) closest_pts.get(1);

Double dist = pt1.distance(pt2, tol);

RELATE
In Listing 9-2, you created buffers around competitor locations. What do you do with these buffers
around the branch locations and competitor locations? You can perform relationship analysis to
identify customers inside these sales regions and competitor regions. You can do this using either
the SDO_RELATE operator (as in described in Chapter 8) or the RELATE function in the SDO_GEOM pack-
age. The RELATE function has the following syntax:

RELATE

(

Geometry_A IN SDO_GEOMETRY,

mask, IN VARCHAR2,

Geometry_Q, IN SDO_GEOMETRY,

Tolerance IN NUMBER

)

RETURNS a relationship of type VARCHAR2

where the following is true:

• Geometry_A and Geometry_Q are arguments that specify geometric objects.

• The mask argument can take one of the following values:

• DETERMINE, which determines the relationship or interaction Geometry_A has with
Geometry_Q

• Any relationship specified in Figure 8-8, including the following: INSIDE, COVEREDBY,
COVERS, CONTAINS, EQUAL, OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT, ON, and TOUCH

• ANYINTERACT if any of the preceding relationships holds

• DISJOINT if none of the preceding relationships holds

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 315

8997ch09.qxd 9/28/07 10:06 AM Page 315

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

This RELATE function returns the following:

• 'TRUE' if the geometries intersect and the ANYINTERACT mask is specified

• The value of mask if Geometry_A satisfies the specified mask-type relationship with Geometry_Q

• 'FALSE' if the relationship between the geometries does not match the relationship specified
in the second argument, mask

• The type of relationship, if the mask is set to 'DETERMINE'

Using this signature for the RELATE function, you can perform proximity analyses using
your buffer zones around branches and competitors. You can identify all customers who are in
competitors_sales_regions (in other words, the buffer zones around competitors), as shown in
Listing 9-9.

Listing 9-9. Identifying Customers in a Competitor’s Sales Region

SQL> SELECT ct.id, ct.name

FROM customers ct, competitors_sales_regions comp

WHERE SDO_GEOM.RELATE (ct.location, 'INSIDE', comp.geom, 0.5) = 'INSIDE'

AND comp.id=1

ORDER BY ct.id;

ID NAME

---------- -----------------------------------

25 BLAKE CONSTRUCTION

28 COLONIAL PARKING

34 HEWLETT-PACKARD DC GOV AFFAIRS

41 MCGREGOR PRINTING

48 POTOMAC ELECTRIC POWER

50 SMITH HINCHMAN AND GRYLLS

270 METRO-FARRAGUT NORTH STATION

271 METRO-FARRAGUT WEST STATION

468 SAFEWAY

809 LINCOLN SUITES

810 HOTEL LOMBARDY

1044 MUSEUM OF THE THIRD DIMENSION

1526 INTERNATIONAL FINANCE

1538 MCKENNA AND CUNEO

2195 STEVENS ELEMENTARY SCHOOL

6326 HOTEL LOMBARDY

7754 EXECUTIVE INN

7762 PHILLIPS 66

7789 SEVEN BUILDINGS

7821 RENAISSANCE MAYFLOWER HOTEL

8138 ST GREGORY HOTEL

8382 EXXON

8792 DESTINATION HOTEL & RESORTS

23 rows selected.

Note that this query returns only those customers at a distance of less than 0.25 miles from (in
other words, that are inside the sales region of) the specified competitor (id=1). This does not, how-
ever, return the customers who are exactly 0.25 miles from the competitor (in other words, those
that touch or are on the boundary of the competitor buffer zone). To include those, you can simply
specify the ANYINTERACT mask, as shown in Listing 9-10. Note that the function is compared with

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS316

8997ch09.qxd 9/28/07 10:06 AM Page 316

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

'TRUE' instead of 'ANYINTERACT'.2 Note that the result of Listing 9-10 is the same as that of Listing 9-9
because there are no customers on the boundary (but there may be a difference for other datasets
or query windows).

Listing 9-10. Identifying Customers Who Interact with a Competitor’s Sales Region

SQL> SELECT ct.id, ct.name

FROM customers ct, competitors_sales_regions comp

WHERE SDO_GEOM.RELATE (ct.location, 'ANYINTERACT', comp.geom, 0.5) = 'TRUE'

AND comp.id=1

ORDER BY ct.id;

ID NAME

---------- -----------------------------------

25 BLAKE CONSTRUCTION

28 COLONIAL PARKING

34 HEWLETT-PACKARD DC GOV AFFAIRS

41 MCGREGOR PRINTING

48 POTOMAC ELECTRIC POWER

50 SMITH HINCHMAN AND GRYLLS

270 METRO-FARRAGUT NORTH STATION

271 METRO-FARRAGUT WEST STATION

468 SAFEWAY

809 LINCOLN SUITES

810 HOTEL LOMBARDY

1044 MUSEUM OF THE THIRD DIMENSION

1526 INTERNATIONAL FINANCE

1538 MCKENNA AND CUNEO

2195 STEVENS ELEMENTARY SCHOOL

6326 HOTEL LOMBARDY

7754 EXECUTIVE INN

7762 PHILLIPS 66

7789 SEVEN BUILDINGS

7821 RENAISSANCE MAYFLOWER HOTEL

8138 ST GREGORY HOTEL

8382 EXXON

8792 DESTINATION HOTEL & RESORTS

23 rows selected.

For three-dimensional geometries, you can specify the ANYINTERACT mask only as the second
argument to the RELATE function. Using the SQL in Listing 9-11, you can determine which buildings
intersect the helicopter trajectory using the SDO_GEOM.RELATE function.

Listing 9-11. Identifying Buildings That Intersect the Helicopter Trajectory

SQL> SELECT cbldg.id

FROM city_buildings cbldg, trip_route tr

WHERE SDO_GEOM.RELATE (cbldg.geom, 'ANYINTERACT', tr.trajectory, 0.5) = 'TRUE';

ID

14

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 317

2. You have to specify the masks in single quotes as is the case with all Oracle strings.

8997ch09.qxd 9/28/07 10:06 AM Page 317

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Note For three-dimensional geometries, you can specify the ANYINTERACT mask only in the RELATE function. If
you specify any other mask, it will return “no rows selected” (the behavior may change in future releases).

The equivalent method in J3D_Geometry for determining ANYINTERACT type of relationship
between two geometries is the anyInteract method in the J3D_Geometry class. Listing 9-12 shows
the Java code snippet for Listing 9-11. The anyInteract method takes a building geometry bldg and
a tolerance value tol and returns true if the bldg intersects with the reference geometry, in this
case, the trajectory.

Listing 9-12. Using the J3D_Geometry.anyinteract Method to Determine the Buildings That Intersect
the Helicopter Trajectory

// Assume ids of the buildings from city_buildings table

// are fetched into the ArrayList idarr;

// and corresponding geom column is fetched into the ArrayList bldgarr

for (int i=0; i<bldg_geom.length; i++) {

J3D_Geometry bldg = (J3D_Geometry) bldgarr.get(i);

int id = idarr.get(i);

if (traj.anyInteract(bldg, tol) = true) // tol is the tolerance value

System.out.println(id);

}

When to Use the RELATE Function
Observe that the result in Listing 9-11 is the same as that in Listing 8-69 from Chapter 8 where you used
the SDO_RELATE operator to perform the same analysis but using a spatial index. The SDO_GEOM.RELATE
function, as mentioned earlier, does not utilize the spatial index and evaluates for all rows (in other
words, all possible pairs in the tables city_buildings and trip_route). Likewise, for the two-dimensional
data/query in Listing 9-10, notice that the result is identical to that of Listing 8-35. Again, this query
uses the SDO_GEOM.RELATE spatial function, whereas the query in Listing 8-35 uses the SDO_RELATE
operator. Because operators are evaluated using the spatial index, Listing 8-35 will execute faster. In
contrast, the SDO_GEOM.RELATE function in Listing 9-10 does not use any index and is evaluated for
every row of the customers table. This might result in a much slower evaluation. Why and when should
the SDO_GEOM.RELATE function be used? The RELATE function is never to be used if the SDO_RELATE
operator can serve the same purpose.

However, the SDO_GEOM.RELATE function can be useful in certain scenarios—for example, to
operate on nonindexed tables or subsets of geometries such as the suppliers table in Listing 9-13.
Note that the suppliers table does not have a spatial index.

Listing 9-13. Identifying Suppliers in a Quarter-Mile Buffer Around a Competitor

SQL> SELECT s.id

FROM suppliers s, competitors_sales_regions cs

WHERE SDO_GEOM.RELATE (s.location, 'ANYINTERACT', cs.geom, 0.5) = 'TRUE'

AND cs.id=1;

You can also use the SDO_GEOM.RELATE function to complement the SDO_RELATE operator. For
instance, you can use the SDO_RELATE operator with the ANYINTERACT mask (or a combination of
masks) to identify a candidate set of rows. You can then use the SDO_GEOM.RELATE function to deter-
mine the relationship for each row that is returned. Listing 9-14 shows how to complement the
functionality of Listing 8-35 using the SDO_GEOM.RELATE function.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS318

8997ch09.qxd 9/28/07 10:06 AM Page 318

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 9-14. Identifying Customers in a Quarter-Mile Buffer Around a Competitor

SQL> SELECT ct.id, ct.name,

SDO_GEOM.RELATE (ct.location, 'DETERMINE', comp.geom, 0.5) relationship

FROM customers ct, competitors_sales_regions comp

WHERE comp.id=1

AND SDO_RELATE(ct.location, comp.geom, 'mask=anyinteract')='TRUE';

ID NAME RELATIONSHIP

------ ----------------------------------- -------------------------------------

25 BLAKE CONSTRUCTION INSIDE

7821 RENAISSANCE MAYFLOWER HOTEL INSIDE

8138 ST GREGORY HOTEL INSIDE

8382 EXXON INSIDE

6326 HOTEL LOMBARDY INSIDE

1526 INTERNATIONAL FINANCE INSIDE

810 HOTEL LOMBARDY INSIDE

50 SMITH HINCHMAN AND GRYLLS INSIDE

271 METRO-FARRAGUT WEST STATION INSIDE

7762 PHILLIPS 66 INSIDE

34 HEWLETT-PACKARD DC GOV AFFAIRS INSIDE

1538 MCKENNA AND CUNEO INSIDE

1044 MUSEUM OF THE THIRD DIMENSION INSIDE

28 COLONIAL PARKING INSIDE

41 MCGREGOR PRINTING INSIDE

7754 EXECUTIVE INN INSIDE

270 METRO-FARRAGUT NORTH STATION INSIDE

2195 STEVENS ELEMENTARY SCHOOL INSIDE

809 LINCOLN SUITES INSIDE

8792 DESTINATION HOTEL & RESORTS INSIDE

468 SAFEWAY INSIDE

48 POTOMAC ELECTRIC POWER INSIDE

7789 SEVEN BUILDINGS INSIDE

23 rows selected.

Another interesting analysis that you can perform in the example business application is the
identification of sales regions that intersect each other. You can use the combination of the SDO_RELATE
operator to identify pairs of sales regions that intersect each other and then perform the SDO_GEOM.
RELATE to determine whether they just touch or overlap with each other. Listing 9-15 shows the SQL
to retrieve all sales regions that intersect a sales region with id=51.

Listing 9-15. RELATE Function Complementing the SDO_RELATE Operator

SQL> SELECT sra.id,

SDO_GEOM.RELATE(sra.geom, 'DETERMINE', srb.geom, 0.5) relationship

FROM sales_regions srb, sales_regions sra

WHERE srb.id=51 AND sra.id<>51 AND

SDO_RELATE

(sra.geom, srb.geom,

'mask=TOUCH+OVERLAPBDYDISJOINT+OVERLAPBDYINTERSECT'

)='TRUE'

ORDER BY sra.id;

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 319

8997ch09.qxd 9/28/07 10:06 AM Page 319

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

ID RELATIONSHIP

---------- ----------------------------------

43 OVERLAPBDYINTERSECT

50 OVERLAPBDYINTERSECT

54 OVERLAPBDYINTERSECT

63 OVERLAPBDYINTERSECT

66 OVERLAPBDYINTERSECT

69 OVERLAPBDYINTERSECT

72 OVERLAPBDYINTERSECT

75 OVERLAPBDYINTERSECT

76 TOUCH

9 rows selected.

Instead of doing two queries as in Listing 8-46 and Listing 8-47, Listing 9-15 will tell you, in
a single SQL query, which sales regions overlap and which touch.

■Tip Use SDO_GEOM.RELATE and SDO_RELATE in combination to identify specific types of interactions.

Listing 9-15 shows the sales regions that overlap with a specific sales region (with id=51). But
can you extract just the overlap (or intersection) region—that is, the area that is common to both
sales regions? Based on the size of these intersection regions and the number of customers in these
intersection regions, you can designate the corresponding pair of branch locations as potential can-
didates for merging. In the next section, we discuss functions to extract the intersection regions of
overlapping geometric objects.

Geometry Combination Functions
In mathematics, two sets of items, A and B, can be combined using different set-theory operations
such as A minus B, A union B, and A intersection B. Here, we cover similar functions that act on
a pair of geometries instead of a pair of sets. If A and B are two geometries, the semantics of each of
the geometry combination functions are illustrated in Figure 9-4.

Figure 9-4. Semantics of geometry combination functions for octagon-shaped polygon geometries
A and B. The shaded region shows the result of each specific function.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS320

8997ch09.qxd 9/28/07 10:06 AM Page 320

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The values returned by each function described in Figure 9-4 are as follows:

• A SDO_INTERSECTION B: Returns the region of A that is also shared by B.

• A SDO_UNION B: Returns the region covered by A or B.

• A SDO_DIFFERENCE B: Returns the region covered by A that is not also covered by B.

• A SDO_XOR B: Returns the region of A and B that is not shared by both. This function is equiv-
alent to (A SDO_UNION B) SDO_DIFFERENCE (A SDO_INTERSECTION B).

Each of these functions has the following signature:

SDO_<set_theory_fn>

(

Geometry_A IN SDO_GEOMETRY,

Geometry_B IN SDO_GEOMETRY,

Tolerance IN NUMBER

)

RETURNS SDO_GEOMETRY

where the following is true:

• Geometry_A and Geometry_B are SDO_GEOMETRY objects (with the same SRIDs).

• Tolerance is the tolerance value for the geometric objects.

The function returns an SDO_GEOMETRY that computes the appropriate geometry combination
function for Geometry_A with respect to Geometry_B.

■Caution In Oracle 11, the geometry combination functions operate only on two-dimensional geometries. You
cannot perform the union of two solids.

Now that you understand the semantics and syntax, let’s look at examples of how to use these
functions to perform proximity analysis.

SDO_INTERSECTION
In Listing 9-15, you identified all sales regions that overlapped (or touched) a specific sales region
(with id=51). Here, you can perform more rigorous analysis with each such pair of overlapping sales
regions and determine whether they are good candidates for merging.

Consider sales regions with ids 51 and 63. Listing 9-16 shows the SQL for identifying the inter-
section geometry for each pair of overlapping sales regions. The sales_intersection_zones table
stores these intersection regions. Listing 9-17 shows the ids of sales regions that overlap with sales
region 51 (the ids are the same as in Listing 9-15).

Listing 9-16. SDO_INTERSECTION of Two Geometries

SQL> CREATE TABLE sales_intersection_zones AS

SELECT sra.id id1, srb.id id2,

SDO_GEOM.SDO_INTERSECTION(a.geom, b.geom, 0.5) intsxn_geom

FROM sales_regions srb, sales_regions sra

WHERE sra.id<> srb.id

AND SDO_RELATE(sra.geom, srb.geom, 'mask=anyinteract')='TRUE' ;

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 321

8997ch09.qxd 9/28/07 10:06 AM Page 321

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 9-17. Sales Regions Intersecting the Sales Region with id=51

SQL> SELECT id2 FROM sales_intersection_zones WHERE id1=51;

ID2

43

50

54

63

66

69

72

75

76

9 rows selected.

You can use the intersection geometry (the intsxn_geom column) stored in the sales_intersection_
zones table for subsequent analysis on sales regions. Listing 9-18 shows how to use this geometry to
identify customers in the intersection area of two specific sales regions with ids 51 and 43. The
result of this SQL indicates that there are only two customers common to both sales regions.

Listing 9-18. Identifying Customers in sales_ intersection_zones

SQL> SELECT count(*)

FROM sales_intersection_zones siz, customers ct

WHERE siz.id1=51 AND siz.id2=43

AND SDO_RELATE(ct.location, siz.intsxn_geom, 'mask=anyinteract')='TRUE';

COUNT(*)

2

You can perform the preceding intersection analysis without materializing the intersection
regions in a separate table. Listing 9-19 shows the corresponding SQL to identify customers in the
intersection of sales regions 51 and 43. Note that the result is the same as that of Listing 9-18.

Listing 9-19. Identifying Customers in the Intersection of Sales Regions 51 and 43

SQL> SELECT COUNT(*)

FROM customers ct

WHERE SDO_RELATE

(

ct.location,

(

SELECT SDO_GEOM.SDO_INTERSECTION(sra.geom, srb.geom, 0.5)

FROM sales_regions sra, sales_regions srb

WHERE sra.id = 51 and srb.id = 43

),

'mask=anyinteract'

)='TRUE';

COUNT(*)

2

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS322

8997ch09.qxd 9/28/07 10:06 AM Page 322

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_UNION
You can use the SDO_UNION function to compute the geometry covered by two sales regions. You can
then use the resulting union geometry to identify the total number of customers. Listing 9-20 shows
the SQL for sales regions 43 and 51.

Listing 9-20. SDO_UNION of Two Geometries

SQL> SELECT count(*)

FROM

(

SELECT SDO_GEOM.SDO_UNION (sra.geom, srb.geom, 0.5) geom

FROM sales_regions srb, sales_regions sra

WHERE sra.id=51 and srb.id=43

) srb, customers sra

WHERE SDO_RELATE(sra.location, srb.geom, 'mask=anyinteract')='TRUE';

COUNT(*)

124

1 row selected.

The number of customers returned is 124. Compare this with the two customers returned in
Listing 9-19 using the intersection region. This means there are 122 customers who are not com-
mon to both sales regions. Since less than 2 percent of the customers are common to both sales
regions, you may decide not to combine the two sales regions with ids 51 and 43.

What if you want to know the coverage of all your businesses in the Washington, D.C., area?
This will involve not just two sales region geometries, but all geometries in the sales_regions table.
You can repeatedly perform the union in an iterative fashion, as the PL/SQL procedure in Listing 9-21
demonstrates.

Listing 9-21. Coverage of the Sales Regions: Performing a Union of All the Sales Regions

CREATE TABLE sales_region_coverage (coverage SDO_GEOMETRY);

DECLARE

coverage SDO_GEOMETRY := NULL;

BEGIN

FOR g IN (SELECT geom FROM sales_regions) LOOP

coverage := SDO_GEOM.SDO_UNION(coverage, g.geom, 0.5);

END LOOP;

INSERT INTO sales_region_coverage values (coverage);

COMMIT;

END;

/

Note that the procedure in Listing 9-21 computes the coverage by performing a union of all the
sales regions and inserts the coverage geometry into the sales_region_coverage table. It assumes
the table exists and contains only one column of type SDO_GEOMETRY. Later in the chapter, you will
look at alternate methods using spatial aggregate functions to perform the same task.

SDO_DIFFERENCE
The SDO_DIFFERENCE function subtracts the second geometry from the first geometry. In effect, it
returns the region that is exclusive to the first geometry. Note that this is meaningful only in the fol-
lowing situations:

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 323

8997ch09.qxd 9/28/07 10:06 AM Page 323

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Both the first and second geometries have area (in other words, polygons or multipolygons,
and so on).

• The second geometry is a polygon or a line and the first geometry is a line.

• The first geometry is a point.

If the preceding conditions are not met, the SDO_DIFFERENCE operation returns the first geometry
as the result.

Using the SDO_DIFFERENCE function, you can compare the sales regions with the competitor
regions, as shown in Listing 9-22. For instance, you want to target customers exclusively served by
a specific competitor (with id=2). First, you identify all sales regions that intersect this competitor
region using a simple SDO_RELATE query (left as an exercise to the reader). Only one sales region
(id=6) intersects competitor region 2. To find customers exclusive to competitor region 2, you first
compute the difference of the competitor region with respect to sales region 6. The resulting region
is exclusive to competitor region 2.

Listing 9-22. SDO_DIFFERENCE of Competitor Region 2 with Sales Region 6

SQL> CREATE TABLE exclusive_region_for_comp_2 AS

SELECT SDO_GEOM.SDO_DIFFERENCE(b.geom, a.geom, 0.5) geom

FROM sales_regions sr, competitors_sales_regions csr

WHERE csr.id=2 and sr.id=6 ;

Once you construct the region that is exclusive to competitor region 2, you can identify cus-
tomers in this exclusive zone, as shown in Listing 9-23. You probably can target such customers with
special promotions to wean them from the specific competitor (id=2).

Listing 9-23. Identifying Customers in an Exclusive Zone of a Competitor

SQL> SELECT ct.id, ct.name

FROM exclusive_region_for_comp_2 excl, customers ct

WHERE SDO_RELATE(ct.location, excl.geom, 'mask=anyinteract')='TRUE'

ORDER BY ct.id;

ID NAME

------ -----------------------------------

51 STUDENT LOAN MARKETING

487 GETTY

795 FOUR SEASONS HOTEL WASHINGTON DC

796 HOTEL MONTICELLO-GEORGETOWN

798 GEORGETOWN SUITES

821 LATHAM HOTEL

1022 C AND O CANAL BOAT TRIPS

1161 GEORGETOWN SUITES HARBOR BLDG

1370 BIOGRAPH THEATRE

1377 FOUNDRY

1558 US OFFICE PRODUCTS

2067 WASHINGTON INTERNATIONAL SCHOOL

6685 SONESTA INTERNATIONAL HOTELS

6953 FOUNDRY MALL

6956 WASHINGTON HARBOUR

6957 WASHINGTON HARBOUR

7163 GEORGETOWN VISITOR CENTER

7164 GEORGETOWN VISITOR CENTER

7176 CHESAPEAKE & OHIO CANAL

7601 MASONIC LODGE

20 rows selected.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS324

8997ch09.qxd 9/28/07 10:06 AM Page 324

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that you can combine Listings 9-22 and 9-23 into a single SQL statement as shown in
Listing 9-24. You obtain the same 20 customers as in Listing 9-23.

Listing 9-24. Combining Listings 9-22 and 9-23

SQL> SELECT ct.id, ct.name

FROM sales_regions sr, competitors_sales_regions csr, customers ct

WHERE csr.id=2 AND sr.id=6

AND SDO_RELATE

(

ct.location,

SDO_GEOM.SDO_DIFFERENCE(csr.geom, sr.geom, 0.5),

'mask=anyinteract'

)='TRUE'

ORDER BY ct.id;

ID NAME

------ -----------------------------------

51 STUDENT LOAN MARKETING

487 GETTY

795 FOUR SEASONS HOTEL WASHINGTON DC

796 HOTEL MONTICELLO-GEORGETOWN

798 GEORGETOWN SUITES

821 LATHAM HOTEL

1022 C AND O CANAL BOAT TRIPS

1161 GEORGETOWN SUITES HARBOR BLDG

1370 BIOGRAPH THEATRE

1377 FOUNDRY

1558 US OFFICE PRODUCTS

2067 WASHINGTON INTERNATIONAL SCHOOL

6685 SONESTA INTERNATIONAL HOTELS

6953 FOUNDRY MALL

6956 WASHINGTON HARBOUR

6957 WASHINGTON HARBOUR

7163 GEORGETOWN VISITOR CENTER

7164 GEORGETOWN VISITOR CENTER

7176 CHESAPEAKE & OHIO CANAL

7601 MASONIC LODGE

20 rows selected.

SDO_XOR
You can rewrite this function as the SDO_DIFFERENCE of the SDO_UNION and the SDO_INTERSECTION of
the two geometries. You can use this function as an alternate mechanism to identify whether two
overlapping sales regions need to be merged. For instance, if sales regions 1 and 2 overlap, you can
compare the number of customers in the SDO_XOR of these regions to those in the SDO_UNION of these
regions. If the number in the SDO_XOR is close to that in the SDO_UNION, then these two sales regions,
although overlapping, have few common customers. This is the case in Listing 9-25. The result of
122 customers is close to that from the SDO_UNION (as in Listing 9-20). As a result, these sales regions
don’t need to be merged.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 325

8997ch09.qxd 9/28/07 10:06 AM Page 325

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 9-25. SDO_XOR of Sales Regions 43 and 51 to Identify Customers Who Are Not Shared
Between Them

SQL> SELECT count(*)

FROM

(

SELECT SDO_GEOM.SDO_XOR (a.geom, b.geom, 0.5) geom

FROM sales_regions srb, sales_regions sra

WHERE sra.id=51 and srb.id=43

) srb, customers sra

WHERE SDO_RELATE(sra.location, srb.geom, 'mask=anyinteract')='TRUE';

COUNT(*)

122

1 row selected.

Geometric Analysis Functions
In the previous section, we examined how to construct geometries that represent the intersection,
union, or difference of a pair of geometries. In the following sections, we describe how to perform
further analysis on individual geometries. These individual geometries can be columns of existing
tables, or they can be the result of other operations such as unions and intersections. For instance,
you can compute the area of the intersection region for each pair of overlapping sales regions. Next, you
can identify the pair (of sales regions) that has the maximum area for the overlap. The pair can then
be marked as a potential candidate for merging associated business units.

Area, Length, and Volume Functions
We will start with functions for calculating the area, length, or volume of an input SDO_GEOMETRY
object. You can use these functions on a two-dimensional geometry or a three-dimensional geome-
try. These functions have the following generic syntax in PL/SQL. For three-dimensional geometries,
you can also use the equivalent area, length, and volume methods defined in the J3D_Geometry class.

Function_name

(

Geometry IN SDO_GEOMETRY,

tolerance IN NUMBER

[, units_params IN VARCHAR2]

)

RETURN NUMBER

where the following is true:

• Geometry specifies the geometry object to be analyzed.

• tolerance specifies the tolerance to be used in this analysis.

• units_params is an optional third argument that specifies the units in which the area/length
is to be returned. This argument is of the form 'unit=<value_string>'. You can obtain possi-
ble values for the units by consulting the MDSYS.SDO_DIST_UNITS table for length functions
and the MDSYS.SDO_AREA_UNITS table for area functions. There is no such table defined for
volume functions (in other words, no unit conversion is performed).

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS326

8997ch09.qxd 9/28/07 10:06 AM Page 326

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Note Only the PL/SQL functions support the conversion between different units or different coordinate systems,
whereas the Java methods do not.

Accuracy of Area and Length Computations for Geodetic Data
The area and length functions take the curvature of the earth into account during calculations. For
a geodetic geometry, the accuracy of the area function varies based on geometry size and how much
it varies in latitude:

• For small geometries such as New Hampshire, the area function is accurate to within 0.0001
percent.

• For larger geometries of the size of India, the accuracy is within 0.001 percent.

• For much larger geometries, the accuracy is within 0.1 percent.

The length function, on the other hand, is accurate to within 0.00000001 percent. This also
holds true for distance calculations between point geometries using the SDO_DISTANCE function.

Next, let’s look at examples of the area and length functions.

SDO_AREA
This function computes the area of an SDO_GEOMETRY object. For instance, if a rectangle object has
a length of 10 units and a width of 20 units, the area would be 10 * 20 = 200 square units. Likewise,
for arbitrary geometric objects, this function returns the area covered by them.

Listing 9-26 shows how to compute the area of the intersection of sales region 51 with sales
region 43 in the sales_regions table (this could be used in addition to the analysis in Listing 9-18 to
determine whether to merge these sales regions). Note that the unit is specified as 'sq_yard' to
indicate square yards.

Listing 9-26. Area of the Intersection Region of Sales Region 43 and Sales Region 51

SQL> SELECT SDO_GEOM.SDO_AREA

(SDO_GEOM.SDO_INTERSECTION(sra.geom, srb.geom, 0.5), 0.5, ' unit=sq_yard ') area

FROM sales_regions srb, sales_regions sra

WHERE sra.id=51 and srb.id=43;

AREA

26243.3702

The area function makes sense only for a polygon, surface, or solid (or collection) geometry. For
a point or a line string, the area will always be 0. For solids, you can use the area function to calculate
the surface area of the solid. For ease of illustration, we’ll insert a new building with dimensions 200 feet
by 200 feet by 400 feet into the city_buildings table. It will be easier to understand the area, length, and
volume computations on this building. Listing 9-27 shows the insertion of this building into the
city_buildings table.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 327

8997ch09.qxd 9/28/07 10:06 AM Page 327

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 9-27. Inserting a New Building of Dimensions 200 Feet by 200 Feet by 400 Feet into city_buildings

SQL> insert into city_buildings (id, geom) values (1, -- ID of the building

sdo_geometry(3008, 7407, null,

sdo_elem_info_array(1,1007,3), -- 3 represents a Solid Box representation

-- using just the corner points

sdo_ordinate_array(

27731202, 42239124, 0, -- Min values for x, y, z

27731402, 42239324, 400 -- Max values for x, y, z

)

)

);

commit;

Listing 9-28 illustrates the computation of surface area for building 1 of the city_buildings
table. The area function sums the area of each of the six faces of the solid.

Listing 9-28. Surface Area of Building 1 (in Default Units of Square Feet)

SQL> SELECT id, SDO_GEOM.SDO_AREA(geom, 0.05) SURFACE_AREA

FROM city_buildings

WHERE id=1;

ID SURFACE_AREA

------------- -------------

1 400000

For computing the area of a three-dimensional object in Java, you can utilize the area method
in the J3D_GEOMETRY class. This method takes an input tolerance value and computes the area for the
reference geometry. (Note the absence of a units parameter: the Java interfaces do not support con-
versions between different units.) Listing 9-29 shows equivalent Java code for Listing 9-28.

Listing 9-29. Surface Area of Building 1 (in Default Units of Square Feet) in Java

// Assume bldg1 is loaded into the J3D_Geometry object as described in Chapter 7.

double area = bldg1.area(tol); // tol is the tolerance value

SDO_LENGTH
This function returns the length for a line string and the perimeter for a polygon, surface, or solid.
For points, this function returns 0.

You can use this function to identify connectors between multiple interstates. Usually, these
connectors are short in length, on the order of 1 or 2 miles. Opening a new store close to these con-
nectors is ideal, because the location would be close to multiple main interstates. Listing 9-30
shows the interstates (connectors) that are not more than 1 mile in length. These interstates usually
connect multiple major interstates and are ideal sites for new businesses.

Listing 9-30. Identifying Interstates Shorter Than 1 Mile

SQL> SELECT interstate

FROM us_interstates

WHERE SDO_GEOM.SDO_LENGTH(geom, 0.5, 'unit=mile') < 1;

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS328

8997ch09.qxd 9/28/07 10:06 AM Page 328

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

INTERSTATE

I10/I45

I40/I65

I30/I35E

I564

I71/I670

I55B

I90/I87

I94S

I94/I35E

I94/I35W

I670/315

I96S

12 rows selected.

For three-dimensional surfaces and solids, you can use the sdo_length function to determine the
total length of the connecting edges that make up the geometry. Such analysis may be useful in identi-
fying the amount of trim material needed for the building. Since there are some edges that may be
shared, the function takes an additional numeric parameter, called count_shared_edges (with possible
values 1 or 2), to denote whether the shared edges are counted once (if the parameter value is 1) or as
many times as they occur (if parameter value is 2). Listing 9-31 and Listing 9-32 determine the length
of the edges in building 1 for both values of count_shared_edges. Recall from Chapter 5 that every edge
in a valid solid has to be traversed twice. So, the length with a value of 2 for count_shared_edges will be
roughly double that of the length with a value of 2 for count_shared_edges, as verified by Listings 9-31
and 9-32.

Listing 9-31. Length of the Building 1 (in Units of Feet) with count_shared_edges Set to 1

SQL> SELECT SDO_GEOM.SDO_LENGTH(

geom, -- input geometry

0.05, -- tolerance value

'UNIT=FOOT', -- units parameter

1 -- count_shared_edges only once

) LENGTH

FROM city_buildings

WHERE id=1;

LENGTH

3200.0064000126

Listing 9-32. Length of the Building 1 (in Units of Feet) with count_shared_edges Set to 2

SQL> SELECT SDO_GEOM.SDO_LENGTH(

geom, -- input geometry

0.05, -- tolerance value

'UNIT=FOOT', -- units parameter

2 -- count_shared_edges only once

) LENGTH

FROM city_buildings

WHERE id=1;

LENGTH

6400.0128000252

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 329

8997ch09.qxd 9/28/07 10:06 AM Page 329

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

For computing the length of a three-dimensional object in Java, you can utilize the length
method in the J3D_GEOMETRY class. This method takes the count_shared_edges parameter as the first
argument and a tolerance value as the second argument and computes the length for the reference
geometry. (Note the absence of a units parameter: the Java interfaces do not support conversions
between different units.) Listing 9-33 shows equivalent Java code for Listing 9-31.

Listing 9-33. Length of Building 1 (in Default Units of Feet) in Java

// Assume bldg1 is loaded into the J3D_Geometry object as described in Chapter 7.

int count_shared_edges = 1; // count shared edges only once

double area = bldg1.length(count_shared_edges, tol); // tol is the tolerance value

SDO_VOLUME
This function takes a geometry and a tolerance value and returns the volume if the input geometry
is a three-dimensional solid or a multisolid geometry. For all other types of geometries, this func-
tion returns 0. Listing 9-34 computes the volume (in default units of cubic feet) for building 1 in the
city_buildings table. As mentioned earlier, this building has dimensions of 200 feet by 200 feet by
400 feet, and hence the volume is 200 * 200 * 400 =16000000 cubic feet.

Listing 9-34. Volume of Building 1 (in Default Units of Cubic Feet)

SQL> set numwidth 15

SQL> SELECT SDO_GEOM.SDO_VOLUME(

GEOM, -- INPUT GEOMETRY

0.05 -- TOLERANCE VALUE

) VOLUME

FROM city_buildings

WHERE id=1;

VOLUME

16000000

For computing the volume of a three-dimensional object in Java, you can utilize the volume
method in the J3D_GEOMETRY class. This method takes the tolerance value as a parameter and com-
putes the volume for the reference geometry. (Note the absence of a units parameter: the Java
interfaces do not support conversions between different units.) Listing 9-35 shows equivalent Java
code for Listing 9-34.

Listing 9-35. Volume of Building 1 (in Default Units of Cubic Feet) in Java

// Assume bldg1 is loaded into the J3D_Geometry object as described in Chapter 7.

double vol = bldg1.volume(tol); // tol is the tolerance value

MBR Functions
If you want to show geometry on a map, you usually need to specify the extent—that is, the lower
bound and upper bound in each dimension. You can use the minimum bounding rectangle (MBR)
for this purpose. This rectangle is usually specified by the lower-left (all the minimum values) and
upper-right (all the maximum values) corner vertices. Figure 9-5 shows an example of the MBR for
different geometries.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS330

8997ch09.qxd 9/28/07 10:06 AM Page 330

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 9-5. SDO_MBR for different geometries. The stars mark the lower-left and upper-right corners
of the MBRs.

Note that the MBR of a geometry will usually cover more area than the original geometry. For
a point geometry, the MBR is also a point (in other words, a degenerate MBR where the lower-left
and upper-right corners are the same).

Spatial provides several functions to compute the MBR and associated components.

SDO_MBR
The SDO_MBR function takes an SDO_GEOMETRY as an argument and computes the MBR for the geome-
try. It returns an SDO_GEOMETRY object.

• If the input is a point, then the SDO_MBR function returns the point geometry.

• If input is a line string parallel to the x- or y-axis, then the function returns a linear geometry.

• Otherwise, the function returns the MBR of the input geometry as an SDO_GEOMETRY object.

Listing 9-36 shows how to get the extent or the MBR for a specific sales region in the sales_regions
table.

Listing 9-36. Computing the MBR of a Geometry

SQL> SELECT SDO_GEOM.SDO_MBR(sr.geom) mbr FROM sales_regions sr

WHERE sr.id=1;

MBR(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

SDO_GEOMETRY(2003, 8307, NULL, SDO_ELEM_INFO_ARRAY(1, 1003, 3),

SDO_ORDINATE_ARR

AY(-77.049535, 38.8970816, -77.040259, 38.90433))

1 row selected.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 331

8997ch09.qxd 9/28/07 10:06 AM Page 331

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

For an input three-dimensional object, the SDO_MBR function returns the extent, in other words,
the minimum and maximum values in all three dimensions as a three-dimensional geometry.3

Listing 9-37 shows an example for building 1 of the city_buildings table. You can utilize this func-
tion in setting the window extent in three-dimensional visualization client tools such as Google
Earth or LandXplorer.

Listing 9-37. Computing the Extent of a Three-Dimensional Object

SQL> SELECT SDO_GEOM.SDO_MBR(geom) extent

FROM city_buildings cbldg

WHERE id=1;

EXTENT(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

--

SDO_GEOMETRY(3008, 7407, NULL,

SDO_ELEM_INFO_ARRAY(1, 1007, 3),

SDO_ORDINATE_ARRAY(27731202, 42239124, 0, 27731402, 42239324, 400))

You can compute the extent in Java by using the getMBR function in the JGeometry class (the
superclass of the J3D_Geometry class). Note that this function returns a double array where the first
three numbers represent the minimum values in x,y,z and the last three numbers represent the
maximum values in x,y,z dimensions. Listing 9-38 shows equivalent Java code for Listing 9-37.

Listing 9-38. Computing the Extent of Building 1 in Java

// Assume bldg1 is loaded into the JGeometry object as described in Chapter 7.

double [] mbr = bldg1.getMBR(); // tol is the tolerance value

■Caution The functions SDO_AGGR_UNION, SDO_AGGR_CENTROID, and SDO_CONVEXHULL work only on two-
dimensional geometries.

SDO_MIN_MBR_ORDINATE and SDO_MAX_MBR_ORDINATE
Instead of getting the extent in both dimensions, sometimes you may be interested in the extent in
a specific dimension. You can obtain this using the SDO_MIN_MBR_ORDINATE and SDO_MAX_MBR_ORDINATE
functions, which return the minimum and maximum ordinates of a geometry in a specified dimen-
sion, respectively. Listing 9-39 shows how to get the extent in the first dimension.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS332

3. Note that the returned object can no longer be a rectangle (polygon) but a solid, although the R in SDO_MBR
indicates a rectangle. Oracle retained the name SDO_MBR instead of changing it to something more appropri-
ate such as SDO_EXTENT so as not to break existing two-dimensional applications.

8997ch09.qxd 9/28/07 10:06 AM Page 332

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 9-39. Obtaining the MIN_ORDINATEs and MAX_ORDINATEs in a Specific Dimension

SQL> SELECT SDO_GEOM.SDO_MIN_MBR_ORDINATE(sr.geom, 1) min_extent,

SDO_GEOM.SDO_MAX_MBR_ORDINATE(sr.geom, 1) max_extent

FROM sales_regions sr WHERE sr.id=1;

MIN_EXTENT MAX_EXTENT

---------- ----------

-77.049535 -77.040259

1 row selected.

You can use these functions on three-dimensional objects too. Listing 9-40 shows an example
for building 1 in the city_buildings table.

Listing 9-40. Obtaining MIN_ORDINATE and MAX_ORDINATE in the Third Dimension

SQL> SELECT SDO_GEOM.SDO_MIN_MBR_ORDINATE(geom, 3) min_extent,

SDO_GEOM.SDO_MAX_MBR_ORDINATE(geom, 3) max_extent

FROM city_buildings cbldg

WHERE id=1;

MIN_EXTENT MAX_EXTENT

---------- ----------

0 400

Miscellaneous Geometric Analysis Functions
In addition to the MBR functions are several other functions to perform simple geometric analyses
such as computing the centroid or computing the convex hull (in Oracle 11g Release 1, neither of
these functions is supported for three-dimensional geometries). Each of these functions has the fol-
lowing generic signature:

<Function_name>

(

Geometry IN SDO_GEOMETRY,

Tolerance IN NUMBER

)

RETURNS SDO_GEOMETRY

where the first argument is an SDO_GEOMETRY object and the second specifies the tolerance for the
geometry.

Let’s look at each of these functions in turn.

SDO_CONVEXHULL
The MBR is a very coarse approximation of a geometric object. A finer approximation is the convex
hull of that object. A geometric set is convex if for every pair of points in the set, the line joining
those two points is contained completely within the geometry. The convex hull of a geometry is the
smallest convex set that contains all of that geometry. Thus, a convex hull of a polygon simplifies by
eliminating the concave vertices (where the boundary bends inward) in its boundary. Figure 9-6
shows the convex hull for different types of geometries.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 333

8997ch09.qxd 9/28/07 10:06 AM Page 333

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 9-6. Example of SDO_CONVEXHULL for different geometry objects

The SDO_CONVEXHULL function computes the convex hull of an SDO_GEOMETRY. Listing 9-41 illus-
trates this for the state of New Hampshire. Note that the geometry for the state of New Hampshire
has 709 vertices. In contrast, the convex hull shown in Listing 9-41 reduces it to 30 (in other words,
a total of 60 numbers in the SDO_ORDINATE_ARRAY attribute of the resulting SDO_GEOMETRY). In this
case, the convex hull simplifies the geometry without compromising too much on its shape. It can
be used as a finer approximation of the geometry than the MBR in applications involving computa-
tional geometry algorithms.

Listing 9-41. Computing the Convex Hull for the State of New Hampshire

SQL> SELECT SDO_GEOM.SDO_CONVEXHULL(st.geom, 0.5) cvxhl

FROM us_states st

WHERE st.state_abrv='NH';

CVXHL(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

SDO_GEOMETRY

(

2003, 8307, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 1), -- A Polygon

SDO_ORDINATE_ARRAY -- Vertices of polygon

(

-71.294701, 42.6968992, -71.182304, 42.7374992, -70.817787, 42.8719901,

-70.712257, 43.042324, -70.703026, 43.057457, -70.7052, 43.0709,

-71.084816, 45.3052478, -71.285332, 45.3018647, -71.301582, 45.2965197,

-71.443062, 45.2383418, -72.068199, 44.273666, -72.379906, 43.5740009,

-72.394676, 43.5273279, -72.396866, 43.5190849, -72.553307, 42.8848878,

-72.556679, 42.8668668, -72.557594, 42.8524128, -72.542564, 42.8075558,

-72.516022, 42.7652279, -72.458984, 42.7267719, -72.412491, 42.7253529,

-72.326614, 42.722729, -72.283455, 42.721462, -71.98188, 42.7132071,

-71.773003, 42.7079012, -71.652107, 42.7051012, -71.630905, 42.7046012,

-71.458282, 42.7004362, -71.369682, 42.6982082, -71.294701, 42.6968992

)

)

1 row selected.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS334

8997ch09.qxd 9/28/07 10:06 AM Page 334

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Caution The SDO_CONVEXHULL function is not defined—that is, it returns NULL for any geometry with less
than three noncolinear points or if all the points are collinear.

The convex hull function is traditionally used to calculate the smallest convex geometry cover-
ing a set of points or a set of polygons. However, the function in Listing 9-41 generates the hull for
a single geometry. How do you operate on sets of geometries? One option is to perform a union of
geometries as in Listing 9-21 and then compute the convex hull for the resulting union. An alterna-
tive and easier approach is to use the equivalent spatial aggregate function that operates on sets of
geometries. We discuss this aggregate function later in the chapter.

■Note In Oracle 11g, the SDO_CONVEXHULL function works only on a two-dimensional geometry.

SDO_CENTROID
Suppose you want to label each intersection region with a name on a map. Where do you put the
label? One place to put the label is at the centroid (in other words, the center of mass or gravity) for
the geometry. Mathematically speaking, the centroid of a geometric object is defined by an average
position of all points within the object. If the number of points is finite, such as a set of points, the
centroid’s x-value is the average of all the point’s x-values, and the centroid’s y-value is the average
of all the point’s y-values. For an infinite number of points (such as a curve or polygon), you use this
equivalent integral from calculus:

where g is the geometry, p is the point value, and µ is any uniform integral measure.
The SDO_CENTROID function computes the geometric centroid of an SDO_GEOMETRY object.

Figure 9-7 shows examples of centroids for different geometries. Note that the centroid is not
defined for lines in Oracle Spatial. The centroid for inverted C-shaped polygons can be outside the
polygon.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 335

8997ch09.qxd 9/28/07 10:06 AM Page 335

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 9-7. SDO_CENTROID for different geometries

The centroid of any geometry is always a point. This centroid may or may not lie on the geome-
try itself. The inverted C-shaped polygon in Figure 9-7 is one such example. The SDO_CENTROID
function also returns NULL for linear geometries.

Listing 9-42 shows how to compute the centroid for the state of New Hampshire using the
SDO_CENTROID function. You can use the location of the centroid to place a label for the state while
displaying it on a map.

Listing 9-42. Computing the Centroid for the State of New Hampshire

SQL> SELECT SDO_GEOM.SDO_CENTROID(st.geom, 0.5) ctrd

FROM us_states st WHERE st.state_abrv='NH';

CTRD(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

SDO_GEOMETRY

(2001, 8307, SDO_POINT_TYPE(-71.580917, 43.6792049, NULL), NULL, NULL)

1 row selected.

■Note In Oracle 11g, the SDO_CENTROID function works only on two-dimensional geometries.

SDO_POINTONSURFACE
Since the centroid of a polygon may or may not lie within that polygon, it might be useful to put
a label on some other point on the surface of the geometry. This is also necessary when creating
some types of polygonal maps. You can get one such point using the SDO_POINTONSURFACE function
as shown in Listing 9-43.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS336

8997ch09.qxd 9/28/07 10:06 AM Page 336

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 9-43. Obtaining a Point on the Surface of the Geometry of the State of Massachusetts

SQL> SELECT SDO_GEOM.SDO_POINTONSURFACE(st.geom, 0.5) pt

FROM us_states st

WHERE state_abrv='MA';

PT(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-73.265411, 42.745861, NULL),

NULL, NULL)

1 row selected.

You can use this function on three-dimensional geometries too. Listing 9-44 shows an example.

Listing 9-44. Obtaining a Point on Building 1

SQL> SELECT SDO_GEOM.SDO_POINTONSURFACE(geom, 0.05) pt

FROM city_buildings cbldg

WHERE id=1;

PT(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

--

SDO_GEOMETRY(3001, 7407, SDO_POINT_TYPE(27731202, 42239124, 0), NULL, NULL)

■Caution The only assurance for the SDO_POINTONSURFACE function is that the returned point will be in the
boundary/interior of the polygon passed in. (In the current implementation, it actually returns the first point in the
SDO_ORDINATE_ARRAY of the polygon geometry.) No other assumptions can be made.

Aggregate Functions
Until now, you have seen spatial functions that operate either on a single geometric object or on
a pair of geometric objects. Next, we describe spatial aggregate functions that operate on a set of
SDO_GEOMETRY objects. Like other aggregate functions in Oracle, these spatial aggregates are speci-
fied in the SELECT list of a SQL statement.

Aggregate MBR Function
Suppose you want to find out the extent covered by a set of SDO_GEOMETRY objects. (Usually, you will
need this information to populate the USER_SDO_GEOM_METADATA view before creating an index.)
Figure 9-8 shows the aggregate MBR for a set of point geometries.

Figure 9-8. SDO_AGGR_MBR for a set of points. The stars mark the lower-left and upper-right vertices of
the computed MBR.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 337

8997ch09.qxd 9/28/07 10:06 AM Page 337

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can compute the MBR of a collection using the SDO_AGGR_MBR function. Listing 9-45 illustrates
its usage by computing the aggregate MBR for all the locations in the branches table.

Listing 9-45. Finding the Extent of a Set of Geometries Using SDO_AGGR_MBR

SQL> SELECT SDO_AGGR_MBR(location) extent FROM branches;

EXTENT(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

SDO_GEOMETRY

(

2003, 8307, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 3), -- A Rectangle-type polygon

SDO_ORDINATE_ARRAY(-122.49836, 37.7112075, -76.950947, 38.9611552)

)

Note that this returns the coordinate extent or the MBR of the set of geometries as an SDO_GEOMETRY
object. You may need to use the SDO_MIN_MBR_ORDINATE and SDO_MAX_MBR_ORDINATE functions on the
resulting MBR to appropriately set the SDO_DIM_ARRAY elements in the USER_SDO_GEOM_METADATA view.

The SDO_AGGR_MBR works even on three-dimensional geometries. Listing 9-46 shows how to
compute the extent of all the geometries in the city_buildings table.

Listing 9-46. Computing the Three-Dimensional Extent of the Buildings in the city_buildings Table

SQL> SELECT SDO_AGGR_MBR(geom) extent FROM city_buildings;

EXTENT(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO, SDO_ORDINATES)

--

SDO_GEOMETRY(3008, 7407, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 3),

SDO_ORDINATE_ARRAY(27731202, 42239124, 0, 29882178.9, 45466602.5, 900))

Other Aggregate Functions
In addition to the MBR, you may want to compute the union or the convex hull of a set of geome-
tries. You can use the SDO_AGGR_UNION or SDO_AGGR_CONVEXHULL function for this purpose. Unlike the
SDO_AGGR_MBR function, which takes an SDO_GEOMETRY as the argument, these functions take an
SDOAGGRTYPE as the argument. The SDOAGGRTYPE has the following structure:

SQL> DESCRIBE SDOAGGRTYPE;

Name Null? Type

GEOMETRY MDSYS.SDO_GEOMETRY

TOLERANCE NUMBER

■Note The functions SDO_AGGR_UNION, SDO_AGGR_CENTROID, and SDO_CONVEXHULL work only on two-dimensional
geometries.

SDO_AGGR_UNION
The aggregate function SDO_AGGR_UNION computes the union of a set of geometries. The union is
returned as an SDO_GEOMETRY object. Figure 9-9 shows the union for a set of points.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS338

8997ch09.qxd 9/28/07 10:06 AM Page 338

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 9-9. Two examples of SDO_AGGR_UNION

For a set of point geometries, the union is a geometry collection. For a set of three overlap-
ping polygon geometries, the union is a single polygon. Note that the interior edges vanish on
the union polygon shown at the right of Figure 9-9.

You can create a union of all the locations in the branches table to identify the coverage of
stores, as shown in Listing 9-47. This creates a collection of all 77 point locations for the branches.

Listing 9-47. Finding the Coverage of Branch Locations Using SDO_AGGR_UNION

SQL>SELECT SDO_AGGR_UNION(SDOAGGRTYPE(location, 0.5)) coverage

FROM branches;

COVERAGE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

SDO_GEOMETRY

(

2005, 8307, NULL,

SDO_ELEM_INFO_ARRAY(1, 1, 77), -- collection of 77 points

SDO_ORDINATE_ARRAY

(

-122.41915, 37.7751038, -122.39489, 37.793174, -122.39686, 37.793595,

-77.02601, 38.8945028, -77.033619, 38.8991971, -122.40839, 37.788633,

-122.49045, 37.7339297, -122.43403, 37.7511713, -122.40361, 37.7839342,

-122.40007, 37.7998365, -122.40415, 37.7702542, -122.4025, 37.791987,

-122.46898, 37.7380652, -122.40473, 37.730593, -122.4076, 37.7845683,

-122.39796, 37.7438371, -122.40876, 37.7991795, -122.43855, 37.7440736,

-122.47552, 37.726909, -122.42232, 37.7906913, -122.4308, 37.7974994,

-122.47685, 37.7429851, -122.40781, 37.794415, -122.40864, 37.788168,

-122.4359, 37.7238284, -122.4886, 37.75362, -122.40145, 37.7881653,

-122.40255, 37.792281, -122.44138, 37.7160032, -122.42035, 37.744667,

-122.41864, 37.753694, -122.40391, 37.7112075, -122.4787, 37.763452,

-122.46635, 37.7640397, -122.40599, 37.7933898, -122.4783, 37.7803596,

-122.44957, 37.7821163, -122.43418,37.7907946, -122.43879, 37.7738425,

-122.41713, 37.7392079, -122.46537, 37.7828694, -122.4395, 37.800408,

-122.43495, 37.7607737, -122.45275, 37.78649, -122.41914, 37.7751346,

-122.39652, 37.7782523, -122.40047, 37.7958989, -122.49836, 37.7756795,

-122.40905, 37.7527288, -122.39119, 37.7330824, -77.032016, 38.8993045,

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 339

8997ch09.qxd 9/28/07 10:06 AM Page 339

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

-77.033679, 38.8987586, -76.950947, 38.8925976, -77.006755, 38.93653,

-77.042079, 38.9026399, -77.037653, 38.9295113, -76.989522, 38.8655141,

-76.993059, 38.9001983, -77.033158, 38.9035919, -77.023716, 38.9331479,

-77.062822, 38.9431214, -77.09677, 38.9442554, -77.083759, 38.9570281,

-77.009721, 38.9611552, -76.995893, 38.90018, -77.001773, 38.8215786,

-77.017477, 38.8765101, -77.003477, 38.887564, -77.02956, 38.8982647,

-77.039476, 38.9012157, -77.046673, 38.9037307, -77.06342, 38.9075175,

-77.044112, 38.9092715, -77.043592, 38.9214703, -77.051909, 38.9242888,

-77.057711, 38.9344998, -77.044897, 38.9007058

)

)

Note that the union returns a geometry collection where each element is a point in the input
set. This is because the individual points do not intersect. Let’s look at another example where there
is a union of two overlapping polygons, sales regions 51 and 43, and a third disjoint, region 2. This
will return a collection of two polygon elements: one element after merging overlapping regions 1
and 7 and another element for disjoint region 2. This is illustrated in Listing 9-48. Compare this with
Listing 9-20, where you could perform only a union of two regions (1 and 7) at a time using the
SDO_UNION function.

Listing 9-48. Union of Three Sales Regions (ids 43, 51, and 2)

SQL> SELECT SDO_AGGR_UNION(SDOAGGRTYPE(geom, 0.5)) union_geom

FROM sales_regions

WHERE id=51 or id=43 or id=2 ;

UNION_GEOM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES

--

SDO_GEOMETRY

(

2007, 8307, NULL, -- Collection Geometry

SDO_ELEM_INFO_ARRAY(1, 1003, 1, 35, 1003, 1), -- Two polygonal rings

SDO_ORDINATE_ARRAY -- Vertices of the polygons

(

-77.061998, 38.9358866, -77.062351, 38.9344997, -77.061997,

38.9331128, -77.060992, 38.9319371, -77.059486, 38.9311515, -77.057711,

38.9308756,-77.055935, 38.9311515, -77.05443, 38.9319371, -77.053424,

38.9331128, -77.05307, 38.9344997, -77.053423, 38.9358866, -77.054429,

38.9370624, -77.055935, 38.9378481, -77.057711, 38.938124, -77.059486,

38.9378481, -77.060992, 38.9370624, -77.061998, 38.9358866, -122.41056,

37.7933897, -122.41021, 37.7920025, -122.40922,37.7908265, -122.40774,

37.7900408, -122.40599, 37.7897649, -122.40541, 37.7898563, -122.40567,

37.7895524, -122.40602, 37.7881652, -122.40567, 37.7867781, -122.40468,

37.7856021, -122.4032, 37.7848164, -122.40145, 37.7845404, -122.3997,

37.7848164, -122.39822, 37.7856021, -122.39723, 37.7867781, -122.39688,

37.7881652, -122.39723, 37.7895524, -122.39822, 37.7907285, -122.3997,

37.7915143, -122.40145, 37.7917902, -122.40203, 37.7916988, -122.40177,

37.7920025, -122.40142, 37.7933897, -122.40177, 37.7947769, -122.40276,

37.7959529, -122.40424, 37.7967387, -122.40599, 37.7970147, -122.40774,

37.7967387, -122.40922, 37.7959529, -122.41021, 37.7947769, -122.41056,

37.7933897

)

)

1 row selected.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS340

8997ch09.qxd 9/28/07 10:06 AM Page 340

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Likewise, you can compute the coverage (in other words, the union of all the sales_regions) as
in Listing 9-49. Note that this will be the equivalent of the coverage obtained in Listing 9-21. Unlike
Listing 9-21, the following usage is much simplified without the need for PL/SQL code. Listing 9-49
illustrates the power of spatial aggregate functions.

Listing 9-49. Union of All Sales Regions to Obtain Business Coverage

SQL> SELECT SDO_AGGR_UNION(SDOAGGRTYPE(geom, 0.5)) coverage

FROM sales_regions;

-- output too big to be shown: result geometry more than 100 vertices

SDO_AGGR_CONVEXHULL
The resulting unions in Listings 9-48 and 9-49 are complex geometries with some concave vertices.
As an alternative, you can compute the SDO_AGGR_CONVEXHULL to compute the convex hull from the
set of sales_regions. Figure 9-10 shows the aggregate convex hull for the point set in Figure 9-8.
Listing 9-50 shows the code for computing the coverage of sales regions using the SDO_AGGR_CONVEXHULL
function.

Figure 9-10. SDO_AGGR_CONVEXHULL for a set of points

Listing 9-50. Finding the Coverage of sales_regions Using SDO_AGGR_CONVEXHULL

SQL> SELECT SDO_AGGR_CONVEXHULL(SDOAGGRTYPE(geom, 0.5)) coverage

FROM sales_regions;

COVERAGE(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

SDO_GEOMETRY

(

2003, 8307, NULL, -- Polygon type geometry

SDO_ELEM_INFO_ARRAY(1, 1003, 1),

SDO_ORDINATE_ARRAY -- Vertices of the polygon

(

-122.48595, 37.6881575, -76.865425, 38.7930326, -76.86362, 38.7927488,

-76.861815, 38.7930202, -76.860283, 38.7938054, -76.85926, 38.7949851,

-76.80744, 38.8662751, -76.807079, 38.8676696, -76.807438, 38.8690665,

-76.808461, 38.8702533, -76.868265, 38.9394471, -76.869798, 38.9402428,

-122.55129, 37.7783805, -122.62661, 37.7497019, -122.62812, 37.7489059,

-122.62913, 37.7477192, -122.62948, 37.7463226, -122.62912, 37.7449286,

-122.62811, 37.7437496, -122.62661, 37.742965, -122.51969, 37.6946774,

-122.48949, 37.6881485, -122.48772, 37.687876, -122.48595, 37.6881575

)

)

1 row selected.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 341

8997ch09.qxd 9/28/07 10:06 AM Page 341

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that as opposed to the union geometry in Listing 9-49 (or the union of the branches in
9-42), the aggregate convex hull computed has fewer vertices. This might result in significantly faster
computation if the convex hull approximation of the coverage is used (instead of the actual union)
in further proximity analyses.

■Caution SDO_AGGR_CONVEXHULL returns NULL if all the vertices of all the input geometries are collinear or if
there is only one vertex (one point).

SDO_AGGR_CENTROID
Assume you have identified that a group of customers in the customers table is too far from existing
branch locations. You may want to start a new store to cater to this group of customers. What might
be the best location for this new store? The centroid of the group is a reasonable choice. The centroid
of the customer locations minimizes the average distance from the customers to the new store loca-
tion. Figure 9-11 illustrates the centroid for a set of points.

Figure 9-11. SDO_AGGR_CENTROID for a set of points

The SDO_AGGR_CENTROID function allows you to compute this centroid for an arbitrary group of
customers as shown in Listing 9-51.

Listing 9-51. Finding the Centroid of Customer Locations Using SDO_AGGR_CENTROID

SQL> SELECT SDO_AGGR_CENTROID(SDOAGGRTYPE(location, 0.5)) ctrd

FROM customers;

WHERE id>100;

CTRD(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

SDO_GEOMETRY

(2001, 8307, SDO_POINT_TYPE(-103.19018, 38.0963807, NULL), NULL, NULL)

As shown in Listing 9-51, you can have any arbitrary spatial or attribute filtering in the WHERE
clause of the SQL statement. The aggregate function, CENTROID in this case, operates only on the
subset of the geometries that satisfy the WHERE clause as collected by the GROUP BY clause, if any.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS342

8997ch09.qxd 9/28/07 10:06 AM Page 342

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Summary
In this chapter, we described how to perform proximity analysis using spatial functions to solve real
application problems. We described functions to perform relationship analysis, unions, intersections,
and other geometry combination functions on pairs of geometric objects. We covered how to create
buffers around geometric objects and use them in relationship analysis with other geometries. We
also examined how to identify the extents, centroids, and convex hulls of individual geometric
objects or groups of geometric objects.

Together, these functions aid in the analysis of business demographics, such as number of
customers in appropriate buffers and intersecting regions. Such analysis is vital to making strategic
decisions, such as starting new businesses at appropriate locations, merging existing businesses, or
targeting specific customers with additional promotions.

CHAPTER 9 ■ GEOMETRY PROCESSING FUNCTIONS 343

8997ch09.qxd 9/28/07 10:06 AM Page 343

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997ch09.qxd 9/28/07 10:06 AM Page 344

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Network Modeling

In the previous chapters, we described geographical objects as points, lines, and polygons. In
Chapters 8 and 9, you saw how to search geographical objects based on the way they are positioned
with respect to other objects. In particular, you learned how to find objects that are within some dis-
tance from another object (with the SDO_WITHIN_DISTANCE operator) or simply to find the object nearest
to another one (with the SDO_NN operator).

Those operations are useful, no doubt. However, they find and select objects based solely on
the shortest absolute distance (“as the crow flies”) between them. This may be very different from
the actual distance you would need to travel to reach your destination. Unless you are a bird, you
are obliged by nature (if not by law!) to travel along only well-defined paths—that is, you follow
streets and roads, and you obey traffic regulations such as one-way streets and speed limits.

Consider the set of points illustrated in Figure 10-1. The point nearest to point D is point B.
However, if the points are placed on a network, as illustrated in Figure 10-2, then the point nearest
to point D is now point E.

Figure 10-1. Nearest point “as the crow flies”

Figure 10-2. Nearest point along a network
345

C H A P T E R 1 0

■ ■ ■

8997ch10.qxd 9/28/07 10:07 AM Page 345

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Things get complicated if you introduce one-way streets, as illustrated in Figure 10-3. Then the
nearest point to D is G.

Figure 10-3. Nearest point along a directed network

By representing the links between objects, you can answer the following questions:

• What is the shortest or fastest route between two cities?

• What is the closest hotel to an airport?

• How many customers live less than 30 minutes driving time from a particular store?

• How can you reroute traffic if a road is closed for repairs?

More specifically, you can now revisit the types of analyses you studied in previous chapters.
Table 10-1 shows some examples of analyses you can perform on your business data (customers,
stores, and branches) once you have positioned them on a road network.

Table 10-1. Examples of Network-Based Proximity Analyses

Type of Network Analysis Usage

Nearest neighbor Identify the branch nearest to a specific customer.

Route computation Determine the optimal route from a branch to a customer location.
Determine the optimal route for a salesperson to visit a series of
customers.

Within distance Identify customers who live within 30 minutes driving distance of
a specific branch.

These analyses are similar to those in Tables 8-1 and 9-1, except they use network distances
instead of spatial distances. In this chapter, we describe how to perform these types of network
analyses.

In this chapter, we first cover the general concepts and terminology of network modeling, and
then we describe how they are used in the Oracle Network Data Model. We also explain the data
structures. Next, we describe how to define and load networks in the Oracle database. We then show
how to use the Java API to perform network analyses and apply all the concepts we describe to your
business data.

CHAPTER 10 ■ NETWORK MODELING346

8997ch10.qxd 9/28/07 10:07 AM Page 346

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

General Network Modeling Concepts
We all have an intuitive understanding of what constitutes a network. Nevertheless, we think it is
useful to start with some generic formal definitions of networking concepts, as illustrated in Figure 10-4.
The figure shows a set of city streets, with a network representation of those streets.

Figure 10-4. Network concepts: nodes and link

A network is a type of mathematical graph that captures relationships between objects using
connectivity. A network consists of nodes and links.

A node represents an object of interest on the network. For a road network, nodes are the inter-
sections, as illustrated in Figure 10-4.

A link represents a relationship between two nodes. Each link connects two and only two nodes.
Multiple links can leave from and meet at the same node. Two nodes can be connected by multiple
links. Links can be directed or undirected. An undirected link can be traversed in either direction,
whereas a directed link allows traffic in only one direction. Nodes define the direction of a link:
a directed link is considered to “flow” from its start node to its end node. The colink of a directed link
is the link that “flows” between the same nodes, in the opposite direction.

On a road network, links represent road and street segments between intersections. A directed
link represents a one-way street. In Figure 10-4, links L1 and L2 represent one-way streets. Links L3
and L4 represent two-way streets.

Network elements (links and nodes) may have geometric information associated with them.
A logical network contains connectivity information but no geometric information. A spatial network
contains both connectivity information and geometric information.

In Oracle Spatial, in a spatial network, the nodes and links are SDO_GEOMETRY objects represent-
ing points and lines, respectively.

■Note A spatial network can also use other kinds of geometry representations. One variant lets you use linear-
referenced geometries. Another lets you use topology objects. We do not cover these possibilities in this chapter.
We cover linear referencing in Appendix B, and we discuss topology in Appendix C.

CHAPTER 10 ■ NETWORK MODELING 347

8997ch10.qxd 9/28/07 10:07 AM Page 347

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

A path represents a route through the network. It is formed by a sequence of nodes and links
between two nodes. There can be multiple paths between two nodes. A path can be simple or complex.
In a simple path, the links form an ordered list that can be traversed from the start node to the end
node, with each link visited once. A complex path represents a subnetwork between a start node
and a destination node. Figure 10-4 shows a path from node N7 to node N6, going through links L6,
L11, and L10.

Cost is a numeric attribute that can be associated with links or nodes. Costs are used for com-
puting paths between two nodes: the cost of a path is the sum of the costs of all nodes and links on
that path. The minimum cost path is the path that has the smallest total cost from a start node to an
end node—for example, the shortest distance or time. Links and nodes can have multiple costs, but
only one is used at a time.

On a road network, the cost of a link is typically the length of the street or road segment repre-
sented by that link. This is good for computing the shortest route between two places. Most road
networks also include the typical driving time along the road segment. This is used to compute the
fastest route between two places.

Reachable nodes are all nodes that can be reached from a given node. Reaching nodes are all
nodes that can reach a given node.

The spanning tree of a network is a tree (in other words, a graph with no cycles) that connects
all nodes of the network. (The directions of links are ignored in a spanning tree.) The minimum cost
spanning tree (MCST) is a tree that connects all nodes and has the minimum total cost. Spanning
trees are commonly used to find the optimal way to build transportation networks (road, rail, and
air) to connect a number of places. See Figure 10-20 later in this chapter for an example of an MCST.

Finally, network constraints are restrictions defined on network searches. On a road network,
for example, driving routes may be required to include only those roads that are accessible to trucks
or to avoid toll roads. Other constraints can be time based, such as mountain-pass closures during
the winter, ferry operation hours, or turns prohibited during peak traffic hours.

Examples of Networks
Networks are used to solve many different problems. In this book, we concentrate on networks that
represent spatial objects (roads, rivers, and so on). The following sections present a sampling of net-
work applications.

Road Networks
In a typical road network, the intersections of roads are nodes, and the road segments between two
intersections are links. The spatial representation of a road is not inherently related to the nodes
and links in the network. For example, a shape point in the spatial representation of a road (reflect-
ing a sharp turn in the road) is not a node in the network if that shape point is not associated with
an intersection, and a single spatial object may make up several links in a network (such as a straight
segment intersected by three crossing roads).

An important operation with a road network is to find the path from a start point to an end
point, minimizing either the travel time or the distance. There may be additional constraints on the
path computation, such as having the path go through a particular landmark or avoiding a particu-
lar intersection.

Train Networks
The subway network of any major city is probably best modeled as a logical network, assuming that
the precise spatial representation of the stops and tracks is unimportant. In such a network, all
stops on the system constitute the nodes of the network, and a link is the connection between two
stops if a train travels directly between these two stops. Important operations with a train network

CHAPTER 10 ■ NETWORK MODELING348

8997ch10.qxd 9/28/07 10:07 AM Page 348

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

include finding all stations that can be reached from a specified station, finding the number of stops
between two specified stations, and finding the travel time between two stations.

Utility Networks
Utility networks, such as power lines or cable networks, must often be configured to minimize cost.
An important operation with a utility network is to determine the connections among nodes by
using MCST algorithms to provide the required quality of service at the minimum cost. Another
important operation is reachability analysis so that, for example, if a station in a water network is
shut down, you know which areas will be affected and how the affected areas can be supplied with
water from other stations.

Biochemical Networks
Biochemical processes can be modeled as biochemical networks to represent reactions and regula-
tions in living organisms. For example, metabolic pathways are networks involved in enzymatic
reactions, while regulatory pathways represent protein-protein interactions. In this example, a path-
way is a network; genes, proteins, and chemical compounds are nodes; and reactions among nodes
are links. Important operations for a biochemical network include computing paths and the degrees
of nodes. Specialized tools such as Cytoscape are able to use and update networks in the Oracle data-
base using the appropriate plug-in.

Finance Networks
Many multinational companies with subsidiaries in multiple countries are linked together in a finan-
cial network, which is used to transport funds (dividends, royalties, and interests) between them.
Tax rates in the various countries and tax treaties between countries are modeled as “costs” on the
network links. Various network operations can help find the best way to transfer capital and opti-
mize tax costs.

Project Networks
Our final network example relates to project plans. A project is really a network with activities and
dependencies represented as links and nodes. Activities have costs (for example, the time to com-
plete an activity or the resources needed).

Oracle Network Data Model
The network support in Oracle Database 10g is composed of the following elements:

• A data model to store networks inside the database as a set of network tables. This is the
persistent copy of a network.

• SQL functions to define and maintain networks (the SDO_NET package).

• Network analysis functions in Java. The Java API works on a copy of the network loaded from
the database. This is the volatile copy of the network. Results of analyses (in other words,
computed network paths) and network changes can be written back to the database.

• Network analysis functions in PL/SQL (the SDO_NET_MEM package). Note, however, that this
API is really a “wrapper” over the Java API, which then executes inside the database. This
technique still uses a volatile copy of the network, which is now loaded in Java-managed
memory, inside the database.

CHAPTER 10 ■ NETWORK MODELING 349

8997ch10.qxd 9/28/07 10:07 AM Page 349

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 10-5 and Figure 10-6 illustrate the relationship between these elements. Figure 10-6
shows how the PL/SQL and Java APIs relate to each other.

Figure 10-5. Oracle Network Data Model

Figure 10-6. The PL/SQL and Java APIs

CHAPTER 10 ■ NETWORK MODELING350

8997ch10.qxd 9/28/07 10:07 AM Page 350

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Data Structures: The Network Tables
We will first explain how you define your network elements as tables. A network is defined using two
tables: a node table and a link table. You must provide those tables with the proper structure and
content to model your network.

A network can also have a path table and a path link table. These tables are optional and are
filled with the results of analyzes performed in the Java API, such as the shortest path between two
nodes. They are needed only if applications want to make analysis results available to other applica-
tions by storing them in the database.

Other optional tables are the partition tables. Those will be discussed separately in the section
that covers network partitioning.

Figure 10-7 shows the relationships between the tables that describe a network.

Figure 10-7. Main network tables

The tables can be named in any way you like, but they must follow a well-defined structure.
Or, to be more precise, they must contain a certain minimum number of columns, some with pre-
defined names.

You have a large degree of flexibility in structuring the tables—some columns can be named in
any way you like (the geometry and cost columns, in particular), and their order is unimportant. You
can also include any other columns to hold additional information. And finally, the tables could
actually be views over existing tables.

The actual naming of the tables that constitute a network and their structure is defined in a sep-
arate metadata table called USER_SDO_NETWORK_METADATA, which you update the same way as the basic
spatial metadata (USER_SDO_METADATA). In particular, this is where you specify the name of the column
in the node and link tables that defines the cost value, or the name of the geometry column. This also
allows you to define multiple networks on the same set of tables, using different cost columns—for
example, one network based on distances and another based on travel times.

There are several techniques for defining the data structures for a network. At one extreme,
a simple procedure call does everything; it creates all tables with default names and populates the
metadata. At the other extreme, you create all the tables manually (or create views on existing tables)
and fill the metadata manually. Functions are provided to verify that the data structures are valid
and coherent.

In the following sections, we present an overview of the structure of each of the network tables.
For each table, we indicate those columns that are required and those that are optional. Columns
with names in lowercase can have any name. Their actual name is defined in the metadata.

CHAPTER 10 ■ NETWORK MODELING 351

8997ch10.qxd 9/28/07 10:07 AM Page 351

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Node Table
The node table, as shown in Table 10-2, describes all nodes in the network. Each node has a unique
numeric identifier (the NODE_ID column). This is the only required column—all others are actually
optional.

Table 10-2. The Node Table

Column Data Type Meaning

NODE_IDa NUMBER Unique identification for that node in the network. This
is also the primary key of the table.

geometry_column SDO_GEOMETRY A point geometry object that contains the coordinates of
the node. This is present only for spatial networks.
Logical networks contain no geometries.

cost_column NUMBER A numeric value representing the cost for traversing that
node. There could be multiple costs associated with
a node. The actual cost column used for network
analysis is defined in the network metadata. When no
cost column is defined, then all nodes are assumed to
have a cost of 0.

HIERARCHY_LEVEL NUMBER For hierarchical networks only. This is the level of the node.

PARENT_NODE_ID NUMBER For hierarchical networks only. This is the identifier of
the parent node for this node.

ACTIVE CHAR(1) Defines whether the node is active (visible in the
network)—'Y' or 'N'. An inactive node will not be used
by the network analysis functions. When the column is
not defined, then all nodes are considered to be active.

NODE_NAME VARCHAR2(32) Name of the node. Fill this with any descriptive name
(not used by the network analysis functions).

NODE_TYPE VARCHAR2(24) Type of node. Fill this with any descriptive code or text.

a This column is required. The remaining columns in the table are optional.

Link Table
The link table, as shown in Table 10-3, describes all links in the network. Each link has a unique
numeric identifier (the LINK_ID column) and contains the identifiers of the two nodes it connects.
All other columns are optional.

Table 10-3. The Link Table

Column Data Type Meaning

LINK_IDa NUMBER Unique identification for that link in the network. This is
also the primary key of the table.

START_NODE_IDa NUMBER Unique identifier of the node from which the link originates.

END_NODE_IDa NUMBER Unique identifier of the node at which the link terminates.

geometry_column SDO_GEOMETRY A line geometry object that describes the shape of the link.
This is present only for spatial networks. Logical networks
contain no geometries.

CHAPTER 10 ■ NETWORK MODELING352

8997ch10.qxd 9/28/07 10:07 AM Page 352

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Column Data Type Meaning

cost_column NUMBER A numeric value representing the cost for traversing that
link. There could be multiple costs associated with a link.
The actual cost column used for network analysis is defined
in the network metadata. When no cost column is defined,
then all links are assumed to have a cost of 1.

BIDIRECTED CHAR(1) Defines whether the link is directed. A directed link
(BIDIRECTED='N') can be traversed only from the start
node to the end node. An undirected link (BIDIRECTED='Y')
can be traversed either way. This column is applicable
only if the network is defined as directed. If this column is
absent and the network is defined as directed, then the
link is assumed to be directed.

PARENT_LINK_ID NUMBER For hierarchical networks only. This is the identifier of the
parent link for this node.

ACTIVE CHAR(1) Defines whether the link is active (visible in the
network)—'Y' or 'N'. An invisible link will not be used by
the network analysis functions. When the column is not
defined, then all nodes are considered to be active.

LINK_LEVEL NUMBER Priority of the link.

LINK_NAME VARCHAR2 Name of the link. Fill this with any descriptive name (not
used by the network analysis functions).

LINK_TYPE VARCHAR2 Type of link. Fill this with any descriptive code or text.

a These columns are required. All others are optional.

Path Table
The path table, as shown in Table 10-4, stores the start and end node of a path and its total cost. Note that
the cost column is always present and is named COST. The list of the links that describe a path is in the path
link table (described in the next section). Remember that the path and path link tables are optional—you
need to create them only if you want to retain paths computed by the network analysis Java API.

Table 10-4. The Path Table

Column Data Type Meaning

PATH_IDa NUMBER Unique identification for that path in the network. This is
also the primary key of the table.

START_NODE_IDa NUMBER Unique identifier of the node from which the path originates.

END_NODE_IDa NUMBER Unique identifier of the node at which the path terminates.

COSTa NUMBER A numeric value representing the total cost for the path.

SIMPLEa CHAR(1) Contains Y if the path is simple path or N if it is complex. If the
column does not exist, then all paths are considered simple.
Note that all paths produced by the Java API are simple.

geometry_column SDO_GEOMETRY A line geometry object that describes the shape of the path,
formed by linking together the geometries of all links in the
path. This is present only when the network is spatial.

PATH_NAME VARCHAR2 Name of the path. Fill this with any descriptive name.

PATH_TYPE VARCHAR2 Type of path. Fill this with any descriptive code or text.

a These columns are required. All others are optional.

CHAPTER 10 ■ NETWORK MODELING 353

8997ch10.qxd 9/28/07 10:07 AM Page 353

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Path Link Table
The path link table, as shown in Table 10-5, stores the list of all links that define a path. The PATH_ID
and LINK_ID form the primary key of the table. All columns are required.

Table 10-5. The Path Link Table

Column Data Type Meaning

PATH_ID NUMBER Path identification

LINK_ID NUMBER Link identification

SEQ_NO NUMBER Sequence of that link in the path

Network Metadata
The view USER_SDO_NETWORK_METADATA, as shown in Table 10-6, describes the elements that compose
a network: the names of the tables and the names of optional columns such as costs and geometries.

Table 10-6. The USER_SDO_NETWORK_METADATAView

Name Data Type Meaning

NETWORK VARCHAR2(24) Unique name of the network. Note that this is
limited to 24 characters.

NETWORK_ID NUMBER Unique network number (optional).

NETWORK_CATEGORY VARCHAR2(12) The network category is SPATIAL if the network
nodes and links are associated with spatial
geometries and LOGICAL if the network nodes and
links are not associated with spatial geometries.

GEOMETRY_TYPE VARCHAR2(24) Type of spatial geometry if the network category is
SPATIAL. This is typically set to SDO_GEOMETRY, but it
could also be set to LRS_GEOMETRY or TOPO_GEOMETRY
(not covered in this book).

NETWORK_TYPE VARCHAR2(24) User-defined string to describe the type of network.

NO_OF_HIERARCHY_LEVELS NUMBER Number of levels in the network hierarchy. It
contains 1 if there is no hierarchy.

NO_OF_PARTITIONS NUMBER Number of partitions in the network.

LINK_DIRECTION VARCHAR2(12) Specifies whether the links of the network are
directed (DIRECTED or UNDIRECTED).

NODE_TABLE_NAME VARCHAR2(32) Name of the node table.

NODE_GEOM_COLUMN VARCHAR2(32) Name of the geometry column in the node table (if
the network category is SPATIAL).

NODE_COST_COLUMN VARCHAR2(1024) Name of the cost column in the node table. If this
is not specified, then network analysis does not use
any node costing (in other words, all nodes have
a cost of 0).

LINK_TABLE_NAME VARCHAR2(32) Name of the link table.

LINK_GEOM_COLUMN VARCHAR2(32) Name of the geometry column in the link table (if
the network category is SPATIAL).

LINK_COST_COLUMN VARCHAR2(1024) Name of the cost column in the link table. If this is
not specified, then network analysis does not use
any link costing (in other words, all links have
a cost of 1).

CHAPTER 10 ■ NETWORK MODELING354

8997ch10.qxd 9/28/07 10:07 AM Page 354

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Name Data Type Meaning

PATH_TABLE_NAME VARCHAR2(32) Name of the path table. This is optional. If it is not
specified, then the network does not use any path
table.

PATH_LINK_TABLE_NAME VARCHAR2(32) Name of the path link table. This is optional.
Specify it only if the network uses a path table.

PATH_GEOM_COLUMN VARCHAR2(32) Name of the geometry column in the path table.

LRS_TABLE_NAME VARCHAR2(32) Name of the table that contains the LRS geometries
(only when GEOMETRY_TYPE is LRS_GEOMETRY).

LRS_GEOM_COLUMN VARCHAR2(32) Name of the geometry column in the LRS table.

PARTITION_TABLE_NAME VARCHAR2(32) Name of the table that contains the network
partitions.

The simplest possible network is one that contains a node table with only a NODE_ID column
and a link table that contains LINK_ID, START_NODE_ID, and END_NODE_ID columns. This is a logical
network without costs.

Defining Networks
As mentioned earlier, you have several ways to define the data structures for a network. At one
extreme, a simple procedure call will do everything. At the other extreme, you create all the tables
manually.

All operations are provided by procedures and functions of the SDO_NET package.

“Automatic” Network Definition
You can use the CREATE_SDO_NETWORK or CREATE_LOGICAL_NETWORK procedure to create all the struc-
tures of a network.

The example in Listing 10-1 creates a spatial network called US_ROADS. The links are directed,
and the nodes have no cost. No names are provided for the various tables; they will receive default
generated names. In this and the following example, we use the named notation for parameters.
This notation is more verbose, but it makes your code easier to read and maintain. It is especially
useful for calling procedures or functions that have a long list of parameters.

Listing 10-1. Creating a Spatial Network Using Default Table Names

SQL> BEGIN

SDO_NET.CREATE_SDO_NETWORK (

NETWORK => 'US_ROADS',

NO_OF_HIERARCHY_LEVELS => 1,

IS_DIRECTED => TRUE,

NODE_WITH_COST => FALSE

);

END;

/

The call can be shortened to the following (using the positional parameter notation):

SQL> EXEC SDO_NET.CREATE_SDO_NETWORK ('US_ROADS',1,TRUE,FALSE)

CHAPTER 10 ■ NETWORK MODELING 355

8997ch10.qxd 9/28/07 10:07 AM Page 355

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The procedure creates four network tables called US_ROADS_NODE$, US_ROADS_LINK$, US_ROADS_PATH$,
and US_ROADS_PLINK$, and it adds information to the network metadata. The geometry columns in the
node, link, and path link tables are called GEOMETRY. The link table has a cost column called COST.
The path and path link tables are created, even if you do not want any. Listing 10-2 shows the structure
of the resulting tables.

Listing 10-2. Structure of Default Network Tables

SQL> describe US_ROADS_NODE$

Name Null? Type

-- -------- --------------------

NODE_ID NOT NULL NUMBER

NODE_NAME VARCHAR2(32)

NODE_TYPE VARCHAR2(24)

ACTIVE VARCHAR2(1)

PARTITION_ID NUMBER

GEOMETRY MDSYS.SDO_GEOMETRY

SQL> describe US_ROADS_LINK$

Name Null? Type

-- -------- --------------------

LINK_ID NOT NULL NUMBER

LINK_NAME VARCHAR2(32 CHAR)

START_NODE_ID NOT NULL NUMBER

END_NODE_ID NOT NULL NUMBER

LINK_TYPE VARCHAR2(24 CHAR)

ACTIVE VARCHAR2(1 CHAR)

LINK_LEVEL NUMBER

GEOMETRY MDSYS.SDO_GEOMETRY

COST NUMBER

BIDIRECTED VARCHAR2(1)

SQL> describe US_ROADS_PATH$

Name Null? Type

-- -------- --------------------

PATH_ID NOT NULL NUMBER

PATH_NAME VARCHAR2(32 CHAR)

PATH_TYPE VARCHAR2(24 CHAR)

START_NODE_ID NOT NULL NUMBER

END_NODE_ID NOT NULL NUMBER

COST NUMBER

SIMPLE VARCHAR2(1 CHAR)

GEOMETRY MDSYS.SDO_GEOMETRY

SQL> describe US_ROADS_PLINK$

Name Null? Type

-- -------- --------------------

PATH_ID NOT NULL NUMBER

LINK_ID NOT NULL NUMBER

SEQ_NO NUMBER

Note that the tables have primary keys defined (using default constraint names). No foreign
key constraints are defined, however.

CHAPTER 10 ■ NETWORK MODELING356

8997ch10.qxd 9/28/07 10:07 AM Page 356

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Note The network creation function is not atomic. If it fails to complete, then you may be left with a half-created
network (in other words, some tables are created). Before you try to create the network again, you must first man-
ually drop the existing network using the DROP_NETWORK procedure.

The second example (see Listing 10-3) illustrates the creation of the same US_ROADS network
with explicit table and column names. The example also shows the complete list of parameters you
can pass to the procedure.

Listing 10-3. Network Creation with Explicit Table and Column Names

SQL> BEGIN

SDO_NET.CREATE_SDO_NETWORK (

NETWORK => 'US_ROADS',

NO_OF_HIERARCHY_LEVELS => 1,

IS_DIRECTED => TRUE,

NODE_TABLE_NAME => 'US_INTERSECTIONS',

NODE_GEOM_COLUMN => 'LOCATION',

NODE_COST_COLUMN => NULL,

LINK_TABLE_NAME => 'US_STREETS',

LINK_GEOM_COLUMN => 'STREET_GEOM',

LINK_COST_COLUMN => 'STREET_LENGTH',

PATH_TABLE_NAME => 'US_PATHS',

PATH_GEOM_COLUMN => 'PATH_GEOM',

PATH_LINK_TABLE_NAME => 'US_PATH_LINKS'

);

END;

/

When no name is given for a geometry column, it is named GEOMETRY. When no name is given
for a cost column, then no cost column is created.

“Manual” Network Definition
The “automatic” creation method you just saw is not flexible. It gives you very little control over the
actual structuring of the tables, and it gives you no control at all over their physical storage (table-
spaces, space management, partitioning, and so on). But it is easy to use. In particular, it automatically
populates the network metadata and makes sure the table structures are consistent.

The alternative is to create the network tables manually. This gives you total flexibility over the
table structures, but you must manually update the network metadata and ensure that the table
structures are consistent with the metadata.

Listing 10-4 illustrates the process for manually creating the US_ROADS spatial network with only
the columns we need. Note that for simplicity, we do not include any storage parameters for the tables,
and we define the primary key constraints inline. A better practice is to create explicit indexes and
use them to define the constraints.

Note that the us_streets table contains two columns that can be used as cost: street_length
represents the length of the street segment, whereas travel_time contains the time needed to drive
along that street segment.

■Note Travel times are usually derived from the type of street segment (interstate or motorway, local road, and
so on). This is often referred to in road-navigation databases as the functional class of the street segment. Travel
times may also include local specific speed limits.

CHAPTER 10 ■ NETWORK MODELING 357

8997ch10.qxd 9/28/07 10:07 AM Page 357

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 10-4. Manual Network Creation

SQL> -- Create the node table

SQL> CREATE TABLE us_intersections (

node_id NUMBER,

location SDO_GEOMETRY,

CONSTRAINT us_intersections_pk PRIMARY KEY (node_id)

);

SQL> -- Create the link table

CREATE TABLE us_streets (

link_id NUMBER,

start_node_id NUMBER NOT NULL,

end_node_id NUMBER NOT NULL,

active CHAR(1),

street_geom SDO_GEOMETRY,

street_length NUMBER,

travel_time NUMBER,

bidirected CHAR(1),

CONSTRAINT us_streets_pk PRIMARY KEY (link_id)

);

SQL> -- Create path table

SQL> CREATE TABLE us_paths (

path_id NUMBER,

start_node_id NUMBER NOT NULL,

end_node_id NUMBER NOT NULL,

cost NUMBER,

simple VARCHAR2(1),

path_geom SDO_GEOMETRY,

CONSTRAINT us_paths_pk PRIMARY KEY (path_id)

);

SQL> -- Create path link table

SQL> CREATE TABLE us_path_links (

path_id number,

link_id number,

seq_no number,

CONSTRAINT us_path_links_pk PRIMARY KEY (path_id, link_id)

);

This code only creates the tables that define the network. You still need to “glue” them together
as an actual network, which you can do manually by inserting the proper information into the
network metadata (USER_SDO_NETWORK_METADATA), as illustrated in Listing 10-5.

Listing 10-5. Setting Up Network Metadata

SQL> INSERT INTO USER_SDO_NETWORK_METADATA (

NETWORK,

NETWORK_CATEGORY,

GEOMETRY_TYPE,

NO_OF_HIERARCHY_LEVELS,

NO_OF_PARTITIONS,

LINK_DIRECTION,

NODE_TABLE_NAME,

NODE_GEOM_COLUMN,

NODE_COST_COLUMN,

LINK_TABLE_NAME,

LINK_GEOM_COLUMN,

LINK_COST_COLUMN,

CHAPTER 10 ■ NETWORK MODELING358

8997ch10.qxd 9/28/07 10:07 AM Page 358

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

PATH_TABLE_NAME,

PATH_GEOM_COLUMN,

PATH_LINK_TABLE_NAME

)

VALUES (

'US_ROADS', -- network (primary key)

'SPATIAL', -- network_category

'SDO_GEOMETRY', -- geometry_type

1, -- no_of_hierarchy_levels

1, -- no_of_partitions

'DIRECTED', -- link_direction

'US_INTERSECTIONS', -- node_table_name

'LOCATION', -- node_geom_column

NULL, -- node_cost_column (no cost at node level)

'US_STREETS', -- link_table_name

'STREET_GEOM', -- link_geom_column

'STREET_LENGTH', -- link_cost_column

'US_PATHS', -- path_table_name

'PATH_GEOM', -- path_geom_column

'US_PATH_LINKS' -- path_link_table_name

);

SQL> COMMIT;

This insert can be tricky. Because of the large number of columns to fill, it is easy to make mis-
takes. So, it is important to verify that your definitions are consistent using the validation functions
provided by Oracle. We will discuss those functions shortly.

■Note You can also create the network tables individually, using the SDO_CREATE_xxx_TABLE procedures
(where xxx stands for NODE, LINK, and so on). Those procedures are of little interest, because they give no option
to control the storage parameters for the tables, and you must still manually update the network metadata and
make sure it is consistent with the tables you created. We do not discuss those procedures here.

Defining Multiple Networks on the Same Tables
In the preceding example, the us_streets table contains two cost columns: street_length and
travel_time. We defined the US_ROADS network as using street_length for the cost column. This
means you can use this network for computing the shortest routes between nodes.

But you may also want to compute the fastest routes between nodes. For this, all you need to
do is define a second network on the same tables, this time using travel_time as the cost column
for the links. This is illustrated in Listing 10-6, which defines a new network called US_ROADS_TIME.

Listing 10-6. Setting Up Metadata for a Time-Based Road Network

SQL> INSERT INTO USER_SDO_NETWORK_METADATA (

NETWORK,

NETWORK_CATEGORY,

GEOMETRY_TYPE,

NO_OF_HIERARCHY_LEVELS,

NO_OF_PARTITIONS,

LINK_DIRECTION,

NODE_TABLE_NAME,

NODE_GEOM_COLUMN,

CHAPTER 10 ■ NETWORK MODELING 359

8997ch10.qxd 9/28/07 10:07 AM Page 359

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

NODE_COST_COLUMN,

LINK_TABLE_NAME,

LINK_GEOM_COLUMN,

LINK_COST_COLUMN,

PATH_TABLE_NAME,

PATH_GEOM_COLUMN,

PATH_LINK_TABLE_NAME

)

VALUES (

'US_ROADS_TIME', -- network (primary key)

'SPATIAL', -- network_category

'SDO_GEOMETRY', -- geometry_type

1, -- no_of_hierarchy_levels

1, -- no_of_partitions

'DIRECTED', -- link_direction

'US_INTERSECTIONS', -- node_table_name

'LOCATION', -- node_geom_column

NULL, -- node_cost_column (no cost at node level)

'US_STREETS', -- link_table_name

'STREET_GEOM', -- link_geom_column

'TRAVEL_TIME', -- link_cost_column

'US_PATHS', -- path_table_name

'PATH_GEOM', -- path_geom_column

'US_PATH_LINKS' -- path_link_table_name

);

SQL> COMMIT;

Notice that the US_ROADS_TIME network uses the same path and path link tables as the US_ROADS
network. If you want, you can create and use different tables. That way, you can keep separate the
results of distance-based searches and time-based searches.

Defining a Network Over Existing Structures
In the previous example, you were able to define the network structures entirely from scratch. What
if you already have a network defined (as node and link tables) and used in existing applications?

One way is to create a copy of the existing network into tables suitable for the Oracle Network
Data Model. This approach has drawbacks: it doubles the storage costs and adds complexities to
maintaining the two copies of the network in sync.

A simpler approach is to define a network directly on the existing tables by just setting up the
network metadata to point to the existing tables. That may, however, not be directly possible. Even
though the structure of network tables is flexible, there are still some constraints—for example, the
primary key of the node table must be called NODE_ID.

The solution is to create views over the existing tables and rename columns in the views so that
they match the naming conventions of the network tables. This approach is illustrated in the follow-
ing simple example. Consider that an existing application already uses a water distribution network,
defined as a set of pipes and valves. Those tables were created by the application shown in Listing 10-7.

Listing 10-7. Existing Water Network Tables

SQL> CREATE TABLE valves (

valve_id NUMBER PRIMARY KEY,

valve_type VARCHAR2(20),

location SDO_GEOMETRY

-- ... other columns ...

);

CHAPTER 10 ■ NETWORK MODELING360

8997ch10.qxd 9/28/07 10:07 AM Page 360

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SQL> CREATE TABLE pipes (

pipe_id NUMBER PRIMARY KEY,

diameter NUMBER,

length NUMBER,

start_valve NUMBER NOT NULL REFERENCES valves,

end_valve NUMBER NOT NULL REFERENCES valves,

pipe_geom SDO_GEOMETRY

-- ... other columns ...

);

The first step is to define views over the existing tables, as illustrated in Listing 10-8. Notice that
column valve_id in the original valves table is renamed to node_id in the net_pipes view. Similar
renaming takes place in the net_pipes view.

Listing 10-8. Views Over Existing Tables

SQL> CREATE VIEW net_valves (node_id, valve_type, location) AS

SELECT valve_id,

valve_type,

location

-- ...other columns ...

FROM valves;

SQL> CREATE VIEW net_pipes

(link_id, start_node_id, end_node_id, length, pipe_geom)

AS

SELECT pipe_id,

start_valve,

end_valve,

length,

pipe_geom

-- ... other columns ...

FROM pipes;

The second step is optional. If you want to keep the results of any network traces or analyses,
then you need to also create path and path link tables (see Listing 10-9). There is little flexibility in
creating those tables—all you can do is choose the name of the tables and choose a name for the
SDO_GEOMETRY column in the path table.

Listing 10-9. Creating the Path and Path Link Tables

SQL> CREATE TABLE net_paths (

path_id NUMBER,

start_node_id NUMBER NOT NULL,

end_node_id NUMBER NOT NULL,

cost NUMBER,

simple VARCHAR2(1),

path_geom SDO_GEOMETRY,

CONSTRAINT net_paths_pk PRIMARY KEY (path_id)

);

SQL> CREATE TABLE net_path_links (

path_id NUMBER,

link_id NUMBER,

seq_no NUMBER,

CONSTRAINT net_path_links_pk PRIMARY KEY (path_id, link_id)

);

CHAPTER 10 ■ NETWORK MODELING 361

8997ch10.qxd 9/28/07 10:07 AM Page 361

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The final step is to set up the network metadata for the water network, as shown in Listing 10-10.
Notice that this is an undirected network—in a pipe, water can flow in any direction.

Listing 10-10. Metadata for a Network on Existing Structures

SQL> INSERT INTO USER_SDO_NETWORK_METADATA (

NETWORK,

NETWORK_CATEGORY,

GEOMETRY_TYPE,

NO_OF_HIERARCHY_LEVELS,

NO_OF_PARTITIONS,

LINK_DIRECTION,

NODE_TABLE_NAME,

NODE_GEOM_COLUMN,

NODE_COST_COLUMN,

LINK_TABLE_NAME,

LINK_GEOM_COLUMN,

LINK_COST_COLUMN,

PATH_TABLE_NAME,

PATH_GEOM_COLUMN,

PATH_LINK_TABLE_NAME

)

VALUES (

'WATER_NET', -- network (primary key)

'SPATIAL', -- network_category

'SDO_GEOMETRY', -- geometry_type

1, -- no_of_hierarchy_levels

1, -- no_of_partitions

'UNDIRECTED', -- link_direction

'NET_VALVES', -- node_table_name

'LOCATION', -- node_geom_column

NULL, -- node_cost_column (no cost at node level)

'NET_PIPES', -- link_table_name

'PIPE_GEOM', -- link_geom_column

'LENGTH', -- link_cost_column

'NET_PATHS', -- path_table_name

'PATH_GEOM', -- path_geom_column

'NET_PATH_LINKS' -- path_link_table_name

);

SQL> COMMIT;

Validating Network Structures
You may make mistakes when defining all network structures and metadata manually. We recom-
mend you verify the correctness of your definitions using one of the functions provided.

The main function is VALIDATE_NETWORK. It verifies the consistency between the metadata and
the network tables, and it verifies that the tables are correctly defined (in other words, that they
contain the right columns with the right data types). The function takes only one argument: the
name of the network to validate.

The result of the function is a string that can take the following values:

• NULL if the network does not exist

• TRUE if the network is correctly defined

• A string with diagnostics if the network is not correctly defined

CHAPTER 10 ■ NETWORK MODELING362

8997ch10.qxd 9/28/07 10:07 AM Page 362

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

For example, if the us_streets table in the previous example were created without the
street_length column, the validation of network US_ROADS would fail, as illustrated in Listing 10-11.

Listing 10-11. Validating a Network Definition

SQL> select sdo_net.validate_network('us_roads') from dual;

SDO_NET.VALIDATE_NETWORK('US_ROADS')

Link Schema Error: [COST]

You can also use individual VALIDATE_xxxx_SCHEMA functions (where xxxx stands for NODE, LINK,
or PATH) to verify the correctness of each table in a network.

Populating Network Tables
You can populate network tables (link and node tables) using any tool: inserts from an application
program, SQL*Loader, and so on.

Dropping a Network
To drop a network, use the DROP_NETWORK procedure. It will drop all tables related to a network and
remove the definition of the network from the metadata. The example in Listing 10-12 removes the
US_ROADS network.

Listing 10-12. Dropping a Network

SQL> EXEC SDO_NET.DROP_NETWORK ('US_ROADS');

PL/SQL procedure successfully completed.

The procedure locates the tables that compose a network as indicated in the network metadata.
If the metadata is incorrect—for example, if it contains the wrong name for a node table—then the
procedure will attempt to drop the table whose name is in the metadata. Note that it also automati-
cally removes any spatial metadata from USER_SDO_GEOM_METADATA.

■Caution If you want only to modify the network definition, do not use the DROP_NETWORK procedure, since it will
also drop the complete network data. Instead, simply delete the definition from USER_SDO_NETWORK_METADATA and
reinsert the new one. If the network is defined using views (such as WATER_NET), then the procedure only removes
the views without touching the tables on which the views are based.

Creating Spatial Indexes on Network Tables
For spatial networks in which tables contain SDO_GEOMETRY columns, it may be necessary to set up
spatial indexes. This is not a requirement; network analysis functions do not need spatial indexes.

Spatial indexes need spatial metadata in the USER_SDO_GEOM_METADATA table. You can insert the
metadata manually, or you can use the INSERT_GEOM_METADATA procedure to set the metadata for all
tables that are part of the network and that contain an SDO_GEOMETRY column, as illustrated in
Listing 10-13. The function takes the name of the network as an input parameter, followed by the
bounds definitions and the SRID.

CHAPTER 10 ■ NETWORK MODELING 363

8997ch10.qxd 9/28/07 10:07 AM Page 363

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 10-13. Adding Spatial Metadata to Network Tables

SQL> BEGIN

SDO_NET.INSERT_GEOM_METADATA (

'US_ROADS',

SDO_DIM_ARRAY (

SDO_DIM_ELEMENT ('Long', -180, +180, 1),

SDO_DIM_ELEMENT ('Lat', -90, +90, 1)

),

8307

);

END;

/

SQL> COMMIT;

Getting Information About a Network
To find out the details about the structure of a network (the name of the link table, the name of the
cost column in the node table, and so on), just query the USER_SDO_NETWORK_METADATA view. Be aware
that the output may be hard to read.

You can alternatively use one of the many functions in the SDO_NET package that return an indi-
vidual piece of information. The functions’ names are self-descriptive. They all take one argument:
the name of the network to examine. We do not list them all here.

Listing 10-14 shows a convenient procedure that uses all those functions in order to display
information about a network in a readable way. Listing 10-15 shows the results of executing the pro-
cedure on the US_ROADS network.

Listing 10-14. Convenient Procedure for Getting Network Details

CREATE OR REPLACE PROCEDURE SHOW_NET_DETAILS (NETWORK_NAME VARCHAR2) AS

BEGIN

DBMS_OUTPUT.PUT_LINE ('NETWORK_EXISTS() = ' ||

SDO_NET.NETWORK_EXISTS(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('IS_HIERARCHICAL() = ' ||

SDO_NET.IS_HIERARCHICAL(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('IS_LOGICAL() = ' ||

SDO_NET.IS_LOGICAL(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('IS_SPATIAL() = ' ||

SDO_NET.IS_SPATIAL(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_NETWORK_CATEGORY() = ' ||

SDO_NET.GET_NETWORK_CATEGORY(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('SDO_GEOMETRY_NETWORK() = ' ||

SDO_NET.SDO_GEOMETRY_NETWORK(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_NETWORK_TYPE() = ' ||

SDO_NET.GET_NETWORK_TYPE(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_GEOMETRY_TYPE() = ' ||

SDO_NET.GET_GEOMETRY_TYPE(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_NO_OF_HIERARCHY_LEVELS() = ' ||

SDO_NET.GET_NO_OF_HIERARCHY_LEVELS(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_LINK_DIRECTION() = ' ||

SDO_NET.GET_LINK_DIRECTION(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_NODE_TABLE_NAME() = ' ||

SDO_NET.GET_NODE_TABLE_NAME(NETWORK_NAME));

CHAPTER 10 ■ NETWORK MODELING364

8997ch10.qxd 9/28/07 10:07 AM Page 364

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

DBMS_OUTPUT.PUT_LINE ('GET_NODE_COST_COLUMN() = ' ||

SDO_NET.GET_NODE_COST_COLUMN(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_NODE_GEOM_COLUMN() = ' ||

SDO_NET.GET_NODE_GEOM_COLUMN(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_LINK_TABLE_NAME() = ' ||

SDO_NET.GET_LINK_TABLE_NAME(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_LINK_COST_COLUMN() = ' ||

SDO_NET.GET_LINK_COST_COLUMN(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_LINK_GEOM_COLUMN() = ' ||

SDO_NET.GET_LINK_GEOM_COLUMN(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_PATH_TABLE_NAME() = ' ||

SDO_NET.GET_PATH_TABLE_NAME(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_PATH_GEOM_COLUMN() = ' ||

SDO_NET.GET_PATH_GEOM_COLUMN(NETWORK_NAME));

DBMS_OUTPUT.PUT_LINE ('GET_PATH_LINK_TABLE_NAME() = ' ||

SDO_NET.GET_PATH_LINK_TABLE_NAME(NETWORK_NAME));

END;

Listing 10-15. Getting Network Details

SET SERVEROUTPUT ON

SQL> EXEC show_net_details ('US_ROADS');

NETWORK_EXISTS() = TRUE

IS_HIERARCHICAL() = FALSE

IS_LOGICAL() = FALSE

IS_SPATIAL() = TRUE

GET_NETWORK_CATEGORY() = SPATIAL

SDO_GEOMETRY_NETWORK() = TRUE

GET_NETWORK_TYPE() =

GET_GEOMETRY_TYPE() = SDO_GEOMETRY

GET_NO_OF_HIERARCHY_LEVELS() = 1

GET_LINK_DIRECTION() = DIRECTED

GET_NODE_TABLE_NAME() = US_INTERSECTIONS

GET_NODE_COST_COLUMN() =

GET_NODE_GEOM_COLUMN() = LOCATION

GET_LINK_TABLE_NAME() = US_STREETS

GET_LINK_COST_COLUMN() = STREET_LENGTH

GET_LINK_GEOM_COLUMN() = STREET_GEOM

GET_PATH_TABLE_NAME() = US_PATHS

GET_PATH_GEOM_COLUMN() = PATH_GEOM

GET_PATH_LINK_TABLE_NAME() = US_PATH_LINKS

PL/SQL procedure successfully completed.

Verifying Network Connectivity
The SDO_NET package provides some other functions, summarized in Table 10-7, to help you locate
any errors inside the network data such as isolated nodes or dangling links. All the functions take
a network name as parameter.

CHAPTER 10 ■ NETWORK MODELING 365

8997ch10.qxd 9/28/07 10:07 AM Page 365

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Table 10-7. Network Verification Functions

Function Usage

SDO_NET.GET_NO_OF_NODES() Returns the number of nodes in the network

SDO_NET.GET_NO_OF_LINKS() Returns the number of links in the network

SDO_NET.GET_ISOLATED_NODES() Returns the nodes that are not related to any link

SDO_NET.GET_INVALID_LINKS() Returns the links with nonexistent start or end nodes

SDO_NET.GET_INVALID_PATHS() Returns the paths with nonexistent start or end nodes, or
with nonexistent links

■Note You can prevent errors such as isolated nodes or dangling links using referential integrity constraints in
the link table, as illustrated in the definition of the pipes table in Listing 10-7.

Some other functions, listed in Table 10-8, allow you to find out details about individual nodes
in the network. They all take two parameters: the name of the network and the identifier of the node
to examine.

Table 10-8. Node Detail Functions

Function Usage

SDO_NET.GET_NODE_DEGREE() Returns the number of links that originate and terminate at
that node

SDO_NET.GET_NODE_IN_DEGREE() Returns the number of links that terminate at that node (in
other words, those links that have this node’s ID as END_NODE_ID)

SDO_NET.GET_NODE_OUT_DEGREE() Returns the number of links that originate at that node (in other
words, those links that have this node’s ID as START_NODE_ID)

SDO_NET.GET_IN_LINKS() Returns a list containing the IDs of all links that terminate at
that node (as an SDO_NUMBER_ARRAY type)

SDO_NET.GET_OUT_LINKS() Returns a list containing the IDs of all links that originate at
that node (as an SDO_NUMBER_ARRAY type)

Example Network
We will now create and load two simple networks called UNET and DNET. We will use those net-
works extensively later to illustrate network analysis functions.

UNET: A Simple Undirected Network
Figure 10-8 shows a simple network (UNET) with undirected links. Links have a cost proportional to
their length; the cost of each link is shown in parentheses. Listing 10-16 shows the creation of the
network, and Listing 10-17 shows the loading of the network. Note that the ordering of the nodes in
the start_node_id and end_node_id columns in the unet_links table is unimportant.

CHAPTER 10 ■ NETWORK MODELING366

8997ch10.qxd 9/28/07 10:07 AM Page 366

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 10-8. A simple undirected network

Listing 10-16. Defining the UNET Network

SQL> BEGIN

SDO_NET.CREATE_SDO_NETWORK (

NETWORK => 'UNET',

NO_OF_HIERARCHY_LEVELS => 1,

IS_DIRECTED => FALSE,

NODE_TABLE_NAME => 'UNET_NODES',

NODE_GEOM_COLUMN => 'GEOM',

NODE_COST_COLUMN => NULL,

LINK_TABLE_NAME => 'UNET_LINKS',

LINK_COST_COLUMN => 'COST',

LINK_GEOM_COLUMN => 'GEOM',

PATH_TABLE_NAME => 'UNET_PATHS',

PATH_GEOM_COLUMN => 'GEOM',

PATH_LINK_TABLE_NAME => 'UNET_PLINKS'

);

END;

/

Listing 10-17. Loading the UNET Network

SQL> -- Populate the node table

SQL> INSERT INTO unet_nodes (node_id, node_name, geom)

VALUES (1, 'N1',

SDO_GEOMETRY (2001, NULL, SDO_POINT_TYPE (1,3,NULL), NULL, NULL));

...

SQL> COMMIT;

SQL> -- Populate the link table

SQL> INSERT INTO unet_links

(link_id, link_name, start_node_id, end_node_id, cost, geom)

VALUES (1, 'L1', 1, 2, 1,

SDO_GEOMETRY (2002, NULL, NULL,

SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (1,3, 2,3))

);

...

SQL> COMMIT;

CHAPTER 10 ■ NETWORK MODELING 367

8997ch10.qxd 9/28/07 10:07 AM Page 367

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

DNET: A Simple Directed Network
In Oracle Database 10g Release 1, the directed/undirected nature of the network was global—that
is, all links were directed. Bidirectional links had to be represented as two links, one in each direc-
tion: a link and a colink, as illustrated in Figure 10-9.

The usual convention in network modeling is to identify a link and its colink using the same
number with opposite signs. For example, link L6 goes from node N8 to node N7, whereas link –L6
goes from node N7 to node N8.

Figure 10-9. Directed network with dual links

Since Oracle Database 10g Release 2, you no longer need two links to represent a bidirec-
tional link. Now, each link in a directed network can be classified as bidirected or not. You
indicate this in the bidirected column of the link table. This greatly reduces the storage space
for a road network; in a typical road network, the vast majority of the road segments allow two-
way traffic. In Oracle Database 10g Release 1, each of those segments had to be modeled using
two links. Since Oracle Database 10g Release 2, you can model all those road segments using
just one link per segment.

Figure 10-10 shows the same network as earlier but this time using bidirectional links. Note,
however, that link L6 is still represented as two links, a link and a colink. This is useful if you want
different attributes in each direction; after all, they could have different costs or types. An example
would be a one-way street with a bus lane going in the opposite direction. In this example, link L6
has a cost of 3, whereas link –L6 has a cost of 2.

Figure 10-10. Directed network using bidirected links

CHAPTER 10 ■ NETWORK MODELING368

8997ch10.qxd 9/28/07 10:07 AM Page 368

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 10-18 shows the creation of the network, and Listing 10-19 shows the loading of the
network. Note that the ordering of the nodes in the start_node_id and end_node_id columns in
the dnet_links table is important—it determines the direction of the directed links.

■Note When a link is flagged as “directed” (that is, column bidirected is set to 'N'), its orientation is always
from the start node to the end node. If you want to orient the link in the opposite direction, then you need to swap
its start and end node (that is, swap the contents of the start_node_id and end_node_id columns).

Listing 10-18. Defining the DNET Network

SQL> BEGIN

SDO_NET.CREATE_SDO_NETWORK (

NETWORK => 'DNET',

NO_OF_HIERARCHY_LEVELS => 1,

IS_DIRECTED => TRUE,

NODE_TABLE_NAME => 'DNET_NODES',

NODE_GEOM_COLUMN => 'GEOM',

NODE_COST_COLUMN => NULL,

LINK_TABLE_NAME => 'DNET_LINKS',

LINK_COST_COLUMN => 'COST',

LINK_GEOM_COLUMN => 'GEOM',

PATH_TABLE_NAME => 'DNET_PATHS',

PATH_GEOM_COLUMN => 'GEOM',

PATH_LINK_TABLE_NAME => 'DNET_PLINKS'

);

END;

/

Listing 10-19. Loading the DNET Network

SQL> -- Populate The Node Table

SQL> INSERT INTO dnet_nodes (node_id, node_name, geom)

VALUES (1, 'N1',

SDO_GEOMETRY (2001, NULL, SDO_POINT_TYPE (1,3,NULL), NULL, NULL));

...

SQL> COMMIT;

SQL> -- Populate The Link Table

SQL> INSERT INTO dnet_links

(link_id, link_name, start_node_id, end_node_id, cost, geom, bidirected)

VALUES (1, 'L1', 2, 1, 1,

SDO_GEOMETRY (2002, NULL, NULL,

SDO_ELEM_INFO_ARRAY (1,2,1),

SDO_ORDINATE_ARRAY (2,3, 1,3)),

'N'

);

...

SQL> COMMIT;

■Note The geometric representation does not have to match the logical representation exactly. In particular, the
orientation of the line geometry for a link does not have to match the direction of the link. In this section’s exam-
ple, link L1 goes from node N2 to node N1, whereas the line string goes in the opposite direction. It is, however,
a good idea to make the physical orientation of a link (its digitizing order) match its logical direction.

CHAPTER 10 ■ NETWORK MODELING 369

8997ch10.qxd 9/28/07 10:07 AM Page 369

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Analyzing and Managing Networks Using the
Java API
Network analysis uses a Java API that provides a range of analysis functions. This is actually where
the value of the network data model truly lies. You use that API to find the cheapest path between
nodes, the nearest nodes to a node, and so on.

The Java API is very rich. We will list only the most important methods here. For a complete ref-
erence, see the Javadoc documentation for the API, provided with the standard set of manuals. The
Javadoc pages are next to the other manuals for Oracle Spatial, in the “Unstructured Data” category.
You will also find a copy in your Oracle installation at $ORACLE_HOME/md/doc/sdonm.zip. Note that
there is no other documentation of the Java API.

The Java API is provided as a package called oracle.spatial.network in a Java archive (JAR)
file called sdonm.jar. You will find it in your Oracle installation at $ORACLE_HOME/md/jlib. To use it in
your Java applications, just include it in your classpath. Note that you also need other packages to
use the Java API. All necessary packages are summarized in Table 10-9.

Table 10-9. Packages Needed to Use the Network Java API

Package JAR File Usage Location

oracle.spatial.network sdonm.jar Network analysis $ORACLE_HOME/md/jlib

oracle.spatial.geometry sdoapi.jar JGeometry object $ORACLE_HOME/md/jlib

oracle.spatial.util sdoutl.jar Various utilities $ORACLE_HOME/md/jlib

(multiple) ojdbc14.jar JDBC driver $ORACLE_HOME/jdbc/lib

The API is composed of three main sets of classes:

• Network, Node, Link, and Path: These classes store and maintain networks and network elements.

• NetworkManager: This class performs network analysis, and it also reads networks from the
database and writes them back.

• NetworkFactory: This class creates networks and network elements.

■Caution In versions of Oracle Database prior to 11g, the directory holding the JAR files was called lib. It is
now called jlib.

We will now cover each of the classes in turn. We will start with NetworkManager, because this is
the class that is at the heart of network analysis.

■Note You must use a Java 1.5 JDK in order to use the Java API. Your Oracle 11g installation comes with a com-
plete Java 1.5 SE JDK in $ORACLE_HOME/jdk

Analyzing Networks: The NetworkManager Class
The fundamental use of the Network Data Model is to find paths between nodes. There can be
many paths between any two nodes, and the model can help find them all or choose the “best” one
(in other words, the one with the lowest cost).

CHAPTER 10 ■ NETWORK MODELING370

8997ch10.qxd 9/28/07 10:07 AM Page 370

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The analysis functions are all provided by methods of the NetworkManager class. The methods
operate on a memory-resident copy of the network. Therefore, the first step in a program is to load
the network from the database.

Loading a Network
The readNetwork() method loads a network from the database into a Network object. The method
needs a connection to a database and the name of the network to load. By default, it loads the entire
network, but you can also specify a subset of the network: either a certain level or all elements in
a chosen rectangular window.

The following loads the complete network called UNET from the database:

Network UNet =

NetworkManager.readNetwork(dbConnection, "UNET");

This example loads the network in “read-only” mode. If you intend to update it in your applica-
tion, then you must say so when you first load it from the database. For example:

Network UNet =

NetworkManager.readNetwork(dbConnection, "UNET", true);

Only one user at a time is allowed to load a network (or a subset of the network) in updatable
mode at a time. If another user tries loading the same network (or the same subset) in updatable
mode, that user will receive an error. Note that this “single updater” restriction is implemented
using SELECT ... FOR UPDATE statements on all loaded network elements. This means the network
elements loaded by a user are also locked for updates from any other application.

■Note Loading a network in “read-only” mode still allows you to perform network updates in memory. However,
you will not be able to apply the changes to the database.

Updating a Network
The writeNetwork() method writes a network back to the database. The method’s name is a mis-
nomer; it actually takes only the changes you made to the memory-resident network and applies
them to the persistent copy stored in the database.

The main use of the writeNetwork() method is to store the paths calculated by the analysis
functions into the path and path link tables in the database. To use that method, you must first have
loaded the network in “update” mode.

Finding the Shortest Path Between Two Nodes
A common operation on a network is to find the shortest path between two nodes. The shortestPath()
method does just this; it returns the “best” path between two nodes in a network. The inputs to
the method are the network on which to perform the analysis and the start and end nodes. This is
probably the most useful analysis function, and it is the building block for all routing engines and
others that provide driving directions.

The best path between two nodes is the one with the smallest cost. Remember that the cost of
a node or link is a numeric value defined in the network tables. That cost can represent anything, such
as the length of a road segment or the time needed to travel along that road segment. When no cost
column is present, then all links are considered to have a cost of 1, and nodes have a cost of 0. Only
active nodes and links are considered—in other words, those that have an ACTIVE column set to 'Y'.

The code in Listing 10-20 returns the shortest path from node N4 to node N3 on the UNET undi-
rected network shown in Figure 10-8. Figure 10-11 shows the resulting path. The shortestPath()

CHAPTER 10 ■ NETWORK MODELING 371

8997ch10.qxd 9/28/07 10:07 AM Page 371

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

method returns a Path object. We use a number of methods of the Path object to extract various
pieces of information, such as the cost of the path and the number of links. We also extract the
detailed structure of the path as an array of Link objects. We then proceed to extract details from
each of the Link objects.

■Note We detail how to use the Path, Link, and Node objects later in this chapter.

Listing 10-20. Using the shortestPath() Method

// Get shortest path from node N4 to N3

Network testNet = uNet;

startNodeId = 4;

endNodeId = 3;

Path path = NetworkManager.shortestPath (testNet, startNodeID ,endNodeId);

// Show path cost and number of links

System.out.println ("Path cost: " + path.getCost());

System.out.println ("Number of links: "+ path.getNoOfLinks());

System.out.println ("Simple path? "+ path.isSimple());

// Show the links traversed

System.out.println ("Links traversed:");

Link[] linkArray = path.getLinkArray();

for (int i = 0; i < linkArray.length; i++)

System.out.println (" Link " + linkArray[i].getID() + "\t"

+ linkArray[i].getName() +"\t" + linkArray[i].getCost());

// Show the nodes traversed

System.out.println (" Nodes traversed:");

Node [] nodeArray = path.getNodeArray();

for (int i = 0; i < nodeArray.length; i++)

System.out.println (" Node " + nodeArray[i].getID() + "\t"

+ nodeArray[i].getName() +"\t" + nodeArray[i].getCost());

Here are the results of executing the code in Listing 10-20:

Path cost: 3.0

Number of links: 3

Simple path? true

Links traversed:

Link 9 L9 1.0

Link 10 L10 1.0

Link 3 L3 1.0

Nodes traversed:

Node 4 N4 0.0

Node 5 N5 0.0

Node 6 N6 0.0

Node 3 N3 0.0

CHAPTER 10 ■ NETWORK MODELING372

8997ch10.qxd 9/28/07 10:07 AM Page 372

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 10-11. The path from node N4 to node N3 (undirected network)

Performing the same operation on the directed network DNET (from Figure 10-10) gives the
following results, as shown in Figure 10-12:

Path cost: 6.5

Number of links: 5

Simple path? true

Links traversed:

Link 8 L8 1.5

Link -6 L6 2.0

Link 11 L11 1.0

Link 10 L10 1.0

Link -3 L3 1.0

Nodes traversed:

Node 4 N4 0.0

Node 7 N7 0.0

Node 8 N8 0.0

Node 5 N5 0.0

Node 6 N6 0.0

Node 3 N3 0.0

Figure 10-12. The path from node N4 to node N3 (directed network)

You can see that the shortest path is no longer as straightforward as in the previous example. It
now has to follow the one-way links in the right direction!

The shortestPath() method uses the A* algorithm to find the shortest path between the nodes.
You can also use the shortestPathDijkstra() method, which uses the algorithm developed by
Professor E. W. Dijkstra. Discussing the relative merits of the two algorithms is beyond the scope of
this book.

CHAPTER 10 ■ NETWORK MODELING 373

8997ch10.qxd 9/28/07 10:07 AM Page 373

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Saving the Computed Path

The Path object obtained by running one of the preceding functions is a stand-alone object; it is not
related to any network. To store that path into the database, you need to complete it with some
information before adding it to the network and writing it to the database, as illustrated in the fol-
lowing code example:

// Give a name to the path - construct it using the path id.

path.setName ("P" + path.getID() + " Friday excursion");

// Compute the geometry of the path

path.computeGeometry(0.05);

// add the path to the network

network.addPath(path);

Notice that the path has automatically received a unique ID (a sequential number), which you
can override if you want. Note also the computeGeometry() method generates a geometry object that
will make it easy to display the resulting path graphically on a map.

The addPath() method adds the path only into the memory-resident copy of the network. To store
the path in the database tables, you still need to use the NetworkManager.writeNetwork() method.

The path returned by the shortestPath() method is sufficient to find a route through a water or
electricity network. The list of the pipes traversed is sufficient to locate the network elements (the
pipes and valves). For a road network, it will list the street segments traversed, in the right order.

Finding the Nearest Neighbors
Another common network analysis operation is to find the nearest node(s) to a starting node. This
is similar to the SDO_NN spatial operator, with the major difference being that the SDO_NN operator
locates the nearest neighbors based on straight-line distances (in other words, ignoring any road
travel constraints), whereas the nearestNeighbors() method follows the network links.

An example of the use of the nearestNeighbors() method is to find the gas station nearest to
your current location. The SDO_NN operator will happily point you to a station that is right across
a canal, with no bridge in sight.

The code in Listing 10-21 finds the two nearest nodes from node N4 on the undirected network
UNET. The nearestNeighbors() method returns an array of Path objects. Not only does it tell you
who the nearest nodes are, but it also tells you how to reach them.

Listing 10-21. Using the nearestNeighbors() Method

// Find the two nearest neighbors of node N4

Network testNet = uNet;

startNodeId = 4;

numNeighbors = 2;

Path[] pathArray =

NetworkManager.nearestNeighbors (testNet, startNodeId, numNeighbors);

// Display the resulting paths

System.out.println (" " + pathArray.length + " nearest neighbors of node "

+ startNodeId + " in network " + testNet.getName());

for (int i = 0; i < pathArray.length; i++)

{

Path path = pathArray[i];

System.out.println(" node " + path.getEndNode().getID() +

", path cost " + path.getCost());

}

CHAPTER 10 ■ NETWORK MODELING374

8997ch10.qxd 9/28/07 10:07 AM Page 374

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Running the code in Listing 10-21 gives the following results, which are illustrated in Figure 10-13:

2 nearest neighbors of node 4 in network UNET

node 5, path cost 1.0

node 7, path cost 1.5

Figure 10-13. The two nearest nodes to node N4 (undirected network)

Performing the same operation on the directed network DNET (from Figure 10-10) gives the
following results, which are illustrated in Figure 10-14:

2 nearest neighbors of node 4 in network DNET

node 7, path cost 1.5

node 8, path cost 3.5

Figure 10-14. The two nearest nodes to node N4 (directed network)

The directions on the network links change the results; node N5 is no longer the nearest.

Finding All Nodes Within Some Distance
Another common network analysis operation selects nodes based on the distance that separates
them from a starting node. This is comparable to the SDO_WITHIN_DISTANCE spatial operator, with the
difference being that SDO_WITHIN_DISTANCE uses straight-line distances, whereas the withinCost()
method uses distances along the network.

A typical example of using the withinCost() method is to find the network nodes (road inter-
sections) that are within a certain driving distance or driving time from a given store. The polygon
that includes all those points represents the traction zone of the store. It would not include customers
who are directly across a river from the store but have no means to cross the river because the near-
est bridges are far away. Multiple analyses using different driving times produce polygons that represent
isochrones (in other words, zones that are at the same distance [in time] from a location).

CHAPTER 10 ■ NETWORK MODELING 375

8997ch10.qxd 9/28/07 10:07 AM Page 375

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The code in Listing 10-22 finds the nodes that are at a distance of less than three “cost units”
from node N4 on the UNET network. Just like nearestNeighbors(), the withinCost() method returns
an array of Path objects.

Listing 10-22. Using the withinCost() Method

// Find nodes that are less than or equal to 3 'cost units' from node N2

Network testNet = uNet;

startNodeId = 2;

maxCost = 3;

Path[] pathArray =

NetworkManager.withinCost (testNet, startNodeId, maxCost);

// Display the resulting paths

System.out.println (" " + pathArray.length + " nodes from node "

+ startNodeId + " in network " + testNet.getName() +

" within a cost of " + maxCost + ": ");

for (int i = 0; i < pathArray.length; i++)

{

Path path = pathArray[i];

System.out.println(" node " + path.getEndNode().getID() +

", path cost " + path.getCost());

}

The output from running the code in Listing 10-22 is as follows:

4 nodes from node 2 in network UNET within a cost of 3.0:

node 1, path cost 1.0

node 3, path cost 2.0

node 6, path cost 3.0

node 7, path cost 3.0

Figure 10-15 shows the results graphically.

Figure 10-15. Nodes less than three “cost units” from node N2 (undirected network)

Performing the same operation on the directed network DNET gives the following results, as
shown in Figure 10-16:

2 nodes from node 2 in network DNET within a cost of 3.0:

node 1, path cost 1.0

node 7, path cost 3.0

CHAPTER 10 ■ NETWORK MODELING376

8997ch10.qxd 9/28/07 10:07 AM Page 376

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 10-16. Nodes less than three “cost units” from node N2 (directed network)

Traveling Salesperson Problem
A traveling salesperson visits many customers in a day. The customers are spread out geographi-
cally. The salesperson really does not want to go crisscrossing the country from one visit to the
other. The salesperson does not want to waste unnecessary time driving up and down roads. The
salesperson wants to visit customers in the most optimal order so as to minimize travel time.

The tspPath() method is available to solve the traveling salesperson problem (TSP). You pass it
the list of the nodes to visit, and the method returns the shortest path that passes through all the nodes
you specified. You can optionally specify that you want to return to your starting point.

You also need a way to get the list of nodes to visit in the order proposed. Of course, they are all
in the returned Path object, but they are mixed with all the nodes that you traverse on the way. The
getTspNodeOrder () method will return the nodes on the TSP in the right order.

The following code obtains the optimal route for an example trip on network UNET. We start at
node N7 and need to visit nodes N2, N3, and N5. Then we come back to N7. Listing 10-23 shows
how to use the tspPath() method.

Listing 10-23. Using the tspPath() Method

// Traveling Salesperson Problem: nodes N7, N2, N3, N5, then back to N7

Network testNet = uNet;

int[] nodeIds = {7,2,3,5};

boolean isClosed = true;

boolean useExactCost = true;

Path tspPath = NetworkManager.tspPath (testNet, nodeIds, isClosed,

useExactCost, null);

// Display the resulting path

Link[] linkArray = tspPath.getLinkArray();

System.out.println (" Path cost: " + tspPath.getCost());

System.out.println (" Number of links: "+ tspPath.getNoOfLinks());

System.out.println (" Simple path? "+ tspPath.isSimple());

for (int i = 0; i < linkArray.length; i++)

System.out.println (" Link " + linkArray[i].getID() + "\t"

+ linkArray[i].getName()

+ "\t(cost: " + linkArray[i].getCost() + ")");

// Display the visitation order

Node[]visitedNodes = tspPath.getTspNodeOrder();

System.out.println (" Actual node visitation order : ");

for (int i = 0; i < visitedNodes.length; i++)

System.out.println (" Node " + visitedNodes [i].getID() + "\t" +

visitedNodes [i].getName());

CHAPTER 10 ■ NETWORK MODELING 377

8997ch10.qxd 9/28/07 10:07 AM Page 377

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The result of executing the code in Listing 10-23 is as follows:

Path cost: 9.5

Number of links: 7

Simple path? true

Link 8 L8 (cost: 1.5)

Link 9 L9 (cost: 1.0)

Link 10 L10 (cost: 1.0)

Link 3 L3 (cost: 1.0)

Link 2 L2 (cost: 2.0)

Link 1 L1 (cost: 1.0)

Link 7 L7 (cost: 2.0)

Actual node visitation order :

Node 7 N7

Node 5 N5

Node 3 N3

Node 2 N2

Node 7 N7

Figure 10-17 shows the path chosen. The large circles are the nodes to visit. The square (N7) is
our starting and ending point.

Figure 10-17. Solution for the TSP

Let’s try the same operation on the directed network DNET. We get a different path, which is
expected since we now have to consider the one-way links. Here are the results, with the path
shown in Figure 10-18:

Path cost: 10.0

Number of links: 7

Simple path? true

Link -6 L6 (cost: 2.0)

Link 11 L11 (cost: 1.0)

Link 10 L10 (cost: 1.0)

Link -3 L3 (cost: 1.0)

Link 2 L2 (cost: 2.0)

Link 1 L1 (cost: 1.0)

Link 7 L7 (cost: 2.0)

Actual node visitation order :

Node 7 N7

Node 5 N5

Node 3 N3

Node 2 N2

Node 7 N7

CHAPTER 10 ■ NETWORK MODELING378

8997ch10.qxd 9/28/07 10:07 AM Page 378

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 10-18. TSP and one-way streets

Notice that there’s one important difference between the two examples: the nodes are not vis-
ited in the same order. In the first case, we actually visit the nodes in the order in which they are
listed in the nodeIds parameter, but that is just because this happens to match the optimal path. In
the second case, however, the visitation order is different. We start at node N7 and then visit nodes
N5, N3, and N2 before coming back to node N7.

Discovering Reachability
A different kind of problem is not to find the best path between two nodes but simply to determine
whether there indeed exists a path between the nodes. This operation is most useful in utility net-
works and “what if?” analyses. For example, what happens if you close this valve or if this circuit
breaker trips? Will some customers no longer be serviced?

There are three methods available to determine reachability:

• findReachableNodes() returns all nodes that can be reached from the source node.

• findReachingNodes() returns all nodes that can reach the target node.

• isReachable() checks whether the source node can reach the target node.

Consider the network shown in Figure 10-19. It is the same network you have been playing
with (UNET), except that two links are no longer accessible.

Figure 10-19. UNET network with two links disabled

The two links may have been removed from the network entirely, but a more likely scenario is
that they still exist but are no longer active (in other words, the ACTIVE attribute has been set to 'N').
For example, they could represent roads that are closed for repairs.

CHAPTER 10 ■ NETWORK MODELING 379

8997ch10.qxd 9/28/07 10:07 AM Page 379

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can change the status of a link or node by updating the network tables in the database:

update unet_links set active = 'N' where link_id in (7,3);

commit;

You can also change the state directly on the memory-resident copy:

testNet.getLink(7).setState(false);

testNet.getLink(3).setState(false);

The code in Listing 10-24 illustrates the use of the findReachableNodes() method. The method
returns an array of Node objects.

Listing 10-24. Using the findReachableNodes() Method

// Find nodes that can be reached from node N4

Network testNet = uNet;

nodeId = 4;

Node[] nodeArray = NetworkManager.findReachableNodes (testNet, nodeId);

// Display the results

System.out.println (" " + nodeArray.length + " nodes in network "

+ testNet.getName() + " are reachable from node " + nodeId);

for (int i = 0; i < nodeArray.length; i++)

System.out.println(" node " + nodeArray[i].getID());

The code in Listing 10-24 produces the following results. Note that nodes N1, N2, and N3 are
not reachable because of the inactive links L3 and L7.

5 nodes in network UNET are reachable from node 4

node 9 N9

node 8 N8

node 7 N7

node 6 N6

node 5 N5

The findReachingNodes() method works the same way.
In a large, fully connected network, those methods can return many nodes. As a matter of fact,

they would return all nodes in the network, since they are all ultimately connected to one another.
Such a result would not be very useful.

So, both methods let you limit the scope of the search by including either (or both) of the fol-
lowing parameters:

• A rectangular geographical area: Only those nodes inside the rectangle will be searched for
reachability.

• A maximum search depth, as a number of links to traverse: Only those nodes less than the
specified number of links away from the search node are considered.

Minimum Cost Spanning Tree
A spanning tree is a tree that connects all nodes in a graph. A minimum cost spanning tree (MCST) is
the spanning tree with the minimum cost. Practically speaking, it tells you how you should wire
together all nodes in your network at the lowest cost.

CHAPTER 10 ■ NETWORK MODELING380

8997ch10.qxd 9/28/07 10:07 AM Page 380

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Typical applications are in the design of actual networks (utilities, telecommunications, trans-
portation, and so on). For example, designing a gas pipeline in such a way that it follows an MCST
approach can save a great deal money in equipment, construction, and operation costs.

There are two methods for obtaining the MCST of a network: mcstLinkArray() and mcst(). The
mcstLinkArray() method returns an array containing all the Link objects in the tree. The mcst()
method returns a new Network object that contains only those links and nodes that form the span-
ning tree. This is helpful because you can now use this new network for performing direct searches,
such as shortest paths or nearest neighbors. You can write this new network to the database and use
it for further analyses.

The code in Listing 10-25 gets the MCST for the undirected test network (UNET).

Listing 10-25. Using the mcst() Method

// Compute the Minimum Spanning Cost Tree

Network mcstNet = NetworkManager.mcst(uNet);

// Inspect the resulting network

System.out.println (" Nodes: " + mcstNet.getNoOfNodes());

System.out.println (" Links: " + mcstNet.getNoOfLinks());

// Display MCST network links

Link[] linkArray = mcstNet.getLinkArray();

double treeCost = 0;

for (int i = 0; i < linkArray.length; i++) {

System.out.println (" Link " + linkArray[i].getID() + "\t"

+ linkArray[i].getName()+ "\t"

+ linkArray[i].getCost());

treeCost = treeCost + linkArray[i].getCost();

}

System.out.println (" Total cost: \t\t" + treeCost);

The results of the code in Listing 10-25 are as follows. Figure 10-20 shows the resulting tree.

Nodes: 9

Links: 8

Link 2 L2 2.0

Link 4 L4 1.0

Link 8 L8 1.5

Link 9 L9 1.0

Link 1 L1 1.0

Link 3 L3 1.0

Link 10 L10 1.0

Link 5 L5 1.0

Total cost: 9.5

CHAPTER 10 ■ NETWORK MODELING 381

8997ch10.qxd 9/28/07 10:07 AM Page 381

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 10-20. MCST on network UNET

Multiple Path Searches
You have two more methods to examine: allPaths() and shortestPaths(). The allPaths() method
returns all possible paths between two nodes, and the shortestPaths() method (notice the plural)
returns the shortest paths from one node to all the other nodes. Both methods return an array of
Path objects.

Finding All Paths Between Two Nodes

Obviously, on a large, fully connected network, the allPaths() method could return a very large
number of responses, and the computation could take a long time. So, this method lets you limit
the search space by specifying one or more of the following bounds:

• Depth: Return only the solutions that have less than the specified number of links.

• Cost: Return only the solutions whose cost is less than the specified value.

• Solutions: Return only the N best solutions.

The example in Listing 10-26 illustrates the search for all paths between nodes N3 and N4 on
the undirected network (UNET). The bounds are set to a high value to get all possible solutions.

Listing 10-26. Using the allPaths() Method

// Get all paths between nodes 3 and 4

maxDepth = 1000;

maxCost = 1000;

maxSolutions = 1000;

Path[] pathArray =

NetworkManager.allPaths(uNet, 3, 4, maxDepth, maxCost, maxSolutions);;

// Display the solutions found

for (int i = 0; i < pathArray.length; i++)

{

Path p = pathArray[i];

int numLinks = p.getNoOfLinks();

double cost = p.getCost();

System.out.println (" path["+i+"] links:" + numLinks + ", path cost "+ cost);

}

CHAPTER 10 ■ NETWORK MODELING382

8997ch10.qxd 9/28/07 10:07 AM Page 382

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The results of the code in Listing 10-26 are as follows:

path[0] links:3, path cost 3.0

path[1] links:5, path cost 5.0

path[2] links:4, path cost 6.5

path[3] links:5, path cost 6.5

path[4] links:5, path cost 6.5

path[5] links:6, path cost 9.0

path[6] links:8, path cost 11.0

To limit the results to only those solutions with four or fewer links, set the maxDepth parameter
in the code to 4. The results then become as follows:

path[0] links:3, path cost 3.0

path[1] links:4, path cost 6.5

Finding All Shortest Paths from a Node

The shortestPaths() method returns the shortest path between a chosen node and each of the
reachable nodes in the network. It takes no search restrictions, so it will return one solution for each
reachable node. The results are ordered by cost, with the “nearest” nodes returned first.

Listing 10-27 shows how to use this method on node N4 in network UNET.

Listing 10-27. Using the shortestPaths() Method

// Get the shortest paths between node 4 and all other nodes

Path[] pathArray = NetworkManager.shortestPaths(uNet, 4);

for (int i = 0; i < pathArray.length; i++)

{

Path p = pathArray[i];

int endNodeId = p.getEndNode().getID();

int numLinks = p.getNoOfLinks();

double cost = p.getCost();

System.out.println (" path["+i+"] to node " + endNodeId + ", links:"

+ numLinks + ", path cost "+ cost);

}

The results of Listing 10-27 are as follows:

path[0] to node 5, links:1, path cost 1.0

path[1] to node 7, links:1, path cost 1.5

path[2] to node 6, links:2, path cost 2.0

path[3] to node 8, links:2, path cost 2.0

path[4] to node 3, links:3, path cost 3.0

path[5] to node 9, links:3, path cost 3.0

path[6] to node 1, links:2, path cost 3.5

path[7] to node 2, links:3, path cost 4.5

On a complex, fully connected network, this method will return a large number of results. You
need a way to limit the number of results. You can do this using network constraints.

CHAPTER 10 ■ NETWORK MODELING 383

8997ch10.qxd 9/28/07 10:07 AM Page 383

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Limiting the Search Space: The SystemConstraint Class
The SystemConstraint class is a specific example of a network constraint. It lets you define a set of
constraints to limit the search space for any of the methods you have seen so far.

Specifically, the SystemConstraint class lets you define the following constraints:

• MaxCost: The maximum cost.

• MaxDepth: The maximum search depth (the number of links in the paths).

• MaxDistance: The maximum geographical distance from the start node and any candidate
node (in other words, consider only those nodes within that distance from that start node).

• MaxMBR: Consider only those nodes that are inside the MBR.

• MustAvoidLinks: A list of links to avoid.

• MustAvoidNodes: A list of nodes to avoid.

To use the class, just create a SystemConstraint object, and configure it with one or more of the
preceding constraints using specific methods such as setMaxDepth(). You can then pass it as the last
parameter to any of the analysis methods you have seen so far, with the exception of the mcst()
method.

Listing 10-28 shows how to set up a constraint that avoids node N5 and limits the cost of any
solution to ten “cost units.” Then use the shortestPath() method to find the optimal path between
nodes N3 and N4, and pass it the SystemConstraint just defined.

■Note When you set up a list of nodes to avoid, the links associated to those nodes are automatically put on the
list of links to avoid.

Listing 10-28. Using the SystemConstraint Class

// Set up a system constraint with a list of nodes to avoid and a cost limit

int[] avoidNodes = {5}; // Nodes to avoid

SystemConstraint myConstraint = new SystemConstraint (uNet, avoidNodes);

myConstraint.setMaxCost(10);

// Get shortest path from node N4 to N3 considering the constraint

Path path = NetworkManager.shortestPath (uNet, 3, 4, myConstraint);

// Show path cost and number of links

System.out.println ("Path cost: " + path.getCost());

System.out.println ("Number of links: "+ path.getNoOfLinks());

System.out.println ("Simple path? "+ path.isSimple());

// Show the links traversed

System.out.println ("Links traversed:");

Link[] linkArray = path.getLinkArray();

for (int i = 0; i < linkArray.length; i++)

System.out.println (" Link " + linkArray[i].getID() + "\t"

+ linkArray[i].getName() +"\t" + linkArray[i].getCost());

// Show the nodes traversed

System.out.println (" Nodes traversed:");

Node [] nodeArray = path.getNodeArray();

for (int i = 0; i < nodeArray.length; i++)

System.out.println (" Node " + nodeArray[i].getID() + "\t"

CHAPTER 10 ■ NETWORK MODELING384

8997ch10.qxd 9/28/07 10:07 AM Page 384

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

+ nodeArray[i].getName() +"\t" + nodeArray[i].getCost());

Because node N5 is now prohibited, you get a different answer from the one in Listing 10-20.
Figure 10-21 shows the new path.

Path cost: 6.5

Number of links: 4

Simple path? true

Links traversed:

Link 8 L8 1.5

Link 7 L7 2.0

Link 1 L1 1.0

Link 2 L2 2.0

Nodes traversed:

Node 4 N4 0.0

Node 7 N7 0.0

Node 1 N1 0.0

Node 2 N2 0.0

Node 3 N3 0.0

Figure 10-21. The path from node N4 to node N3, avoiding node N5

Advanced Analysis: Network Constraints
The analyses you have performed so far consider only relatively simple variables: network connec-
tivity, link directions, node and link state, and costs. However, many real-life scenarios require more
sophisticated choices.

Route calculations on a road network need to consider restricted maneuvers. One-way streets
can easily be modeled using directed links. The dynamic aspect of the road network (such as streets
closed because of repairs) can be modeled using the active/inactive states.

But some restrictions may be seasonal or time dependent—for instance, a mountain pass is open
only during the summer months, and a ferry operates only at certain times of year. Other restrictions
may be legal, such as a left turn on a busy boulevard or a U-turn. Those restrictions may apply only at
certain times (for example, the left turn is prohibited during peak traffic hours but allowed otherwise).

Finally, the restrictions may apply differently to different classes of vehicles. For example, a pri-
vate access road cannot be used to carry public traffic, but it is always open to emergency vehicles.
Or a low tunnel or weak bridge prevents trucks but not cars from using a road. Or on a canal network,
barges can travel only on those sections that are wide and deep enough, whereas small boats can go
anywhere.

Similar issues exist for other kinds of networks. In an electrical or telecommunications network,
nodes may represent complex equipment whose behavior is more sophisticated than a simple
On/Off status.

CHAPTER 10 ■ NETWORK MODELING 385

8997ch10.qxd 9/28/07 10:07 AM Page 385

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can implement those kinds of constraints using the NetworkConstraint interface, specifi-
cally with the isSatisfied() method. This method is passed an AnalysisInfo object that provides
sufficient context information for you to decide whether to accept or reject the proposed link. Use
one of the methods shown in Table 10-10 to find out the current state of the solution being computed.

Table 10-10. AnalysisInfo Methods

Method Meaning

getCurrentCost() Returns the current path cost

getCurrentDepth() Returns the current path depth

getCurrentNode() Returns the current node

getCurrentLink() Returns the current link, that is, the link leading to the current node

getNextLink() Returns the next link, that is, the link being considered

getNextNode() Returns the next node, that is, the node at the end of the link being
considered

getNextCost() Returns the path cost including the proposed link

getNextDepth() Returns the path depth including the proposed link (same as
getCurrentDepth()+1)

getPathLinkVec() Returns the current path links as a Vector

getPathNodeVec() Returns the current path nodes as a Vector

getStartNode() Returns the start node

■Caution The meaning of methods getCurrentCost() and getCurrentDepth() has changed in Oracle
Database 11g. In Oracle Database 10g, both methods included the next link (the link being considered). Now they
include only the links in the path determined when your constraint method is called. To get the cost and depth
including the link being considered, use getNextCost() and getNextDepth().

If you accept to use the proposed link, then return true. Return false to indicate that the next
link should be skipped.

We will now illustrate how to use network constraints with a simple example. Suppose that the
UNET network represents a canal network. Each link in our network has a link_level column, which
you can use to define the class of each canal as a number from 1 to 3. A class 1 canal is wide and
deep; any boat can travel through such a canal. Class 2 canals are narrower and not as deep as class 1
canals. Class 3 canals are still smaller and can accept only small boats.

Boats also have a size. Size 1 boats are large and heavy, and they can travel only through class 1
canals. Size 2 boats are smaller than size 1 boats, and they can travel through class 1 or class 2 canals.
Size 3 boats are smaller still and can travel on any class of canal (1, 2, or 3).

The code in Listing 10-29 sets the link_level column in the unet_links table. Figure 10-22
shows the resulting UNET network.

CHAPTER 10 ■ NETWORK MODELING386

8997ch10.qxd 9/28/07 10:07 AM Page 386

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 10-22. Network with multiple link levels

Listing 10-29. Setting Link Levels for the UNET Network

SQL> UPDATE unet_links SET link_leveL = 1 WHERE link_id IN (1, 2, 3, 5, 6, 7, 10);

SQL> UPDATE unet_links SET link_leveL = 2 WHERE link_id IN (4, 11);

SQL> UPDATE unet_links SET link_level = 3 WHERE link_id IN (8, 9);

SQL> COMMIT;

You can now write a network constraint that will make sure that boats travel only through the
canals that can accommodate them. Listing 10-30 shows the code for the LinkLevelConstraint class.

Listing 10-30. Network Constraint

import java.util.*;

import oracle.spatial.network.*;

/**

* The following network constraint assumes that

* 1. each link has a link level (stored as LINK_LEVEL in { 1,2,3 })

* 2. for a given target level (in { 1,2,3 }), the following must hold:

* target Level 1 can only travel on link Level 1

* target Level 2 can travel on link Level 1 and 2

* target Level 3 can travel on link Level 1, 2, and 3

*/

public class LinkLevelConstraint implements NetworkConstraint {

int targetLevel = 0; // Default; no restriction

public LinkLevelConstraint (int newTargetLevel) {

targetLevel = newTargetLevel;

}

public boolean requiresPathLinks() {

return false ;

}

CHAPTER 10 ■ NETWORK MODELING 387

8997ch10.qxd 9/28/07 10:07 AM Page 387

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

public boolean isSatisfied (AnalysisInfo info) {

if (targetLevel == 0) // no restriction

return true ;

Link link = info.getNextLink() ; // potential link candidate

int linkLevel = link.getLinkLevel(); // get link Level

if (link != null && targetLevel >= linkLevel)

return true;

else

return false;

}

}

You can now use the network constraint just created to find the shortest path from node N7 to
node N5 on the modified UNET network, as shown in Listing 10-31.

Listing 10-31. Using the Network Constraint

// Set up network constraint

int targetLevel = 1;

LinkLevelConstraint netConstraint = new LinkLevelConstraint (targetLevel);

// Get shortest path from node N7 to N5

Network testNet = uNet;

startNodeId = 7;

endNodeId = 5;

Path path = NetworkManager.shortestPath (testNet, startNodeID ,endNodeId);

// Show path cost and number of links

System.out.println ("Path cost: " + path.getCost());

System.out.println ("Number of links: "+ path.getNoOfLinks());

System.out.println ("Simple path? "+ path.isSimple());

// Show the links traversed

System.out.println ("Links traversed:");

Link[] linkArray = path.getLinkArray();

for (int i = 0; i < linkArray.length; i++)

System.out.println (" Link " + linkArray[i].getID() + "\t"

+ linkArray[i].getName() +"\t"

+ linkArray[i].getLinkLevel() + "\t"

+ linkArray[i].getCost());

// Show the nodes traversed

System.out.println (" Nodes traversed:");

Node [] nodeArray = path.getNodeArray();

for (int i = 0; i < nodeArray.length; i++)

System.out.println (" Node " + nodeArray[i].getID() + "\t"

+ nodeArray[i].getName() +"\t"

+ nodeArray[i].getCost());

You can now try to find the shortest path between nodes N7 and N5 with various settings of the
targetLevel parameter. You should see the following results. Remember that the targetLevel value
passed to the constraint represents the size of the boat; the smaller the value, the larger the boat. With
targetLevel set to 1 (in other words, for a large boat), the result of running the code in Listing 10-31
is as follows. The path is long because the boat can travel only through the largest (class 1) canals.

CHAPTER 10 ■ NETWORK MODELING388

8997ch10.qxd 9/28/07 10:07 AM Page 388

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Path cost: 7.0

Number of links: 5

Simple path? true

Links traversed:

Link 7 L7 1 2.0

Link 1 L1 1 1.0

Link 2 L2 1 2.0

Link 3 L3 1 1.0

Link 10 L10 1 1.0

Nodes traversed:

Node 7 N7 0.0

Node 1 N1 0.0

Node 2 N2 0.0

Node 3 N3 0.0

Node 6 N6 0.0

Node 5 N5 0.0

Running the same code with the targetLevel set to 2, which indicates a medium boat, you
should get the following results. The path is shorter, indicating the boat can travel through class 1
and class 2 canals.

Path cost: 3.0

Number of links: 2

Simple path? true

Links traversed:

Link 6 L6 1 2.0

Link 11 L11 2 1.0

Nodes traversed:

Node 7 N7 0.0

Node 8 N8 0.0

Node 5 N5 0.0

With targetLevel set to 3 (for a small boat), you can travel on any link:

Path cost: 2.5

Number of links: 2

Simple path? true

Links traversed:

Link 8 L8 3 1.5

Link 9 L9 3 1.0

Nodes traversed:

Node 7 N7 0.0

Node 4 N4 0.0

Node 5 N5 0.0

The same constraint could be used for a road network, where the link_level could be used to
indicate the type of vehicles that can pass a link. Level 3 links could be used to indicate bridges or
tunnels that heavy trucks cannot use.

More sophisticated constraints, such as time-based turn restrictions, need additional informa-
tion. That information can be fetched from the database when the network constraint object is
instantiated.

If you are curious about the way the network search algorithms operate, you can write a net-
work constraint that does nothing but print the information provided in its input AnalysisInfo
object. This will show you the “reasoning” of the search process: the links it tries and the order it
tries them.

Listing 10-32 shows the code of such a constraint, aptly called NetworkTraceConstraint.

CHAPTER 10 ■ NETWORK MODELING 389

8997ch10.qxd 9/28/07 10:07 AM Page 389

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 10-32. Network Constraint for Tracing and Debugging

/*

This shows how to use the NetworkConstraint mechanism to trace and

observe the search process used by the network API.

It does not alter the search process: all it does is to dump out

context information whenever it is called.

*/

import java.util.*;

import oracle.spatial.network.*;

public class NetworkTraceConstraint implements NetworkConstraint {

private boolean firstCall = true;

public boolean requiresPathLinks() {

return false ;

}

public boolean isSatisfied (AnalysisInfo info) {

this.dumpContext(info);

return true;

}

private void dumpContext(AnalysisInfo info) {

Link cl = info.getCurrentLink();

Node cn = info.getCurrentNode();

Link nl = info.getNextLink();

Node nn = info.getNextNode();

String dbg = "";

if (cn != null)

dbg += "# " + cn.getID();

else

dbg += "# NULL";

dbg += "\t" + info.getCurrentCost();

dbg += "\t" + info.getCurrentDepth();

dbg += "\t" + info.getCurrentDuration();

if (nl != null)

dbg += "\t" + nl.getID();

else

dbg += "\tNULL";

if (nn != null)

dbg += "\t" + nn.getID();

else

dbg += "\tNULL";

dbg += "\t" + info.getNextCost();

dbg += "\t" + info.getNextDepth();

dbg += "\t" + info.getNextDuration();

if (firstCall) {

System.out.println ("# Trace level "+traceLevel);

System.out.println ("# ➥
CNode\tCCost\tCDepth\tCDur\tNLink\tNnode\tNCost\tNDepth\tNDur");

firstCall = false;

}

System.out.println (dbg);

}

}

CHAPTER 10 ■ NETWORK MODELING390

8997ch10.qxd 9/28/07 10:07 AM Page 390

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

To illustrate how this constraint works, we will use it to get the shortest path between nodes 7
and 5 on the UNET network, like we did in the code in Listing 10-31. The result of running this code
will be as follows:

CNode CCost CDepth CDur NLink Nnode NCost NDepth NDur

7 0.0 0 0.0 7 1 2.0 1 0.0

7 0.0 0 0.0 6 8 2.0 1 0.0

7 0.0 0 0.0 8 4 1.5 1 0.0

4 1.5 1 0.0 9 5 2.5 2 0.0

Path cost: 2.5

Number of links: 2

Simple path? true

Links traversed:

Link 8 L8 1 1.5

Link 9 L9 1 1.0

Nodes traversed:

Node 7 N7 0.0

Node 4 N4 0.0

Node 5 N5 0.0

The trace shows that we started from node 7 (our start node) and then checked the links lead-
ing out from node 7: links 7, 6 and 8. We pick the latter, leading to node 4, from which we pick link 9,
which takes us to node 5, our goal.

If you want, you can now try this technique with other network searches. For example, try it with
the shortestPathDijkstra() method, which uses Dijkstra’s algorithm instead of the A* algorithm.

Network Structures: The Network, Node, Link, and Path Classes
The Network class stores and maintains networks. The classes Node, Link, and Path define individual
network elements.

Network Class
The methods of the Network class let you select, add, modify, and delete network elements, as well
as find out general information about the network.

A Network object is either created from scratch using the NetworkFactory class or instantiated
from the database using the readNetwork() method of the NetworkManager class.

Note that you cannot instantiate the Node, Link, and Path classes (they are actually interfaces).
To create any of them, use the proper methods of the NetworkFactory class.

Maintaining the Network

The addNode(), addLink(), and addPath() methods add node, link, and path elements, respectively,
to a network. Their inputs are Node and Link objects produced by the NetworkFactory class. The Path
objects are typically produced by analysis functions of the NetworkManager class.

For example, the following adds node n1 to network graph:

graph.addNode(n1);

The deleteNode(), deleteLink(), and deletePath() methods remove elements from a network.
You can pass them either a Node, Link, or Path object or their numeric identifier.

The setState() method allows you to turn network elements “on” and “off.” The method alters
the ACTIVE state of the link of node. An inactive link or node is not considered by any network analy-
sis operation.

CHAPTER 10 ■ NETWORK MODELING 391

8997ch10.qxd 9/28/07 10:07 AM Page 391

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The Network class remembers the changes you make. When you write it back to the database
(using the writeNetwork() method of the NetworkManager class), only the changes are applied to the
database. The method performs an automatic commit.

Extracting Network Elements

A large number of methods extract elements from a network. Examples of these elements are single
nodes, links, paths (based on their identifier), or collections of nodes or links based on various crite-
ria: all active nodes or links; all elements at a certain hierarchy level; all elements of a certain type;
or simply all of the nodes, links, and paths in the network.

You can also extract the entire network at a given hierarchy level or the network contained in
a given rectangular window.

Finding Information About the Network

Methods are available to extract metadata information: name, type, and name of the network struc-
tures in the database (table and column names).

Other methods return element counts: the number of nodes, links, or paths in the network;
a count of those elements at a certain hierarchy level; or only the active elements.

Yet more methods return the current maximum identifier for nodes, links, and paths. Since
identifiers must be unique, this is useful to generate new identifiers for new elements.

Node and Link Classes
These classes are used to describe elements in the network. A number of get and set methods enable
you to obtain details on each element and modify it. The major get methods on the Node and Link
classes are shown in Table 10-11 and Table 10-12. Set methods (not listed here) allow you to modify
nodes and links.

Table 10-11. Main get Methods on the Node Object

Method Meaning

getCost() Returns the stored cost for the node

getID() Returns the unique numeric identifier of the node (from the column
NODE_ID in the NODE table)

getName() Returns the name of the node (from the column NODE_NAME in the NODE
table)

isActive() Returns true if the node is active (derived from the column ACTIVE in
the NODE table)

getGeometry() Returns the geometric point for the node

getInLinks() Returns an array of the links that terminate at this node

getOutLinks() Returns an array of the links that originate from this node

CHAPTER 10 ■ NETWORK MODELING392

8997ch10.qxd 9/28/07 10:07 AM Page 392

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Table 10-12. Main get Methods on the Link Object

Method Meaning

getCost() Returns the stored cost for the link

getID() Returns the unique numeric identifier of the link (from the column LINK_ID
in the LINK table)

getName() Returns the name of the link (from the column LINK_NAME in the LINK table)

isActive() Returns true if the link is active (derived from the column ACTIVE in the LINK
table)

getLinkLevel() Returns the level of this link (derived from the column LINK_LEVEL in the LINK
table)

getGeometry() Returns the geometric line for the link

getStartNode() Returns the start node for that link

getEndNode() Returns the end node for the link

getCoLink() Returns the colink of the link (in other words, the link that goes in the
opposite direction)

Path Class
Path objects are primarily used to store the results of analysis functions—for example, the result of
the shortestPath() method of the NetworkManager class.

The main method of the Path class is getLinkArray(), which returns a list of all links that com-
pose the path, as an array. Alternate notations return the list of links as an iterator or a vector.

The Path class has many other useful methods:

• The getXxxx() and isXxxx() methods return various information about the path: whether it
is closed, whether it is simple or complex, its total cost and the number of links that com-
pose it, the start and end nodes, and so on. The list goes on and on. Table 10-13 lists the main
methods.

• The path search method contains() finds out whether a path contains a specific Node or Link,
and the getLinkAt() and getNodeAt() methods extract specific path elements.

• The path editing methods are clip(), split(), insertLink(), removeLink(), and concatenate()
(to join two paths).

• The computeGeometry() method computes the geometry of the complete path from the
geometries of all the links that form the path.

Table 10-13. Main get Methods on the Path Object

Method Meaning

getCost() Returns the total computed cost for the path

getNoOfLinks() Returns the total number of links in the path

getLinkArray() Returns an array of the links in the path

getGeometry() Returns the geometric shape of the path

CHAPTER 10 ■ NETWORK MODELING 393

8997ch10.qxd 9/28/07 10:07 AM Page 393

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Creating Networks: The NetworkFactory Class
Use the NetworkFactory class to create new networks and network elements (nodes, links, and
paths). Those elements are transient; the NetworkManager class lets you write them to the database.

Creating Networks
The createLogicalNetwork() and createSDONetwork() methods create an empty network (logical or
spatial). You can optionally specify the names of the tables for storing the network in the database.

For example, the following code creates a new spatial network called NH_ROADS, which is single
level, is directed, and uses an SRID of 8307 and two-dimensional geometries:

Network nhRoads = NetworkFactory.createSDONetwork("NH_ROADS", 1, true, 8307, 2);

The tables for this network will use default names (in other words, NH_ROADS_NODE$).

Creating Network Elements
The createNode(), createLink(), and createPath() methods create nodes, links, and paths. Those
are stand-alone elements. Methods of the Network class enable you to add them to a network.

For example, the following code creates node n1 with the identifier 1. No other information is
given—the node has no cost and no geometry.

Node n1 = NetworkFactory.createNode(1);

The Node and Link classes also provide many methods to connect link and node objects.

Creating Network Tables
Other methods let you create the physical table structures in the database. createNetworkTables()
will create all the tables for a network (using the names you specified when creating the network or
using default names if you did not specify any). Methods such as createNodeTable() let you create
individual tables.

The preceding methods create empty tables. To actually populate the tables with the network
data, use the writeNetwork() method of the NetworkManager class.

Network Creation Example
The code in Listing 10-33 illustrates how to create and populate a network using the Java interface.
It produces the same network as the simple undirected logical network (UNET) illustrated in
Figure 10-8 that was defined and created in the database using SQL statements in Listings 10-16
and 10-17.

Listing 10-33. Creating a Network Using the Java API

// Create the network object

String networkName = "MY_NET";

Network myNet = NetworkFactory.createLogicalNetwork(

networkName, // networkName

1, // noOfHierarchyLevels

true, // isDirected

networkName+"_NODE", // nodeTableName

"COST", // nodeCostColumn

networkName+"_LINK", // linkTableName

"COST", // linkCostColumn

CHAPTER 10 ■ NETWORK MODELING394

8997ch10.qxd 9/28/07 10:07 AM Page 394

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

networkName+"_PATH", // pathTableName

networkName+"_PLINK" // pathLinkTableName

);

// Create the nodes

Node n1 = NetworkFactory.createNode (1, "N1");

Node n2 = NetworkFactory.createNode (2, "N2");

Node n3 = NetworkFactory.createNode (3, "N3");

Node n4 = NetworkFactory.createNode (4, "N4");

Node n5 = NetworkFactory.createNode (5, "N5");

Node n6 = NetworkFactory.createNode (6, "N6");

Node n7 = NetworkFactory.createNode (7, "N7");

Node n8 = NetworkFactory.createNode (8, "N8");

Node n9 = NetworkFactory.createNode (9, "N9");

// Create the links

Link l1 = NetworkFactory.createLink (1, "L1", n1, n2, 1);

Link l2 = NetworkFactory.createLink (2, "L2", n2, n3, 2);

Link l3 = NetworkFactory.createLink (3, "L3", n3, n6, 1);

Link l4 = NetworkFactory.createLink (4, "L4", n6, n9, 1);

Link l5 = NetworkFactory.createLink (5, "L5", n9, n8, 1);

Link l6 = NetworkFactory.createLink (6, "L6", n8, n7, 2);

Link l7 = NetworkFactory.createLink (7, "L7", n7, n1, 2);

Link l8 = NetworkFactory.createLink (8, "L8", n7, n4, 1.5);

Link l9 = NetworkFactory.createLink (9, "L9", n4, n5, 1);

Link l10 = NetworkFactory.createLink (10, "L10", n5, n6, 1);

Link l11 = NetworkFactory.createLink (11, "L11", n5, n8, 1);

// Add the nodes to the network

myNet.addNode (n1);

myNet.addNode (n2);

myNet.addNode (n3);

myNet.addNode (n4);

myNet.addNode (n5);

myNet.addNode (n6);

myNet.addNode (n7);

myNet.addNode (n8);

myNet.addNode (n9);

// Add the links to the network

myNet.addLink (l1);

myNet.addLink (l2);

myNet.addLink (l3);

myNet.addLink (l4);

myNet.addLink (l5);

myNet.addLink (l6);

myNet.addLink (l7);

myNet.addLink (l8);

myNet.addLink (l9);

myNet.addLink (l10);

myNet.addLink (l11);

// Create the network tables in the database

NetworkFactory.createNetworkTables (dbConnection, myNet);

// Write the network (this also writes the metadata)

NetworkManager.writeNetwork (dbConnection, myNet);

CHAPTER 10 ■ NETWORK MODELING 395

8997ch10.qxd 9/28/07 10:07 AM Page 395

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Debugging Network Structures
All classes have a toString() method that formats their content in a readable way. For example, the
following dumps the myNet network just created:

System.out.println (myNet);

and produces the following output:

User Name: [null]

Network Name: [MY_NET]

Network Category: [LOGICAL]

Geometry Type: []

No. Of Hierarchy Levels: [1]

Link Dir. : [DIRECTED]

Node Table : MY_NET_NODE[null]:(DIM:0,SRID:0)

Link Table : MY_NET_LINK[null]:(DIM:0,SRID:0)

LRS Table : null

Path Table : MY_NET_PATH[null]:(DIM:0,SRID:0)

Path-Link Table: MY_NET_PLINK

Link Cost Column: [COST]

Node Cost Column: [COST]

Network Node Table:

NodeID: 2[H:1] , Name: N2, Type: null, Cost: 0.0 InLinks: 1 OutLinks: 2

NodeID: 4[H:1] , Name: N4, Type: null, Cost: 0.0 InLinks: 8 OutLinks: 9

NodeID: 9[H:1] , Name: N9, Type: null, Cost: 0.0 InLinks: 4 OutLinks: 5

NodeID: 8[H:1] , Name: N8, Type: null, Cost: 0.0 InLinks: 5 11 OutLinks: 6

NodeID: 6[H:1] , Name: N6, Type: null, Cost: 0.0 InLinks: 3 10 OutLinks: 4

NodeID: 1[H:1] , Name: N1, Type: null, Cost: 0.0 InLinks: 7 OutLinks: 1

NodeID: 3[H:1] , Name: N3, Type: null, Cost: 0.0 InLinks: 2 OutLinks: 3

NodeID: 7[H:1] , Name: N7, Type: null, Cost: 0.0 InLinks: 6 OutLinks: 7 8

NodeID: 5[H:1] , Name: N5, Type: null, Cost: 0.0 InLinks: 9 OutLinks: 10 11

Network Link Table:

LinkID: 2[H:1] , Name: L2, Type: null, State: true, Cost: 2.0, Level: 1,

StartNode: 2, EndNode: 3,

CoLink ID:none

LinkID: 4[H:1] , Name: L4, Type: null, State: true, Cost: 1.0, Level: 1,

StartNode: 6, EndNode: 9,

CoLink ID:none

LinkID: 9[H:1] , Name: L9, Type: null, State: true, Cost: 1.0, Level: 1,

StartNode: 4, EndNode: 5,

CoLink ID:none

LinkID: 8[H:1] , Name: L8, Type: null, State: true, Cost: 1.5, Level: 1,

StartNode: 7, EndNode: 4,

CoLink ID:none

LinkID: 11[H:1] , Name: L11, Type: null, State: true, Cost: 1.0, Level: 1,

StartNode: 5, EndNode: 8,

CoLink ID:none

LinkID: 6[H:1] , Name: L6, Type: null, State: true, Cost: 2.0, Level: 1,

StartNode: 8, EndNode: 7,

CoLink ID:none

LinkID: 1[H:1] , Name: L1, Type: null, State: true, Cost: 1.0, Level: 1,

StartNode: 1, EndNode: 2,

CoLink ID:none

LinkID: 3[H:1] , Name: L3, Type: null, State: true, Cost: 1.0, Level: 1,

CHAPTER 10 ■ NETWORK MODELING396

8997ch10.qxd 9/28/07 10:07 AM Page 396

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

StartNode: 3, EndNode: 6,

CoLink ID:none

LinkID: 10[H:1] , Name: L10, Type: null, State: true, Cost: 1.0, Level: 1,

StartNode: 5, EndNode: 6,

CoLink ID:none

LinkID: 7[H:1] , Name: L7, Type: null, State: true, Cost: 2.0, Level: 1,

StartNode: 7, EndNode: 1,

CoLink ID:none

LinkID: 5[H:1] , Name: L5, Type: null, State: true, Cost: 1.0, Level: 1,

StartNode: 9, EndNode: 8,

CoLink ID:none

Analyzing Networks Using the PL/SQL API
Instead of the Java API, you can also use a PL/SQL API. In other words, you can perform almost all
the network searches we discussed in previous sections by calling various PL/SQL functions and
procedures. Those functions and procedures are in the SDO_NET_MEM package.

The SDO_NET_MEM package is really a wrapper over the Java API; each function and procedure in
the package invokes a method on a Java object, which runs in the Java virtual machine embedded in
the Oracle 11g database. The procedures and functions are grouped and named in such a way that
you can easily relate them with their Java equivalents. For example, here is how you can get the
shortest path between two nodes in Java:

Path path = NetworkManager.shortestPath (testNet, startNodeID ,endNodeId);

The equivalent in PL/SQL will look like this:

path_id := sdo_net_mem.network_manager.shortest_path

(network_name, start_node_id, end_node_id);

Table 10-14 summarizes the main Java classes and their PL/SQL equivalents.

Table 10-14. Network Java API Classes and Their PL/SQL Equivalents

Class PL/SQL Purpose

NetworkManager SDO_NET_MEM.NETWORK_MANAGER Performs all network analyses

Network SDO_NET_MEM.NETWORK Network maintenance (add and
remove nodes, links, or paths)

Node SDO_NET_MEM.NODE Get and set node attributes

Link SDO_NET_MEM.LINK Get and set link attributes

Path SDO_NET_MEM.PATH Get and set path attributes

The association between individual methods in the Java API and the PL/SQL procedures and
functions is not exact; some methods have no equivalent, and some PL/SQL functions may com-
bine multiple Java methods. For example, there is no equivalent to the NetworkFactory class. The
methods of NetworkFactory are provided by SDO_NET_MEM.NETWORK_MANAGER.

The names of the Java methods are slightly different in the PL/SQL API. Since PL/SQL is fundamen-
tally case-insensitive, the capitalizations in the names are removed and replaced by underscores. For
example, path.getNoOfLink() becomes SDO_NET_MEM.PATH.GET_NO_OF_LINKS(). However, that does not
work for all methods. For example, path.getLinkArray() becomes SDO_NET_MEM.PATH.GET_LINK_IDS().

CHAPTER 10 ■ NETWORK MODELING 397

8997ch10.qxd 9/28/07 10:07 AM Page 397

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Another difference between the Java and PL/SQL APIs is that the PL/SQL API is not object-
oriented. All function and procedure calls must be passed the name of the network against which
they are used. Also, individual network entities (nodes, links, paths) are identified using their
unique numeric identifiers. Where a Java method returns an object (for example a Path), the equiva-
lent PL/SQL function will return the identifier of that path. Passing, for example, a Node object to
a method in Java becomes the passing of the unique numeric identifier of that node. For example,
the following Java code:

Path path = NetworkManager.shortestPath (testNet, startNodeId, endNodeId);

int cost = path.getCost();

becomes the following in PL/SQL:

PATH NUMBER;

COST NUMBER;

...

PATH := SDO_NET_MEM.NETWORK_MANAGER.SHORTEST_PATH (

NETWORK_NAME, START_NODE_ID, END_NODE_ID);

COST := SDO_NET_MEM.PATH.GET_COST(NETWORK_NAME, PATH);

At this point you may wonder about the implementation of the SDO_NET_MEM package and how
the functions and procedures got grouped. You may have tried to get details on all the functions and
procedures using a DESCRIBE command. You did not get anything interesting back:

SQL> DESCRIBE SDO_NET_MEM

PROCEDURE SET_MAX_MEMORY_SIZE

Argument Name Type In/Out Default?

------------------------------ ----------------------- ------ --------

BYTES NUMBER IN

This is because the functions and procedures are really implemented as methods on object
types, and the package is really only a container for those objects. To actually find out the signatures
of the functions and procedures, you just need to describe those objects. Table 10-15 lists the describe
commands to use.

Table 10-15. Describing the Functions and Procedures in SDO_NET_MEM

Main Groups DESCRIBE Commands

SDO_NET_MEM.NETWORK_MANAGER DESCRIBE SDO_NETWORK_MANAGER_T

SDO_NET_MEM.NETWORK DESCRIBE SDO_NETWORK_T

SDO_NET_MEM.NODE DESCRIBE SDO_NODE_T

SDO_NET_MEM.LINK DESCRIBE SDO_LINK_T

SDO_NET_MEM.PATH DESCRIBE SDO_PATH_T

■Note You cannot call the API functions in SQL. This is because of the multilevel names, which are not recog-
nized by SQL. For example, SELECT SDO_NET_MEM.NETWORK_MANAGER.LIST_NETWORKS FROM DUAL will fail with
the error ORA-00904: invalid identifier. You can call them only from within PL/SQL (functions, procedures,
or anonymous blocks).

CHAPTER 10 ■ NETWORK MODELING398

8997ch10.qxd 9/28/07 10:07 AM Page 398

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Using a Memory Object
Just like in the Java environment, you must first load the network in memory. The network will be
loaded as a collection of Java objects into your private session memory. This is the first step you
must perform before doing any kind of analysis on the network.

The following loads the complete network called UNET from the database:

SQL> EXECUTE SDO_NET_MEM.NETWORK_MANAGER.READ_NETWORK('UNET','FALSE');

The second argument indicates that the network is read-only. This does not prevent you from
updating the network in memory (adding the results of analyzes, and so on). It prevents you only
from making those changes permanent, that is, from writing the changes to the network tables.

■Caution Just like when using the Java API, only one session at a time can load a network in updatable mode.
Any number of sessions can load the same network in read-only mode (together with at most one updatable ses-
sion). While a network is loaded by an updatable session, all network objects (nodes, links, paths) will be locked,
preventing anyone from updating or deleting any of them.

You can load multiple networks. To find out what networks you have loaded in your session
memory, do this:

DECLARE

NETWORKS_LIST VARCHAR2(128);

BEGIN

NETWORKS_LIST := SDO_NET_MEM.NETWORK_MANAGER.LIST_NETWORKS();

DBMS_OUTPUT.PUT_LINE(networks_list);

END;

/

If you performed updates to the network—for example, you added a path resulting from a search—
you can now make those changes permanent by writing the network back to the database, provided that
you specified the updatable option when you loaded the network. Only the changes will be applied to
the network tables.

SQL> EXECUTE SDO_NET_MEM.NETWORK_MANAGER.WRITE_NETWORK('UNET');

Once you are done with your network, you can remove it from memory by doing this:

SQL> EXECUTE SDO_NET_MEM.NETWORK_MANAGER.DROP_NETWORK('UNET');

■Caution The procedure SDO_NET_MEM.NETWORK_MANAGER.DROP_NETWORK('UNET') removes the network
only from your session memory. Do not confuse it with SDO_NET.DROP_NETWORK('UNET'), which removes the
network from the database by dropping all tables for that network.

The network will be loaded into your session private memory in a section managed by the
Java virtual machine. You may need to adjust your session in order to make that region large
enough to accommodate the entire network. To do this, use the only function directly provided
by the SDO_NET_MEM package: SET_MAX_MEMORY_SIZE. Use this function to set the maximum size (in
bytes) of the Java heap in your current session. This is equivalent to setting the –Xmx option with
the java command. Here is how you can use this function:

SQL> EXECUTE SDO_NET_MEM.SET_MAX_MEMORY_SIZE(512*1024*1024);

CHAPTER 10 ■ NETWORK MODELING 399

8997ch10.qxd 9/28/07 10:07 AM Page 399

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You may also want to find out what the current setting is for your session. Oracle does not provide
a built-in function to do so, but you can easily build one yourself. All you need is to write a simple
PL/SQL function wrapper on a Java function. Listing 10-34 shows how to do this. It also shows the
function to set the maximum size.

Listing 10-34. Functions to Get and Set the Maximum Java Heap Size

CREATE OR REPLACE PROCEDURE set_max_memory_size(bytes NUMBER) AS

LANGUAGE JAVA

NAME 'oracle.aurora.vm.OracleRuntime.setMaxMemorySize(long)';

/

CREATE OR REPLACE FUNCTION get_max_memory_size RETURN NUMBER AS

LANGUAGE JAVA

NAME 'oracle.aurora.vm.OracleRuntime.getMaxMemorySize() returns long';

/

You can now us those functions to get and set memory size:

SQL> select get_max_memory_size() from dual;

GET_MAX_MEMORY_SIZE()

268435456

SQL> exec set_max_memory_size (get_max_memory_size()*2);

PL/SQL procedure successfully completed.

SQL> select get_max_memory_size() from dual;

GET_MAX_MEMORY_SIZE()

536870912

■Caution Remember that your network will be loaded into your private local session memory. You will not be
able to share this loaded network with any other session. Anyone else wanting to also work on the same network
will have to load it again in their own session. All networks you loaded will be automatically removed from memory
when you disconnect your session.

Analyzing Networks
We will illustrate only a few of the searches we already covered while reviewing the Java API. Essen-
tially they are transpositions of the Java examples in PL/SQL. Our goal is to point out the differences
in approaches.

In all examples, we assume that the network was previously loaded as explained earlier.

Finding the Shortest Path Between Two Nodes
The code in Listing 10-35 uses the PL/SQL API to get the shortest path from node N4 to node N3 on
the UNET undirected network shown in Figure 10-8. The SDO_NET_MEM.NETWORK.SHORTEST_PATH()
call returns the unique numeric identifier of the path object it produced. You can then use a num-
ber of methods of the SDO_NET_MEM.PATH object to extract various pieces of information, such as the
cost of the path and the number of links. You then proceed to show details from each of the links
and nodes in the path.

CHAPTER 10 ■ NETWORK MODELING400

8997ch10.qxd 9/28/07 10:07 AM Page 400

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Notice that when the search finds no result, it returns NULL. This is true for all network searches.

Listing 10-35. Using the SHORTEST_PATH() Function

DECLARE

test_net VARCHAR2(30) := 'UNET';

start_node_id NUMBER := 4;

end_node_id NUMBER := 3;

constraint VARCHAR2(30) := 'LinkLevelConstraint';

path NUMBER;

link_array SDO_NUMBER_ARRAY;

node_array SDO_NUMBER_ARRAY;

BEGIN

-- Get shortest path between two nodes

path := SDO_NET_MEM.NETWORK_MANAGER.SHORTEST_PATH

(test_net, start_node_id, end_node_id, constraint);

-- Make sure we have a result

IF path IS NULL THEN

DBMS_OUTPUT.PUT_LINE('No path found');

RETURN;

END IF;

-- Show path cost and number of links

DBMS_OUTPUT.PUT_LINE('Path cost: ' || SDO_NET_MEM.PATH.GET_COST(test_net, path));

DBMS_OUTPUT.PUT_LINE('Number of links: ' ||

SDO_NET_MEM.PATH.GET_NO_OF_LINKS(test_net, path));

DBMS_OUTPUT.PUT_LINE('Simple path? ' ||

SDO_NET_MEM.PATH.IS_SIMPLE(test_net, path));

-- Show the links traversed

DBMS_OUTPUT.PUT_LINE('Links traversed:');

link_array := SDO_NET_MEM.PATH.GET_LINK_IDS(test_net, path);

FOR i IN link_array.first..link_array.last LOOP

DBMS_OUTPUT.PUT_LINE('* Link ' || link_array(i) || ' ' ||

SDO_NET_MEM.LINK.GET_NAME (test_net, link_array(i)) || ' ' ||

SDO_NET_MEM.LINK.GET_COST (test_net, link_array(i))

);

END LOOP;

-- Show the nodes traversed

DBMS_OUTPUT.PUT_LINE('Nodes traversed:');

node_array := SDO_NET_MEM.PATH.GET_NODE_IDS(test_net, path);

FOR i IN node_array.first..node_array.last LOOP

DBMS_OUTPUT.PUT_LINE('* Node ' || node_array(i) || ' ' ||

SDO_NET_MEM.NODE.GET_NAME (test_net, node_array(i)) || ' ' ||

SDO_NET_MEM.LINK.GET_LEVEL (test_net, link_array(i)) || ' ' ||

SDO_NET_MEM.NODE.GET_COST (test_net, node_array(i))

);

END LOOP;

END;

/

Here are the results of executing the code in Listing 10-35. As you can see, and as you would
expect, they are identical to the results you got by doing the same operation using the Java API.

Path cost: 3

Number of links: 3

CHAPTER 10 ■ NETWORK MODELING 401

8997ch10.qxd 9/28/07 10:07 AM Page 401

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Simple path? TRUE

Links traversed:

* Link 9 L9 3 1

* Link 10 L10 1 1

* Link 3 L3 1 1

Nodes traversed:

* Node 4 N4 0

* Node 5 N5 0

* Node 6 N6 0

* Node 3 N3 0

Function SDO_NET_MEM.PATH.GET_LINK_IDS() returns an array of link identifiers. Note that we
used the SDO_NUMBER_ARRAY type to hold this list. As the name implies, it is just a simple array of
numbers. We will use it whenever we need to extract a list of elements, such as the links in a path.
Getting details on each link is then a simple matter of walking down that array and using other
functions to extract the details, passing it the ID of each link.

Saving the Computed Path

The path obtained is a stand-alone object; it is not related to the network. To store that path into the
database, you need to complete it with additional information, such as giving it a name and then
adding it to the network. To actually store the path into the network tables (path and path link), you
just need to write the network to the database, as you’ve already seen.

The following example illustrates the process:

-- Give a name to the path - construct it using the path id.

SDO_NET_MEM.PATH.SET_NAME (test_net, path, 'P' || path);

-- Compute the geometry of the path

SDO_NET_MEM.PATH.COMPUTE_GEOMETRY(test_net, path, 0.05);

-- Add the path to the network

SDO_NET_MEM.NETWORK.ADD_PATH(test_net, path);

Traveling Salesperson Problem
Listing 10-36 shows how to use the PL/SQL API to obtain the optimal route that passes through
a list of nodes on network UNET. You start at node N7 and need to visit nodes N2, N3, and N5, and
then you come back to N7.

Listing 10-36. Using the TSP_PATH() Function

DECLARE

test_net VARCHAR2(30) := 'UNET';

node_ids SDO_NUMBER_ARRAY := SDO_NUMBER_ARRAY(7,2,3,5);

is_closed CHAR(5) := 'TRUE';

use_exact_cost CHAR(5) := 'TRUE';

path NUMBER;

link_array SDO_NUMBER_ARRAY;

node_array SDO_NUMBER_ARRAY;

BEGIN

-- Traveling Salesperson Problem: nodes N7, N2, N3, N5, then back to N7

path := SDO_NET_MEM.NETWORK_MANAGER.TSP_PATH (

test_net, node_ids, is_closed, use_exact_cost);

CHAPTER 10 ■ NETWORK MODELING402

8997ch10.qxd 9/28/07 10:07 AM Page 402

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

-- Make sure we have a result

IF path IS NULL THEN

DBMS_OUTPUT.PUT_LINE('No path found');

RETURN;

END IF;

-- Show path cost and number of links

DBMS_OUTPUT.PUT_LINE('Path cost: ' || SDO_NET_MEM.PATH.GET_COST(test_net, path));

DBMS_OUTPUT.PUT_LINE('Number of links: ' ||

SDO_NET_MEM.PATH.GET_NO_OF_LINKS(test_net, path));

DBMS_OUTPUT.PUT_LINE('Simple path? ' ||

SDO_NET_MEM.PATH.IS_SIMPLE(test_net, path));

-- Show the links traversed

DBMS_OUTPUT.PUT_LINE('Links traversed:');

link_array := SDO_NET_MEM.PATH.GET_LINK_IDS(test_net, path);

FOR i IN link_array.first..link_array.last LOOP

DBMS_OUTPUT.PUT_LINE('* Link ' || link_array(i) || ' ' ||

SDO_NET_MEM.LINK.GET_NAME (test_net, link_array(i)) || ' ' ||

SDO_NET_MEM.LINK.GET_LEVEL (test_net, link_array(i)) || ' ' ||

SDO_NET_MEM.LINK.GET_COST (test_net, link_array(i))

);

END LOOP;

END;

/

The result of executing the code in Listing 10-36 is as follows:

Path cost: 9.5

Number of links: 7

Simple path? TRUE

Links traversed:

* Link 8 L8 3 1.5

* Link 9 L9 3 1

* Link 10 L10 1 1

* Link 3 L3 1 1

* Link 2 L2 1 2

* Link 1 L1 1 1

* Link 7 L7 1 2

Unfortunately, the PL/SQL API does not offer any equivalent to the tspPath.getTspNodeOrder()
method in Java, so we are unable to present the actual visitation order of the TSP nodes.

Creating and Updating Networks
The PL/SQL API does not provide access to the NetworkFactory class in the Java API, but the equiva-
lent methods are available in SDO_NET_MEM.NETWORK_MANAGER and SDO_NET_MEM.NETWORK.

Creating Networks
The SDO_NET_MEM.NETWORK_MANAGER.CREATE_LOGICAL_NETWORK() and CREATE_SDO_NETWORK() methods
create an empty network (logical or spatial). You can optionally specify the names of the tables for
storing the network in the database.

CHAPTER 10 ■ NETWORK MODELING 403

8997ch10.qxd 9/28/07 10:07 AM Page 403

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

For example, the following code creates a new spatial network called NH_ROADS, which is single
level and directed, using an SRID of 8307 and two-dimensional geometries:

EXECUTE SDO_NET_MEM.NETWORK_MANAGER.CREATE_SDO_NETWORK(-

'NH_ROADS', -

1, 'TRUE', 8307, 2, -

'NH_ROADS_NODE', 'GEOM', 'COST', -

'NH_ROADS_LINK', 'GEOM', 'COST', -

'NH_ROADS_PATH', 'GEOM', -

'NH_ROADS_PLINK', -

'FALSE');

Note that the network is created only in memory. Use SDO_NET_MEM.NETWORK_MANAGER.WRITE_
NETWORK() to create and populate the network tables and metadata.

Creating Network Elements
Use the procedures SDO_NET_MEM.NETWORK.ADD_NODE, SDO_NET_MEM.NETWORK.ADD_LINK, and
SDO_NET_MEM.NETWORK.ADD_PATH to create new nodes, links, and paths and add them to a network.

For example, the following code creates node with the identifier 7325 and adds it to network
'NH_ROADS':

EXECUTE SDO_NET_MEM.NETWORK.ADD_NODE ('NH_ROADS', 7325, 'N-7325', 0, 0);

The SDO_NET_MEM.NODE and SDO_NET_MEM.LINK objects provide many methods to set details on
nodes and links. For example, the following sets the proper geometry for the node you just created:

EXECUTE SDO_NET_MEM.NODE.SET_GEOMETRY ('NH_ROADS', 7325, -

SDO_GEOMETRY(2001, 8307, SDO_POINT_TYPE(-71.48891, 42.75104, NULL), NULL, NULL) -

);

■Caution Do not use the SDO_NET_MEM.NETWORK.ADD_SDO_NODE() function. It allows you to directly specify
the geographical coordinates of the node, but it does not allow you to specify the coordinate system of the
geographic point. The resulting point in the database will be created with an SRID set to NULL. Use SDO_NET_
MEM.NETWORK.ADD_NODE() and then SDO_NET_MEM.NODE.SET_GEOMETRY() to set the geometric point.

Updating and Deleting Network Elements
Procedures such as SDO_NET_MEM.NETWORK.DELETE_NODE allow you to delete nodes, links, and paths
from a network.

To update network elements, use the setters specific for each type of element, for example,
SDO_NET_MEM.NODE.SET_NAME(), SDO_NET_MEM.LINK.SET_COST(), and so on.

Network Creation Example
The code in Listing 10-37 illustrates how to create and populate a network using the PL/SQL inter-
face. It produces the same network as the simple undirected logical network (UNET) illustrated in
Figure 10-8 that was defined and created in the database using SQL statements in Listings 10-16
and 10-17 and using the Java API in Listing 10-32.

CHAPTER 10 ■ NETWORK MODELING404

8997ch10.qxd 9/28/07 10:07 AM Page 404

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 10-37. Creating a Network Using the PL/SQL API

DECLARE

network_name VARCHAR2(20) := 'MY_NET';

BEGIN

-- Create the network object in memory

SDO_NET_MEM.NETWORK_MANAGER.CREATE_LOGICAL_NETWORK(

network_name, -- network_name

1, -- no_of_hierarchy_levels

'TRUE', -- is_directed

network_name||'_NODE', -- node_table_name

'COST', -- node_cost_column

network_name||'_LINK', -- link_table_name

'COST', -- link_cost_column

network_name||'_PATH', -- path_table_name

network_name||'_PLINK',-- path_link_table_name

'FALSE' -- is_complex

);

-- Create and add the nodes

SDO_NET_MEM.NETWORK.ADD_NODE(network_name, 1, 'N1', 0, 0);

SDO_NET_MEM.NETWORK.ADD_NODE(network_name, 2, 'N2', 0, 0);

SDO_NET_MEM.NETWORK.ADD_NODE(network_name, 3, 'N3', 0, 0);

SDO_NET_MEM.NETWORK.ADD_NODE(network_name, 4, 'N4', 0, 0);

SDO_NET_MEM.NETWORK.ADD_NODE(network_name, 5, 'N5', 0, 0);

SDO_NET_MEM.NETWORK.ADD_NODE(network_name, 6, 'N6', 0, 0);

SDO_NET_MEM.NETWORK.ADD_NODE(network_name, 7, 'N7', 0, 0);

SDO_NET_MEM.NETWORK.ADD_NODE(network_name, 8, 'N8', 0, 0);

SDO_NET_MEM.NETWORK.ADD_NODE(network_name, 9, 'N9', 0, 0);

-- Create and add the links

SDO_NET_MEM.NETWORK.ADD_LINK(network_name, 1, 'L1', 1, 2, 1);

SDO_NET_MEM.NETWORK.ADD_LINK(network_name, 2, 'L2', 2, 3, 2);

SDO_NET_MEM.NETWORK.ADD_LINK(network_name, 3, 'L3', 3, 6, 1);

SDO_NET_MEM.NETWORK.ADD_LINK(network_name, 4, 'L4', 6, 9, 1);

SDO_NET_MEM.NETWORK.ADD_LINK(network_name, 5, 'L5', 9, 8, 1);

SDO_NET_MEM.NETWORK.ADD_LINK(network_name, 6, 'L6', 8, 7, 2);

SDO_NET_MEM.NETWORK.ADD_LINK(network_name, 7, 'L7', 7, 1, 2);

SDO_NET_MEM.NETWORK.ADD_LINK(network_name, 8, 'L8', 7, 4, 1.5);

SDO_NET_MEM.NETWORK.ADD_LINK(network_name, 9, 'L9', 4, 5, 1);

SDO_NET_MEM.NETWORK.ADD_LINK(network_name, 10, 'L10', 5, 6, 1);

SDO_NET_MEM.NETWORK.ADD_LINK(network_name, 11, 'L11', 5, 8, 1);

-- Write the network (this also creates the tables and writes the metadata)

SDO_NET_MEM.NETWORK_MANAGER.WRITE_NETWORK(network_name);

END;

/

Using Network Constraints
The PL/SQL API also allows you to use network constraints. You still need to write the constraint in
Java, as discussed previously, but how can you then pass a constraint (that is, a Java class) to the
PL/SQL functions so they can use it?

CHAPTER 10 ■ NETWORK MODELING 405

8997ch10.qxd 9/28/07 10:07 AM Page 405

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Simple. You will load the Java class that implements the constraint into the database and pass
its name to the network PL/SQL search functions. There are, however, some specifics and gotchas
with this process. We will now review them.

We will start first with the simple NetworkTraceConstraint we wrote earlier and show the steps
for using it in the PL/SQL API.

Having compiled the Java class, you must load it into the database. The easiest is to use the
loadjava tool, like this:

loadjava -user spatial/spatial -verbose NetworkTraceConstraint.class

Then you must tell the PL/SQL network API about it. This you do by inserting a row in a new
metadata view, USER_SDO_NETWORK_CONSTRAINTS, whose structure is shown in Table 10-16.

Table 10-16. The USER_SDO_NETWORK_CONSTRAINTSView

Name Data Type Meaning

CONSTRAINT VARCHAR2(32) Unique name given to the constraint. This name will be
used to identify the constraint in applications.

DESCRIPTION VARCHAR2(200) Descriptive text (optional).

CLASS_NAME VARCHAR2(4000) The fully qualified name of the Java class that implements
the constraint.

CLASS BLOB Used to hold the binary code of the class (contents of the
class file).

Listing 10-38 shows how to insert a constraint definition in view USER_SDO_NETWORK_CONSTRAINTS.

Listing 10-38. Defining a Network Constraint for Use by the PL/SQL API

INSERT INTO user_sdo_network_constraints (constraint, description, class_name)

VALUES (

'MyConstraint',

'Tracing network algorithms',

'NetworkTraceConstraint'

);

COMMIT;

Remember to specify the fully qualified name of your class, that is, to prefix the name of the
class with the hierarchical name of the Java package it is part of, if any.

For example, if NetworkTraceConstraint is defined in package com.Acme.net.constraints,
then the class name to specify in the previous statement will be com/Acme/net/constraints/
NetworkTraceConstraint. This will also be the name of the class stored in the database by the
loadjava tool.

To replace the constraint with a new version, simply compile it, and reload the new version
using loadjava. The new version will automatically replace the existing one.

To remove the constraint, just delete the row from USER_SDO_NETWORK_CONSTRAINTS, and delete
the class from the database using the DROP JAVA statement:

SQL> DROP JAVA CLASS "NetworkTraceConstraint";

Java dropped.

Again, do not forget to specify the fully qualified name if applicable.

CHAPTER 10 ■ NETWORK MODELING406

8997ch10.qxd 9/28/07 10:07 AM Page 406

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The REGISTER_CONSTRAINT Mechanism
There is another way to load and define a constraint: using the REGISTER_CONSTRAINT() procedure,
as shown in Listing 10-39.

Listing 10-39. Defining a Network Constraint Using REGISTER_CONSTRAINT()

EXECUTE SDO_NET_MEM.NETWORK_MANAGER.REGISTER_CONSTRAINT (-

'MyConstraint', -

'NetworkTraceConstraint', -

'CONSTRAINTS_CLASSES_DIR', -

'Tracing network algorithms' –

);

This technique has the advantage of performing both of the steps needed: loading the Java
class and populating USER_SDO_NETWORK_CONSTRAINTS. Its major drawback is that the database
administrator must first define a directory object in the database and grant access to this directory,
as illustrated in Listing 10-40.

Listing 10-40. Defining a Directory Object

CREATE DIRECTORY constraints_classes_dir AS 'D:\Files\Code\Constraints';

GRANT READ ON DIRECTORY constraints_classes_dir TO spatial;

To remove a constraint, use the DEREGISTER_CONSTRAINT() procedure, as shown in Listing 10-41.

Listing 10-41. Removing a Network Constraint Using DEREGISTER_CONSTRAINT()

EXECUTE SDO_NET_MEM.NETWORK_MANAGER.DEREGISTER_CONSTRAINT (-

'MyConstraint' -

);

This will delete the reference to the constraint from USER_SDO_NETWORK_CONSTRAINTS and also
drop the class from the database.

To install a new version of the constraint, you can deregister and reregister it or, more simply,
reload it using loadjava.

■Note The DEREGISTER_CONSTRAINT() procedure will first load the contents of the class file in the BLOB col-
umn of USER_SDO_NETWORK_CONSTRAINTS. This is just an intermediate storage place from which the procedure
then loads the class into the database by calling the CREATE JAVA statement.

Using a Constraint
To use a constraint in your network searches, you just need to pass its name to the function you call.
For example:

path := SDO_NET_MEM.NETWORK_MANAGER.SHORTEST_PATH ('UNET', 4, 3, 'MyConstraint');

However, if you run this search, you will see no difference in output from that of the original
code that does not use the constraint. Whatever happened to the trace that the constraint is sup-
pose to print? That output is produced on Java’s System.out, and to see it, you need to tell your
JVM that you want it redirected to the standard server output mechanism. This you do by calling
DBMS_JAVA.SET_OUTPUT() and using the SET SERVEROUTPUT command in SQL*Plus:

CHAPTER 10 ■ NETWORK MODELING 407

8997ch10.qxd 9/28/07 10:07 AM Page 407

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SQL> set serveroutput on size unlimited

SQL> exec dbms_java.set_output(32000);

PL/SQL procedure successfully completed.

From now on, you will see the output produced by your constraint on your SQL*Plus console.

A Parameterized Constraint
NetworkTraceConstraint was simple to load and use; it does not require any parameter. What about
the other constraint you used, LinkLevelConstraint? That one needs a parameter; in the Java exam-
ples, you passed when instantiating the constraint object.

This approach is no longer possible with the PL/SQL API. You give only the name of the constraint
to apply, and the instantiation of the corresponding class happens deep inside the API routines. You
have no way to pass any start-up parameter to the class.

Actually, if you try to use the LinkLevelConstraint like you did for NetworkTraceConstraint, your
network search call will fail with a java.lang.InstantiationException error. This is because your class
contains an explicit constructor (needed to pass the target link-level parameter) and therefore does
not provide the default constructor, which is the one used by the PL/SQL API to instantiate the class.

So, the first change to the LinkLevelConstraint class is to add an explicit default constructor:

public LinkLevelConstraint () {

}

Now the class will be correctly instantiated and used in your network searches. However, that
does not do much good, since you are unable to control the constraint, that is, pass it a target link
level. To achieve this, you will first add a “setter” method to the class, which will enable you to con-
trol the value of the target link level:

public static void setTargetLevel (int newTargetLevel) {

targetLevel = newTargetLevel;

}

And while we are at it, let’s also create a “getter” function:

public static int getTargetLevel () {

return targetLevel;

}

Notice those are static methods. This is because you will call them using PL/SQL wrappers,
and this is possible only for static methods. As a result, targetLevel must also now be made
static:

private static int targetLevel = 0;

Listing 10-42 gives the new and improved LinkLevelConstraint.

Listing 10-42. Network Constraint for the PL/SQL API

import java.util.*;

import oracle.spatial.network.*;

/**

* The following network constraint assumes that

* 1. each link has a link level (stored as LINK_LEVEL in { 1,2,3 })

* 2. for a given target level (in { 1,2,3 }), the following must hold:

* target Level 1 can only travel on link Level 1

* target Level 2 can travel on link Level 1 and 2

* target Level 3 can travel on link Level 1, 2, and 3

*/

CHAPTER 10 ■ NETWORK MODELING408

8997ch10.qxd 9/28/07 10:07 AM Page 408

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

public class LinkLevelConstraint implements NetworkConstraint {

static int targetLevel = 0; // Default; no restriction

public LinkLevelConstraint () {

}

public LinkLevelConstraint (int newTargetLevel) {

targetLevel = newTargetLevel;

}

public static void setTargetLevel (int newTargetLevel) {

targetLevel = newTargetLevel;

}

public static int getTargetLevel () {

return targetLevel;

}

public boolean requiresPathLinks() {

return false ;

}

public boolean isSatisfied (AnalysisInfo info) {

if (targetLevel == 0) // no restriction

return true ;

Link link = info.getNextLink() ; // potential link candidate

int linkLevel = link.getLinkLevel(); // get link Level

if (link != null && targetLevel >= linkLevel)

return true;

else

return false;

}

}

The last step is to define PL/SQL wrappers over setTargetLevel() and getTargetLevel() so
that you can call them from SQL and PL/SQL. Listing 10-43 shows those wrappers.

Listing 10-43. Defining PL/SQL Wrappers

CREATE OR REPLACE PACKAGE link_level_constraint AS

PROCEDURE set_target_level (new_target_level NUMBER);

FUNCTION get_target_level RETURN NUMBER;

END;

/

CREATE OR REPLACE PACKAGE BODY link_level_constraint AS

PROCEDURE set_target_level (new_target_level NUMBER)

AS LANGUAGE JAVA

NAME 'LinkLevelConstraint.setTargetLevel(int)';

FUNCTION get_target_level RETURN NUMBER

AS LANGUAGE JAVA

NAME 'LinkLevelConstraint.getTargetLevel() return int';

END;

/

CHAPTER 10 ■ NETWORK MODELING 409

8997ch10.qxd 9/28/07 10:07 AM Page 409

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can now use those wrappers to get and set the target link level. Let’s put everything
together. First, compile the new NetworkConstraint class, and then load it into the database:

loadjava -user spatial/spatial -verbose NetworkTraceConstraint.class

Then define the constraint in the USER_SDO_NETWORK_CONSTRAINTS view:

INSERT INTO user_sdo_network_constraints (constraint, description, class_name)

VALUES (

'LinkLevelConstraint',

'Filters links based on level',

'LinkLevelConstraint'

);

COMMIT;

Now load the network UNET:

SQL> EXECUTE SDO_NET_MEM.NETWORK_MANAGER.READ_NETWORK('UNET','FALSE');

Check the current target link level used by the constraint:

SQL> SELECT link_level_constraint.get_target_level() FROM DUAL;

LINK_LEVEL_CONSTRAINT.GET_TARGET_LEVEL()

--

0

The target level is 0. This is the default value you specified. Then set it to the value 1. This means
that the constraint will accept links only at level 1.

SQL> EXECUTE link_level_constraint.set_target_level(1)

Get the shortest path from node 7 to node 5, using the constraint. See the full code in
Listing 10-44.

Listing 10-44. Using the SHORTEST_PATH() Function with a Network Constraint

DECLARE

test_net VARCHAR2(30) := 'UNET';

start_node_id NUMBER := 7;

end_node_id NUMBER := 5;

constraint VARCHAR2(30) := 'LinkLevelConstraint';

path NUMBER;

link_array SDO_NUMBER_ARRAY;

node_array SDO_NUMBER_ARRAY;

BEGIN

-- Get shortest path between two nodes

path := SDO_NET_MEM.NETWORK_MANAGER.SHORTEST_PATH (

test_net, start_node_id, end_node_id, constraint);

-- Make sure we have a result

IF path IS NULL THEN

DBMS_OUTPUT.PUT_LINE('No path found');

RETURN;

END IF;

-- Show path cost and number of links

DBMS_OUTPUT.PUT_LINE('Target link level: ' ||

link_level_constraint.get_target_level());

DBMS_OUTPUT.PUT_LINE('Path cost: ' || SDO_NET_MEM.PATH.GET_COST(test_net, path));

CHAPTER 10 ■ NETWORK MODELING410

8997ch10.qxd 9/28/07 10:07 AM Page 410

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

DBMS_OUTPUT.PUT_LINE('Number of links: ' ||

SDO_NET_MEM.PATH.GET_NO_OF_LINKS(test_net, path));

DBMS_OUTPUT.PUT_LINE('Simple path? ' ||

SDO_NET_MEM.PATH.IS_SIMPLE(test_net, path));

-- Show the links traversed

DBMS_OUTPUT.PUT_LINE('Links traversed:');

link_array := SDO_NET_MEM.PATH.GET_LINK_IDS(test_net, path);

FOR i IN link_array.first..link_array.last LOOP

DBMS_OUTPUT.PUT_LINE('* Link ' || link_array(i) || ' ' ||

SDO_NET_MEM.LINK.GET_NAME (test_net, link_array(i)) || ' ' ||

SDO_NET_MEM.LINK.GET_LEVEL (test_net, link_array(i)) || ' ' ||

SDO_NET_MEM.LINK.GET_COST (test_net, link_array(i))

);

END LOOP;

-- Show the nodes traversed

DBMS_OUTPUT.PUT_LINE('Nodes traversed:');

node_array := SDO_NET_MEM.PATH.GET_NODE_IDS(test_net, path);

FOR i IN node_array.first..node_array.last LOOP

DBMS_OUTPUT.PUT_LINE('* Node ' || node_array(i) || ' ' ||

SDO_NET_MEM.NODE.GET_NAME (test_net, node_array(i)) || ' ' ||

SDO_NET_MEM.NODE.GET_COST (test_net, node_array(i))

);

END LOOP;

END;

/

The result shows that you had to take a long way, using only level-1 links:

Target link level: 1

Path cost: 7

Number of links: 5

Simple path? TRUE

Links traversed:

* Link 7 L7 1 2

* Link 1 L1 1 1

* Link 2 L2 1 2

* Link 3 L3 1 1

* Link 10 L10 1 1

Nodes traversed:

* Node 7 N7 0

* Node 1 N1 0

* Node 2 N2 0

* Node 3 N3 0

* Node 6 N6 0

* Node 5 N5 0

Change the target link level to 2, which means you can use links at level 1 or 2:

SQL> EXECUTE link_level_constraint.set_target_level(2)

Repeat the search shown in Listing 10-44. The result is now as follows:

Target link level: 1

Target link level: 2

Path cost: 3

Number of links: 2

Simple path? TRUE

CHAPTER 10 ■ NETWORK MODELING 411

8997ch10.qxd 9/28/07 10:07 AM Page 411

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Links traversed:

* Link 6 L6 1 2

* Link 11 L11 2 1

Nodes traversed:

* Node 7 N7 0

* Node 8 N8 0

* Node 5 N5 0

The Network Editor
All the examples you have seen so far have used either SQL or Java but with no actual graphical
results and little interaction. Oracle provides a nice graphical editor that lets you experiment visu-
ally with actual data and try all the network analysis functions.

Starting the Editor
The editor is a Java program supplied as a JAR file, sdondme.jar. Make sure to include all the
required JAR files in the Java classpath (see Table 10-17).

Table 10-17. JAR Files Used by the Network Editor

JAR File Usage Location

sdondme.jar Network Editor $ORACLE_HOME/md/jlib

sdoapi.jar Spatial SDO API $ORACLE_HOME/md/jlib

sdonm.jar Network Java API $ORACLE_HOME/md/jlib

sdoutl.jar Spatial utilities $ORACLE_HOME/md/jlib

ojdbc14.jar JDBC driver $ORACLE_HOME/jdbc/lib

xmlparserv2.jar XML parser $ORACLE_HOME/lib

Since the network API loads networks in memory, you may want to provide sufficient memory
to Java using the -Xms and -Xmx options.

The main class of the editor is oracle.spatial.network.editor.NetworkEditor. Listing 10-45
shows how you can start the editor in a Windows environment. Make sure to change ORACLE_HOME to
point to the home of your own Oracle Database 11g installation.

Listing 10-45. Starting the Network Editor

set ORACLE_HOME=D:\Oracle\Ora111

set JAR_LIBS=%ORACLE_HOME%/md/jlib/sdondme.jar;

%ORACLE_HOME%/lib/xmlparserv2.jar; %ORACLE_HOME%/jdbc/lib/classes12.jar;

%ORACLE_HOME%\md/jlib/sdonm.jar; %ORACLE_HOME%/md/jlib/sdoapi.jar;

%ORACLE_HOME%/md/jlib/sdoutl.jar

java -Xms512M -Xmx512M -cp %JAR_LIBS% oracle.spatial.network.editor.NetworkEditor

You should now see the window shown in Figure 10-23.

CHAPTER 10 ■ NETWORK MODELING412

8997ch10.qxd 9/28/07 10:07 AM Page 412

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 10-23. Main window of the Network Editor

Connecting to the Database
Select the Connect to Database option from the File menu, and then fill the next dialog box with the
usual JDBC connection information: host name, port, database name, user name, and password.

■Tip You can specify the connection parameters on the command line that starts the Network Editor.

Loading a Network from the Database
Select the Read Network from Database option from the File menu. This opens a dialog box much
like the connection box, where you can select the network to load from the Network Name drop-
down list.

Depending on the size of the network you load, this may take some time. For the networks we
used in the preceding examples, this will be fast, of course.

■Note The Network Editor can manipulate spatial networks only.

CHAPTER 10 ■ NETWORK MODELING 413

8997ch10.qxd 9/28/07 10:07 AM Page 413

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Using the Loaded Network
Once the network has loaded, you will see it entirely in the main map window. Use the Zoom In and
Zoom Out buttons to zoom in and out. You can also right-click the mouse to drag a rectangle to
zoom into. You can pan using the arrow buttons all around the window. The Fit to Window button
brings the entire network back into the window.

Select individual objects (links and nodes) by clicking them. The object details appear in the
left window, including drop-down lists from which you select related objects.

Network Analysis
The Analysis function lets you select an individual analysis function. Each function corresponds to one
of the methods of the NetworkManager class you have studied in this chapter. For each function, you need
to provide the relevant parameters. You identify nodes by selecting them from the map window (or by
entering their IDs in the form window). Other parameters are entered into the form window.

Figure 10-24 shows the shortest path from node 7 to node 3.

Figure 10-24. Shortest path from node 7 to node 3 on network UNET

Network Editing
From the Edit menu, you can modify the network by adding and removing nodes and links.

To add a node, click the spot on the screen where you want the new node to be placed. The left
window is then filled with the x and y coordinates of the node, as well as with a new ID for the node. You
just need to fill in the other information, such as node cost and status, before clicking the Create button.

You can add links only between existing nodes. Click the start node and then the end node. The
IDs of the two nodes appear in the left window (but you can also enter them manually). Fill in the
rest of the form, and click the Create button.

CHAPTER 10 ■ NETWORK MODELING414

8997ch10.qxd 9/28/07 10:07 AM Page 414

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can delete links or nodes by selecting them and then using the Delete Selected option of
the Edit menu.

Once you have finished changing the network, you can write it back to the database using the
Write Network to Database option from the File menu. If you forget to do this before exiting the edi-
tor or loading another network, you will be reminded.

Example Data: The Streets of San Francisco
The network analysis on the simple networks (UNET and DNET) you have been working with is
interesting but not very spectacular.

In the Downloads area of the Apress website (www.apress.com), you will find a dataset that con-
tains a street network for San Francisco, California. See the introduction for instructions on how to
get the files. This network contains some 17,000 links and 11,000 nodes. Use the Oracle Import tool
to load it, as shown in Listing 10-46. Notice the additional step to insert the network metadata in
USER_SDO_NETWORK_METADATA.

Listing 10-46. Loading the Network Data

imp spatial/spatial file=net.dmp full=y

SQL> INSERT INTO USER_SDO_NETWORK_METADATA

SELECT * FROM my_network_metadata;

SQL> commit;

The network is called NET_SF. Once you have loaded it in the Network Editor, you will see a win-
dow like the one shown in Figure 10-25.

Figure 10-25. The streets of San Francisco

CHAPTER 10 ■ NETWORK MODELING 415

8997ch10.qxd 9/28/07 10:07 AM Page 415

www.it-ebooks.info

www.freepdf-books.com

http://www.apress.com
http://www.apress.com
http://www.it-ebooks.info/

Zoom in until you see the links and nodes in sufficient detail. Each link represents a street seg-
ment between two intersections. Nodes are intersections. This is a directed network, and arrows
indicate the direction of each link.

Try performing some analysis functions. For example, select the Nearest N Nodes from a Given
Node Choice from the Analysis menu, select a node by clicking it, enter the number of neighbors to
search, and click the Compute button. A typical result should look like Figure 10-26.

Figure 10-26. A nearest-neighbors search in San Francisco

■Caution Some analysis functions may need to process a great deal of information—this is the case for the
functions that return all paths between two nodes or those that find all nodes that are reachable or that can reach
a given node. By default, those functions perform unbounded searches that can take a long time to complete.
Make sure to limit the results by providing a maximum depth, cost, or number of solutions. The MCST function has
no limit; it always runs on the complete network.

Summary
In this chapter, you learned how to define and load networks. You also learned how to use the APIs
provided with the Oracle Network Data Model to perform such network-based analyses as finding
the shortest path between two nodes, finding all nodes within some distance from a node, and dis-
covering the nearest neighbors to a node.

CHAPTER 10 ■ NETWORK MODELING416

8997ch10.qxd 9/28/07 10:07 AM Page 416

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The Routing Engine

In order to run the examples in this chapter, you need to import the following dataset:

imp spatial/spatial file=routing.dmp full=y

Using the techniques described in Chapter 10, you know how to obtain the shortest path between
two network nodes. The result of the search was a logical path, or a list of links traversed. You could
also get the geographical path, or the geometry of the path.

Let’s assume you want to tell a customer how to get to your nearest store. Using the Network
Data Model shortest-path search, you received the geometry of the path. You can use it to show the
shortest route to your store on a map.

But this can be hard to read and hard to use. It would be better if you could also tell your cus-
tomer how to reach your store: the streets to follow, when to turn left or right, how long to drive, and
so on. The list of links received from the shortest-path search is insufficient: it just lists all street seg-
ments traversed but does not give instructions. Giving instruction is the role of the Oracle Spatial
Routing Engine.

Contrary to the Network Data Model that provides an API to be used only in your own application,
the Routing Engine is a web service: you send it routing requests expressed in XML, and it returns
the best computed route, also in XML.

■Note You may think that the Routing Engine uses the Network Data Model APIs and data structures. This is
unfortunately not the case. The two features are completely separate, although they can be made to work against
the same data structures. We hope future versions of Oracle Spatial will unite the two features.

Table 11-1 compares the Network Data Model to the Routing Engine.

Table 11-1. The Network Data Model vs. the Routing Engine

Network Data Model Routing Engine

Java and PL/SQL APIs. XML API.

Returns lists of links. Returns driving directions.

Can do any kind of network searches. Can compute the shortest path only.

Network tables can have any names. Network tables have fixed names.

Can use bidirected links. Can use directed links only.

Uses one cost per network only. Can use either time or distance (for fastest or shortest
calculations).

417

C H A P T E R 1 1

■ ■ ■

8997ch011.qxd 9/28/07 10:08 AM Page 417

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Architecture
Figure 11-1 illustrates the architecture of the Routing Engine. The Routing Engine is a pure Java
server component (a Java servlet) that needs a Java application server environment. You can deploy
it in the Oracle Application Server, as well as in any J2EE-compliant application server.

Figure 11-1. Oracle Routing Engine architecture

The road network used for routing is stored in the database in a set of tables. We will discuss
the exact organization of those tables later in this chapter. Notice also the presence of geocoding
tables. This is because your application will typically pass the street address of the start and end
locations. The Routing Engine will automatically call the proper geocoding functions in order to
convert those addresses to network locations.

The Routing Engine will not load the entire network in memory. Rather, it will load only the
necessary subsets of the network (called partitions) in memory. You can control the size of the parti-
tion cache. You will also need to partition the network using functions supplied with the Routing
Engine. You’ll learn more about this in the “Partitioning” section later in this chapter.

Note that the Routing Engine can also be configured to use a Geocoding Server web service instead,
as illustrated in Figure 11-2. The Geocoding Server web service is the one you saw in Chapter 6.

Routing ServerOracle
Application
Server

Client

Database

Client Application

XML/HTTP

JDBC

Network
Cache

Routing
Tables

Geocoding
Tables

CHAPTER 11 ■ THE ROUTING ENGINE418

8997ch011.qxd 9/28/07 10:08 AM Page 418

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 11-2. Oracle Routing Engine architecture using the Geocoding Server web service

Figure 11-3 illustrates the way your application talks to the Routing Engine. Your application
must first format the routing request in XML and then send it to the server. Once the server has
computed the correct route and driving directions, it will send another XML document to your
application, which you then need to parse and use.

Figure 11-3. Oracle Routing Engine request/response flow

Routing Server

Client Application

Start Location
End Location
Preferences

Route Request

Route Information
Instructions
Geometries
…

Route Response

Routing Server

Database

Oracle

Application

Server

Client
Client Application

XML/HTTP

JDBC

Network
Cache

Routing
Tables

Geocoding

Server

Geocoding
Tables

XML
HTTP

CHAPTER 11 ■ THE ROUTING ENGINE 419

8997ch011.qxd 9/28/07 10:08 AM Page 419

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Routing requests are flexible. You can pass the start and end locations as full addresses, but you
can also pass them just as spatial coordinates. This is helpful when you get the start and/or end
locations from a mouse click. You can also specify preferences: whether to get the shortest or the
fastest path, what units should be used in the resulting directions (minutes, kilometers, miles, and
so on), what language to use, and many more. We will review the API later in this chapter.

Installation and Configuration
The Routing Engine is provided as a standard J2EE archive (EAR) format. See the introduction for
details on how to install and configure OC4J and how to deploy applications using the OC4J console.
The installation EAR file for the Routing Engine is provided in $ORACLE_HOME/md/jlib/routeserver.ear.

To configure the routing server, you need to manually edit the web.xml file in $OC4J_HOME/j2ee/
home/applications/routeserver/web/WEB-INF.

■Caution The web.xml file provided with the Routing Engine contains a number of parameter settings that will
make the engine fail on start-up: connections to nonexistent databases, and so on.

The parameters in the web.xml file are encoded using a name/value pair approach. For example,
here is how you specify the default language for the driving directions returned by the router:

<init-param>

<param-name>language</param-name>

<param-value>English</param-value>

<description>

Language to use to give driving directions.

</description>

</init-param>

Table 11-2 lists the parameters you can specify. They are pretty much self-descriptive.

Table 11-2. Routing Engine Parameters

Parameter Meaning

Connection to Routing Tables

routeserver_schema_jdbc_connect_string Connection string to the database that
contains the routing tables. Specify as
jdbc:oracle:thin@<server>:<port>:<sid>.

routeserver_schema_username Database user who owns the routing tables.

routeserver_schema_password Password of that user. Specify it with a leading
exclamation point (!). The routing server will
replace it with an encrypted version.

routeserver_schema_connection_cache_min_limit Minimum number of database connections
established by the server.

routeserver_schema_connection_cache_max_limit Maximum number of database connections.

Type of Geocoder to Use

geocoder_type Type of geocoder to use: thinclient or
httpclient.

geocoder_match_mode The match mode for geocoder calls. See
Chapter 6 for possible values and their
effects.

CHAPTER 11 ■ THE ROUTING ENGINE420

8997ch011.qxd 9/28/07 10:08 AM Page 420

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Parameter Meaning

Connection to Geocoding Tables (geocoder_type = "thinclient")

geocoder_schema_host Host name of database server containing
the geocoding tables.

geocoder_schema_port Port number.

geocoder_schema_sid Database SID.

geocoder_schema_username Database user who owns the geocoding
tables.

geocoder_schema_password Password for that user.

geocoder_schema_mode Type of JDBC driver to use (thin or oci8).

Connection to Geocoding Server (geocoder_type="httpclient")

geocoder_http_url URL to the geocoding service.

geocoder_http_proxy_host Name or IP address of the proxy server, if any.

geocoder_http_proxy_port Port of the proxy server.

Logging

log_filename Name of a log file. If you specify a relative
path (for example, log/routeserver.log),
it will be interpreted as based on $OC4J_
HOME/j2ee/home.

log_level Level of detail of the information logged.
Specify as FATAL, ERROR, WARN, INFO, DEBUG,
or FINEST.

log_thread_name Specify whether to log thread names (as
true or false).

log_time Specify whether to log timestamps.

Routing Parameters

max_speed_limit Maximum speed limit in meters per
second. Set by default to 34 meters per
second, which corresponds approximately
to 122 kilometers per hour or 75 miles per
hour.

highway_cost_multiplier Factor by which to make highways less
attractive when computing a route with
a preference for local roads.

driving_side Side of the road on which you drive, as R or L.

language Default language used to give driving
directions. This can be overridden in the
routing requests. The supported languages
are English (the default), French, German,
Italian, and Spanish.

distance_function_type Which method to use for computing
distance. Specify as geodetic or euclidean.

long_ids Set this to true to force the router to use
Java long types to store edge and node IDs.

partition_cache_size_limit Maximum number of network partitions to
keep in memory at any point.

partition_table_name Name of the partition table. Set to PARTITION
by default.

CHAPTER 11 ■ THE ROUTING ENGINE 421

8997ch011.qxd 9/28/07 10:08 AM Page 421

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

To change parameters, just edit the web.xml file using your favorite editor. You probably want to
use an editor that is able to color-code the XML elements.

■Tip You have to stop and restart the complete OC4J server for the routing server to pick up your changes. Just
stopping and starting the routeserver application using the OC4J console is not enough.

Data Structures
Just like the Network Data Model, the Routing Engine needs a network graph, that is, a set of con-
nected links and nodes. Links and nodes are also stored in tables, whose structure is similar—but
not identical—to that used by the Network Data Model. One important difference is that the names
of the tables are fixed, as is their structure (column names and types).

The routing network is composed of two main tables: the NODE table, which describes all net-
work nodes, and the EDGE table, which describes all network links. There is no equivalent to the path
and path link tables: the Routing Engine does not store the computed routes in the database, so
they are not needed. There is, however, a new table, SIGN_POST, which describes the indications on
signposts at highway exits.

The node table is similar to that used for the Network Data Model. The main difference is that
the routing node table must be called NODE and have exactly the structure shown in Table 11-3.
Notice the PARTITION_ID column: it is originally empty and will be filled when the network is parti-
tioned before use.

Table 11-3. The NODE Table

Column Data Type Meaning

NODE_ID NUMBER Unique identification for that node in the network. This
is also the primary key of the table.

GEOMETRY SDO_GEOMETRY A point geometry object that represents the node.

PARTITION_ID NUMBER Numeric identifier of the partition that contains this node.
This is originally empty and will be filled when partitioning
the network.

The EDGE table is also similar to a link table used for the Network Data Model. It has the structure
shown in Table 11-4. One important difference, however, is that the routing edges are all directed.
This means a two-way road segment must be modeled using two edges, one in each direction.

Table 11-4. The EDGE Table

Column Data Type Meaning

EDGE_ID NUMBER Unique identification for that edge in the network. This is
also the primary key of the table.

START_NODE_ID NUMBER Unique identifier of the node from which the edge originates.

END_NODE_ID NUMBER Unique identifier of the node at which the edge terminates.

PARTITION_ID NUMBER Numeric identifier of the partition that contains this node.
This is originally empty and will be filled when partitioning
the network.

FUNC_CLASS NUMBER Functional class of that edge. This is a number from 1 to 5.

LENGTH NUMBER Length of the edge in meters.

CHAPTER 11 ■ THE ROUTING ENGINE422

8997ch011.qxd 9/28/07 10:08 AM Page 422

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Column Data Type Meaning

SPEED_LIMIT NUMBER Speed limit on that edge, in meters per second.

GEOMETRY SDO_GEOMETRY A line geometry object that describes the shape of the edge.

NAME VARCHAR(128) Name of this edge. This will be the name used in driving
directions.

DIVIDER CHAR(1) Defines whether the edge is divided. Specify as N to indicate
the edge is not divided. Any other value indicates the edge
is divided.

The FUNC_CLASS column is important for routing. It represents the functional class of the edge
as a number from 1 to 5, with 1 indicating a large, high-speed, high-volume road, and each succes-
sive class is generally smaller in size, speed, and volume. Table 11-5 explains the values and their
meanings.

Table 11-5. Functional Classes

Functional Class Meaning

1 Large high-speed, high-volume roads such as U.S. interstates or U.K.
motorways

2 Roads with consistent speed, used to get traffic to and from functional class 1
roads

3 High-volume roads, used to connect functional class 2 roads

4 Used to move traffic between neighborhoods

5 All other roads and streets

The Routing Engine uses the value in the DIVIDER column to determine whether the vehicle can
make a U-turn at the start or end of a route. When set to N, it indicates that the edge allows U-turns
without restriction. Any other value indicates the presence of some restriction.

■Caution The DIVIDER column must always contain a value (in other words, NULLs are not allowed and will
cause failures if present).

The SIGN_POST table stores information about road signs. The information it contains will be
used in the driving directions generated by the router, such as “Take exit xxx toward xxx.” It is not
used to compute routes. Table 11-6 describes its structure.

Table 11-6. The SIGN_POST Table

Column Data Type Meaning

FROM_EDGE_ID NUMBER Number of the edge to which this sign applies.

TO_EDGE_ID NUMBER Number of the edge to which the sign points.

RAMP VARCHAR(64) Ramp text. Typically this will be the major road ID, such as
I-280 S or US-101.

EXIT VARCHAR(8) For exit ramps: the name or number of the exit.

TOWARD VARCHAR(64) Indicates where the exit is heading to, such as DOWNTOWN or
SIXTH STREET.

CHAPTER 11 ■ THE ROUTING ENGINE 423

8997ch011.qxd 9/28/07 10:08 AM Page 423

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Example Data: The Streets of San Francisco
In the example data you can download from Apress’s catalog page for this book, you will find a rout-
ing dataset that contains a street network for San Francisco, California. (See the introduction for
instructions on how to get the files.) This network is identical to the network you loaded in Chapter 10
for use in the Network Editor. It has the same number of nodes but almost twice the number of edges
(links). This is because, as already noted, each two-way street segment needs two edges in the rout-
ing tables, whereas one link is sufficient in the Network Data Model.

Use the Oracle Import tool to load the street network, as shown in Listing 11-1. Notice the addi-
tional step to rename the tables to match the names expected by the Routing Engine.

Listing 11-1. Loading the Routing Data

imp spatial/spatial file=routing.dmp full=y

SQL>

DROP TABLE EDGE;

DROP NODE;

DROP TABLE SIGN_POST;

RENAME ROUTE_EDGES_SF TO EDGE;

RENAME ROUTE_NODES_SF TO NODE;

RENAME ROUTE_SIGN_POSTS_SF TO SIGN_POST;

You can use the San Francisco street network with the network APIs as well as the Network Edi-
tor. All you need is to create views on the NODE and EDGE tables, renaming columns on the way, and
insert an entry in the USER_SDO_NETWORK_METADATA view, as shown in Listing 11-2. You can then load
network NET_ROUTE_SF in the Network Editor. Once loaded, you should see a window identical to the
one shown in Figure 11-4.

Listing 11-2. Defining a Network Over the Routing Data

SQL> CREATE OR REPLACE VIEW route_node_sf_v AS

SELECT node_id,

geometry,

partition_id

FROM node;

SQL> CREATE OR REPLACE VIEW route_edge_sf_v AS

SELECT edge_id AS link_id,

start_node_id,

end_node_id,

partition_id,

func_class,

length,

speed_limit,

geometry,

name AS link_name,

divider

FROM edge;

SQL> DELETE FROM user_sdo_network_metadata

WHERE network = 'NET_ROUTE_SF';

SQL> INSERT INTO user_sdo_network_metadata (

NETWORK,

NETWORK_CATEGORY,

GEOMETRY_TYPE,

CHAPTER 11 ■ THE ROUTING ENGINE424

8997ch011.qxd 9/28/07 10:08 AM Page 424

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

NODE_TABLE_NAME,

NODE_GEOM_COLUMN,

LINK_TABLE_NAME,

LINK_GEOM_COLUMN,

LINK_DIRECTION,

LINK_COST_COLUMN

)

VALUES (

'NET_ROUTE_SF',

'SPATIAL',

'SDO_GEOMETRY',

'ROUTE_NODE_SF_V',

'GEOMETRY',

'ROUTE_EDGE_SF_V',

'GEOMETRY',

'DIRECTED',

'LENGTH'

);

SQL> COMMIT;

Figure 11-4. The routing network shown in the Network Editor

Partitioning
As already noted, the Routing Engine loads parts of the network as necessary. Those parts are called
partitions. The original network graph (in other words, the NODE and EDGE tables) are not partitioned.
You must perform the partitioning before the router can use the network.

CHAPTER 11 ■ THE ROUTING ENGINE 425

8997ch011.qxd 9/28/07 10:08 AM Page 425

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Partitioning a network is easy; you just need to call the SDO_ROUTER_PARTITION.PARTITION_ROUTER()
procedure, passing it the name of a “node partition” table, as well as the number of network nodes
to be used for each partition.

However, before you can invoke the partitioning procedure, you must set up your environment
so that the procedure can write its progress to a log file. This must be done by a privileged user (such
as SYSTEM), as illustrated in Listing 11-3. Notice that you need to grant access to the log directory and
file using Java-specific grants. This is because the partitioning procedure invokes a Java function to
do the actual partitioning.

Listing 11-3. Setting Up the Rights for Partitioning

SQL>

-- Create the directory

CREATE DIRECTORY sdo_router_log_dir AS 'D:\Work';

-- Grant access to the user that will perform the partitioning

GRANT READ, WRITE ON DIRECTORY sdo_router_log_dir TO spatial;

-- Grant java write access on the file

exec dbms_java.grant_permission('SPATIAL', 'SYS:java.io.FilePermission',

'D:\Work\sdo_router_partition.log', 'write')

-- Also to MDSYS

exec dbms_java.grant_permission('MDSYS', 'SYS:java.io.FilePermission',

'D:\Work\sdo_router_partition.log', 'write')

■Caution You can store the log file anywhere, but it must be called SDO_ROUTER_PARTITION.LOG.

Let’s first examine the full syntax of the procedure:

SDO_ROUTER_PARTITION.PARTITION_ROUTER (

p_tab_name IN VARCHAR2 DEFAULT ‘NODE_PART’,

max_v_no IN NUMBER DEFAULT 10000,

driving_side IN VARCHAR2 DEFAULT ‘R’,

make_equal IN BOOLEAN DEFAULT TRUE

);

The following are the parameters for the PARTITION_ROUTER procedure. Note that they are all
optional.

• p_tab_name: This is the name of an intermediate table that the procedure creates to hold
a copy of all nodes in the network.

■Caution Do not specify anything other than 'node_part'. This is because the procedure uses this name
hard-coded in several places. Specifying any other name will make the procedure fail.

• max_v_no: This is the maximum number of nodes to store in each partition.

• driving_side: Specify this as L or R (the default).

• make_equal: Specify as TRUE (the default) or FALSE. If TRUE, the partitioning logic will attempt
to distribute the nodes as evenly as possible between the partitions.

CHAPTER 11 ■ THE ROUTING ENGINE426

8997ch011.qxd 9/28/07 10:08 AM Page 426

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

To invoke the partitioning procedure, do as shown in Listing 11-4. Notice that this script calls
the procedure and then cleans up all the intermediate tables it leaves around.

Listing 11-4. Performing the Partitioning

SQL>

exec sdo_router_partition.partition_router('NODE_PART', 1000);

-- Now delete temporary tables left over by the partitioning

drop table EDGE_PART purge;

drop table FINAL_PARTITION purge;

drop table NODE_PART purge;

drop table PARTITION_TMP_2 purge;

drop table PARTITION_TMP_3 purge;

drop table SUPER_EDGE_IDS purge;

drop table SUPER_NODE_IDS purge;

purge recyclebin;

You can monitor the progress of the partitioning process by watching the log file (SDO_ROUTER_
PARTITION.LOG), which is updated on the fly. The log provides useful timing information about the
job’s progress. After the call completes, you will have a new table in your schema, called PARTITION,
whose structure is detailed in Table 11-7. The table contains one row for each partition produced,
identified by a unique sequential number. Note that the PARTITION_ID column in the NODE and EDGE
tables also contains the ID of the partition to which each network element was assigned.

Table 11-7. The Partition Table

Column Data Type Meaning

PARTITION_ID NUMBER Unique identification for that partition

SUBNETWORK BLOB The binary representation of the subnetwork for
that partition

NUM_NODES NUMBER Number of nodes in the partition

NUM_NON_BOUNDARY_EDGES NUMBER Number of edges fully contained in the partition

NUM_OUTGOING_BOUNDARY_EDGES NUMBER Number of edges that originate in that partition
and terminate in another partition

NUM_INCOMING_BOUNDARY_EDGES NUMBER Number of edges that originate in another
partition and terminate in this partition

Note that the table contains one more partition than the number you may expect. This is parti-
tion 0 and represents the “supernetwork,” that is, the network that links all the partitions
(subnetworks) together.

Using the Router: XML Queries and Responses
You now have a fully functional router network, and you can start using it from the router web service.
Assuming you have updated your router configuration as outlined in Table 11-2, you should now be
able to start your OC4J or application server, and you should be able to start submitting routing
requests.

Go to http://oc4j_server:8888/routeserver using your web browser, where oc4j_server is
the name or IP address of the machine where you just installed OC4J. For example, you would use
http://127.0.0.1:8888/routeserver if you installed OC4J on your desktop machine. You should see
the page shown in Figure 11-5.

CHAPTER 11 ■ THE ROUTING ENGINE 427

8997ch011.qxd 9/28/07 10:08 AM Page 427

www.it-ebooks.info

www.freepdf-books.com

http://oc4j_server:8888/routeserver
http://127.0.0.1:8888/routeserver
http://www.it-ebooks.info/

Figure 11-5. The routing server home page

From this page, you can choose links to various examples. If you click the first link (“Route
Requests using un-geocoded addresses”), you will be taken to the page shown in Figure 11-6.

CHAPTER 11 ■ THE ROUTING ENGINE428

8997ch011.qxd 9/28/07 10:09 AM Page 428

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 11-6. Routing request example page

Just click the Submit button for the first example. You should see a page that looks like the one
shown in Figure 11-7. Congratulations, you just completed your first routing request.

CHAPTER 11 ■ THE ROUTING ENGINE 429

8997ch011.qxd 9/28/07 10:09 AM Page 429

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 11-7. Routing response

The routing response contains overall information about the route: number of steps, total
distance, and total duration. Then you get the geometry of the route and finally the step-by-step
directions with their distance and duration. You can get different results by altering the input
request, such as getting the response in a different language, using different time and distance
units, and so on.

Routing Requests
Let’s first examine a simple routing request:

<route_request id="1"

route_preference="shortest"

return_driving_directions="true"

distance_unit="mile" time_unit="minute"

return_route_geometry="true">

<start_location>

<input_location id="1" >

<input_address>

<unformatted country="US" >

<address_line value="747 Howard Street" />

<address_line value="San Francisco, CA" />

</unformatted >

</input_address>

</input_location>

</start_location>

<end_location>

<input_location id="2" >

<input_address>

<unformatted country="US" >

CHAPTER 11 ■ THE ROUTING ENGINE430

8997ch011.qxd 9/28/07 10:09 AM Page 430

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<address_line value="1300 Columbus" />

<address_line value="San Francisco, CA" />

</unformatted >

</input_address>

</input_location>

</end_location>

</route_request>

This request uses the generic, unformatted notation for street addresses. The router supports
a few alternate formats, specifically for U.S. addresses. For example, the request in Figure 11-6 uses
one of those formats. For more details on how to format addresses, see Chapter 6.

Apart from the start and end locations, the request specifies a number of preferences and
options you can use to control the way the router determines the route, as well as the level of detail
it returns.

Routing Options
The routing options are passed as attributes on the <routing_request> element. Some parameters
influence the route computed by the router:

• route_preference allows you to choose between the fastest or shortest route (the default).

• road_preference allows you to decide whether to use highways or only local roads.

Other parameters control the level of details of the result. Specify them as true or false (the
default):

• return_driving_directions returns the detailed step-by-step directions.

• return_route_geometry returns the line string that represents the geometry of the route. This
is useful if you want to show the route on a map.

• return_segment_geometry returns a line string for the geometry of each step in the route. Use
this if you want to show a small map for each step.

• return_detailed_geometry returns fully detailed geometries or returns simplified (generalized)
geometries.

• return_route_edge_ids returns the list of all edges traversed by the route.

• return_segment_edge_ids returns the list of edges traversed by each step in the route.

Finally, the following parameters control the way the route instructions are returned to the user:

• language allows you to specify the language to be used for the instructions. If not specified,
then the instructions will be returned in the default language specified in the router configu-
ration file. Possible values are ENGLISH, FRENCH, GERMAN, ITALIAN, or SPANISH. If no language is
specified at all, then the directions are returned in English.

• distance_unit: Specify as kilometer, mile, or meter. If not specified, the distances will be
returned in miles.

• time_unit: Specify as hour, minute, or second. If not specified, the times will be returned in
minutes.

Pregeocoded Start and End Locations
The default mechanism is to specify the locations as full street addresses, as shown earlier. However,
your application may already have verified and geocoded the addresses in a previous step. It
would be a waste of resources to have the router geocode them again. By specifying the attribute

CHAPTER 11 ■ THE ROUTING ENGINE 431

8997ch011.qxd 9/28/07 10:09 AM Page 431

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

pre_geocoded_locations = "true" in the routing request, you can specify the locations using the
information returned by the geocoder. This is illustrated in the following example, which specifies
the same location as the preceding example but this time as network references:

<route_request id="1"

return_driving_directions="true"

distance_unit="mile" time_unit="minute"

pre_geocoded_locations="true">

<start_location>

<pre_geocoded_location id="1">

<edge_id>23607005</edge_id>

<percent>0.53</percent>

<side>R</side>

</pre_geocoded_location>

</start_location>

<end_location>

<pre_geocoded_location id="2">

<edge_id>23601015</edge_id>

<percent>0.33</percent>

<side>R</side>

</pre_geocoded_location>

</end_location>

</route_request>

For each of the locations, specify the edge ID, percentage, and side returned by the geocoder.
See Chapter 6 for details.

Geographic Start and End Locations
Finally, you may not have any start or end location. Rather, the locations are provided by a geographic
point obtained, for example, from a click on a map or possibly collected from a GPS receiver. The fol-
lowing is an example that again uses the same locations as in the previous examples but this time as
longitude/latitude coordinates:

<route_request id="1"

return_driving_directions="true"

distance_unit="mile" time_unit="minute">

<start_location>

<input_location id="1"

longitude="-122.4014128" latitude="37.7841193" />

</start_location>

<end_location>

<input_location id="2"

longitude="-122.4183326" latitude="37.805999" />

</end_location>

</route_request>

The router will call the reverse geocoding function of the geocoder to convert the geographical
coordinates to an address and network location.

Batch Routing
The batch routing mechanism allows you to specify multiple end locations. Its purpose is to com-
pute the best route (shortest or fastest depending on your preferences) from your start location to
each of the end locations.

The batch routing request will not return the full driving directions for each route; it returns
only the distance and duration for each route, but it can order the routes by either distance or

CHAPTER 11 ■ THE ROUTING ENGINE432

8997ch011.qxd 9/28/07 10:09 AM Page 432

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

duration and can also limit the result to only those routes that are less than some maximum distance.
This makes the batch routing mechanism a powerful way to sort locations (for example, stores) by
their travel time or distance from another location (for example a customer).

Just like for regular routing requests, locations can be passed as street addresses, network con-
nections (that is, pregeocoded locations), or longitude/latitude points.

Here is an example of a batch route request with three destinations:

<batch_route_request id="1" route_preference="fastest"

distance_unit="km" time_unit="minute">

<start_location>

<input_location id="0" >

<input_address>

<unformatted country="US" >

<address_line value="747 Howard Street" />

<address_line value="San Francisco, CA" />

</unformatted >

</input_address>

</input_location>

</start_location>

<end_location>

<input_location id="1" >

<input_address>

<unformatted country="US" >

<address_line value="1300 Columbus" />

<address_line value="San Francisco, CA" />

</unformatted >

</input_address>

</input_location>

</end_location>

<end_location>

<input_location id="2" >

<input_address>

<unformatted country="US" >

<address_line value="1450 California St" />

<address_line value="San Francisco, CA" />

</unformatted >

</input_address>

</input_location>

</end_location>

<end_location>

<input_location id="3" >

<input_address>

<unformatted country="US" >

<address_line value="800 Sutter Street" />

<address_line value="San Francisco, CA" />

</unformatted >

</input_address>

</input_location>

</end_location>

</batch_route_request>

And here is the response returned from the router. Notice the routes are returned in the order
in which you specified the destinations.

<batch_route_response id="1">

<route id="1" step_count="0" distance="3.731" distance_unit="km"

time="4.12" time_unit="minute" />

<route id="2" step_count="0" distance="2.725" distance_unit="km"

CHAPTER 11 ■ THE ROUTING ENGINE 433

8997ch011.qxd 9/28/07 10:09 AM Page 433

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

time="3.04" time_unit="minute" />

<route id="3" step_count="0" distance="2.045" distance_unit="km"

time="2.50" time_unit="minute" />

</batch_route_response>

The routing options are passed as attributes on the <batch_route_request> element. The fol-
lowing parameters are identical to those of the regular routing request:

• route_preference: This allows you to choose between the fastest or shortest route (the
default).

• road_preference: This allows you to decide whether to use highways or only local roads.

• distance_unit: Specify as kilometer, mile, or meter. If not specified, the distances will be
returned in miles.

• time_unit: Specify as hour, minute, or second. If not specified, the times will be returned in
minutes.

The following parameters are specific to batch routing:

• sort_by_distance: Specify as true if you want the results to be ordered by distance; that is,
the shortest routes appear first in the result set. If not specified, then results will be returned
in random sequence.

• cutoff_distance: Use this to limit the results; that is, any result longer than the value you
specify will not be returned. The distance you specify is expressed in the unit you indicate
using the distance_unit parameter.

If you add the parameter sort_by_distance="true" to the previous batch routing request, the
routes are now returned ordered by distance:

<batch_route_response id="1">

<route id="3" step_count="0" distance="2.045" distance_unit="km" time="2.50"

time_unit="minute" />

<route id="2" step_count="0" distance="2.725" distance_unit="km" time="3.04"

time_unit="minute" />

<route id="1" step_count="0" distance="3.731" distance_unit="km" time="4.12"

time_unit="minute" />

</batch_route_response>

And it you add cutoff_distance="3", then the response is limited to only those locations that
are less than 3 kilometers from the start location:

<batch_route_response id="1">

<route id="2" step_count="0" distance="2.725" distance_unit="km"

time="3.04" time_unit="minute" />

<route id="3" step_count="0" distance="2.049" distance_unit="km"

time="2.50" time_unit="minute" />

</batch_route_response>

Summary
In this chapter, you learned how to use the Oracle Routing Engine to obtain driving directions.

In Chapter 12, you will use some of the techniques you learned in this chapter in a complete
application.

CHAPTER 11 ■ THE ROUTING ENGINE434

8997ch011.qxd 9/28/07 10:09 AM Page 434

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Visualization

P A R T 4

8997ch12.qxd 9/28/07 10:10 AM Page 435

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997ch12.qxd 9/28/07 10:10 AM Page 436

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Defining Maps Using MapViewer

So far, you have seen how to use spatial-based queries and how to manipulate spatial objects.
However, one important aspect is still missing: the visualization of spatial objects using maps. After
all, location information is all about maps, and to paraphrase a common saying, a map is certainly
worth 1,000 words. In this chapter and the next, you will see how to enable a map-based visualiza-
tion of spatial data in your applications using Oracle MapViewer.

MapViewer is a server-side component that constructs maps by reading appropriate database
views and tables and returns the maps to the client applications in the appropriate formats. Each
map constructed is specified using one or more layers, or themes. Each theme represents a logical
grouping of geographic spatial features, such as roads, customer locations, rivers, and so on. These
features are rendered with specific styles. In this chapter, we will describe in detail how to create
these maps using Oracle MapViewer by covering the following topics:

• The need for maps in Spatial applications and an overview of Oracle MapViewer

• How to install, deploy, and configure MapViewer

• How to define maps with themes and styles and how to store their definitions in the data-
base using the map definition tool Map Builder

• How to use MapViewer and the maps you have defined in your applications using one of the
many available APIs: JavaScript (Ajax), Java, XML, or PL/SQL

• How to manage and administer the MapViewer server (that is, how to manage data sources,
caches, map definitions, and so on)

■Note Oracle MapViewer is a feature of the Oracle Application Server and as such follows a release cycle that is
largely independent from that of the Oracle Database. In this chapter, we base our discussion on the version of
MapViewer included with Oracle Fusion Middleware 11g, version 11.1.

Why Use Maps in Location-Enabled Applications?
We are all familiar with maps. We used maps in geography classes. We currently use maps to decide
where to go for our vacations or to find our way when we are lost on the road. In this section, you
will see how maps enable the visualization of location data in your applications.

To start, consider the query in Listing 12-1, which selects all the branches in San Francisco.

437

C H A P T E R 1 2

■ ■ ■

8997ch12.qxd 9/28/07 10:10 AM Page 437

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 12-1. Branches in San Francisco

SQL> SELECT street_number num,

street_name,

city,

postal_code

FROM branches

WHERE city = 'SAN FRANCISCO';

NUM STREET_NAME CITY POSTAL_CODE

----- ------------------------- -------------- ------------

420 POST ST SAN FRANCISCO 94102

944 STOCKTON ST SAN FRANCISCO 94108

1007 TARAVAL ST SAN FRANCISCO 94116

1995 UNION ST SAN FRANCISCO 94123

1640 VAN NESS AVE SAN FRANCISCO 94109

245 WINSTON DR SAN FRANCISCO 94132

5268 DIAMOND HEIGHTS BLVD SAN FRANCISCO 94131

1455 STOCKTON ST SAN FRANCISCO 94133

2090 JERROLD AVE SAN FRANCISCO 94124

1 POWELL ST SAN FRANCISCO 94102

2485 SAN BRUNO AVE SAN FRANCISCO 94134

288 W PORTAL AVE SAN FRANCISCO 94127

315 MONTGOMERY ST SAN FRANCISCO 94104

680 8TH ST SAN FRANCISCO 94103

915 FRONT ST SAN FRANCISCO 94111

150 4TH ST SAN FRANCISCO 94103

4098 24TH ST SAN FRANCISCO 94114

1515 SLOAT BLVD SAN FRANCISCO 94132

445 POWELL ST SAN FRANCISCO 94102

50 CALIFORNIA ST SAN FRANCISCO 94111

45 SPEAR ST SAN FRANCISCO 94105

1200 MONTGOMERY ST SAN FRANCISCO 94133

5000 3RD ST SAN FRANCISCO 94124

2850 24TH ST SAN FRANCISCO 94110

3701 BALBOA ST SAN FRANCISCO 94121

500 BATTERY ST SAN FRANCISCO 94111

501 BRANNAN ST SAN FRANCISCO 94107

1525 MARKET ST SAN FRANCISCO 94102

3565 CALIFORNIA ST SAN FRANCISCO 94118

501 CASTRO ST SAN FRANCISCO 94114

2200 CHESTNUT ST SAN FRANCISCO 94123

600 CLEMENT ST SAN FRANCISCO 94118

433 CORTLAND AVE SAN FRANCISCO 94110

1275 FELL ST SAN FRANCISCO 94117

2310 FILLMORE ST SAN FRANCISCO 94115

2835 GEARY BLVD SAN FRANCISCO 94118

5500 GEARY BLVD SAN FRANCISCO 94121

701 GRANT AVE SAN FRANCISCO 94108

800 IRVING ST SAN FRANCISCO 94122

1945 IRVING ST SAN FRANCISCO 94122

6 LELAND AVE SAN FRANCISCO 94134

2701 MISSION ST SAN FRANCISCO 94110

3250 MISSION ST SAN FRANCISCO 94110

5150 MISSION ST SAN FRANCISCO 94112

345 MONTGOMERY ST SAN FRANCISCO 94104

33 NEW MONTGOMERY ST SAN FRANCISCO 94105

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER438

8997ch12.qxd 9/28/07 10:10 AM Page 438

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

2325 NORIEGA ST SAN FRANCISCO 94122

15 OCEAN AVE SAN FRANCISCO 94112

48 rows selected.

Compare this textual response to Figure 12-1, which positions those branches on a map of San
Francisco, and Figure 12-2, which compares those branch positions with positions of competitors.
Notice how the map clearly points out the placement of the branches and those of the competitors.

Figure 12-1. A map showing the position of the branches

Figure 12-2. A map showing the position of the branches and those of the competitors

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 439

8997ch12.qxd 9/28/07 10:10 AM Page 439

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

As you can see from these images, maps are meaningful geometric representations of the world
rendered in a human-readable size and format. Maps are so fundamental to the way in which we
perceive the world that they predate everything but the cave paintings humans created in an attempt
to understand the world and to find ways to communicate that understanding. Whether scratched in
the sand with a stick, printed on papyrus or paper, or displayed on a screen, a map can convey an
understanding of the shape of the environment and the relationships among things within it in
a manner more efficient and understandable than any number of spoken or written words.

Computer-generated maps are much like paper maps, except they are dynamically generated
from information stored in databases. They give you a certain level of control and interaction; you
can choose to see more or less information, to see different regions, to zoom in and out, and so on.

Overview of MapViewer and Oracle Maps
In this chapter, you’ll learn to use two Oracle features—MapViewer and Maps—to add mapping
functionality to your applications. Before getting into how to use the features, we’ll give you some
background on each.

Oracle MapViewer
MapViewer is a pure Java server-side component included with Oracle Application Server. The main
components, illustrated in Figure 12-3, are as follows:

• A map-rendering engine running in Oracle Application Server: The rendering engine is
exposed as a servlet that processes requests sent by client applications, fetches the proper
information from spatial tables, and constructs maps in a variety of graphical formats (GIF,
PNG, JPEG, or SVG), which it then returns to the requesting client. In addition to the core
mapping servlet, the MapViewer server also provides a map cache server and a feature of
interest (FOI) server.

• Map definitions: The map definitions are stored in the database. This is where you describe
your maps: which tables to use, how the maps should be rendered (colors, line thickness,
and fonts), and so on.

• A series of application programming interfaces (APIs): Those APIs allow you to access
MapViewer features from a variety of application development environments. These APIs
include XML, Java, PL/SQL, and JavaScript (Ajax) interfaces. The Java API also includes
JavaServer Pages (JSP) tags to ease the inclusion of maps in JSPs.

• A graphical Map Builder tool: This is a stand-alone program that helps you manage the map
definitions stored in the database.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER440

8997ch12.qxd 9/28/07 10:10 AM Page 440

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-3. Oracle MapViewer core architecture

The client applications talk to the MapViewer servlet over HTTP in a request/response model,
as illustrated in Figure 12-4. Requests and responses are encoded in XML. Java clients can use the
Java API, which takes care of constructing and sending the XML requests, as well as reading and
parsing the XML responses.

Figure 12-4. MapViewer request/response flow

An alternative to the flow in Figure 12-4 is for MapViewer to stream the map image directly to
the client application instead of returning a URL to the generated map, as illustrated in Figure 12-5.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 441

8997ch12.qxd 9/28/07 10:10 AM Page 441

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-5. MapViewer request/response flow with image streaming

Since MapViewer is a pure Java tool, it can run on any platform where Java is available. How-
ever, that does not mean it can be used only from Java applications. Its lowest-level API (XML over
HTTP) allows any application to use its services.

Oracle Maps
Oracle Maps is the name of a suite of technologies provided by MapViewer that allows you to build
highly dynamic and highly performant mapping applications. The MapViewer architecture with
Oracle Maps is illustrated in Figure 12-6 and uses the following main components:

• A map cache server: This server automatically caches tiles of the maps generated by the
map-rendering engine to satisfy application requests and serves those tiles to any applica-
tion that requests the same maps. The goal of the map cache server is to process the static
background maps (vector or raster). Because map tiles are pregenerated and cached, appli-
cation users experience fast map-viewing performance. Note that the map cache is persistent
(map tiles are stored using files) and is shared by all users.

• A feature of interest (FOI) server: The FOI server reads and renders dynamic features from
spatial tables. Those represent the dynamic entities managed by your application: customers,
pipes, trucks, and so on.

• An Ajax-based JavaScript mapping client API: The JavaScript library provides all functions
needed by applications to browse and interact with maps in a highly dynamic way: smooth
dragging and zooming, info tips, information windows, queries, and selections.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER442

8997ch12.qxd 9/28/07 10:10 AM Page 442

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-6. Oracle Maps architecture

MapViewer is not an end-user tool; rather, it is a component developers use to add maps to their
applications. With that in mind, we’ll now show how to use MapViewer to create maps such as these
and then how to use them in an application. The first step is to install and configure MapViewer for use.

Getting Started
MapViewer is provided as a standard J2EE archive (EAR) format. See the introduction for details on
how to install and configure OC4J and how to deploy applications using the OC4J console. The
EAR file for MapViewer is available for download from the Oracle Technology Network website at
http://otn.oracle.com/software/products/mapviewer. The result is a file called mapviewer.ear
(approximately 9MB in size).

As discussed, MapViewer is a pure Java component, as is OC4J, so you can install MapViewer
and OC4J on any platform that has a suitable Java environment. MapViewer needs a Java 2 Platform
Standard Edition Software Development Kit from Sun Microsystems (J2SE SDK) 1.5 or newer. Your
Oracle Database 11g installation includes such a JDK in $ORACLE_HOME/jdk.

■Tip MapViewer needs a graphical environment in order to generate maps. The “headless” mechanism in J2SE
SDK enables MapViewer to run on Linux or Unix systems without setting any X11 DISPLAY variable. To enable AWT
headless mode on Linux or Unix systems, specify the following on the command line to start the OC4J server:
-Djava.awt.headless=true.

You can confirm that MapViewer was successfully installed by going to http://oc4j_server:8888/
mapviewer in your web browser (for example, http://127.0.0.1:8888/mapviewer if you installed
OC4J on your own desktop system). You should see the home page of MapViewer, as shown in
Figure 12-7.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 443

8997ch12.qxd 9/28/07 10:10 AM Page 443

www.it-ebooks.info

www.freepdf-books.com

http://otn.oracle.com/software/products/mapviewer
http://oc4j_server:8888
http://127.0.0.1:8888/mapviewer
http://www.it-ebooks.info/

Figure 12-7. MapViewer home page

At this point, MapViewer is ready for use. The default settings are adequate for you to start
using it, although a little later in the chapter we will cover some of the configuration settings. We
have yet to discuss how to define new maps, but you are already in a position to display a first pre-
defined map. To do this, perform these steps:

1. Load the sample data into your database, together with predefined map definitions.

2. Define a MapViewer data source.

3. Install the example applications so they can be retrieved using your OC4J server.

Load the Sample Data
To work through all the examples shown in this chapter, you need to populate your database with
the sample data provided on the Apress website (www.apress.com). So far, we have been using only
the application data (customers, branches, and competitors tables) without any references to other
spatial data. If you want to see application data on maps, you also need the geographical data that
will appear on the maps: streets, administrative boundaries, natural features, and so on.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER444

8997ch12.qxd 9/28/07 10:10 AM Page 444

www.it-ebooks.info

www.freepdf-books.com

http://www.apress.com
http://www.it-ebooks.info/

Location-Enable the Application Data
If you have performed the steps detailed in Chapter 6 and you have run the examples in the follow-
ing chapters, you should now have your customers, branches, and competitors tables spatially enabled
and ready for use.

In case you did not complete those steps, you can now load them in the “spatially enabled”
format by importing the file app_data_with_loc.dmp as follows:

imp spatial/spatial file=app_data_with_loc.dmp full=y

Load the Geographical Data
For clarity and ease of use, we provide the data as several Oracle dump files (you can find details on
the tables and their structure in Appendix E):

• Large-scale data (countries, states, counties, and so on) are provided in the file map_large.dmp.

• Detailed data (city streets, and so on) are provided in the file map_detailed.dmp.

Load the data using the Oracle Import tool as illustrated in the following code. Note that this
will create the tables, load the tables with data, load the spatial metadata, and create the spatial
indexes. Once the import is complete, the tables are ready for use.

imp spatial/spatial file=map_large.dmp full=y

imp spatial/spatial file=map_detailed.dmp full=y

Load Maps, Themes, Style, and Map Cache Definitions for
MapViewer
Maps, themes, and style definitions, as well as map caches, are provided ready for use. To use them,
you simply need to perform these steps:

1. Import them into the database. This creates and populates three tables: my_maps, my_themes,
my_styles, and my_cached_maps.

2. Load the definitions into the dictionary tables used by MapViewer.

Listing 12-2 illustrates the full process.

Listing 12-2. Loading Maps, Themes, Style, and Cache Definitions

imp spatial/spatial file=styles.dmp full=y

SQL> INSERT into user_sdo_styles

select * from my_styles;

SQL> insert into user_sdo_themes

select * from my_themes;

SQL> insert into user_sdo_maps

select * from my_maps;

SQL> insert into user_sdo_cached_maps

select * from my_cached_maps;

SQL> commit;

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 445

8997ch12.qxd 9/28/07 10:10 AM Page 445

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Define a Data Source
The next step is to define a permanent data source in MapViewer’s configuration file. This is not
strictly necessary, since you could also add a data source via MapViewer’s administration page, but
having a permanent data source makes it easier for you when you stop and start OC4J and MapViewer.

To add the data source, you edit the configuration file, as explained in the previous section. The file
is located at $OC4J_HOME/j2ee/home//applications/mapviewer/web/WEB-INF/conf/MapViewerConfig.xml.
Add the following definition in the main <MapperConfig> element:

<map_data_source name="spatial"

jdbc_host="127.0.0.1"

jdbc_port="1521"

jdbc_sid="orcl111"

jdbc_user="spatial"

jdbc_password="!spatial"

jdbc_mode="thin"

max_connections="5"

number_of_mappers="3"

/>

Replace the JDBC connection details (host, port, sid, user, and password) with your own infor-
mation. The user name should be the one into which you loaded the example data.

If your OC4J server is not up and running, then start it now by going to $OC4J_HOME/j2ee/home
and entering the command java -jar oc4j.jar.

■Caution When you edit the XML configuration file, make sure to insert the new definitions in the proper places.
In particular, make sure you do not put them in existing comments. We recommend you use a text editor that is
able to recognize and color-code XML syntax elements or an XML-aware editor such as XMLSpy. We also recom-
mend you make backup copies of any configuration file you modify, just in case.

Install Example Applications
The MapViewer examples provided with this book are available in a file called web-examples.zip.
Expand it into $OC4J_HOME/j2ee/home/applications/mapviewer/web/spatial-book.

■Note In all the examples, it is assumed that you installed OC4J on your desktop machine, so you will access it
using the localhost address (127.0.0.1).

In your browser, go to the home page for the book examples at http://127.0.0.1:8888/mapviewer/
spatial-book. You should see the page shown in Figure 12-8.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER446

8997ch12.qxd 9/28/07 10:10 AM Page 446

www.it-ebooks.info

www.freepdf-books.com

http://127.0.0.1:8888/mapviewer
http://www.it-ebooks.info/

Figure 12-8. Home page for the MapViewer examples

The links on the page in Figure 12-8 take you to various examples that illustrate how to use
MapViewer’s API. You may want to take some time to explore those examples as you read this chap-
ter. If you click the first link (SimpleMap.html), you should see the page shown in Figure 12-9. Use
your mouse and the Control Panel to explore the map.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 447

8997ch12.qxd 9/28/07 10:10 AM Page 447

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-9. Your first map

In the rest of this chapter, you will learn how this map was defined and how to define your own
maps. Then you will learn how to embed maps in your applications and allow users to interact with
the maps. Before we move on to that, however, it is worth taking a quick look at some of the MapViewer
configuration options.

Configuring MapViewer
Although the MapViewer default settings are adequate for you to start using MapViewer, at some
point you will probably want to change some configuration parameters. Those parameters are coded
in XML. You can find the configuration file at $OC4J_HOME/lbsj2ee/home/mapviewer/web/WEB-INF/conf/
mapViewerConfig.xml. You can change parameters by editing this file, preferably using an XML-aware
editor, but Notepad or vi will do as well. You can also modify the file using MapViewer’s own admin-
istration console. The file contains many comments, which makes it easier for you to apply changes.

Note that MapViewer will apply the changes only when you restart it, either by stopping and
starting the entire OC4J component or by restarting only the MapViewer application via the admin-
istrative API or the administration console of the application server.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER448

8997ch12.qxd 9/28/07 10:10 AM Page 448

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Using the Administration Console
To invoke the administration console, start from MapViewer’s home page, shown in Figure 12-7.
Click the Admin link at the top right of the page. You will then be asked to provide the name and
password of the administrative account for your application server installation. For a stand-alone
OC4J installation, the username is oc4jadmin, and the password is the one you specified when you
installed OC4J. Figure 12-10 shows the main page of the administration console.

Figure 12-10. MapViewer administration console

Editing the Configuration File
Clicking the first link on the left (Configuration) opens a form, shown in Figure 12-11, where you
can edit the content of the configuration file. Once you are done, click the Save button at the bot-
tom of the page. If you want your changes to take effect immediately, click the Save and Restart
button, which will instruct MapViewer to reload the configuration file.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 449

8997ch12.qxd 9/28/07 10:10 AM Page 449

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-11. Editing the configuration file

Maintaining Data Sources
Clicking the second link on the left (Datasources) opens a form like the one shown in Figure 12-12.
This form allows you to define a new data source. Note that this data source is dynamic; that is, it
will disappear the next time you stop or restart MapViewer. To define a permanent data source, you
must include it in the configuration file, as explained later in this chapter.

The form also allows you to delete a data source: this removes only the definition from MapViewer’s
memory (it has no effect on the definitions in the configuration file). You can also purge all map,
theme, and style definitions for that data source (using the Purge Cached Metadata button). Use
this to force MapViewer to use the changes you made to map definitions in the database (using
Map Builder).

■Note The Edit button has no effect. To modify a permanent data source, edit the configuration file. For
a dynamic data source, delete it, and then redefine it.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER450

8997ch12.qxd 9/28/07 10:10 AM Page 450

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-12. Maintaining data sources

Maintaining Geometry Caches
Clicking the third link on the left (Geometry Caches) opens a form like the one shown in Figure 12-13.
Use it to clear geometries retained in memory for a data source. You have the option to clear the
geometries cached for all themes or just for one specific theme.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 451

8997ch12.qxd 9/28/07 10:10 AM Page 451

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-13. Maintaining geometry caches

The form shows the current size of the geometry cache. Set the maximum size of the cache by
editing the configuration file.

Configuration Parameters
The configuration parameters are specified as a set of XML elements, with each element covering
one aspect of MapViewer’s operation.

Logging
MapViewer can generate a log of its operation. The <logging> element enables you to control how
detailed this logging should be and where it should go. The following is an example setting:

<logging log_level="info" log_thread_name="true" log_time="true">

<log_output name="System.err"/>

<log_output name="../log/mapviewer.log"/>

</logging>

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER452

8997ch12.qxd 9/28/07 10:10 AM Page 452

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The element contains the following attributes:

• log_level: This attribute defines the level of detail to log. It can range from less detailed
(fatal) to very detailed (finest). The default (info) is a good compromise. The debug and
finest settings are useful only to help in diagnosing problems or to better understand the
operation of MapViewer. The finest level involves each request getting logged, together with
each and every database SQL query. Do not use it in production.

• log_thread_name: When this attribute is set to true, the name of each MapViewer thread is
logged with each message.

• log_time: When this attribute is set to true, a time stamp is logged with each message.

The <logging> element contains one or more <log_output> elements. Each <log_output> element
defines one log destination. The destination System.err corresponds to the console of the OC4J
container.

■Note All file specifications are relative to the location of the configuration file. For example, ../log/mapviewer.log
is equivalent to $OC4J_HOME/j2ee/home/mapviewer/web/WEB-INF/log/mapviewer.log. This makes your
configuration files portable between different installations. Notice that you can write the file specifications in the
configuration file using forward slashes (/), even if you use a Windows platform.

■Caution MapViewer starts a new log file each time the application server (or OC4J container) starts. Files are
named by appending a number at the end (for example, mapviewer_35.log). The log files are not automatically
removed.

Map Image Lifetime
The map images generated by MapViewer are stored in the file system on the application server.
The <save_images_at> element enables you to control the lifetime of those files. The following is
a typical setting:

<save_images_at file_prefix="omsmap"

url="/mapviewer/images/"

path="../../../web/images"

life= "5"

recycle_interval="10" />

The element uses XML attributes to define the following parameters:

• file_prefix is the prefix of the generated map files. Maps are numbered sequentially, and
this number is appended to the prefix you choose. The default is omsmap, and we see no rea-
son to change this.

• url is used to produce the URL that points to the generated maps, which is relative to the
URL used to reach the MapViewer servlet. The default is /mapviewer/images, which corre-
sponds to $OC4J_HOME/j2ee/home/applications/mapviewer/web/images. Again, we see no
reason to change this.

• path is the folder in which images are stored. By default, the images go to ../../../web/
images, which is the same as $OC4J_HOME/j2ee/home/applicationslbs/mapviewer/web/images.
There is no reason to change this.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 453

8997ch12.qxd 9/28/07 10:10 AM Page 453

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• life specifies how long (in minutes) a generated map should remain on the server. By
default, it is set to 0, which means that images are never deleted. This is probably not a good
idea, since images will accumulate quickly.

• recycle_interval specifies how the interval (in minutes) between successive executions of
the recycling thread, whose purpose is to remove old maps. By default, this happens every
eight hours. In production systems, this process will probably need to happen more often.

Geometry Caching
When MapViewer reads data from spatial tables, it automatically retains a copy of the geometries in
a JDBC object cache, thereby avoiding the need to read them again for subsequent map requests on
the same geographical area. The cache is memory resident.

The <spatial_data_cache> element enables you to control the size of the cache. The following
is an example setting:

<spatial_data_cache

max_cache_size="32"

report_stats="false"

/>

where the following is true:

• max_cache_size is a parameter that specifies the size (in megabytes) of the memory cache.
The default is 64MB.

• report_stats provides cache statistics. When this parameter is set to true, MapViewer will
periodically (approximately every five minutes) report the current cache size and the num-
ber of cached objects as a log message.

■Note Previous versions of MapViewer also included a disk-based cache for geometries. This is no longer the
case. The old parameters max_disk_cache_size and disk_cache_path that used to control the size and loca-
tion of the disk cache are now ignored.

Permanent Data Sources
MapViewer accesses databases via JDBC. A data source defines the parameters for a JDBC connec-
tion: host name, port, database name, user name, and password. Each data source has a unique
name.

Data sources can be defined dynamically, using the administrative API, or they can be defined
statically in the configuration file. A data source is defined in a <map_data_source> element. Here is
an example that defines a data source over a database that runs on the same system as MapViewer:

<map_data_source name="spatial"

jdbc_host="127.0.0.1"

jdbc_port="1521"

jdbc_sid="orcl1101"

jdbc_user="spatial"

jdbc_password="!spatial"

jdbc_mode="thin"

max_connections="10"

number_of_mappers="3"

/>

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER454

8997ch12.qxd 9/28/07 10:10 AM Page 454

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

where the following is true:

• name is the name of the data source. It must be unique.

• jdbc_host is the name or IP address of the system hosting the Oracle database.

• jdbc_port is the port on which the database is listening. By default, databases listen on port 1521.

• jdbc_sid is the name of the database.

• jdbc_user is the user name to connect to the database.

• jdbc_password is the password of the user connecting to the database. The password must be
written with a leading ! symbol. MapViewer will automatically encrypt this password and
replace it in the configuration file with the encrypted result.

• number_of_mappers defines the maximum number of concurrent map requests that this data
source can handle.

• max_connections limits the number of connections used for the data source. MapViewer will
use as many concurrent connections as needed for a request, and then it will close them up
to the maximum number specified.

You can also tell MapViewer to use one of the data sources defined for OC4J. Those data
sources are defined in the configuration file $OC4J_HOME/j2ee/home/config/data-sources.xml. For
example, here is an OC4J data source definition:

<managed-data-source name="spatial"

connection-pool-name="spatial-demos"

jndi-name="jdbc/spatial"/>

<connection-pool name="spatial-demos">

<connection-factory factory-class="oracle.jdbc.pool.OracleDataSource"

user="spatial"

password="spatial"

url="jdbc:oracle:thin:@//localhost:1521/ORCL111">

</connection-factory>

</connection-pool><data-source

You can use that data source for MapViewer by defining it as follows in the MapViewer configu-
ration file:

<map_data_source name="spatial"

container_ds="jdbc/spatial"

max_connections="5"

number_of_mappers="3"

/>

Global Map Options
The <global_map_config> element enables you to define some settings that control the general look
and feel of the produced maps. In particular, you can use it to set a copyright notice and logo on all
the maps produced by your server. Here is a typical setting:

<global_map_config>

<title text="MapViewer Demo" font="Courier" position="NORTH"/>

<note text="Oracle (C) copyright 2004"

font="Bookman Old Style Bold Italic"

position="SOUTH_EAST"/>

<logo image_path="../../../web/myicons/orcl_logo_test.gif"

position="SOUTH_WEST"/>

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 455

8997ch12.qxd 9/28/07 10:10 AM Page 455

www.it-ebooks.info

www.freepdf-books.com

thin:@//localhost:1521/ORCL111
thin:@//localhost:1521/ORCL111
http://www.it-ebooks.info/

<rendering

allow_local_adjustment="false"

use_globular_projection="false" />

</global_map_config>

where the following is true:

• title defines the position of map titles on the generated maps. You can also specify a default
title that will appear when a map is requested without any explicit title.

• note defines a text string that will appear on all maps—typically a copyright notice. The text
and font parameters are self-explanatory. The position parameter lets you specify where the
text should appear on the map using a keyword such as NORTH, SOUTH, EAST, WEST, NORTH_WEST,
SOUTH_EAST, and so on. In the preceding example, the copyright notice appears at the lower
right of the image.

• logo is a GIF logo that will appear on all maps. The position of the logo is specified the same
way it is for the note. The image_path parameter specifies the file specification of the logo.
Like all other file specifications, it is relative to the location of the configuration file.

• rendering represents advanced settings for controlling the appearance of maps on geodetic
data.

Security
Several of the requests that applications can send to MapViewer are potentially dangerous. This is
true for the administrative requests that allow applications to discover and define data sources
(database connections). Those, however, can be sent only from properly authenticated clients. You
can, however, also restrict the clients that are allowed to issue administration requests by using the
<ip_monitor> element and specifying the lists of IP addresses or a range of addresses to allow or dis-
allow.

Another potential security risk is the ability for applications to issue just any SQL SELECT state-
ment against a data source. Those are typically issued by applications that need to find out details
about spatial objects returned on a map. You can disable those requests by adding the following in
your configuration:

<security_config>

<disable_direct_info_request> true </disable_direct_info_request>

</security_config>

Be aware, however, that this will prevent applications from using any of the identification tech-
niques (identify(), queryWithinRadius(), doQuery(), and so on) used in Java applications. Those
techniques are discussed in Chapter 13.

One more security concern is the ability to send dynamic SELECT statements to the database
straight from the browser. This capability is known as JDBC theme-based FOIs, and it allows JavaScript
applications to build powerful dynamic queries to be performed by MapViewer’s FOI server. How-
ever, this is also a security concern. By default, such queries are not allowed. To allow them against
a specific data source, add the parameter allow_jdbc_theme_based_foi="true" to the definition of
that data source. JDBC theme-based FOIs will be discussed in detail with the Oracle Maps
JavaScript API.

Map Cache Server
Use the <map_cache_server> element to define some generic settings for the map cache server. Here
is an example:

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER456

8997ch12.qxd 9/28/07 10:10 AM Page 456

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<map_cache_server>

<cache_storage default_root_path="/scratch/mapcachetest/"/>

<logging log_level="info" log_thread_name="true" log_time="true">

<log_output name="System.err"/>

<log_output name="../log/mapcacheserver.log"/>

</logging>

</map_cache_server>

where the following is true:

• The <cache_storage> element defines the default location used by MapViewer to store the
caches on the file system. If the location you specify does not exist, then the caches will all be
stored in $OC4J_HOME/j2ee/home/applications/mapviewer/web/mapcache. Note that you can
specify a specific location for each cache when you define it.

• The <logging> element lets you control the level of logging detail produced by the map
cache server. Its syntax is identical to that of the general MapViewer logging.

Defining Maps
A map is constructed from one or more themes, which refer to styles. A theme is based on a table.
Figure 12-14 illustrates these relationships.

Figure 12-14. Elements of map definitions

Styles describe how the information shown on a map should look: color, symbols, and so on.
Themes define what information should appear on a map and the style to use.

Figure 12-14 is a simplification; multiple maps can use the same theme, and multiple themes
can use the same style. A theme can use many different styles. Also, multiple themes can be based
on the same table. A table could also be a view or a dynamically defined SQL query.

The definitions are stored in the database in a set of three dictionary views: USER_SDO_MAPS,
USER_SDO_THEMES, and USER_SDO_STYLES. Like all Oracle dictionary views, they come in three vari-
ants: USER, ALL, and DBA. Only the USER views are updatable—you define new styles (or themes or
maps) by inserting them into the corresponding USER view. You can also remove styles (or themes,
or maps) or update them by deleting or updating the USER views. The ALL views include all objects
(styles, themes, or maps) that you are allowed to access. The DBA views include all objects in the
database, but only DBAs are allowed to access them.

The relationships between the various elements are not implemented via referential integrity
constraints; rather, a MAP definition contains a list of themes, and a THEME refers to a list of styles.
Those lists are coded in the definition elements using an XML notation.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 457

8997ch12.qxd 9/28/07 10:10 AM Page 457

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can directly update the tables where map, theme, and style definitions are stored, but this
requires that you understand precisely the structure of the tables, as well as the XML syntax. A bet-
ter way is to use the map definition tool called Map Builder that is provided with MapViewer. Next,
we’ll give you a general overview of how to install and use Map Builder, and then we’ll cover in
greater detail how to define and modify the main mapping elements: styles, then themes, and
finally base maps.

Using Map Builder
Download Map Builder from the Oracle Technology Network website at the same location from
which you downloaded the MapViewer kit. Save it anywhere you like on your disk.

Map Builder is a stand-alone Java tool, provided as a single JAR file. You can run it on any plat-
form, provided you have a Java 1.5 JDK. The JAR file is entirely self-contained: it contains not only
Map Builder’s own code but also the core MapViewer rendering classes, JDBC driver, and imagery
and XML support libraries. To start Map Builder, just do this:

java -jar mapbuilder.jar

You will see the window in Figure 12-15 appear.

Figure 12-15. Starting Map Builder

To use the tool, you must first connect to the database where you will keep your styles and
other definitions. Click the Add Connection icon on the top toolbar. You can also press Ctrl+N on
your keyboard or select File ➤ New Connection. Another possibility is to click the drop-down list of
connections and select Load/Add/Remove. All bring you to the box shown in Figure 12-16. Fill it
with the usual JDBC connection information: host, port, database name (SID), user name, and

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER458

8997ch12.qxd 9/28/07 10:10 AM Page 458

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

password. The Test Connection button will verify that the information you entered is correct and
that the database is up and running and accessible.

Figure 12-16. Connecting to the database

After clicking the Ok button, Map Builder will load all map definitions defined for the user you
connected as. You can define any number of connections that way, including to different databases
or different accounts in the same database. The connections will appear in the Connections drop-
down list. Switch from one connection to another by just selecting the proper connection from the
list. Map Builder remembers the connections and will provide them when you start it again.

■Note On start-up, Map Builder automatically attempts to reconnect to all connections defined in your list. It will
skip any invalid connection (for example, if the database is not available). It will also automatically load all map
definitions from the first valid connection it finds. If you do not want this behavior, then specify the –noconnect
option when starting Map Builder. The drop-down list of connections will be empty, but your connections will still
be available via the Load/Add/Remove option of the Connections drop-down list.

Once you are successfully connected, you will see Map Builder’s main window, as shown in Fig-
ure 12-17. The explorer window on the left lets you navigate through your styles, theme, and maps
and then select the definition to modify.

• To create a new element (style, theme, map), click the Create Metadata icon on the top tool-
bar, or right-click the kind of element you want to create. You can also press Shift+Ctrl+N on
your keyboard or select File ➤ New Metadata. All open a new form in a tab on the right area
of the screen for you to fill.

• To update an existing element, double-click it from the list on the left side. Then modify the
settings in the form that appears.

• To delete an element, select it, and click the red cross button at the top. You can also right-click
it and select the Delete option or select the Edit ➤ Delete menu.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 459

8997ch12.qxd 9/28/07 10:10 AM Page 459

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-17. Main Map Builder window

When you create a new element or when you select an existing element to modify, the informa-
tion on that element will appear in a tab in the right area of the screen. You can have any number of
tabs open at any point in time. You can switch between those tabs, which means you can at the
same time create a new style and modify the theme that uses that style. All elements have a preview
mechanism that allows you so see how your choices will look in your applications.

When you make changes to an element (or create a new one), those changes are not final. They
exist only in Map Builder’s memory. You can always discard changes by closing the corresponding
tab. You will be asked first whether to keep or discard the changes.

To save changes you made to an element to the database, click the Save icon in the top toolbar.
If you want to save all your changes, click the Save All icon (or use the corresponding options from
the File menu).

Note, however, that deletions are final. You will be asked to confirm the deletion, and if you do,
the element will be permanently removed from the database.

One interesting possibility is to duplicate an existing element. Use this if you want a new ele-
ment (for example, a complex line style) to be slightly different from an existing style. Right-click
the element to duplicate, and provide a name for the new element.

■Tip Map Builder provides no mechanism to rename an element. To rename an element, just duplicate it with the
right name, and then delete the old one.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER460

8997ch12.qxd 9/28/07 10:10 AM Page 460

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-18 shows a typical Map Builder editing session. You can see three elements being
edited: a color style, a theme, and a map. Notice that all element-editing tabs contain three subtabs
accessible from the bottom of the screen: the Editor subtab proper, the XML subtab that shows the
definition as it will appear in the database tables, and the Preview subtab where you can judge the
result of your design efforts.

Figure 12-18. Example of a Map Builder editing session

Using Styles
Spatial information is stored in the database as geometric shapes: points, lines, and polygons. To
draw those shapes on a map, you need to tell MapViewer how to do this (that is, what style to use).
To do this, you associate each theme with a style.

A style is a visual attribute that represents a spatial feature. Basic map symbols and labels for
representing point, line, and area features are defined and stored as individual styles. Symbology on
a map can be simple and informal, or it can follow guidelines based on standard usages. Those graph-
ical charts are typically defined by national mapping agencies, such the U.S. Federal Geographic Data
Committee or the Ordnance Survey of Great Britain. Symbols should be chosen to reflect the culture,
common understanding, and sensitivities of map viewers.

Proper use of styles can have a large impact on map readability and usability. For example,
compare the two maps shown in Figure 12-19. Both maps show the same content; however, the left
map uses no styling rules to speak of, whereas the right map uses a rich set of styles that allows you
to clearly identify the features shown on the map.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 461

8997ch12.qxd 9/28/07 10:10 AM Page 461

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-19. Comparing styling rules

■Note The association of themes and styles may need to be dynamic, because different cultures are used to
different map style conventions. For example, a French Michelin map, a British Ordnance Survey map, and an
American Rand McNally atlas do not use the same conventions.

In the following sections, we will cover the various style types that are used for different geo-
graphic features that comprise maps, and then we will discuss how they are stored in the Oracle
database.

Point Styles
Points are represented as graphic shapes: a cross, a star, a square, or a pictogram (for example,
a small house or a church). These pictograms are often represented as small bitmap images, for
example, with a plane representing an airport, a skier representing a ski resort, an ambulance repre-
senting a hospital, and so on.

Line Styles
Lines can be very complex to define. They are used to represent a variety of linear objects: highways,
railroads, canals, rivers, electricity lines, sewers, and so on. A line typically needs many parameters:
thickness, color, center and side lines, and hash marks, among others.

Area Styles
Areas are represented using a fill color (for example, the color of the interior of a polygon) and
a stroke color (for example, the color of the boundary of the polygon).

Text Styles and Labeling
Objects shown on maps correspond to real-world features. Many of those features are named:
cities, parks, streets, customers, stores, and so on. Labels containing those names can be used to
identify the features.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER462

8997ch12.qxd 9/28/07 10:10 AM Page 462

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Efficient labeling of map features is an art in itself. Labels must be placed so they can be clearly
and unambiguously associated with the features they describe and in a manner that doesn’t obscure
symbols or other labels. If labels overlap, some may need to be moved or even omitted.

MapViewer automatically places labels on maps, but you still need to define the font and color
to use for those labels.

Defining Styles: The USER_SDO_STYLES View
Styles are stored in the USER_SDO_STYLES view. This is the view you will update to define and main-
tain your private styles. The ALL_SDO_STYLES view lists all styles defined by all users in the database.
In other words, this makes it easy for multiple users to share styles. Note that there are no privileges
on styles—once you define a style in your USER_SDO_STYLES view, anyone can use that style in a map
or application.

Each style has a unique name and defines one or more graphical elements using XML syntax.
There are six types of styles:

• Color: Coloring for the fill (inside) and stroke (contour) of area features.

• Marker: A geometric shape (with a fill and stroke color) or an image for point features.

• Line: Used to represent linear features, defining width, color, center and edge lines, and hash
marks. It also defines how lines end and how they join.

• Area: Fill patterns for areas.

• Text: Font, color, and highlighting for text labels.

• Advanced: A composite style used for thematic mapping.

Table 12-1 lists the columns of the USER_SDO_STYLES view. The ALL and DBA variants contain an
additional OWNER column.

Table 12-1. Structure of the USER_SDO_STYLESView

Column Name Data Type Description

NAME VARCHAR2 Name of the style

TYPE VARCHAR2 Type of style (COLOR, MARKER, LINE, AREA, TEXT, or ADVANCED)

DESCRIPTION VARCHAR2 Description of the style

DEFINITION CLOB XML definition of the style

IMAGE BLOB Image for marker styles

Managing Styles Using Map Builder
All screens for managing styles use a similar logic:

• To create a new style, right-click the kind of style you want to create (color, marker, and so
on). You can also press Shift+Ctrl+N on your keyboard, or select File ➤ New Metadata. This
opens a new form in a tab on the right area of the screen for you to fill.

• To update a style, double-click it from the list on the left side. Then modify the settings in the
form that appears.

• To delete a style, select it, and click the red cross button at the top. Right-click it, and choose
the Delete option.

Your styles must have unique names. However, different users can define their own styles using
the same names.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 463

8997ch12.qxd 9/28/07 10:10 AM Page 463

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Note The styles provided with MapViewer as well as those provided with the book examples have names that
begin with C. for colors, M. for markers, and so on, but this is just a convention. You can name your styles in any
way you like.

Color Styles

Color styles are primarily used to render area features. A color is defined by the following primitive
constructs:

• A fill color (that is, the coloring of the inside of the feature)

• A stroke color (that is, the coloring and thickness of the contour of the feature)

Both settings are optional. If no fill is set, then the interior of the area features will be empty. If
no stroke is set, then adjacent areas will merge without any visible separation.

In addition, you can set the opacity of the fill and stroke. This lets you control how much of the
underlying features shows through this area. When the opacity is set to 100 percent (the default),
the area is totally opaque. If you set the opacity to 0, the area is totally transparent.

You have several techniques for choosing colors: a picker, a hue-saturation-brightness model,
and a red-green-blue model. You can also enter colors manually using the hexadecimal encoding.

Notice the small preview window: this allows you to see how your style will really look like.
Figure 12-20 shows the definition of a new color.

Figure 12-20. Defining a color

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER464

8997ch12.qxd 9/28/07 10:10 AM Page 464

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Marker Styles

Markers define symbols for point features. You can define them in two ways:

• As vector drawings (circles, polygons, and so on): See Figure 12-21 for an example of a circle
marker. The actual shape is described by a set of coordinates (for a generic polygon) or by
a radius (for a circle). You can specify a fill and stroke color with opacity and thickness.

Figure 12-21. Defining a circle marker

• As bitmap images: See Figure 12-22 for an example of a bitmap symbol.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 465

8997ch12.qxd 9/28/07 10:10 AM Page 465

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-22. Defining a bitmap symbol

You can also use markers as styles for rendering labels. For example, the bitmap symbol illus-
trated in Figure 12-22 will be used to render the interstate numbers.

Line Styles

Lines are rather complex graphic objects. They are defined by the combination of several character-
istics (all optional):

• A general color, thickness, and opacity

• A center line, with color, thickness, and dash styling

• Side lines, with color, thickness, and dash styling

• Hash marks on the center line, with color, length, and frequency

You can also define the way lines terminate and the way multiple lines connect. Figure 12-23
shows the definition of a line style for divided highways.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER466

8997ch12.qxd 9/28/07 10:10 AM Page 466

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-23. Defining a line style

Area Styles

Area styles are bitmaps used for filling an area with some patterns instead of a color style. They are
loaded from bitmaps. Figure 12-24 shows the definition of a pattern.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 467

8997ch12.qxd 9/28/07 10:10 AM Page 467

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-24. Defining an area pattern style

Text Styles
Text styles define the way labels should be rendered. A text style combines a font with a color, size,
halo, and bolding, and/or italicizing. You can also control the spacing between letters and specify
how a label should be placed on lines. See Figure 12-25 for an example.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER468

8997ch12.qxd 9/28/07 10:10 AM Page 468

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-25. Defining a text style

Advanced Styles
Advanced styles are the most complex, but also the most powerful, of all styles. You can use them to
define thematic maps by providing the ability to render features differently based on the value of
one or more columns of a table, called the control variables in the following discussion. Note that
you do not specify those variables when creating the advanced style; you will specify them when
creating a theme that uses this advanced style.

Thematic maps are often used in conjunction with statistical analysis of geographical informa-
tion. An example of a thematic map is one that shows the type of underlying geology or one that
presents counties in different colors depending in the population density (an example of this is
shown later in Figure 12-40). Other thematic maps could be used to represent stores with different-
sized symbols based on the revenue of each store.

MapViewer provides two major categories of advanced styles: those that render complete fea-
tures in a different way depending on some value, such as using different colors for counties depending
on population density, and those that produce pie charts or bar charts. We will now cover each cate-
gory of advanced styles in turn.

Advanced Styles for Thematic Mapping

The principle of thematic mapping is to distribute the values of a control column (for example,
population density or sales volume) into a set of buckets and to associate a primitive style (color,
marker, line) to each bucket. The buckets can be defined in three ways:

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 469

8997ch12.qxd 9/28/07 10:10 AM Page 469

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Equal range: All buckets represent the same range of values. You need to specify only the
number of buckets and the minimum and maximum values. Equal ranges are appropriate if
your control variable contains a uniform distribution of values.

• Variable range: Each bucket represents a separate range of values. You need to specify the
minimum and maximum values for each bucket.

• Collection: Each bucket represents a single value. The value does not have to be numeric.
It could be a string representing a code (such as the grade of a customer as Silver, Gold, or
Platinum).

You can use several ways to associate the primitive styles to the buckets. You can use a color
that gradually darkens for each bucket, use a specific style for each bucket, or even use a marker
symbol whose size grows for each bucket.

By combining those options, you can create a variety of advanced styles, summarized in
Figure 12-26, which is also the window that lets you choose the kind of style to create.

Figure 12-26. Types of advanced styles

Here are the main advanced styles for building thematic maps:

• Color Scheme: This style associates a gradually darkening color to a set of buckets. The buck-
ets can be of any kind (equal range, variable range, or collection). All you need is to specify
the base color.

• Bucket: This style gives you finer control over the way you associate styles to buckets. Like for
the Color Scheme style, you can choose between equal range, variable range, or collections
bucket distributions. Then you associate one specific style for each bucket (or value in
a collection).

• Variable Marker: Somewhat similar to the Color Scheme style, this style associates gradually
larger marker symbols to the buckets. Specify the base marker symbol (which can be any
existing marker style, vector, or raster image) and the bucket ranges.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER470

8997ch12.qxd 9/28/07 10:10 AM Page 470

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Another advanced style for thematic mapping is Dot Density. This style does not use any bucket
mechanism. Rather, it fills a region with dots (of your chosen marker style and size) proportionally to
the value of a control column, such as population density.

Figure 12-27 shows one example of a variable color scheme style that associates a range of col-
ors to a range of values. Specify a base color and the ranges of values. Each range will be associated
to a gradually darker variant of the base color. We will use this style for producing a thematic map
highlighting population density in U.S. counties.

Figure 12-27. Variable color scheme style

Figure 12-28 illustrates a variable marker style, where the value of an attribute is represented
using circles of varying sizes. The base marker can be any existing marker style, including bitmap
markers.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 471

8997ch12.qxd 9/28/07 10:10 AM Page 471

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-28. Variable size marker style

Figure 12-29 illustrates a collection bucket style, where the value of an attribute, here the condi-
tion of a road, is represented using different semitransparent-colored lines. A theme built using this
style can be overlaid on a road network to highlight roads in poor condition.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER472

8997ch12.qxd 9/28/07 10:10 AM Page 472

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-29. Collection bucket style

Advanced Styles for Statistical Graphs

The thematic mapping allows you to observe only one variable. Other advanced styles allow you to
observe multiple variables by adding bar or pie charts to your maps. Those need multiple control
variables (one for each slice or bar of the chart).

• Pie chart: Specify the color for each slice of the pie, as well as the size of the pie chart.

• Bar chart: Specify the color for each bar. You can also specify the width of the bars as well as
the minimum and maximum values of the values used to build the bars.

• Variable pie chart: This makes the size of the pie chart vary with some other control variable.
Use this for example to build pie charts where each slice represents the relative sales volume
for each product group and the size of the pie represents the total volume of sales for a sales
territory.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 473

8997ch12.qxd 9/28/07 10:10 AM Page 473

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Combining Styles

The Collection style allows you to group multiple styles and use the resulting combination when
defining a theme. This is especially useful when you always want to show, for example, state bound-
aries together with pie charts showing population distribution.

One approach is to define two themes: one for the states and one for the pie charts. The draw-
back of that approach is that MapViewer will need to read the states table twice, once for each
theme. By building a collection style that combines the base style for rendering states with the
advanced style for pie charts, MapViewer will need to read the state table only once.

Thematic maps are often used in conjunction with statistical analysis of geographical informa-
tion. An example of a thematic map is one that shows the type of underlying geology or one that
presents counties in different colors depending on the population density (an example of this is
shown later in Figure 12-40). Other thematic maps could be used to represent stores with different-
sized symbols based on the revenue of each store.

Using Themes
As already discussed, maps are constructed using themes. Themes are also often called layers in GIS
and mapping tools. You can think of a layer as a transparent sheet on which you have drawn a set of
related geographic objects, such as roads, a set of land parcels, or points representing customer
locations. You get a map by laying those sheets on top of one another (and, of course, aligning them
correctly). This is exactly what cartographers have done for more than a century, and light tables
with transparent media with registration marks have been the tools of geographic analysis since the
late 1800s.

Themes are a powerful concept. You use them to group spatial objects in logical subsets. Typi-
cal examples of themes that you will see in mapping applications are as follows:

• Political boundaries (countries, country subdivisions, states, provinces, counties, city limits,
and so on)

• Natural features (rivers, forests, lakes, and so on)

• Transportation networks (roads, streets, railways, and so on)

• Customer or store locations, truck positions, and so on

Figure 12-30 shows a map composed of five themes: cities, interstates, national parks, counties,
and states.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER474

8997ch12.qxd 9/28/07 10:10 AM Page 474

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-30. A map with multiple themes

The way you group your spatial objects in themes is important. This grouping will determine
the way users interact with your maps. Users can decide which data they want to see on a map by
selecting complete themes (turning them “on” or “off”). You could, for example, mix rivers and rail-
roads in the same layer, but that would mean users would never be able to see rivers without also
seeing railroads.

Themes do not have to be homogeneous. In other words, a theme can contain different types
of spatial objects—for example, lines and polygons. A typical example is a “hydro” theme that com-
bines lakes (which are polygons) and rivers (which are lines).

You can define multiple themes on the same table essentially by defining a sequence of SQL
queries, one for each theme. For example, assume that all roads are defined in a single spatial table.
You can define multiple themes on that table, where each theme selects a subset of the table:
motorways, national roads, country roads, and so on.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 475

8997ch12.qxd 9/28/07 10:10 AM Page 475

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

As another example, if you are especially interested in roads that cross bridges of a certain
character, you can separate them as a theme and define a symbology for them. This is a handy
visual tool for the spatial analysis needed to plan the routes of oversize or very heavy trucks.

Defining Themes: The USER_SDO_THEMES View
Themes are defined in the USER_SDO_THEMES view. This is the view you update to define and maintain
your private themes. The ALL_SDO_THEMES view lists the themes defined by users on tables that you
can access. You will see a theme in your ALL_SDO_THEMES view only if you have been granted access
on the underlying table (in other words, if that table also appears in your ALL_TABLES view).

Table 12-2 lists the columns of the USER_SDO_THEMES view. The ALL and DBA variants contain an
additional OWNER column.

Table 12-2. Structure of the USER_SDO_THEMESView

Column Name Data Type Description

NAME VARCHAR2 Name of the theme

DESCRIPTION VARCHAR2 Description of the theme

BASE_TABLE VARCHAR2 Name of the table used by this theme

GEOMETRY_COLUMN VARCHAR2 Name of the geometry column

STYLING_RULES CLOB XML definition of the theme

Managing Themes Using Map Builder
To define a new theme, right-click the Theme category, and select the Create Geometry Theme
option. This launches a wizard that will take you through the steps for creating your theme.

Using the first step of the wizard, shown in Figure 12-31, choose a unique name for your theme
(other users could, however, define their own themes with the same name). Next, choose the base
table (or view) this theme should use by selecting it from the Base Table drop-down list. After that,
you can choose the name of the geometry column from the Spatial Column drop-down list.

Figure 12-31. Theme-building wizard: table and column name

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER476

8997ch12.qxd 9/28/07 10:10 AM Page 476

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Choosing a Feature Style

The second step of the wizard, shown in Figure 12-32, is where you specify the style to use for ren-
dering the features. Select the kind of style to apply (color, marker, line, advanced), and then choose
the style using the style picker, as shown in Figure 12-33. Notice that the style picker allows you to
use styles defined by other users, not just your own styles. When building the styling rules, Map
Builder will automatically prefix each style name with the name of its owner.

Figure 12-32. Theme-building wizard: feature style

Figure 12-33. The style picker

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 477

8997ch12.qxd 9/28/07 10:10 AM Page 477

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Labeling

The third step of the wizard, shown in Figure 12-34, lets you choose a column whose content will be
used for labeling the features, as well as the style to use for the labels. Note that labeling is optional.

Figure 12-34. Theme-building wizard: labeling

Query Condition

The fourth and final step of the wizard, shown in Figure 12-35, allows you to enter a query condition
to select only those features from the table you want to include on the theme. Leave it empty if you
want to include the entire table.

Figure 12-35. Theme-building wizard: query condition

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER478

8997ch12.qxd 9/28/07 10:10 AM Page 478

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Fine-Tuning Your Theme

When the wizard has completed, it shows the details about your theme, as illustrated in Figure 12-36.
This is also the window you will be taken to when you modify your theme. The information about
a theme is grouped in several topics: Basic Information, Styling Rules, Advanced, and Custom Tags.

Basic Information is the name of the table and geometry column; you cannot change that. If
you want to use the theme against a different table, you need to duplicate it and specify a different
table and column for the copy.

Figure 12-36. Editing a theme definition

The main part of a theme definition is in the Styling Rules section, illustrated in Figure 12-37.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 479

8997ch12.qxd 9/28/07 10:10 AM Page 479

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-37. Styling rules

To edit a styling rule, click it to select it, and then use the Edit button on the toolbar just above
the rules. This opens an editing window, as shown in Figure 12-38. In this window you can change
all the information you entered when creating the style using the wizard. Notice, however, the Layer
Function entry set to 1. This means the features will be labeled. If the value were 0, then no feature
would be labeled. You could actually replace this value by a call to a SQL function returning 0 or 1,
allowing you to decide which individual features should be labeled.

Another important parameter is the No Spatial Filter check box. If checked, then MapViewer
will not apply any spatial filter when that theme is read.

Figure 12-38. Edit Styling Rule dialog box

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER480

8997ch12.qxd 9/28/07 10:10 AM Page 480

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Multiple Styling Rules

When you define multiple styling rules, MapViewer will apply different styles to different rows in the
table. See Figure 12-39 for an example.

Figure 12-39. Theme with multiple styling rules

This theme describes the rendering for the MAP_MAJOR_ROADS table. That table contains road
segments of different kinds that need to be displayed using different colors and thicknesses and dif-
ferent labeling styles. One styling rule is defined for each kind of road, and each rule uses a different
feature and label style. Some rules do not have any labeling at all.

To identify which rule should be applied to which rows, you just need to provide a SQL expres-
sion in the Query Condition box to select the relevant rows. MapViewer will include this expression
in the WHERE clause of the SELECT statement it generates to read the table for this theme.

Buttons at the top of the window let you insert a new rule, remove a rule, or move rules in the
list. Note that the order of the rules is unimportant.

Templated Themes

A templated theme is one where the SQL expression used in the Query Condition box contains ref-
erences to bind variables, with the actual values being provided at runtime. For example, a theme
on the CUSTOMERS table could have the SQL expression CUSTOMER_GRADE = :1, allowing the applica-
tion to choose the kind of customers to show at runtime.

Using Complex SQL

The SQL queries generated by MapViewer for a theme are simple queries that may contain at most
one WHERE clause to restrict the rows to be returned. But you may want to define a theme that would

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 481

8997ch12.qxd 9/28/07 10:10 AM Page 481

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

be the result of a complex join between multiple tables. One way would be to define a view for that
query. Another is just to include the complete query straight in the query condition for the theme.

For example, the following query joins a table called US_INTERSTATES_LRS with another one
called US_ROAD_CONDITIONS and uses a linear referencing function to clip the sections of interstates
based on their condition (Appendix B discusses linear referencing):

<?xml version="1.0" standalone="yes"?>

<styling_rules>

<rule column="condition">

<features style="V.ROAD_CONDITION">

select i.interstate, c.condition,

sdo_lrs.clip_geom_segment(geom, from_measure, to_measure) geom

from us_interstates_lrs i,

us_road_conditions c

where sdo_filter(

geom,

sdo_geometry(

2003, 8307, null,

sdo_elem_info_array(1, 1003, 3),

sdo_ordinate_array (

?, ?, ?, ?)

),

'querytype=window'

) ='TRUE'

and i.interstate = c.interstate

</features>

<label column="interstate" style="M.SHIELD1"> 1 </label>

</rule>

</styling_rules>

Notice that you must provide a complete query, including the spatial filter, usually added auto-
matically by MapViewer. Notice also that you must include the four question marks; MapViewer will
replace them at runtime with the actual bounds of the current map window.

Advanced Parameters

Now that you have defined the styling rules for your theme, you can progress to the Advanced
Parameters option. Use this to specify the following:

• The key column for this theme: MapViewer must be able to uniquely identify the rows
returned for that theme. By default, it will use the ROWID of the objects fetched. However, if
the theme is based on a view or a complex query, then this is not possible, and you need to
specify the name of a unique identifying column. Notice that you must enter the name man-
ually; there is no drop-down list of column names from which to choose.

• The level of caching for the theme: Fetching geometries from the database is fairly expensive,
so MapViewer will try to avoid repeatedly fetching the same geometries—a common case
when zooming in or out—by retaining them in a memory cache. The size of that cache is
specified in MapViewer’s configuration file, as you have seen. However, caching may not be
appropriate for all themes. Specify the level of caching as follows:

• NORMAL: Geometries will be cached and retained on an LRU basis.

• ALL: The theme will be fully loaded in memory on first access. You can use this for small
spatial tables that are used for the majority of maps.

• NONE: The theme will not be cached at all. This is the setting to use for anything that
changes dynamically. Note that themes for which you provide the full SELECT statement
to run (like the earlier example) are never cached.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER482

8997ch12.qxd 9/28/07 10:10 AM Page 482

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Information columns: Here you specify the names of columns from the base table used by
the theme and associate a label to each name. The columns could actually be SQL expres-
sions. Those columns will be available in Oracle Maps (that is, the JavaScript API) and will be
shown in the information window displayed when the user clicks a dynamic feature. We will
discuss this in detail in Chapter 13 when we cover Oracle Maps.

Thematic Mapping: Using Advanced Styles

Another way to get MapViewer to render features depending on some attribute value is to use an
advanced style. This technique is called thematic mapping. See Figure 12-40 for an example of
a theme that uses an advanced style.

Figure 12-40. A theme that uses an advanced style

For this theme, U.S. counties should be rendered in such a way that the color of each county
varies with the population density in that county.

To achieve this, we will use the advanced style we defined previously (see Figure 12-27). In
addition, we need to specify the name of the attribute whose value will control the rendering. Here
we use the column POPPSQMI, which contains the average population per square mile in each county.
We choose this column from the Attribute Column drop-down list. Figure 12-41 shows a map that
uses this style.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 483

8997ch12.qxd 9/28/07 10:10 AM Page 483

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-41. A thematic map showing population density in U.S. counties

Advanced Style vs. Multiple Styling Rules

Whenever possible, you should define and use an advanced style rather than multiple styling rules.
This is because each styling rule generates a spatial query against the database, whereas an advanced
style requires only one query, so it is more efficient.

You must use multiple styling rules in the following cases:

• The styling is based on a combination of attributes.

• The styling is not based on a range of values.

• Labeling is different for different features.

Using Maps
As you have seen, a map is a collection of themes. However, constructing a map is more than just
listing the themes that should appear on that map. The order in which the themes are listed is
important. In addition, the map definition enables you to control the amount of information to
include, depending on the scale of the map. Both concepts are very important, and we will examine
them in the sections that follow.

Theme Ordering
The themes in a map must be assembled in the correct order depending on the type of symbology
for each layer and its relative importance. To return to the transparent sheets metaphor, if the coun-
ties are drawn as colored polygons, then the “counties” sheet should be placed at the bottom of the
stack so that the “roads” sheet and the “customers” sheet can be seen. If the “counties” sheet is placed
on the top, then it will obscure (hide) the other sheets.

For computer-generated maps, the order in which the themes are defined controls the render-
ing or display order of those themes. The first theme to appear is rendered, and then the others are
rendered successively on top of one another until you have the complete map, as illustrated in
Figure 12-23.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER484

8997ch12.qxd 9/28/07 10:10 AM Page 484

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

For MapViewer, the themes are listed in the order of rendering—that is, the first theme in the
list is rendered first, then the second, and so on. The theme at the end of the list is rendered last.

■Note Most mapping tools list the themes in the opposite order; in other words, the theme that appears at the
bottom of the list is the one rendered first, and the others are layered on top of one another. The topmost theme is
rendered last. MapViewer uses the opposite convention.

Note that you can define one or more themes to use transparent styles. Such a theme can be
defined as the last theme to be rendered (that is, at the end of the theme list) and can allow other
themes to be partially seen.

Map Scale and Zoom Level
One important advantage of generating maps on the fly is to show more or less information depend-
ing on the current scale of the map. Let’s examine what this means.

The scale of a map determines the size of the geographical area shown on that map. The scale
represents the ratio of a distance on the map to the actual distance on the ground. For example, if
2 cm on the map represents 1 km on the ground, then the scale would be 2 cm/1 km, which is the
same as 2 cm/100,000 cm, or 1/50,000. The scale is then 1:50,000. At that scale, each centimeter on
the map represents 0.5 kilometer on the ground.

Geographers talk commonly about large- and small-scale maps. A large-scale map—for example,
1:1,000 (remember, this is the fraction 1/1,000)—shows a small area with great detail and is useful
for analysis that deals with small areas, such as site planning for construction or a walk in the park.
At that scale, 1 centimeter on the map corresponds to 10 meters on the ground. A small-scale map,
such as 1:1,000,000 (1/1,000,000), shows a large area with little detail and is useful for large-area
applications such as routing a truck or flying an airplane. At that scale, 1 centimeter on the map cor-
responds to 10 kilometers on the ground. The larger the denominator in the scale expression, the
smaller the scale of the map and the larger the area of coverage for a particular display size, and
vice versa.

Zooming in or out is nothing but changing the scale of a map—that is, asking for a new map to
be produced at a different scale.

The amount of information shown on a map depends on the scale of that map. Maps at a small
scale (that is, showing the entire United States) will show less detail than maps at a large scale (that
is, showing the southern tip of Manhattan). It would be meaningless for a map of the continental
United States to show the details on each street in every city and town, as well as each and every gas
station and ATM. Not only would the map be hard to read, but it would also take a long time to pro-
duce because of the amount of data to read and render. A map at that scale would reasonably include
only the boundaries of the U.S. states, some major cities, and the major interstate highways.

Then as you zoom in, you should see gradually more details: counties start to appear, then second-
ary highways, then major roads, then streets, then building outlines, and so on. This is a fundamental
concept in cartography often referred to as scale-dependent content or scale-dependent symbology. On
the other hand, when you zoom in very closely, it probably makes no sense to show country or state
boundaries anymore.

To make this possible, you associate a scale range to individual themes. A theme will appear on
a map only when the scale of the map is inside that range. Setting scale ranges correctly is important—
it determines how readable and useful your maps will be. It can also determine the performance of
your application.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 485

8997ch12.qxd 9/28/07 10:10 AM Page 485

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

USER_SDO_MAPS View
Maps are defined in the USER_SDO_MAPS view. This is the view you will update to define and maintain
your maps. The ALL_SDO_MAPS view lists all maps in the database.

Table 12-3 lists the columns of the USER_SDO_MAPS view. The ALL and DBA variants contain an
additional OWNER column.

Table 12-3. Structure of the USER_SDO_MAPSView

Column Name Data Type Description

NAME VARCHAR2 Name of the map

DESCRIPTION VARCHAR2 Optional description of the map

DEFINITION CLOB XML definition of the map

Managing Maps Using Map Builder
To define a map, right-click the Base Maps category, and select the Create Base Map option. This
launches a wizard that will take you through the steps for creating a new map.

The first step in the wizard lets you specify the name of your map. This name must be unique.
However, other users could define their own maps with the same name.

The second step, illustrated in Figure 12-42, is where you specify the themes to appear on your
map. Select a theme from the list of themes at the top, and then click the Add Theme button on the
bottom toolbar to add it to the map. If you make a mistake, click the Delete Theme button. Change
the ordering of the themes using the arrow buttons on the toolbar.

To enter scale limits, double-click the Min Scale and Max Scale data items in the list.

Figure 12-42. The map-building wizard

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER486

8997ch12.qxd 9/28/07 10:10 AM Page 486

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

When you are done defining the map using the wizard, you will be taken to the screen shown in
Figure 12-43, which is also the screen you get to update an existing map.

Figure 12-43. Editing a map definition

Themes are listed in the order of rendering; the first theme in the list is rendered first, then the
second, and so on. The theme at the end of the list is rendered last. You can control and change the
ordering of the themes using the buttons at the bottom of the form. For the map shown in the
example, MapViewer will first render the US_STATES theme and then the US_COUNTIES, US_PARKS, and
US_INTERSTATES themes. The US_CITIES theme is rendered last.

Scale Dependency

The Min Scale and Max Scale parameters define the visible scale range of each theme. They control
whether the theme is displayed, depending on the current map scale. When no values are specified,
then the theme is always visible.

MapViewer allows you to define the scale of a map in two modes, called RATIO and MAPVIEWER_
NATIVE. The first mode (RATIO) corresponds to the description given earlier. Specify scale values as
the denominator of the scale expression. A scale value of 1000 corresponds to a scale of 1:1000.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 487

8997ch12.qxd 9/28/07 10:10 AM Page 487

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can also use the other way (called MAPVIEWER_NATIVE), which was the only one available up
to version 10 of MapViewer. In this mode, the scale value represents the distance on the ground that
corresponds to 1 inch on the map. That distance is expressed in the units of the coordinate system
of the spatial tables. With data in a geodetic coordinate system (that is, in latitude, longitude), the
scale value represents the number of decimal degrees that correspond to 1 inch on the map.

Converting scale values between the two notations is fairly easy. See Table 12-4. In this table we
use value 0.0254 as the number of inches per meter and 111195 as an approximation of the number
of meters per degree in longitude (this value can differ slightly depending in the actual coordinate
system used). In this table, we assume that projected coordinate systems use the meter as base unit.

Table 12-4. Converting Between Ratio and Screen Inch Scales

Coordinate
System Ratio to Screen Inch Screen Inch to Ratio

Projected screen_inch = ratio * 0.0254 ratio = screen_inch / 0.0254
Example: A ratio scale of Example: A screen inch scale of
1:50000 is equivalent to 1,000 meters per inch is equivalent
50000 * 0.0254 = 1270 meters to 1000 / 0.0254 = 39370, that is, a
per screen inch. ratio scale of 1:39370.

Geodetic screen_inch = ratio * 0.0254 / 111195 ratio = screen_inch * 111195 / 0.0254
Example: A ratio scale of 1:50000 is equivalent Example: A screen inch scale of
to 50000 * 0.0254/111195 = 0.0009982 degrees 0.5 degrees per inch is equivalent
per screen inch. to 0.5 / 0.0254 * 111195 = 2188877,

that is, a ratio scale of 1:2188877.

A high Min Scale or Max Scale value is associated with less map detail and a smaller scale in
cartographic terms, whereas a low Min Scale or Max Scale value is associated with greater map
detail and a larger scale in cartographic terms. The Min Scale value is always larger than the Max
Scale value.

• Min Scale is the value to which the display must be zoomed in for the theme to be displayed.

• Max Scale is the value beyond which the display must be zoomed in for the theme to not be
displayed.

For example, if a theme called Parks has a Min Scale value of 50000 and a Max Scale value of
20000, it means it will appear on maps at scales only from 1:50000 up to (but not including) 1:20000.
If the initial map is at scale 1:80000 and you start zooming in, parks will appear as soon as you reach
a scale of 1:50000. They remain visible as you keep on zooming in, until you go beyond the scale of
1:20000, at which point they no longer appear on the map.

Figure 12-44 illustrates the use of scale dependency. Map US_BASE_MAP contains two themes
based on the US_STATES table: US_STATES and US_STATE_LINES. The US_STATE_LINES theme uses a style
without any fill color (that is, it shows only the border of the states). This means states can be ren-
dered on top of the counties, without hiding them. Notice also the two themes for cities: US_CITIES
and US_MAJOR_CITIES. Both are defined on the US_CITIES table, but US_MAJOR_CITIES includes only
those cities with a population of more than 250,000.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER488

8997ch12.qxd 9/28/07 10:10 AM Page 488

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-44. Defining a map with scale-dependent content

On the initial small-scale map, you see only the states (theme US_STATES). Then as you zoom in,
you stop seeing the states and see only the counties (theme US_COUNTIES) with the state boundaries
(theme US_STATE_LINES). As you zoom in further, you begin to see the major cities (theme US_MAJOR_
CITIES), which are finally replaced by all cities (theme US_CITIES).

Viewing and Updating Map Definitions in SQL
In addition to using Map Builder, you can also update the map, theme, and style definitions by
directly updating the USER_SDO_MAPS, USER_SDO_THEMES, and USER_SDO_STYLES views using standard
SQL statements.

Viewing the definitions is simple; just use a SELECT statement. For example, here is how to view
the XML definition of map US_BASE_MAP:

SQL> select definition from user_sdo_maps where name = 'US_BASE_MAP';

<?xml version="1.0" standalone="yes"?>

<map_definition>

<theme name="STATES.US_STATES" min_scale="Infinity" max_scale="2.0E7"

scale_mode="RATIO"/>

<theme name="COUNTIES.US_COUNTIES" min_scale="2.0E7" max_scale="-Infinity"

scale_mode="RATIO"/>

<theme name="STATES.US_STATE_LINES" min_scale="2.0E7" max_scale="-Infinity"

scale_mode="RATIO"/>

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 489

8997ch12.qxd 9/28/07 10:10 AM Page 489

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<theme name="CITIES.US_MAJOR_CITIES" min_scale="1.0E7" max_scale="500000.0"

scale_mode="RATIO"/>

<theme name="CITIES.US_CITIES" min_scale="500000.0" max_scale="-Infinity"

scale_mode="RATIO"/>

</map_definition>

■Tip By default, SQL*Plus displays only the first 80 characters of CLOB columns. To make sure it displays the
complete XML definition, use the command set long 32000 prior to executing the SELECT statement.

Creating or updating a map definition element (map, style, or theme) is just as easy. Simply use
an INSERT or UPDATE statement. For example, here is how to define a new map called US_MAP:

insert into user_sdo_maps (name, description, definition)

values (

'US_MAP','',

'<?xml version="1.0" standalone="yes"?>

<map_definition>

<theme name="STATES.US_STATES"

min_scale="Infinity" max_scale="20000000" scale_mode="RATIO"/>

<theme name="COUNTIES.US_COUNTIES"

min_scale="20000000" max_scale="-Infinity" scale_mode="RATIO"/>

<theme name="PARKS.US_PARKS"

min_scale="8000000" max_scale="-Infinity" scale_mode="RATIO"/>

<theme name="INTERSTATES.US_INTERSTATES"

min_scale="8000000" max_scale="-Infinity" scale_mode="RATIO"/>

<theme name="CITIES.US_CITIES"

min_scale="10000000" max_scale="-Infinity" scale_mode="RATIO"/>

</map_definition>

');

Exporting and Importing Map Definitions
Map definitions are stored in dictionary tables, so they will not be included when you export data
from one database to another. To transfer map definitions successfully using the Oracle export/
import tools, use the following technique:

1. In the source database, before running the export, save a copy of the map definitions in
regular tables:

create table my_styles as select * from user_sdo_styles;

create table my_themes as select * from user_sdo_themes;

create table my_maps as select * from user_sdo_maps;

2. In the target database, load the definitions back in the dictionary:

insert into user_sdo_styles select * from my_styles;

insert into user_sdo_themes select * from my_themes;

insert into user_sdo_maps select * from my_maps;

3. If definitions already exist in the target database, you may need to remove the old defini-
tions first:

delete from user_sdo_maps where name in (select name from my_maps);

delete from user_sdo_themes where name in (select name from my_themes);

delete from user_sdo_styles where name in (select name from my_styles);

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER490

8997ch12.qxd 9/28/07 10:10 AM Page 490

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Defining Map Caches
To use a base map in the JavaScript API (Oracle Maps), you must first define a cache on that map.
The simplest way to define a map cache is to use the MapViewer console. But you can also define
caches by manually editing the contents of the USER_SDO_CACHED_MAPS view, an approach that allows
greater flexibility.

Map caches can be of two kinds: internal and external caches. Internal caches are those defined
on base maps defined in the database (using Map Builder). External caches are defined on external
web map providers, such as other MapViewer servers. External web map providers are accessed
using specific adapters.

The USER_SDO_CACHED_MAPS View
The definitions of map caches are stored in the USER_SDO_CACHED_MAPS view. This is the view you
update to define and maintain map cache definitions. The ALL_SDO_CACHED_MAPS view lists the
caches defined by all.

Table 12-5 lists the columns of the USER_SDO_CACHED_MAPS view. The ALL and DBA variants contain
an additional OWNER column.

Table 12-5. Structure of the USER_SDO_CACHED_MAPSView

Column Name Data Type Description

NAME VARCHAR2 Name of the cache.

DESCRIPTION VARCHAR2 Description of the cache (optional).

BASE_MAP VARCHAR2 Name of the base map.

DEFINITION CLOB XML definition of the map cache.

TILES_TABLE VARCHAR2 (Currently not used.)

IS_ONLINE VARCHAR2 Specifies whether the cache is online (YES). When a cache is
offline, then the map cache server returns a blank image for
all tiles not found in the cache.

IS_INTERNAL VARCHAR2 YES if the map source is an internal base map.

MAP_ADAPTER BLOB Stores the binary class that implements the adapter for an
external source.

Managing Caches Using the MapViewer Console
To manage existing map caches, use the MapViewer administration console, shown in Figure 12-10,
and click the Manage Map Caches link, which brings you to a page like the one in Figure 12-45.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 491

8997ch12.qxd 9/28/07 10:10 AM Page 491

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-45. Managing map caches

The form allows you to view the XML definition of a cache (View Details button). Use it also to
take a cache offline or bring it back online. Finally, you can also delete a cache, which will delete the
definition of the cache from the database (the USER_SDO_CACHED_MAPS view) and will also remove all
files for that cache from the file system.

The form also allows you to clear, populate, or refresh selected tiles of a map cache. Specify the
zoom levels to process as well as the bounding box representing the area to process. Those operations
could take a long time to complete, so the map cache server will process them in an asynchronous
way. Use the Check Request Status form to monitor the progress of a request. Figure 12-46 illustrates
the refreshing of all tiles at zoom level 1 for the cache US_BASE_MAP.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER492

8997ch12.qxd 9/28/07 10:10 AM Page 492

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-46. Refreshing map tiles

■Note The Edit button is inoperative. To change the definition of a map cache, delete it first, and then redefine it.

Creating a New Map Cache
Click the Create link at the top left of the map cache administration page shown in Figure 12-44,
and then select the type of map cache to create. Choose Internal to define a cache based on a base
map defined in your database. This will open a form such as the one in Figure 12-47, which you will
now fill with the parameters that define the cache. Choosing External will direct you to a different
form to define a cache based on an external data source. We discuss external caches later in this
chapter.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 493

8997ch12.qxd 9/28/07 10:10 AM Page 493

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-47. Defining a new map cache

To define a new map cache, specify the following information:

• The name of the cache. You can use any name, but it is a good practice to give the same
name as that of the base map the case uses. In the example, the cache is called US_ROAD_MAP
to match the name of the base map.

• The name of the data source and the name of the base map for the cache.

• Optionally, a background color and whether that background should be transparent.

• Optionally, the location in the file system of the application server, where the files for that
cache will be stored. If this setting is omitted or invalid, then the files go in $OC4J_HOME/j2ee/
home/applications/mapviewer/web/mapcache.

• The number of zoom levels in the cache, as well as the minimum and maximum scales,
specified in ratio notation; a minimum scale of 1000 means a ratio scale of 1:1000. The maxi-
mum scale setting will be used for zoom level 0, and the maximum scale setting will be
associated with zoom level N-1 (where N is the number of zoom levels). The scales associated
with the intermediate zoom levels are automatically computed by MapViewer. In the exam-
ple, the cache goes from zoom level 0 (at scale 1:25,000,000) to zoom level 9 (at scale 1:1000).

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER494

8997ch12.qxd 9/28/07 10:10 AM Page 494

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• The coordinate system (SRID) in which to produce the tiles for the cache and the minimum
and maximum values of the x,y coordinates for that coordinate system. Note that the tables
used to build the base map could be in a different coordinate system. If this is the case, then
MapViewer will automatically transform the source data into the coordinate system you
specified.

• The size (in pixels) of the map tiles and the format of the tiles. In the example, the tiles are
256 × 256 pixels, in PNG.

When you are satisfied with your parameters, click the Submit button. This has the effect of
defining the cache in USER_SDO_CACHED_MAPS and of creating the file system structures to hold the
tiles for the cache.

Creating Map Caches Using SQL
The previous approach generates a set of uniform zoom levels; the scales for the intermediate zoom
levels are automatically computed so that the zoom levels are uniformly distributed in the interval.
You can see the zoom levels that have been generated by querying the details of the cache defini-
tion, using the Show Details button on the cache management page illustrated in Figure 12-44. You
can also see them by just querying the view USER_SDO_CACHED_MAPS, as illustrated in Listing 12-3.

Listing 12-3. Details of a Cache Definition

SQL> SELECT DEFINITION FROM user_sdo_cached_maps WHERE name = 'US_ROAD_MAP';

<cache_instance name="US_ROAD_MAP" image_format="PNG" antialias="true">

<internal_map_source base_map="US_ROAD_MAP" data_source="SPATIAL"/>

<cache_storage root_path=""/>

<coordinate_system srid="8307" minX="-180.0" maxX="180.0" minY="-90.0"

maxY="90.0"/>

<tile_image width="256" height="256"/>

<zoom_levels levels="10" min_scale="1000" max_scale="25000000">

<zoom_level tile_width="15.286028158107968"

tile_height="15.286028158107968" level_name="level0" scale="2.5E7"/>

<zoom_level tile_width="4.961746909541633"

tile_height="4.961746909541633" level_name="level1" scale="8114840.0"/>

<zoom_level tile_width="1.6105512127664132"

tile_height="1.6105512127664132" level_name="level2" scale="2634025.0"/>

<zoom_level tile_width="0.5227742142726501"

tile_height="0.5227742142726501" level_name="level3" scale="854987.0"/>

<zoom_level tile_width="0.16968897570090388"

tile_height="0.16968897570090388" level_name="level4" scale="277523.0"/>

<zoom_level tile_width="0.05507983954154727"

tile_height="0.05507983954154727" level_name="level5" scale="90082.0"/>

<zoom_level tile_width="0.017878538533723076"

tile_height="0.017878538533723076" level_name="level6" scale="29240.0"/>

<zoom_level tile_width="0.005803187729944108"

tile_height="0.005803187729944108" level_name="level7" scale="9491.0"/>

<zoom_level tile_width="0.0018832386690789012"

tile_height="0.0018832386690789012" level_name="level8" scale="3080.0"/>

<zoom_level tile_width="6.114411263243185E-4"

tile_height="6.114411263243185E-4" level_name="level9" scale="1000.0"/>

</zoom_levels>

</cache_instance>

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 495

8997ch12.qxd 9/28/07 10:10 AM Page 495

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can control the exact configuration of the cache by directly editing the XML definition. Do
this either by using the XML interface via the XML Mode button on the map cache creation form
(Figure 12-46) or by simply updating the map cache definition in SQL. You can also use SQL to cre-
ate a new map cache. The code in Listing 12-4 creates the same map cache as the one you created
using the administration console.

Listing 12-4. Creating a Cache in SQL

SQL> INSERT INTO user_sdo_cached_maps (name, description, tiles_table,

is_online, is_internal, definition, base_map)

VALUES (

'US_ROAD_MAP',

'Map Cache for overview US Road Map',

'TILES_US_ROAD_MAP',

'YES',

'YES',

'<cache_instance name="US_ROAD_MAP" image_format="PNG" antialias="true">

<internal_map_source base_map="US_ROAD_MAP" data_source="SPATIAL"/>

<cache_storage root_path=""/>

<coordinate_system srid="8307" minX="-180" maxX="180"

minY="-90" maxY="90"/>

<tile_image width="256" height="256"/>

<zoom_levels levels="10" min_scale="1000" max_scale="25000000">

</zoom_levels>

</cache_instance>',

'US_ROAD_MAP'

);

Notice that you specify only the minimum and maximum scales and the number of zoom lev-
els. MapViewer will update the definition with the actual breakdown in zoom levels the first time
you use the map cache in an application. MapViewer will also create the directory structure that will
hold the map tiles.

■Caution When you create a new cache using direct SQL statements, it will not appear immediately in the
administration console. It will appear only after an application has used the map cache.

By manually editing the XML definition, you can fine-tune your cache and specify exactly the
scale for each zoom level. This allows you to adjust the zoom levels to better feed your needs. For
example, if your original map (at zoom level 0) covers the entire globe, then you could set up the
first zoom level to zoom in by large steps and the later zoom level to zoom by finer steps. This is
illustrated in Listing 12-5.

Listing 12-5. Creating a Cache in SQL with Detailed Zoom Levels

SQL> INSERT INTO user_sdo_cached_maps (name, description, tiles_table,

is_online, is_internal, definition, base_map)

VALUES (

'US_ROAD_MAP',

'Map Cache for detailed US Road Map covering the lower 48 states only',

'TILES_US_ROAD_MAP',

'YES',

'YES',

'<cache_instance name="US_ROAD_MAP" image_format="PNG" antialias="true">

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER496

8997ch12.qxd 9/28/07 10:10 AM Page 496

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<internal_map_source base_map="US_ROAD_MAP" data_source="SPATIAL"/>

<cache_storage root_path=""/>

<coordinate_system srid="8307" minX="-180" maxX="180"

minY="-90" maxY="90"/>

<tile_image width="256" height="256"/>

<zoom_levels levels="20" min_scale="1000" max_scale="25000000">

<zoom_level level_name="level0" scale="25000000"/>

<zoom_level level_name="level1" scale="22000000"/>

<zoom_level level_name="level2" scale="20000000"/>

<zoom_level level_name="level3" scale="15000000"/>

<zoom_level level_name="level4" scale="10000000"/>

<zoom_level level_name="level5" scale=" 7500000"/>

<zoom_level level_name="level6" scale=" 5000000"/>

<zoom_level level_name="level7" scale=" 2000000"/>

<zoom_level level_name="level8" scale=" 1500000"/>

<zoom_level level_name="level9" scale=" 1000000"/>

<zoom_level level_name="level10" scale=" 500000"/>

<zoom_level level_name="level11" scale=" 200000"/>

<zoom_level level_name="level12" scale=" 100000"/>

<zoom_level level_name="level13" scale=" 80000"/>

<zoom_level level_name="level14" scale=" 50000"/>

<zoom_level level_name="level15" scale=" 20000"/>

<zoom_level level_name="level16" scale=" 10000"/>

<zoom_level level_name="level17" scale=" 5000"/>

<zoom_level level_name="level18" scale=" 2000"/>

<zoom_level level_name="level19" scale=" 1000"/>

</zoom_levels>

</cache_instance>',

'US_ROAD_MAP'

);

In this example, we use 20 zoom levels and specify explicit scale values for each level. Notice
that we do not specify the size of the tiles at each zoom level. This information will be automatically
computed and added when the map cache is accessed the first time by an application. The zoom
levels are defined by the order they appear in the list. The first one is zoom level 0, the second one is
zoom level 1, and so on. Each zoom level can also receive a description attribute. Use it to explain
the usage of each level, such as city block level, city level, district level, and so on.

Another way to define the zoom levels is to specify tile sizes instead of scales, as illustrated in
Listing 12-6. Note that the minimum and maximum tile width are expressed in the units of the
coordinate system for the map—here they are in decimal degrees. MapViewer will automatically
compute the tile sizes for each intermediate zoom level. You can of course also explicitly specify the
tile size at each zoom level, like you specified detailed scale levels.

Listing 12-6. Creating a Cache in SQL Using Tile Sizes

SQL> INSERT INTO user_sdo_cached_maps (name, description, tiles_table,

is_online, is_internal, definition, base_map)

VALUES (

'US_ROAD_MAP',

'Map Cache for overview US Road Map',

'TILES_US_ROAD_MAP',

'YES',

'YES',

'<cache_instance name="US_ROAD_MAP" image_format="PNG" antialias="true">

<internal_map_source base_map="US_ROAD_MAP" data_source="SPATIAL"/>

<cache_storage root_path=""/>

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 497

8997ch12.qxd 9/28/07 10:10 AM Page 497

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<coordinate_system srid="8307" minX="-180" maxX="180"

minY="-90" maxY="90"/>

<tile_image width="256" height="256"/>

<zoom_levels levels="10" min_tile_width="0.0005" max_tile_width="15">

</zoom_levels>

</cache_instance>',

'US_ROAD_MAP'

);

Cache Data Structures
The map cache server keeps the tiles it generates as files on the file system used by the host applica-
tion server. The top-level directory for a map cache has the same name as the cache, prefixed by the
name of the data source for the cache. For example, the cache shown on Listing 12-5 is in directory
SPATIAL.US_ROAD_MAP. In that directory you will find one directory for each zoom level, named 0 to
19. Each directory either contains tile files or is further subdivided into directories, possibly in mul-
tiple levels at the higher zoom levels.

Exporting Cache Definitions
Since the definitions of your map caches are stored in the database (in view USER_SDO_CACHED_MAPS),
you can transfer those definitions to other databases (for example, from a development to a pro-
duction environment) by exporting the contents of that view.

Since Oracle’s export/import tools do not allow you to export views, you must first extract the
definitions into a table:

create table my_cached_maps as select * from user_sdo_cached_maps;

Export this table and import it into your target database, and then load the map definitions:

insert into user_sdo_cached_maps select * from my_cached_maps;

If the map cache already exists in the target system, you must first remove it. You can do this
using the administration console (which will remove the definition and any existing tiles)—or you
can do it by manually by deleting the existing definition from USER_SDO_CACHED_MAPS and then
removing the cache from the file system by deleting its top-level directory. MapViewer will automat-
ically re-create the proper directory structure when the next time it starts up and opens the cache.

Purging and Refreshing Cache Contents
Once MapViewer has generated a tile for a map cache, the corresponding file will remain on the file
system forever. If you update your database with a new version of the data used to build the tiles in
a map cache, then the stored tiles are now obsolete and must be regenerated.

The simplest way to achieve this is simply to manually delete all directories contained in the
top-level directory for the cache. The map cache server will then automatically and gradually rebuild
the cache as applications request map tiles. Obviously, this will add overhead to map requests as the
map tiles get regenerated.

Another approach is to use the administration interface of the map cache server, which allows
you to clear selected portions of a cache but also to refresh or populate selected portions. See
Figure 12-46 for an example.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER498

8997ch12.qxd 9/28/07 10:10 AM Page 498

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Tip MapViewer never removes any tiles from a map cache, so it could possibly grow too large. You can always
recover disk space by deleting part or all of the files and folders in the cache. A possible tactic, for example, is to
schedule automatic cleanups of the lower levels of the cache (highest zoom levels) while retaining the higher lev-
els, without stopping MapViewer. The map cache server will automatically rebuild any sections of the cache you
removed.

Using External Data Sources
External data sources are mapping servers accessible via HTTP. Examples of such servers are Web
Map Services (WMS)—web services that implement the ISO/DIS 19128 specification. Other exam-
ples are MapViewer servers.

Accessing those external servers through map caches is a powerful capability; it will reduce the
number of times those external services are queried, since the map tiles returned by the external
servers will be retained in the cache and reused.

MapViewer accesses external data sources via an adapter mechanism. It comes with two such
adapters: one to access other MapViewer servers and one to access Web Map Services. MapViewer
also provides you with a mechanism to implement your own adapter to other data sources.

Using the Standard Adapters
The two adapters provided with MapViewer are in the directory $OC4J_HOME/j2ee/home/applications/
mapviewer/web/WEB-INF/mapcache/mvadapter. This directory contains the file mvadapter.jar, which
is the JAR file that contains the classes for both adapters. The subdirectory mcsadapter contains the
source code of the two adapters.

To use the adapters, the simplest is to copy the JAR file mvadapter.jar to MapViewer’s main JAR
library directory: $OC4J_HOME/j2ee/home/applications/mapviewer/web/WEB-INF/lib.

Creating a Map Cache on a Web Map Service
Click the Create link at the top left of the map cache administration page, as illustrated in Figure 12-45,
and then select External as the type of map source to use. This will direct you to a form like that in
Figure 12-48.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 499

8997ch12.qxd 9/28/07 10:10 AM Page 499

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 12-48. Defining a new external map cache

The following illustrates how to define a map cache on a public WMS server run by the U.S. Geo-
logical Survey. Here are the parameters you need to specify. For details on the WMS protocol and how
to formulate WMS requests, see the next chapter where we discuss MapViewer’s own WMS server.

• A name for the cache.

• The name of the data source in which the definition will be stored.

• The service URL for the Web Map Service. Use http://gisdata.usgs.gov:80/wmsconnector/
com.esri.wms.Esrimap/USGS_EDC_Elev_GTOPO.

• The request method; use the GET method.

• If you access the Internet via a proxy server, enter its name and port.

• The adapter class to use; specify mcsadapter.WMSAdapter.

• The location of the JAR file. If you copied the JAR file provided with MapViewer as instructed,
then you can leave this empty.

• Adapter properties. This is a list of name and value pairs that get passed as request parameters
to the WMS service. Some of them are part of the standard WMS protocol. Some are specific to
the service being called. For the USGS WMS server, specify them as shown in Table 12-6.

• The remaining parameters deal with the way you organize your cache in terms of storage
and zoom levels. They are identical to those for an internal cache.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER500

8997ch12.qxd 9/28/07 10:10 AM Page 500

www.it-ebooks.info

www.freepdf-books.com

http://gisdata.usgs.gov:80/wmsconnector
http://www.it-ebooks.info/

Table 12-6. Parameters to Access the USGS Web Map Service

Parameter Value Usage

srs EPSG:4326 The coordinate system in which the service
will return the map tiles.

layers GLOBAL.GTOPO60_COLOR_RELIEF The layer to query. This layer returns
a colored relief map of the world. Another
layer is GLOBAL.GTOPO60_BW_RELIEF, which
returns a relief map in grayscale.

format image/png The format of the map tiles. This should
match the format you specify for the tiles
in your map cache. The service can also
return the tiles in GIF or JPEG format.

ServiceName USGS_WMS_GTOPO (Specific to the USGS server.) The name of
the service that provides the relief maps.

When you are satisfied with your parameters, click the Submit button. This has the effect of defining
the cache in USER_SDO_CACHED_MAPS and of creating the file system structures to hold the tiles for the cache.

Listing 12-7 illustrates how to define the same map cache using SQL.

Listing 12-7. Creating a Cache on an External WMS

SQL> INSERT INTO user_sdo_cached_maps (name, description, tiles_table,

is_online, is_internal, definition, base_map)

VALUES (

'USGS_SHADED_RELIEF',

'Map Cache external Mapviewer data source',

'TILES_USGS_SHADED_RELIEF',

'YES',

'YES',

'<cache_instance name="USGS_SHADED_RELIEF" image_format="PNG" antialias="true">

<external_map_source

url="http://gisdata.usgs.gov:80/wmsconnector/com.esri.wms.Esrimap

/USGS_EDC_Elev_GTOPO"

adapter_class="mcsadapter.WMSAdapter"

proxy_host="www-us.oracle.com"

proxy_port="80"

timeout="5000"

>

<properties>

<property name="srs" value="EPSG:4326"/>

<property name="serviceName" value="USGS_WMS_GTOPO"/>

<property name="layers" value="GLOBAL.GTOPO60_COLOR_RELIEF"/>

<property name="format" value="image/png"/>

<property name="transparent" value="false"/>

</properties> />

</external_map_source>

<cache_storage root_path=""/>

<coordinate_system srid="4326" minX="-180" maxX="180"

minY="-90" maxY="90"/>

<tile_image width="512" height="512"/>

<zoom_levels levels="10" min_scale="1000" max_scale="25000000">

</zoom_levels>

</cache_instance>',

'USGS_SHADED_RELIEF'

);

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER 501

8997ch12.qxd 9/28/07 10:10 AM Page 501

www.it-ebooks.info

www.freepdf-books.com

http://gisdata.usgs.gov:80/wmsconnector/com.esri.wms.Esrimap/USGS_EDC_Elev_GTOPO
http://gisdata.usgs.gov:80/wmsconnector/com.esri.wms.Esrimap/USGS_EDC_Elev_GTOPO
http://www.it-ebooks.info/

Notice that the SQL approach allows you to also specify a timeout value—this is not possible
using the administration console. The timeout value (expressed in milliseconds) specifies how
long MapViewer will wait for the web map server to reply. If you do not specify any timeout value,
MapViewer will use a default of 15 seconds.

Creating a Map Cache on a MapViewer Service
Listing 12-8 illustrates how to define a map cache on another MapViewer server using SQL.

Listing 12-8. Creating a Cache on an External MapViewer Server

SQL> INSERT INTO user_sdo_cached_maps (name, description, tiles_table,

is_online, is_internal, definition, base_map)

VALUES (

'ELOCATION_MAP',

'Map Cache external Mapviewer data source',

'TILES_ELOCATION_MAP',

'YES',

'YES',

'<cache_instance name="ELOCATION_MAP" image_format="PNG" antialias="true">

<external_map_source

url="http://elocation.oracle.com/elocation/lbs"

adapter_class="mcsadapter.MVAdapter"

proxy_host="www-proxy.us.oracle.com"

proxy_port="80"

timeour="5000"

>

<properties>

<property name="data_source" value="elocation"/>

<property name="base_map" value="us_base_map"/>

</properties> />

</external_map_source>

<cache_storage root_path=""/>

<coordinate_system srid="8307" minX="-180" maxX="180"

minY="-90" maxY="90"/>

<tile_image width="512" height="512"/>

<zoom_levels levels="10" min_scale="1000" max_scale="25000000">

</zoom_levels>

</cache_instance>',

'ELOCATION_MAP'

);

The parameters describing the MapViewer server are in the <external_map_source> element.
Here are the parameters you need to provide:

• The URL of the MapViewer mapping servlet.

• If necessary, the URL and port of your web proxy server, as well as a timeout value.

• The name of the adapter class. mcsadapter.MVAdapter is the class that implements the
MapViewer adapter.

• The name of the base map to use and the data source where this base map is defined. Note
that those names belong to the remote MapViewer service.

Summary
In this chapter, you learned how to define maps, themes, and styles, as well as map caches. In the
next chapter, you will learn how to build applications using those maps.

CHAPTER 12 ■ DEFINING MAPS USING MAPVIEWER502

8997ch12.qxd 9/28/07 10:10 AM Page 502

www.it-ebooks.info

www.freepdf-books.com

http://elocation.oracle.com/elocation/lbs
http://www.it-ebooks.info/

Using Maps in Your Applications

In the preceding chapter, you saw the overall architecture of MapViewer and how to install and
configure it. You also learned how to define the various elements that make up a map: styles, themes,
and maps, as well as map caches. In this chapter, you will learn how to use maps in your applications
using the many application programming interfaces available with MapViewer.

We begin with an overview of the available APIs and a comparison of their capabilities. We
continue with a study of fundamental principles and mechanisms to interact with maps. We then
proceed to the bulk of this chapter. We offer detailed descriptions of the available APIs—first
the new Oracle Maps (Ajax-based interface), then the more classic Java interfaces, and finally the
lowest-level interface such as direct XML exchanges and the administrative API (XML only) that
allows your application to manage the MapViewer server.

We finally conclude the chapter with a brief overview of the Web Map Service (WMS) API, an
international standard defined by the Open Geospatial Consortium (OGC) that allows you to pub-
lish maps for access by any WMS-capable tool.

Overview of MapViewer’s APIs
As you saw in the preceding chapter, MapViewer is a server-side component—actually a series of
servlets. Your application interacts with the server using a request/response mechanism. MapViewer
provides you with a variety of methods (APIs) to perform those exchanges. The method you choose
will have a major impact on the way you develop your application but also on the way your applica-
tion will interact with its users. The available methods fall into two main categories, each offering
a different approach than the way you interact with MapViewer.

The first approach is to use one of the “classic” APIs that MapViewer has offered since its first
version. These APIs allow you to use MapViewer from almost any development environment and
use any programming language using direct XML exchanges or via one of the client libraries for
Java, Java Server Pages, or PL/SQL.

The second approach is to use the new JavaScript/Ajax interface called Oracle Maps. This
allows you to build highly dynamic interfaces using the JavaScript language from your favorite
browser. We will now cover both approaches in further detail.

XML, Java, JSPs, and PL/SQL
The lowest level of interaction is direct XML. Your application needs to be capable only of construct-
ing XML requests, sending them to the server via HTTP, and then parsing MapViewer’s response.
Because it is so generic, this technique is available from any programming environment capable of
sending HTTP requests and manipulating XML: Java, .NET, and C#, but also Perl, PHP, and Python.

If you develop in Java, then you can use MapViewer’s Java API that isolates your program from
the intricacies of XML generation and parsing or from handling HTTP. One additional variant allows

503

C H A P T E R 1 3

■ ■ ■

8997ch13.qxd 9/28/07 10:12 AM Page 503

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

you to use Java Server Pages with MapViewer’s specific tags. Then you may want to use MapViewer
from database-centric environments, in other words, from PL/SQL code executing in your data-
base. This is possible with the PL/SQL API.

Regardless of the API you choose, the flow of operation for requesting a map using any of the
“classic” interfaces is the same. Refer to Figure 13-1 for the components of MapViewer involved in
processing a request:

1. The client application constructs a web service request to obtain a map. The request con-
tains the name of the data source (database) to read, the information to include on the map,
its format (GIF, PNG, or JPEG), its size in pixels, and the area covered by the map. The appli-
cation can construct the XML request manually, or it can use a client API to generate it: Java,
JSPs, or PL/SQL.

2. The client calls the MapViewer map-rendering servlet over HTTP, passing the XML request
as a parameter. Again, this can be done manually or via a client API.

3. The MapViewer map-rendering servlet parses the request, reads the necessary map defini-
tions from the database, selects from the spatial tables, and generates a map in GIF, PNG, or
JPEG format. The map is written out as a file. Note that the server caches map definitions.
The server can also optionally cache part or all of the spatial data it reads.

4. The server constructs an XML response that includes the URL to the generated image file
and returns it to the client.

5. The client then parses the XML and extracts the map image URL, which it then forwards to
the client browser. If the client uses the client Java API, it needs only to invoke the proper
method to extract the URL. An alternative is for MapViewer to return the resulting map
directly by streaming it to the client instead of returning an XML document. This is possible
only when using the XML API directly. In this case, no image file is generated on the server.

Figure 13-1. Oracle MapViewer architecture

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS504

8997ch13.qxd 9/28/07 10:12 AM Page 504

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Regardless of the API you use (XML, Java, JSPs, or PL/SQL), the MapViewer server will perform
a complete map generation cycle. It will read all the data needed, read all map definitions, apply
your styles, and generate a complete new map from scratch, even if no data changed and all you did
was ask for a refresh of the map.

JavaScript and Ajax: Oracle Maps
The Oracle Maps technology offers a different approach and a different flow. Using Oracle Maps, the
application no longer addresses the main MapViewer server (the map-rendering engine). Rather, it
interacts with two servers: map cache and FOI that themselves invoke the map-rendering engine.
Figure 13-2 illustrates the flow between the application and the servers.

Figure 13-2. Oracle Maps architecture

The interactions between the client (your web browser) and MapViewer occur using the Ajax
paradigm—Asynchronous JavaScript and XML—which exploits the ability for the web browser to
send HTTP requests to a web server (and receive responses) in a fully asynchronous manner, trans-
parently to the user. This simple yet powerful technique allows the development of highly dynamic
applications that no longer rely on the classic browser cycle, which calls for a complete page refresh
even if only some minor icon or value has changed. Using the Ajax paradigm, applications can now
choose to update only those sections of the page that actually changed or to call a server as a result
of some user interaction, such as mouse movements.1 Contrary to the “classic” interfaces, you have
no way to directly interact with the map cache server or the FOI server. Rather, the interaction between
your application and MapViewer is via MapViewer’s Ajax-based JavaScript mapping library from your
browser. Many of those interactions happen automatically as a result of actions by the end user:
panning, zooming, clicking dynamic features, and so on.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 505

1. For more details about AJAX and browser-dependencies, refer to Foundations of Ajax by Ryan Asleson and
Nathaniel T. Schutta (Apress, 2005).

8997ch13.qxd 9/28/07 10:12 AM Page 505

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The client application interacts with MapViewer as follows:

• With the map cache server:

• The JavaScript client library determines the map tiles it needs to satisfy the current map
requests at the required scale. It sends multiple requests to the map cache servlet, instruct-
ing it to return the desired tiles.

• The map cache servlet then checks its cache. If it finds the tiles, it streams them back to the
client. If one or more of the tiles are absent from the cache, it invokes the map-rendering
servlet and instructs it to generate the map tiles, which it then saves in the cache before
returning them to the requesting client.

• With the FOI server:

• The JavaScript client sends a request to the FOI servlet, asking it to fetch the dynamic
features (features of interest) to be displayed on the current map. The client can either
specify the name of a predefined theme or provide an SQL select statement.

• The FOI servlet then performs a spatial query to retrieve the features from the database
tables. It also generates the graphical rendering of each spatial object it finds and returns
the graphics together with any attributes to the requesting client.

• Finally, the JavaScript client assembles the map tiles and overlays them with the FOI objects
before showing the result to the end user.

Choosing an API
The Ajax JavaScript mapping library handles automatically all exchanges between your application
and the MapViewer servers (map cache and FOI). It also handles automatically all user interactions,
such as zooming and panning, identifying and selecting features, and so on. This makes your appli-
cation code lighter and easier to write. Your application, written in JavaScript, will run inside the
user browser.

The other APIs (Java and XML) are typically used in server-side development environments,
such as servlets or JSPs, although you can also use the Java API in a browser applet. The XML API
can be used from any environment able to produce and parse XML and issue HTTP requests, such
as .NET. The PL/SQL API can be used only from inside an Oracle database. In all those environments,
your application will be responsible for handling all user interactions (zooming and panning) via
your own custom code.

Another important difference between the Java/XML/PLSQL APIs and the JavaScript API lies
with the presence of the map cache server. Since the server generates map tiles only at the zoom
levels that you specified when defining the cache, your JavaScript application is therefore restricted
to showing the maps only at those exact predefined zoom levels. Also, you can no longer change the
rendering of base maps, since their constituent tiles are retained in the map cache.

On the contrary, the other APIs offer you the full flexibility to generate any map with any con-
tent at any scale. But that of course comes at the extra cost that MapViewer must always regenerate
a full map for each request.

Table 13-1 summarizes some key differences between the various APIs.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS506

8997ch13.qxd 9/28/07 10:12 AM Page 506

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Table 13-1. Comparing the MapViewer APIs

API Application Environment Scales Maps Reused? User Interactions

Java Any Java environment: Any Never User-developed
Servlets, JSPs, applets,
thick clients

XML Any environment: Any Never User-developed
Java, .NET, and so on

PL/SQL Database Any Never User-developed

JavaScript Any browser Fixed Always Automatic

In the rest of this chapter, we will cover the various APIs in greater detail. We will start with the
JavaScript API, then cover the Java and JSP APIs, and finally conclude with the lowest-level tech-
nique, which is XML. But before that, we will study the general principles for generating maps and
interacting with them. You will find those principles in all interfaces: JavaScript as well as Java, XML,
and PL/SQL APIs.

Anatomy of a Map Request
The exchanges between the client application and the MapViewer server are simple. The applica-
tion sends mapping requests to MapViewer, and MapViewer sends back responses that include the
resulting map, possibly with additional details, such as, for example, the actual geographical area
covered by the map.

Whatever API you use to interact with MapViewer, a map request always contains three pieces
of information: what, where, and how.

What: The Information That Should Appear on the Map
First, you must specify the spatial features you want to include on the map. You can specify them as
one or more of the following elements. All are optional.

• A predefined base map: A base map is composed of a number of themes. Those themes will
be visible depending on the scale at which the map is generated. Your application has no
possibility to decide that certain themes, part of the base map, should be shown or not. It
also has no control over the order in which the themes are displayed.

• One or more predefined themes: Using this approach, your application has more flexibility to
build maps that exactly match your needs. In other words, it can list those exact themes to be
used for each individual map. Your application can also change in which the themes are dis-
played.

• One or more dynamic themes: These are built using SQL statements generated by your appli-
cation, possibly constructed from user input or selections. This is what gives your application
the greatest degree of flexibility. It can decide not only what spatial tables to include on
a map but also exactly what rows from those tables to display. For example, using this tech-
nique you can choose to show only those customers that have ordered more than a certain
value over the last year and whose birthday is in the next week.

• One or more dynamic features: These are geometric shapes produced by your application.
Those could be generated by your application. For example, a user may click a map and ask
for all features within some distance of that point. Your application can then ask MapViewer
to highlight the corresponding circle on the map.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 507

8997ch13.qxd 9/28/07 10:12 AM Page 507

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that all those elements are actually optional! This means you are not required to define
maps or themes in the database. You can actually build fully dynamic applications using only dynamic
themes, where the content and structure of each map is fully controlled by your application and/or
the users of your application.

Where: The Geographical Area to Be Covered by the Map
Then you need to specify the area covered by the map in a variety of ways:

• As a rectangular box: Specify the coordinates of the lower-left and upper-right corners of
the box.

• As a center and size: Specify the coordinates of the center of the map, together with the size
(height) of the map in ground units. For example, you can specify that the map should cover
an area of 100 kilometers from top to bottom.

• As a center and scale: Specify the coordinates of the center of the map, together with the ratio
scale at which the map should be built. For example, you can request a map at 1:50000 cen-
tered on a given location.

• Using a bounding theme: Specify that one of the themes (predefined or dynamic) should be
used as a bounding theme, in other words, that the map should be centered on all the objects
returned for that theme. For example, one of your themes may return the geometry corre-
sponding to one of your sales regions. If you indicate that this should be your bounding
theme, then the resulting map will be automatically centered and sized so that it shows the
complete sales region.

• Specifying no area at all: If you do not specify any bounds, then MapViewer will automati-
cally generate your map in such a way as to contain all the information you asked for. For
example, if all the spatial objects on your map concern the state of California only, then the
map will automatically be generated to show all of California only. The map will also be
scaled to match the size of the spatial objects on your map. For example, a map that shows
everything about Rhode Island will show more detail (be at a smaller scale) than a map that
shows all of California.

■Caution If you specify the map area using a box geometry, you must make sure to set the map size (width and
height in pixels) to the same aspect ratio as this box. Failure to do so will result in distorted output, because MapViewer
will “squeeze” or “expand” the map so that if fits fully in the size you asked.

How: The Format and Size of the Resulting Map
Finally, you need to specify the size of the map (in pixels) as well as its format (JPEG, PNG, and so
on). You can also specify the styles to be used for rendering the various elements you want to appear
on the map. For base maps, you have no choice: the rendering always happens based on the styles
associated with the predefined themes on that map. For predefined themes, MapViewer will apply
the style defined in the database, but you can override it with another (database-defined or dynamic)
style. For dynamic themes or dynamic features, you must specify a style.

However, in all cases, you can specify your own dynamically constructed style. This gives you
yet a larger degree of flexibility. Your application could even allow end users to dynamically choose
styles to apply or even to build them (for example from a color palette).

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS508

8997ch13.qxd 9/28/07 10:12 AM Page 508

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Interacting with Maps
Some applications may be content with just producing static maps. This could be the case, for
example, if all you want is to display a map on your home page showing the location of your stores.
This may be sufficient for many applications, but your customers may want to see more details. For
example, some of your stores may be close to each other, making them hard to distinguish on the
map. Or some of your new stores may actually be outside the area covered by your map.

To answer those needs, you must provide your users with the ability to interact with your maps:
zoom in and out, pan, select objects, and so on. Let’s now review the techniques you can use to enable
users to interact with maps. The JavaScript API provides all the facilities to interact with maps, with-
out any specific programming from your part. The other APIs, however, require that you implement
the controls yourself in your application.

Controlling the Level of Detail: Zoom In and Zoom Out
The most frequently used movement controls are zooming in and zooming out. Zooming in means
you focus in on a smaller area in greater detail. When you zoom out, you see a larger area and less
detail. From a mapping point of view, zooming in and out is easily performed by changing the scale
of the current map.

The MapViewer server does not provide any specific method for zooming in or zooming out—
this is all under the control of the client application. To zoom in by a chosen factor, the application
just resubmits the same map request but specifies a size reduced (or enlarged) by the desired factor.
MapViewer then generates a new map. Note that MapViewer will automatically adjust the amount
of information that appears on the map; it includes only those themes that should be visible at the
current scale, based on the min_scale and max_scale parameters of the theme definition.

A simple approach to implement zoom controls in applications is to use two buttons: one for
zooming in (by a fixed factor) and one for zooming out (by the same factor). Whenever one of the
buttons is clicked, the application simply computes a new map (by multiplying or dividing the cur-
rent size or scale by the chosen factor) and requests a new map at that size or scale. More sophisticated
techniques use a range of buttons, each associated with a fixed scale factor, a slider bar, or an edit
box where you type in the desired factor or scale.

The Oracle Maps JavaScript API provides the end user with built-in zooming controls, and it
also automatically handles all zoom requests, greatly simplifying your application code.

A common technique, called marquee zoom, is to let the user select a rectangular window on
the map using a mouse drag. This approach requires some additional logic in the browser, typically
via JavaScript. The Oracle Maps JavaScript library provides this facility.

Controlling the Area Shown on the Map: Pan and Recenter
The next most frequently used movement is a lateral pan. Panning is the action of shifting the map
window so that another part of the map is shown.

As with zoom in and zoom out, the MapViewer server does not provide any specific method for
panning—again, this is all under the control of the client application. The application simply needs
to decide on a new center and resubmit the same map request with that new center position. The map
content and size remain the same. MapViewer then generates a new map covering the new location.

A common approach to implement panning is to use a set of four (up, down, left, and right) or
eight buttons (at the corners). Whenever one of the buttons is clicked, the application computes
a new center by offsetting one or both coordinates (x and y) by a fixed factor (for example, half the
current width or height of the map). It then submits a request for a new map, centered on the com-
puted point.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 509

8997ch13.qxd 9/28/07 10:12 AM Page 509

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Another common approach is to recenter the map on the spot where a user clicked. This
technique requires that the application capture the coordinates of the click and use those coor-
dinates to compute a new center. Note that this requires a conversion from image coordinates to
the equivalent ground coordinates. Image coordinates are in pixels, with an origin at the upper-
left corner of the image, whereas ground coordinates are in the units of the coordinate system of
the map. MapViewer’s Java API provides methods to perform this transformation.

A powerful and user-friendly technique is to use a mouse drag to move the map: click the map,
hold, and move the map around. This approach requires some intelligence in the browser, typically
via some custom JavaScript code. The Oracle Maps JavaScript API provides this naturally via its
built-in controls, again greatly simplifying your applications code.

Note that scrollbars are rarely seen in mapping applications since they usually imply by their
size the maximum area available. The earth is pretty big, so this can be confusing.

Selecting Features: Identify
The identify operation lets the user select a spatial object graphically, via a mouse click, and obtain
additional information about that object, such as coordinates or attribute information not displayed
on the map.

The common approach is for the application to capture the coordinates of the mouse click,
convert them from image coordinates to ground coordinates, and then use this information to per-
form a spatial search.

Once again, the Oracle Maps JavaScript API provides all the facilities for selecting and identify-
ing features without your application having to do anything special.

The other APIs (Java and XML) require that you write specific code to capture the coordinates
of the mouse click and perform a spatial search. Note that selecting point or line objects poses addi-
tional challenges; clicking exactly on a point or on a line is almost impossible, so the application
needs to convert the clicked point into a square region of a few pixels around the clicked point and
use this region to perform the spatial search. MapViewer’s Java API provides a number of methods
to easily perform those spatial searches. The JavaScript API handles this automatically.

More sophisticated techniques let the user select multiple objects from a rectangular or circu-
lar window drawn on the map, or even from any arbitrary user-drawn polygon. Again, the JavaScript
API provides facilities for doing this.

Choosing the Information to Appear on the Map: Layer Control
The application may let the user choose the amount of information that should appear on the maps
by allowing the user to select the themes to include.

The common simple approach is to use a check box–like select list constructed from a list of
available themes. The user picks from the list those themes that should appear on the map, and the
application includes those themes on the subsequent map requests.

Applications may provide more sophisticated user interfaces and let the user also select the order
in which the themes appear on the map or let the user dynamically associate a style to the themes.

Finally, the application may let the user construct new dynamic themes on the fly. The applica-
tion can, for example, construct SQL statements based on user input and add them to the map as
dynamic themes.

Oracle Maps: The JavaScript API
The main component of Oracle Maps is the Ajax-based JavaScript mapping client. This library pro-
vides all the functions for browsing and interacting with maps, zooming, panning, identifying,

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS510

8997ch13.qxd 9/28/07 10:12 AM Page 510

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

selecting, and so on, via a flexible JavaScript API. It allows you to develop applications that will run
in your web browser and interact with a MapViewer server.

The JavaScript API is distributed as a JS (JavaScript source) file located in your MapViewer
installation at $OC4J_HOME/j2ee/home/applications/mapviewer/web/fsmc/jslib/oraclemaps.js. All
you need is to incorporate it into your web page via a <script> tag.

■Note The oraclemaps.js JavaScript library is distributed in a compressed format. This makes the code of the
library hard to read, but it reduces significantly the size of the library so that browsers will load it quickly.

We will cover the main features of the JavaScript API. For the fine details on the API, refer to the
Javadoc documentation of the API. This documentation is available online in your MapViewer
installation at $OC4J_HOME/j2ee/home/applications/mapviewer/web/fsmc/apidoc, and you can
access it directly at http://127.0.0.1:8888/mapviewer/fsmc/apidoc as well as from a direct link
from your MapViewer home page.

■Tip MapViewer comes with a well-written tutorial for Oracle Maps. You will find a link to the tutorial from your
MapViewer home page, or you can access it directly from http://127.0.0.1:8888/mapviewer/fsmc/tutorial/
index.html. The tutorial takes you to a progressive set of examples; each example illustrates one aspect of the
API. To run those examples, you must first have uploaded the example data downloadable from Oracle’s OTN site.

The other major components of Oracle Maps run in the MapViewer server: the map cache and
the FOI servers. We will discuss them later in this chapter—mostly you will learn how to create,
monitor, and manage your map caches.

Displaying a Map
Incorporating a map in your application is simple and is illustrated in Listing 13-1.

Listing 13-1. Displaying a Map Using the JavaScript API

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title> Simple Free-Scrolling Map</title>

<script language="JavaScript" src="/mapviewer/fsmc/jslib/oraclemaps.js"></script>

<script language="JavaScript">

function loadMainMap()

{

// Set up the connection to MapViewer

var baseURL = "http://"+document.location.host+"/mapviewer";

var mapview = new MVMapView(document.getElementById("map_div"), baseURL);

// Add a base map

mapview.addBaseMapLayer(new MVBaseMap("SPATIAL.US_DETAILED_MAP"));

// Set up initial map center and zoom level

var center = MVSdoGeometry.createPoint(-122.5, 37.7, 8307);

mapview.setCenter(center);

mapview.setZoomLevel(9);

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 511

8997ch13.qxd 9/28/07 10:12 AM Page 511

www.it-ebooks.info

www.freepdf-books.com

http://127.0.0.1:8888/mapviewer/fsmc/apidoc
http://127.0.0.1:8888/mapviewer/fsmc/tutorial
http://www.it-ebooks.info/

// Display the map

mapview.display();

}

</script>

</head>

<body onload="loadMainMap()">

<div id="map_div"

style="left:0px; top:0px; width:100%; height:100%; border:2px solid">

</div>

</body>

</html>

Calling this page in your browser should give you a map that looks like Figure 13-3.

Figure 13-3. A simple free-scrolling map

Let’s now dissect the code you had to write to get this map. The first step is to tell the browser to
load the Oracle Maps JavaScript library:

<script language="Javascript" src="/mapviewer/fsmc/jslib/oraclemaps.js"></script>

The second step is to define a section in your HTML page that will be used to hold the map:

<div id="map_div"

style="left:0px; top:0px; width:100%; height:100%; border:2px solid">

</div>

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS512

8997ch13.qxd 9/28/07 10:12 AM Page 512

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Then you can write the actual JavaScript code to produce the map. You initialize the connec-
tion to the MapViewer server by creating a MVMapView object. You need to specify the URL to be used
for reaching the MapViewer server—which we assume here to be on the same server because that is
where we loaded the HTML page from. We also link our MVMapView object to the HTML section
(map_div) it will use for displaying the map.

var baseURL = "http://"+document.location.host+"/mapviewer";

var mapview = new MVMapView(document.getElementById("map_div"), baseURL);

You can now set up the MVMapView object. First, add a base map layer. Note that the name you
specify is really that of a map cache built on a base map. Most of the time, you will have only one
map cache for a given base map, so it is good practice to give the cache the same name as the base
map it serves. We discuss map caches later in this chapter. The name of the map cache is prefixed
with the name of the owner of the cache.

mapview.addBaseMapLayer(new MVBaseMap("SPATIAL.US_DETAILED_MAP"));

■Note The map cache you specify must exist, but it can be empty, that is, contain no map tiles yet. It will be
filled automatically.

Then set up the geographical point on which the initial map will be centered, as well as the zoom
level at which the initial map will be displayed. The zoom level corresponds to one of the levels you
defined for the map cache. Zoom levels start at 0 and can go to any depth you specified when you cre-
ated the cache, for example, 9 for a 10-level cache. If you do not specify any zoom level, then the initial
map will be at level 0, that is, the highest level, corresponding to the level with the least detail (= at the
smallest scale). Zoom levels are discussed in detail with map caches.

var center = MVSdoGeometry.createPoint(-122.5, 37.7, 8307);

mapview.setCenter(center);

mapview.setZoomLevel(9);

The final step in the JavaScript code is to tell the Oracle Maps client to display the map. The
Oracle Maps client now contacts the map cache server, and it instructs it to build the necessary map
and return it to the browser for displaying in the HTML section you told it to use. At that point, the
control of your HTML page passes to the Oracle Maps client, which will handle all user interactions:
zooming, panning, and so on.

mapview.display();

■Caution The mapview.display() call never returns. Any code that follows it will never be executed.

There is, however, one more thing to do: make sure the JavaScript code you just wrote gets exe-
cuted. It could be triggered via a URL link or by the user clicking a button. But most of the time, it
will be automatically executed when the page gets loaded. This is done via the onload action on your
HTML body:

<body onload="loadMainMap()">

Our HTML page now shows the map. You can interact with this map in only one way: you can
click the map, hold the mouse button, and move the map around by dragging it.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 513

8997ch13.qxd 9/28/07 10:12 AM Page 513

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Interacting with Maps: Zooming and Panning
Only allowing a user to move around a map (that is, panning) may be sufficient for your application
but is probably not sufficient for the majority of applications. We are now going to look at how to
provide more interactions. The main interaction users will want is the ability to zoom in and out of
the map. For that we will add a navigation panel to our map view by simply adding the following
line to the previous code:

mapview.addNavigationPanel();

The new map will look like Figure 13-4, with a navigation panel placed on the top-left side of
the map.

Figure 13-4. A simple map with navigation panel

Using the navigation panel, you can now zoom in and out by clicking the + and – buttons or by
dragging the scroll bar up and down. The arrow buttons at the top will pan the map in the desired
direction. Notice that zooming happens in steps: the + and – buttons increase or decrease the zoom
level by one step. This is also the case when you zoom in and out using the scrollbar.

You can customize your navigation panel by passing parameters to the function call. The first
parameter lets you choose where to place the panel on the map (EAST or WEST). The other three
parameters let you decide which of the individual components of the panel you want: panning but-
tons, zooming bar, or zooming buttons (specify as true or false).

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS514

8997ch13.qxd 9/28/07 10:12 AM Page 514

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The button at the center of the panning arrow buttons is the “home” button. Clicking it will
reset the map to a home position that you have previously defined by

mapview.setHomeMap(center, mapZoom);

■Caution You must set the home position before adding the navigation panel; otherwise, the navigation will
have no home button.

Another way of panning the map is via the arrow keys on your keyboard. This capability is
enabled by default, but you can disable it by doing this:

mapview.enableKeyboardPanning(false);

Note that you could also disable map dragging entirely:

mapview.enableDragging(false);

Finally, double-clicking anywhere on the map will recenter the map at that point. You can
change this to zoom in one step with the following:

mapview.setDoubleClickAction("zoomin");

Adding Map Decorations
You can place additional elements on the map, called decorations. Decorations are stationary: they
do not move when a map is dragged, zoomed, or recentered. We start by looking at standard deco-
rations: scale bar and copyright note.

A scale bar is handy to help users better understand the size of the map and of objects on the
map. Add one like this:

mapview.addScaleBar();

Just like the navigation panel, you can control the location of your scale bar. By default, it will
be located at the lower-left corner of the map, but you can choose to position it in any corner of the
map by passing a number to the previous function: 1 for upper-right, 2 for lower-left, 3 for lower-right,
and 4 for upper-left. You can also specify horizontal and vertical offsets from the sides of the corner
you positioned the scale bar.

The scale bar shows distances in both metric (meters, kilometers) and imperial (feet, miles)
units. It is dynamic: it always reflects the scale of the map at the current zoom level. The bar expands
and contracts automatically so that the measures shown are always integers (such as 500 m).

Another element you may want to add on a map is a copyright note. This is often required by
the provider of the spatial information you use for your base maps. Add such a note by doing this:

mapview.addCopyRightNote("Powered by Oracle Maps");

The copyright note is always placed in the lower-right corner of your map.

Adding Generic Decorations
Oracle Maps also provides a mechanism that allows you to add just about any custom decoration to
your map. First you need to define your decoration. The following builds a clickable logo at the
upper-left corner of your map:

homeURL = '

';

homeURLcontainer= new MVMapDecoration(homeURL, 0, 0);

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 515

8997ch13.qxd 9/28/07 10:12 AM Page 515

www.it-ebooks.info

www.freepdf-books.com

http://www.oracle.com
http://www.it-ebooks.info/

Then add the decoration to your map:

mapview.addMapDecoration(homeURLcontainer);

You can further customize your decoration. For example, your application can generate its
content dynamically, hide the decoration, and make it visible again. It can also handle mouse
events against the decoration. Events are described later in this chapter.

To remove a decoration from the map, do the following:

mapview.removeMapDecoration(homeURLcontainer);

Creating an Overview Map
Sometimes you need to move rapidly to an area that is far away from the area currently shown on
your map. Dragging the map to the new location can be cumbersome—and slow—if you are
zoomed to a deep level of detail. For example, imagine you are looking at a street-level map of San
Francisco and then want to move to Washington, D.C. Dragging your map all the way is too hard.
The usual solution is either to zoom out far enough so that you can see both San Francisco and
Washington on your map or to at least zoom out to a level where you can easily drag the map from
one place to the other.

A better way is to use an “overview” map, that is, a small map showing less detail (is at lower
zoom level) that you can drag directly. The main map will be dragged accordingly. For example, the
overview map could show a small map of the entire United States, making panning very fast.

The overview map can be displayed anywhere in your web page. You just need to set up an HTML
section (<div>) to host it. But you will use a smarter technique. You will add the overview map inside
the main map as a decoration and make it collapsible—that is, the user will be able to hide it at will
when he/she does not need it.

The first step in the process is to define the new map decoration, make it collapsible, and add it
to the map:

ovcontainer = new MVMapDecoration(null,null,null,200,150) ;

ovcontainer.setCollapsible(true);

mapview.addMapDecoration(ovcontainer);

Notice that you do not specify any content for the decoration (the first argument is null). The
following two arguments are null too. They are used to position the decoration on the map. The last
two arguments define the size of the decoration in pixels.

Now you can define the overview map:

var over=new MVOverviewMap(ovcontainer.getContainerDiv(), 7);

The first argument—ovcontainer.getContainerDiv()—extracts the <div> section that holds the
content of the decoration you just added to the map. This tells the overview map where it should
build itself. The second argument—7—is the zoom difference between the main map and the overview
map. Here it means that when you are zoomed all the way down, say at zoom level 9, the overview map
will be at zoom level 2. Obviously, the overview map will stay at zoom level 0 when you zoom the
main map out to level 6 or less.

All that is left now is to link the overview map to the main map view:

mapview.addOverviewMap(over)

Figure 13-5 shows the resulting map with all decorations and a collapsible overview map. Note
that you also changed the code so that the navigation panel is now on the right side of the map.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS516

8997ch13.qxd 9/28/07 10:12 AM Page 516

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 13-5. A map with overview map and scale bar

Notice that the area covered by the main map is shown as a rectangle in the overview map (you
can also customize the look of this rectangle if you want). You can now drag this rectangle around or
just drag the overview map proper. The main map and overview map will now move in concert as
you move either of them.

Clicking the little arrow on the overview map will hide it completely.

■Caution At the time of writing, you cannot control the positioning of collapsible decorations. They always go in
the lower-right corner. This means they will hide the copyright notice. It also means you can have only one col-
lapsible decoration on a map.

Rectangular (Marquee) Zooming
A common way to zoom on a map is to use the mouse to draw a rectangle that represents the area
to zoom into. This technique is called marquee zoom and is not enabled by default. You can enable
and disable it via simple method calls, but you must first add a mechanism to your map to let users
switch between “normal” mode (where dragging the mouse drags the map) and “marquee” mode
(where dragging the mouse draws a rectangle on the map).

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 517

8997ch13.qxd 9/28/07 10:12 AM Page 517

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Let’s first construct a tool to control the marquee zoom. What you essentially need is a simple
check box, which you could include in your HTML page. But we are going to take advantage of the
map decorations mechanism to embed the check box on the map.

var toolBar =

'<div style="width:50;height:40;background-color:white;border:2px solid black;">'+

' Marquee Zoom: '+

'<input type="checkbox" onclick="toggleMarqueeZoom(this)" unchecked/>'

'</div>';

md = new MVMapDecoration(toolBar, 0, 0) ;

mapview.addMapDecoration(md);

The first statement builds the HTML that produces a simple check box. Whenever the user checks
or unchecks that box, the JavaScript function toggleMarqueeZoom() will be called with the check box
passed as a parameter. The second statement builds the map decoration object and locates it at the
top-left corner of the map. The last statement adds it to the map.

Here is the toggleMarqueeZoom() function:

function toggleMarqueeZoom(checkBox)

{

if(checkBox.checked)

mapview.startMarqueeZoom("continuous");

else

mapview.stopMarqueeZoom() ;

}

As you can see, all the function does is to start or stop the marquee zoom mode depending on
the setting of the controlling check box. Note, however, that for this to work, the MVMapView object
(mapview) must be defined as a global variable so that it is visible in all functions and procedures.

To use marquee zooming, the user now just needs to tick the zoom box, and then using the
mouse, click and drag a rectangle. Notice the parameter passed to startMarqueeZoom(). This can
take one of the following values:

• continuous: In this mode, the user can use the marquee zoom tool to zoom the map by rec-
tangle drawing repeatedly. After each rectangle drawing and zooming, the user can immediately
start drawing another rectangle and zooming the map by clicking and dragging the mouse.
The marquee zoom tool stays active until stopMarqueeZoom() is invoked.

• one_time: In this mode, the user can use the marquee zoom tool only once. After zooming
the map by rectangle drawing for the first time, the marquee zoom tool becomes inactive,
and the user is no longer able to draw rectangle and zoom the map unless this method is
invoked once again.

• prompt: In this mode, the user can use the marquee zoom tool to zoom the map by rectangle
drawing repeatedly. After each rectangle drawing, the user needs to click the rectangle to
zoom the map. If the user clicks the other part of the map, the rectangle disappears, and the
map will not be zoomed. The marquee zoom tool stays active until stopMarqueeZoom() is
invoked.

Figure 13-6 shows a map with the marquee zoom control and a zoom window.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS518

8997ch13.qxd 9/28/07 10:12 AM Page 518

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 13-6. A map with marquee zoom

Adding Dynamic Information: Theme-Based FOIs
The maps we have defined so far are all static. To build actual applications, you need to add the
business information to those maps: customers, pipes, sales regions, trucks, and so on. In Oracle
Maps parlance, those are called features of interest (FOIs), and they originate from database tables.
They are served by MapViewer using its FOI server.

Adding our customers to the map view is simply done like this:

customers = new MVThemeBasedFOI('customers','SPATIAL.CUSTOMERS');

mapview.addThemeBasedFOI(customers);

The first parameter passed to the MVThemeBasedFOI constructor is the name you choose to give
to the theme in your map view. The second parameter ('SPATIAL.CUSTOMERS') is the name of a theme
defined in the database, prefixed with the owner of the theme.

FOI themes are always produced from information stored in the database. They are also auto-
matically refreshed as you zoom or pan the map. When the mouse moves over one of the FOI objects,
the label of the objects is displayed. When you click one, you see an information window. Figure 13-7
shows a map that includes multiple themes: customers, branches, and competitors, as well as an
information window.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 519

8997ch13.qxd 9/28/07 10:12 AM Page 519

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 13-7. A map with FOI themes

The application in Figure 13-7 also includes check boxes that enable the user to choose whether
the themes should be included on the map. The check boxes are defined like this:

<dl>

<dt><input type="checkbox" value="branches"

onclick="toggleTheme(this)" unchecked/>Branches

<dt><input type="checkbox" value="customers"

onclick="toggleTheme(this)" unchecked/>Customers

<dt><input type="checkbox" value="competitors"

onclick="toggleTheme(this)" unchecked/>Competitors

</dl>

Here is the toggleTheme() function that will turn a theme on or off to make it visible or hide it:

function toggleTheme(checkBox)

{

theme = mapview.getThemeBasedFOI (checkBox.value);

if(checkBox.checked)

theme.setVisible(true);

else

theme.setVisible(false);

}

You have a number of options to control the way an FOI theme is displayed. Those options are
controlled using methods of the MVThemeBasedFOI object for a theme. Here are the main ones:

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS520

8997ch13.qxd 9/28/07 10:12 AM Page 520

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• enableInfoTip() enables the display of the FOI label (that is, the content of the column you
specified as the label column when defining the theme. By default info tips are always
enabled.

• enableInfoWindow() enables the display of an information window when you click an FOI
object. The information window will list the name and values of all the “information columns”
specified when defining the theme). By default info windows are always enabled. The method
enableInfoWindowForMouseOver() allows you to have the information windows pop up auto-
matically on mouseover. Other methods allow you to customize the information windows.

• setAutoRefresh() indicates that the FOIs on a map should be refreshed automatically as you
refresh the map by panning and zooming. This is also the default.

• refresh() allows you to manually control when to refresh FOIs, such as when using a Refresh
button.

• setVisible() allows you to make FOIs objects in a theme visible or not. This switching
happens in the browser; it does not trigger any refresh from the database.

• setBoundingTheme() instructs MapViewer to use this theme as a bounding theme, in other
words, center and zoom the map so that it shows all the objects in this theme.

FOIs are represented in the browser as JavaScript objects. Having a large number of FOIs
in your browser can slow it down significantly in addition to making maps very cluttered. The
MVThemeBasedFOI() object allows you to control the zoom levels at which FOIs are shown:

• setMinVisibleZoomLevel(): Starting from this zoom level, FOIs are shown on the map.

• setMaxWholeImageLevel(): Up to (and including) this zoom level, FOIs are shown, but only as
images.

• setMinClickableZoomLevel(): Starting from this zoom level, FOIs are active; you get an info
window when you click them and an info tip when you mouse over them.

• setMaxVisibleZoomLevel(): Above this level, FOI are no longer shown.

Figure 13-8 illustrates the relationships between those various levels.

Figure 13-8. Zoom levels and FOI visibility

Less Detail/Zoomed Out

More Detail/Zoomed In

Zoom Level 0

Zoom Level N

Min Visible Zoom Level

Max Whole Image Level

Min Clickable Level

Max Visible Zoom Level

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 521

8997ch13.qxd 9/28/07 10:12 AM Page 521

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You should set those levels in such a way that your FOIs are displayed only at the zoom level
that fits the density of your data and meets the needs of your application. A good rule is to set the
zoom levels so that a map will show at most 200 FOIs.

When MapViewer fetches FOIs from the database, it actually prefetches more than the number
shown on the map. This is to limit the number of database fetches when panning or zooming to
adjust the map window. The following method allows you to control how many more FOIs MapViewer
will fetch from the database:

• setQueryWindowMultiplier(multiplier)

This method sets the size multiplier of the query window used to query the FOI layer. This mul-
tiplier is applied to both the x- and y-dimensions of the map window. The default multiplier is 2,
which means MapViewer will query a window that is four times larger than the actual map window.
To disable this prefetching of additional FOIs, just set the multiplier to 1.

Templated Themes
A templated theme is one whose SQL expression contains references to bind variables, with the
actual values being provided at run time. For example, a theme on the CUSTOMERS table could have
an SQL expression CUSTOMER_GRADE = :1, allowing the application to choose the kind of customers
to show at runtime. The following will select only the GOLD customers for inclusion on our map:

customers = new MVThemeBasedFOI('customers','SPATIAL.CUSTOMERS_GRADE');

customers.setQueryParameters ("GOLD");

mapview.addThemeBasedFOI(customers);

Highlighted Themes
A common need in mapping applications is to highlight features that are located in a specific
area. To do this, apply a geometry to the theme using the setFilteringGeom() method, and then
instruct the theme to show only those features that are inside the geometry you passed, using
the setHighlightOnly() method. You can optionally change the rendering style of the selected
features.

The following shows how to display only those customers whose location is in a region whose
geometry is contained in regionGeom, which is an MVSdoGeometry object:

customers.setHighlightOnly(true);

customers.setFilteringGeom(regionGeom);

customers.setRenderingStyle("M.CYAN PIN");

The geometry used for highlighting could come from any source. Later in this section, you will
learn how to use manually drawn shapes (circles, rectangles, or any polygon) to generate geometries.
Still later, you will learn how to select individual features and use their geometries.

Dynamic JDBC Themes
The ultimate degree of flexibility is for your application to generate a theme based on a SELECT

statement generated fully dynamically. The following example adds all GOLD customers that are
located less than 100 meters from any of the branches:

SqlSelect =

"select c.id, c.name, c.phone_number, c.location, b.id nearest_branch " +

"from customers c, branches b "+

"where c.customer_grade='GOLD' "+

"and sdo_within_distance(c.location, b.location, 'distance=100 unit=m')='TRUE' ";

jdbcTheme =

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS522

8997ch13.qxd 9/28/07 10:12 AM Page 522

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

"<themes>"+

" <theme name='selected_customers' >" +

" <jdbc_query asis='true' spatial_column='location' jdbc_srid='8307' " +

" render_style='M.GOLD_CUSTOMER' datasource='spatial'>" +

SqlSelect +

" </jdbc_query>"+

" </theme>"+

"</themes>";

selectedCustomers = new MVThemeBasedFOI('SELECTED_CUSTOMERS',jdbcTheme);

mapview.removeThemeBasedFOI(selectedCustomers);

mapview.addThemeBasedFOI(selectedCustomers);

The first statement builds the SELECT statement, possibly using input supplied by the application
user. The second statement defines a theme over that statement (using the XML syntax for theme defi-
nitions that you will see later when studying the XML API). Finally, you create the MVThemeBasedFOI
object and add it to the map view. Notice that before adding the new theme to the map view, you
remove any previous version of that theme.

■Caution Allowing JavaScript applications to dynamically generate SELECT statements is a potential security
risk. Therefore, you must explicitly allow them by specifying the parameter allow_jdbc_theme_based_foi="true"
in the data source definitions that should support this technique. By default, dynamic JDBC themes are not allowed.

Accessing FOI Data
When MapViewer reads FOIs from the database, it does not just read their geometries; it also reads
a selected set of attributes—the “information columns” specified when defining the theme. Those
are the attributes shown on the information window.

Your application can get access to the attributes of all the FOIs in a chosen theme that are dis-
played on the current map using the getFOIData() method. The FOI data entries are returned as an
array, with each element specifying one FOI data entry. Each entry has the following attributes:

• id: A string that uniquely identifies the FOI data entry. By default, this will be the ROWID of the
table row (but you can specify another column when defining the theme using MapBuilder).

• name: The name of the FOI data entry. This is the value of the label column for the theme, also
used for the info tips.

• gtype: The geometry type of the FOI.

• X: The x coordinate of the FOI location.

• Y: The y coordinate of the FOI location.

• width: The width (in screen pixels) of the FOI image.

• height: The height (in screen pixels) of the FOI image.

• attrs: An array that specifies the FOI attributes (one value for each information column).

• attrnames: An array that specifies the names of the FOI attributes.

Adding Individual FOIs
Sometimes the features you want to add to your map do not come from any database table but are
created by your application—possibly based on user input or based on some processing in your
application. For this, you will use the MVFOI object.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 523

8997ch13.qxd 9/28/07 10:12 AM Page 523

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

FOI objects that you create this way have the same capabilities as the theme-based FOIs you
have just seen; you will get an info tip on mouseover, you can click them and get an information
window, you can turn them on and off, and you can use them for providing some animations—by
changing their location. Use FOI objects, for example, to indicate the start and end points of a route
calculation.

Here is how you could add a marker at the center of the map:

mapCenter = MVSdoGeometry.createPoint(mapCenterX, mapCenterY, mapSRID);

centerFOI = new MVFOI("MAP CENTER", mapCenter, "SPATIAL.M.CYAN PIN");

centerFOI.setWidth(40);

centerFOI.setHeight(60);

mapview.addFOI(centerFOI);

You’re assuming that mapCenterX and mapCenterY contain the coordinates of the center of the
map (and mapSRID is the coordinate system). You begin by creating an MVSdoGeometry object for this
point.

Then you create the MVFOI object. You give it a unique identifier (here MAP CENTER) and then
specify its geometry and the name of the style to be used.

The next two statements customize the FOI. Since the FOI is a point object, you need to specify
the size (in pixels) of the marker for that point. Finally, you add the FOI to the map.

Here are the main methods you can use to customize your FOI:

• setWidth() and setHeight() let you specify the size of the marker for point objects.

• setInfoTip() lets you specify the text to be displayed as an info tip when you mouse over
the FOI.

• setInfoWindow() allows you to specify the content of the information window (displayed
when you click the FOI). Specify this as an HTML string, which means you can have any con-
tent in your information window, such as URLs, images, forms, and so on.

• setHTMLElement() allows you to associate some HTML content to the FOI. That content will
be displayed on the map at the location of the FOI or at some optional offset.

• updateGeometry() use this to alter the geometry of the FOI. For points, this means moving
the FOI to a new location.

• reDraw() forces the FOI to be redrawn on the map.

• setVisible() allows you to make the FOI object visible.

• setTopFlag() instructs MapViewer to always display this FOI at the “top” of the map, that is,
over any other object. This applies only to line and polygon FOIs (point FOIs are always dis-
played last).

In addition, two convenient static methods allow you to build FOIs:

• createHTMLFOI() constructs an FOI built with an HTML string.

• createMarkerFOI() constructs an FOI whose marker image comes from a URL.

Controlling Styles
In all the previous examples, we used predefined rendering styles, that is, styles stored in the
USER_SDO_STYLES table. Another possibility is for your application to define the styles it needs
dynamically. First you need to create an appropriate style using one of the following JavaScript
objects:

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS524

8997ch13.qxd 9/28/07 10:12 AM Page 524

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• MVStyleColor: Builds a color style.

• MVStyleMarker: Builds a marker style for point objects.

• MVXMLStyle: Allows you to build any style by specifying its encoding in the SVG notation used
in the USER_SDO_STYLES table.

Other objects allow you to do build advanced styles for thematic mapping:

• MVBarChartStyle: Builds a bar chart style.

• MVBucketStyle: Builds a generic thematic style.

• MVPieChartStyle: Builds a pie chart style.

Once the style is defined, you can use it for rendering any of your themes. The following illus-
trates how to define a new marker style and apply it to one of your themes.

goldCustomerStyle = new MVStyleMarker ("M.GOLD_CUSTOMER", "vector");

goldCustomerStyle.setVectorShape("c:50");

goldCustomerStyle.setSize(10, 10);

goldCustomerStyle.setFillColor("ff0000");

goldCustomerStyle.setStrokeColor("000000");

goldCustomerStyle.setStrokeWidth("1.5");

The first argument to all style objects is the name for that style. Each kind of style objects has
specific methods that allow you to define various aspects. In the previous example, we specify the
shape of the marker (here a circle), the size of the marker (10 by 10 pixels), the color of the inside of
the marker, and the contour (the stroke) of the marker.

To use the style for a theme, first add it to the theme, and then indicate that it should be used
for rendering the features in this theme. The following shows how to use the new style for rendering
the dynamic JDBC theme selected_customers:

selectedCustomers.addStyle(goldCustomerStyle);

selectedCustomers.setRenderingStyle("M.GOLD_CUSTOMER");

Capturing User Input: Tools and Selectors
Three tools allow you to capture geometric shapes; use them to draw shapes on the map and cap-
ture those shapes in your application. You can draw a circle, a rectangle, or any polygon shape using
one of the available classes:

• MVCircleTool allows you to draw a circle of any size by clicking a point and dragging the
mouse.

• MVRectangleTool allows you to draw a rectangle by clicking and dragging.

• MVRedlineTool allows you to build any polygon shape by clicking a series of points.

Figure 13-9 shows an application that allows you to select objects (customers, branches, or
competitors) that are in an area you draw on the map.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 525

8997ch13.qxd 9/28/07 10:12 AM Page 525

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 13-9. Drawing a shape and selecting objects

The following sections cover the steps you need to follow in order to use any of those tools.

Create the Tool
First, you need to create the tool. Specifically, create a new MVCircleTool, MVRectangleTool, or
MVRedlineTool object, and add the tool to the map view using the appropriate method, which is
addCircleTool(), addRectangleTool(), or addRedlineTool(). Here is an example of creating a new
redlining tool:

redlineTool = new MVRedlineTool("SPATIAL.DRAWING_LINE","SPATIAL.DRAWING_FILL");

The constructor of the tool takes two arguments. They are both names of styles, prefixed with
the name of the data source where they are defined. The first style is a line style. It will be used to
render the shape of the polygon as you draw it. The second style is a color style. The inside of the
final polygon will be rendered using this style. Here is how to create a circle and a rectangle tool.
Note that those tools do not allow you to specify a color style for filling the resulting shape:

circleTool = new MVCircleTool("SPATIAL.DRAWING_LINE")

rectangleTool = new MVRectangleTool("SPATIAL.DRAWING_FILL");

Then you can add the tools to the map view. Here is how to add the redline tool just created:

mapview.addRedLineTool(redlineTool);

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS526

8997ch13.qxd 9/28/07 10:12 AM Page 526

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Activate the Tool
You can now activate the tool by calling its init() method:

redlineTool.init();

The application user can now draw the desired shape by clicking a series of points.
For a circle, the user clicks the map to place the center of the circle and then drags the mouse

to the desired size. For a rectangle, the user will click the upper-left corner and then drag the mouse
to the lower-right corner.

If necessary, your application can determine the state of the drawing (not started, in progress,
completed) by calling the getStatus() method of the drawing tool.

■Note For drawing a polygon (using the redline tool), the user does not need to close the polygon, that is, does
not need to click the starting point. The polygon will be closed automatically using the generateArea() method.

Extract the Captured Shape
Once the user has finished drawing the shape, you can capture that shape in your application. For
a redline tool, you need to first generate the polygon from the points clicked:

redlineTool.generateArea();

This has the effect of transforming the suite of points clicked into a polygon. Then you can
extract the geometry of that polygon (as an MVSdoGeometry object):

redlineGeom = redlineTool.getPolygon();

For a circle or polygon tool, there is no need to generate the area first. Call directly the appro-
priate method:

circleGeom = circleTool.getCircle();

rectangleGeom = rectangleTool.getRectangle();

The resulting shape is actually processed by MapViewer as an individual FOI. You can extract
that FOI and customize it just like any other FOI. For example, here is how you can fill the interior of
a circle to your liking:

circleFOI = circleTool.getCircleFOI();

circleFOI.setRenderingStyle("SPATIAL.DRAWING_AREA");

circleFOI.reDraw();

You can also extract various pieces of information from the shape just drawn. Table 13-2 sum-
marizes the information you can extract.

Table 13-2. Extracting Information About the Drawn Shape

Shape Type Method Information Returned

Circle getRadius() The radius of the circle. You can specify the unit in which the
radius should be expressed.

Circle getCircle() A geometric point (MVSdoGeometry) representing the center
point of the circle.

Rectangle getHeight() The height of the rectangle in your chosen unit.

Rectangle getWidth() The width of the rectangle in your chosen unit.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 527

8997ch13.qxd 9/28/07 10:12 AM Page 527

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Use the Shape
The most common use of the returned shape is to highlight spatial features related to that shape,
such as all customers inside the redline polygon just drawn. Just use a highlighted theme. The fol-
lowing example adds a new theme, selected_customers, that highlights those customers who are in
the area built using the drawing tool—here the polygon selected by redlining.

selectedCustomers = new MVThemeBasedFOI('selected_customers', 'SPATIAL.CUSTOMERS');

selectedCustomers.setHighlightOnly(true);

selectedCustomers.setFilteringGeom(redlineGeom);

selectedCustomers.setRenderingStyle("M.CYAN PIN");

mapview.addThemeBasedFOI(selectedCustomers);

Clear the Shape
Finally, once you are done using the shape, remove it from the map by calling its clear() method:

redlineTool.clear();

Responding to Events
The JavaScript environment is fundamentally event-driven; it allows you to react on a variety of
user actions, typically mouse clicks and moves, which enable you to build dynamic and responsive
applications.

Most of the objects available in the MapViewer JavaScript library allow you to define events
using the addEventListener() method. The method takes two arguments:

• The name of the event on which you want to act

• The name of the JavaScript function that will be called to handle the event

In the following sections, we will cover the major events available with each MapViewer object
and show how you can use them. Note that some of your event handling functions will receive param-
eters specific to the event. You can handle events on various categories of mapping elements: the
map view itself but also individual FOIs and even drawing tools.

Events on the Map View
Use events on the map view to be notified when the map is refocused, that is, zoomed or panned.
You can also use mouse-click events to provide custom actions. For example, you could use a right
mouse click to display some contextual menu.

• mouse_click, mouse_right_click, and mouse_double_click: The user clicked the map. Note
that the default action of a double click is to recenter the map to the point clicked. No parame-
ter is passed to your handling function; it should call the getMouseLocation() method of the
map view to get the coordinates of the point the user clicked.

• recenter: The user recentered the map (via mouse dragging or via the navigation panel). Use
this, for example, if you want your application to always show the coordinates of the current
center point of the map. Use the getCenter() method to get the new center.

• zoom_level_change and before_zoom_level_change: Called after (or before) the map zoom
level is changed. Two parameters are passed to the listener function when it is invoked. The
first parameter specifies the map zoom level before the zoom level change, and the second
parameter specifies the map zoom level after the zoom level change. Use this if you want to
show the current zoom level of the map. You can also use this to switch to a different base
map depending on the zoom level.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS528

8997ch13.qxd 9/28/07 10:12 AM Page 528

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Events on Theme-Based FOI
Those events apply to individual features. Use the mouse click event to display your own cus-
tomized information window. The mouseover events allow you to display customized pop-up
windows. The refresh events allow you to be notified when the features currently shown on a map
for a theme have changed, for example, as a result of a pan or zoom action. Use this event to auto-
matically update other sections of your web page—such as, for example, a counter of features on
the map or a list of those features.

• mouse_click and mouse_right_click: The user clicked any of the FOIs in that theme.
Your handling function will receive the location of the mouse click (as an MVSdoGeometry
object) and an FOI data object that contains all attributes of the FOI object (just like
MVThemeBasedFOI.getFOIData() returns).

• mouse_over and mouse_out: The user moved the mouse on, or out of, one of the FOIs. Your
handling function receives the same arguments as earlier.

• before_refresh and after_refresh: Called before or after the theme is refreshed, either as
a result of a map move (drag, pan, zoom) if the theme is in “autorefresh” mode or after call-
ing the refresh() method. Use this event if you want to show a list of currently displayed
FOIs in a table of your HTML page, and have this list automatically update as you drag or
zoom the map.

Events on Individual FOIs
Those events are identical to the events on theme-based FOIs, except they apply to one individual
FOI only:

• mouse_click and mouse_right_click: The user clicked this FOI. Your handling function will
receive the location of the mouse click (as an MVSdoGeometry object) and the FOI object.

• mouse_over and mouse_out: The user moved the mouse on, or out of, the FOI. Your handling
function receives the same arguments as earlier.

Events on Drawing Tools
Events allow you to monitor the progress of the drawing in progress. The following events apply to
the circle (MVCircleTool) and rectangle (MVRectangleTool) tools:

• on_start is called when the user starts drawing, that is, when the user clicks the screen
before dragging the mouse.

• on_drag is called when the user drags the mouse to draw the circle or rectangle.

• on_finish is called when the user completes the drawing, that is, releases the mouse button.
This event allows you to automatically use the resulting circle or rectangle, such as applying
it as filtering geometry on a theme.

The redline tool (MVRedlineTool) has only one event:

• new_shape_point is called each time the user clicks a point.

Events on Map Decorations
You can also handle some mouse events on your map decorations:

• mouse_click: The user clicked the decoration.

• mouse_over and mouse_out: The user moved the mouse on, or out of, the decoration.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 529

8997ch13.qxd 9/28/07 10:12 AM Page 529

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Using the Java API
The Java API to MapViewer is distributed as a JAR file located in your MapViewer installation (at
$OC4J_HOME/j2ee/home/applications/mapviewer/web/WEB-INF/lib/mvclient.jar). It consists of
a single class: oracle.lbs.mapclient.MapViewer. To use the API in your applications, make sure to
include mvclient.jar in your classpath. This will already be the case when you use the API from
Java applications (servlets or JSPs) that execute in the same OC4J instance that is running MapViewer.

The documentation (Javadoc) is available in your MapViewer installation as well, at
$OC4J_HOME/j2ee/home/applications/mapviewer/web/mapclient, and you can access it directly at
http://127.0.0.1:8888/mapviewer/mapclient. Please refer to the Javadoc for the precise syntax of
the various methods.

We will cover only the main features of the API. We begin by covering simple map requests, and
then we will examine various interactions: zooming and panning, theme and style control, and adding
dynamic features and legends. We do not detail the full syntax and parameter lists of the methods. To
get the details, refer to MapViewer’s Javadoc or user guide.

Although you can use the Java API from any Java-capable development environments (such as
stand-alone programs or applets), our discussion mostly focuses on Java Server Pages and servlets.

Map Requests
Let’s first consider the construction and execution of a simple map request. The basic flow of opera-
tion when using the MapViewer bean is as follows:

1. Create a MapViewer object.

2. Set up request parameters in the MapViewer object (using various set() methods).

3. Send the request to the server (invoking the run() method).

4. Extract the results from the object (using get() methods).

Create a MapViewer Object
Your application needs to import the oracle.lbs.mapclient.MapViewer package and create
a MapViewer object. Before you can use the object, you must pass it the URL of the MapViewer
servlet, which establishes the connection with the MapViewer server. You can do this at the time
you create the object, like this:

MapViewer mv = new MapViewer(MapViewerURL);

Alternatively, you can pass it later using the setServiceURL method, like this:

MapViewer mv = new MapViewer();

...

mv.setServiceURL(MapViewerURL);

The service URL has the form http://<host>:<port>/mapviewer/omserver. When you use the
API from a JSP page or servlet and your JSP page or servlet runs in the same container as the MapViewer
servlet, then you can construct the URL from the request parameters:

mapViewerURL = "http://"

+ request.getServerName()+":"

+ request.getServerPort()

+ request.getContextPath()

+ "/omserver";

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS530

8997ch13.qxd 9/28/07 10:12 AM Page 530

www.it-ebooks.info

www.freepdf-books.com

http://127.0.0.1:8888/mapviewer/mapclient
http://www.it-ebooks.info/

Set Up the Map Request
The MapViewer class provides a number of “set” methods that let you control the parameters for
a map request: data source, base map, and so on.

First, you define the general parameters for the map:

• setDataSourceName() sets the name of the data source to use.

• setBaseMapName() sets the name of the base map to display. This is optional.

• setImageFormat() selects the format of the image to produce. For servlets or JSP pages, this
must be FORMAT_GIF_URL, FORMAT_PNG_URL, or FORMAT_JPEG_URL. For “thick” clients, you can
also set this to FORMAT_RAW_COMPRESSED, which instructs MapViewer to return the image in
java.awt.Image format.

• setDeviceSize() defines the size of the requested map in pixels (horizontal and vertical).

• setMapRequestSRID() sets the coordinate system in which the map will be produced.

Then you define the area to be covered by the map. You can do this in multiple ways. The first
approach is to specify the exact rectangular area for the map.

• setBox() sets the box to query as the coordinates of the lower-left and upper-right corners.

The second approach is to define the center point of the map, together with the height of
the map:

• setCenter() sets the center (x and y coordinates).

• setSize() sets the size of the map (height from top to bottom in ground units). The width of
the map will be automatically computed to match the size you specified for the resulting
map in pixels (setDeviceSize() method).

• setCenterAndSize() sets both center and size in one operation.

The third approach is to define the center point of the map, together with the desired scale for
the map:

• setCenter() sets the center (x and y coordinates).

• setScale() sets the scale at which the map should be produced. The scale is a ratio scale. For
example, specify 25000 to get a map at scale 1:25000.

• setCenterAndScale() sets both center and scale in one operation.

Finally, the last approach is to not specify any size at all:

• setFullExtent() requests a map to cover the full extent of all features to display. Note that
the map could then also be limited in size by that of the bounding theme (if any).

• setBoundingThemes() specifies the names of the themes whose data will be used to deter-
mine the area covered by the map. The themes can be part of the base map, or they can be
any static or dynamic theme added to the map (see later).

You can also specify some processing options:

• setAntiAliasing() is either true or false (the default).

• setBackgroundColor() should be used only if you want a background different from the
default “ocean blue” color.

There are many other methods you can use to set or add legends, select the themes to display,
add dynamic themes, add features, and so on, which we will examine in the following sections.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 531

8997ch13.qxd 9/28/07 10:12 AM Page 531

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that the API does not verify the parameters when you set them. For example, if you spec-
ify an invalid data source, you will get an error only when you attempt to send the request to the
MapViewer service. Also note that most “set” methods have a corresponding “get” method.

The following shows the basic steps of setting up a map request:

// Set up map request

mv.setDataSourceName(dataSource); // Data source

mv.setBaseMapName(baseMap); // Base map

mv.setMapTitle(" "); // No title

mv.setImageFormat(MapViewer.FORMAT_PNG_URL); // Map format

mv.setDeviceSize(

new Dimension(mapWidth, mapHeight)); // Map size

mv.setCenterAndSize(cx, cy, mapSize);

Send the Request to the MapViewer Server
The main method for sending a request is run(). This method constructs the XML request from the
properties currently set in the MapViewer object, sends it to the MapViewer service, reads the XML
response, and parses the response. All failures are signaled via Java exceptions.

// Send map request

mv.run();

■Caution The parameters you specified for a request are checked only when you send the map request. Only
an invalid data source will cause an error to be returned to your application code as a Java exception. Other errors
will not get reported. For example, if you specify an invalid base map, then the resulting map will not include that
map and so may be returned as an empty blue image.

Extract Information from the Map Response
Once a request has completed, you can extract its results from the MapViewer object using “get”
methods. Mostly, you will extract the URL of the generated image.

• getGeneratedMapImageURL() extracts the URL of the image generated by MapViewer on the
server, provided you asked for an image in FORMAT_PNG_URL, FORMAT_GIF_URL, or FORMAT_
JPEG_URL. This is the normal case for all servlets and JSP pages.

• getGeneratedMapImage() extracts the image in java.awt.Image format, provided you asked
for an image in FORMAT_RAW_COMPRESSED format.

• getMapMBR() extracts the minimum bounding rectangle (MBR) of the generated map. The result
is an array of doubles that contains the xmin, ymin, xmax, and ymax of the current map’s MBR.

• getMapResponseThemeNames() extracts the names of those themes that actually appear on the
resulting map. For example, if the area you zoomed on does not contain any of your customers,
then the CUSTOMER theme will not be listed in the map response. This is useful for dynamically
adjusting the legend so it shows only those themes that are visible at any point in time. Note
that the list of themes also contains those themes that are defined in the base map.

• getMapRequestString() and getMapResponseString() return the XML string sent to the
MapViewer and the XML response. This is mostly useful for debugging purposes.

Listing 13-2 shows how to extract information returned by the MapViewer server.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS532

8997ch13.qxd 9/28/07 10:12 AM Page 532

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 13-2. Processing the Map Response

// Get URL to generated Map

imgURL = mv.getGeneratedMapImageURL();

// Get the XML request sent to the server

String mapRequest = mv.getMapRequestString();

// Get the XML response received from the server

String mapResponse = mv.getMapResponseString();

// Get the names of rendered themes

String[] names = mv. GetMapResponseThemeNames();

// Get size and center of new map

double mapSize = mv.getRequestSize();

Point2D center = mv.getRequestCenter();

double cx = center.getX();

double cy = center.getY();

// Get the MBR of the map

double box[] = mv.getMapMBR();

double boxLLX = box[0];

double boxLLY = box[1];

double boxURX = box[2];

double boxURY = box[3];

Zooming and Panning
There are two techniques you can use for controlling the zooming and panning. The first approach
is to compute a new map center and size based on user actions and request a new map using the
run() method. This technique is good for “stateless” applications. The MapViewer object is rebuilt
from scratch for each map request, and there is no need to save it in servlet session. This is illus-
trated in the Listing 13-3.

Listing 13-3. Zooming and Panning

if (userAction.equals("Get Map")) {

// User clicked the 'Get Map' button and

// chose a new datasource or map name,

// or manually entered a new map center and size

// Nothing to do: new settings already

// extracted from request parameters

}

// User clicked one of the 'Zoom' buttons:

// Zoom in or out by a fixed factor (2x)

else if (userAction.equals("Zm In"))

mapSize = mapSize/2;

else if (userAction.equals("Zm Out"))

mapSize = mapSize*2;

// User clicked one of the 'Pan' buttons:

// shift map 50% in the desired direction.

else if (userAction.equals("Pan W."))

cx = cx - mapSize/2;

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 533

8997ch13.qxd 9/28/07 10:12 AM Page 533

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

else if (userAction.equals("Pan N."))

cy = cy + mapSize/2;

else if (userAction.equals("Pan S."))

cy = cy - mapSize/2;

else if (userAction.equals("Pan E."))

cx = cx + mapSize/2;

// User clicked on the map. Get the coordinates of the clicked point

// convert to map coordinates, and use it as new map center

else if (userAction.equals("reCenter")) {

imgCX = Integer.valueOf(request.getParameter("mapImage.x")).intValue();

imgCY = Integer.valueOf(request.getParameter("mapImage.y")).intValue();

cx = boxLLX+imgCX/mapWidth*(boxURX-boxLLX);

cy = boxURY-imgCY/mapHeight*(boxURY-boxLLY);

}

The second technique is to use the run() method only when requesting a new map and then
use the zoomIn(), zoomOut(), or pan() method for zooming or panning. This technique requires that
the MapViewer object be retained between successive invocations of the JSP page or servlet. In
other words, it must be saved in session context and restored on each execution.

Note that the parameters of those methods are always expressed in device coordinates—that is,
they are in pixels on the map image (their origin is at the upper-left corner of the image). This means
you can use the coordinates you receive from a click directly on the image.

You can use the zoomIn() method in several ways:

• zoomIn(double factor) zooms in by the chosen factor.

• zoomIn(int x, int y, double factor) recenters the map on the chosen point (in device
coordinates) and zooms by the chosen factor. This combines a zoom and pan.

• zoomIn(int x1, int y1, int x2, int y2) zooms in on the specified device rectangle.

Here is how you can use the zoomOut() method:

• zoomOut(double factor) zooms out by the chosen factor.

• zoomOut(int x, int y, double factor) recenters the map on the chosen point (in device
coordinates) and zooms out by the chosen factor.

Here is how you can use the pan() method:

• pan(int x, int y) recenters the map on the chosen point (in device coordinates).

Listing 13-4 illustrates the use of the zoomIn(), zoomOut(), and pan() methods.

Listing 13-4. Using the zoom() and pan() Methods

// Fetch saved MapViewer object from session (if any)

MapViewer mv = (MapViewer) session.getAttribute("mvhandle");

if (mv==null) {

// No MapViewer object found - must create and initialize it

mv = new MapViewer(MapViewerURL);

session.setAttribute("mvhandle", mv); // keep client handle in the session

}

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS534

8997ch13.qxd 9/28/07 10:12 AM Page 534

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

if (userAction.equals("Get Map")) {

// User clicked the 'Get Map' button and

// choose a new datasource or map name,

// or manually entered a new map center and size

// Initialize the MapViewer object with the entered

// information

mv.setDataSourceName(dataSource); // Data source

mv.setBaseMapName(baseMap); // Base map

mv.setMapTitle(" "); // No title

mv.setImageFormat(MapViewer.FORMAT_PNG_URL); // Map format

mv.setDeviceSize(new Dimension(mapWidth, mapHeight)); // Map size

mv.setCenterAndSize(cx, cy, mapSize);

// Send map request

mv.run();

}

// User clicked one of the 'Zoom' buttons:

// Zoom in or out by a fixed factor (2x)

else if (userAction.equals("Zm In"))

mv.zoomIn(2);

else if (userAction.equals("Zm Out"))

mv.zoomOut(2);

// User clicked one of the 'Pan' buttons:

// shift map 50% in the desired direction.

else if (userAction.equals("Pan W."))

mv.pan (0, mapHeight/2);

else if (userAction.equals("Pan N."))

mv.pan (mapWidth/2, 0);

else if (userAction.equals("Pan S."))

mv.pan (mapWidth/2, mapHeight);

else if (userAction.equals("Pan E."))

mv.pan (mapWidth, mapHeight/2);

// User clicked on the map. Get the coordinates of the clicked point

// convert to map coordinates, and use it as new map center

else if (userAction.equals("reCenter")) {

imgCX = Integer.valueOf(request.getParameter("mapImage.x")).intValue();

imgCY = Integer.valueOf(request.getParameter("mapImage.y")).intValue();

mv.pan (imgCX, imgCY);

}

Theme Control
The MapViewer bean gives you extensive control over the themes in a map. Themes are kept in an
ordered list inside the map request. This ordering of themes is very important, because it determines
the order in which the themes are rendered on the map; the first theme in the list gets rendered
first, and then the others are rendered one after the other. The last theme listed gets rendered last.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 535

8997ch13.qxd 9/28/07 10:12 AM Page 535

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The following methods add and delete themes:

• addPredefinedTheme() adds a predefined theme to the current map request. You can option-
ally specify the position at which the theme should be added in the list of existing themes. If
you do not specify a position, then the theme is added at the end of the list of themes. The
first theme in the list is number 0.

• addThemesFromBaseMap() lets you compose a map with only themes (in other words, without
any base map). It adds to the current map request all themes defined for the specified base
map. This is equivalent to finding out all the themes listed in the base map and then calling
addPredefinedTheme() and setThemeScale() for each theme in the list. Note that this actually
sends an “administrative” request to the MapViewer server to get the theme list. The themes
are loaded in the order in which they appear in the base map, but you are able to change that
order if you desire.

• addJDBCTheme() adds a JDBC theme for which you must supply a SQL query. There are two
main variants of that method: one that uses a data source name to identify the database to
connect to and one that needs explicit JDBC connection parameters (host, port, database,
user name, and password). You can optionally specify the position at which the theme
should be added in the list of existing themes. If you do not specify a position, then the
theme is added at the end of the list of themes.

• deleteTheme() removes a theme from the current map request.

If the theme is parameterized, that is, if its definition includes references to bind variables, use
the following method to supply values for those bind variables:

• setThemeBindingParameters() passes the values for bind parameters as an array of strings.

The following methods are for enabling and disabling themes (note that all themes are origi-
nally enabled):

• setThemeEnabled() enables or disables one specific theme.

• enableThemes() enables a list of themes.

• setAllThemesEnabled() enables or disables all themes in the map request.

These methods are for controlling the order of the themes:

• moveThemeDown() moves a specific theme down one position in the list of themes. The theme
to move is identified by its sequence in the list of themes.

• moveThemeUp() moves a theme up one position in the list.

These methods are for controlling theme and label visibility:

• setThemeScale() sets the minimum and maximum scale values for displaying a theme. Note
that this is not needed for themes added from a base map using the addThemesFromBaseMap()
method; those themes have the scale values defined in the base map definition. Use
setThemeScaleMode() to specify the mode in which you indicate the scale, as in MAPVIEWER_
NATIVE (the default) or RATIO.

• setThemeRenderLabels() controls whether MapViewer labels the features in a theme.

• setLabelAlwaysOn() controls whether MapViewer labels all features in a theme even if two or
more labels will overlap.

• setThemeTransparency () allows you to control the transparency of a theme. Specify as an alpha
value between 0 and 1, where 0 means that the theme will be invisible (fully transparent) and
1 means that it will be fully opaque.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS536

8997ch13.qxd 9/28/07 10:12 AM Page 536

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Use these methods to find information about themes:

• hasThemes() checks to see whether the current map request has any explicitly added themes.
If the map request contains only a base map, then this method returns FALSE.

• getThemeNames() returns the list of all themes in the map request.

• getEnabledThemes() returns the list of all themes that are currently enabled in the map request.

• getThemePosition() gets the position of a theme in the list of themes in the map request.

• getActiveTheme() gets the name of the topmost theme (that is, the one at the end of the
theme list).

See Figure 13-10 for an example of the output of the SpatialViewer.jsp page that lets you
select the themes to display. The selection is done via a series of check boxes that is dynamically
constructed from the list returned by the getThemeNames() method.

Figure 13-10. Selecting the themes to display

The initial list of themes is set when the MapViewer object is constructed:

mv.addThemesFromBaseMap(baseMap); // Themes from base map

mv.setAllThemesEnabled(true); // Enable all themes

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 537

8997ch13.qxd 9/28/07 10:12 AM Page 537

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Here is how the check-box list is constructed in the HTML code:

<table>

<% String[] ts = mv.getThemeNames(); %>

<% for(int i=0; i<ts.length; i++) {%>

<tr><td>

<input type="checkbox"

name="checkedThemes"

value="<%=ts[i]%>"

<%=mv.getThemeEnabled(ts[i])?"checked":""%>

>

<%= ts[i] %>

</td></tr>

<%}%>

</table>

The result of selecting check boxes is then passed back to the JSP page. The following statement
extracts the checked themes in an array of strings:

String[] checkedThemes = request.getParameterValues("checkedThemes");

Finally, enabling the themes on the map is done like this:

// Enable the themes selected by the user

if (checkedThemes != null)

mv.enableThemes(checkedThemes);

else

mv.setAllThemesEnabled(false);

Dynamic Themes
As just explained, you use the addJDBCTheme() method to add dynamic themes (that is, themes
based on the results of JDBC queries).

The SpatialViewer.jsp page lets you enter a SQL statement, which it then adds as a theme
called SQL_QUERY. Here is the code that achieves this:

// If necessary, run the SQL query entered by the user

if (sqlQuery != null && sqlQuery.length() > 0) {

// Add a JDBC theme for the query

mv.addJDBCTheme (

dataSource, // dataSource

"[SQL_QUERY]", // Theme name

sqlQuery.replace(';',' '), // SQL Query (remove trailing semicolon if any)

null, // Name of spatial column

null, // srid

"SQL_QUERY", // renderStyle

null, // labelColumn

null, // labelStyle

true); // passThrough

}

Figure 13-11 shows this technique used to highlight Yosemite National Park on the map. Note
that the JDBC theme appears as a regular theme in the map. You can therefore turn it “on” or “off”
just like any other theme.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS538

8997ch13.qxd 9/28/07 10:12 AM Page 538

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 13-11. Displaying the result of an SQL query

WMS and WFS Themes
Two methods allow you to include information coming from an external web map server or web
feature server:

• addWMSMapTheme() adds a WMS theme to the map. At the minimum, specify the URL of the
web map server, together with the list of layers to include on the map and their styles. Addi-
tional parameters let you specify the projection you want the WMS to return the map in, the
format of the image (PNG, JPEG, and so on), whether the background of the map should be
transparent, and so on.

• addWFSTheme() adds a WFS theme to the map. Specify the URL of the WFS, the name of the
feature class to query, the names of the feature attributes to fetch, and a query condition to
apply. Specify also the name of the feature attributes to be used as geometry and label columns
and the names of the MapViewer styles to use.

A WFS server returns geographic features, and MapViewer will do the rendering according to
the styles you indicate. On the other hand, a WMS server returns map images. The rendering is done
by the WMS, and the names of the styles requested by your application are known by the WMS, not
by MapViewer.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 539

8997ch13.qxd 9/28/07 10:12 AM Page 539

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Style Control
Styles are defined in the database, but you can also dynamically define new styles and add them to
the map request.

To add a style to your request, first construct it using one of the StyleModel interfaces, and then
add it to the request using the addStyle() method. This approach is illustrated here:

// Setup a color style model. Fill color is red, transparent, stroke is blue:

ColorStyleModel csm = new ColorStyleModel();

csm.setFillColor(new Color(255, 0, 0, 40));

csm.setStrokeColor(new Color(0, 0, 255, 100));

// Add the color to your map request

mv.addStyle ("SQL_QUERY", csm);

The other possible approach is to use one of the many specialized methods (add<Xxx>Style())
for defining and adding styles. The following adds the same color style as earlier:

// Add a color style. Fill color is red, transparent, stroke is blue:

mv.addColorStyle (

"SQL_QUERY", // Style name

"blue", // Stroke color

"red", // Fill color

255, // Stroke opacity

40); // Fill opacity

The following methods let you manage the dynamically created styles:

• listAllDynamicStyles() returns the names of all the dynamic styles you added to the current
map request.

• deleteStyle() deletes the named style from the map request.

• removeAllDynamicStyles() deletes all dynamically added styles from the map request.

■Note When you define a style with the same name as a permanent style, your definition overrides the perma-
nent style for the execution of the current map request. This allows you to build applications that can adapt the
styles based on user preferences. When you delete a dynamic style, MapViewer reverts to the permanent style
definition.

Identification and Queries
Identification is the ability to select a spatial object graphically, via a mouse click, and obtain addi-
tional information about that object. The JSP file SpatialViewer.jsp illustrates how to do this.
Figure 13-12 shows the result of selecting one county. Notice that the radio button for the US_COUNTIES
theme is selected. Also, the radio button on the left (“Click on the map to:”) is set to Identify. A blue
pin is set on the map to indicate the point clicked, and information about the county is displayed
under the map.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS540

8997ch13.qxd 9/28/07 10:12 AM Page 540

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 13-12. Identifying spatial objects

The main method to use is identify(). You just need to pass it the name of the table to query
and the name of the spatial column, as well as the coordinates of the mouse click. Note that you can
pass directly the image (pixel) coordinates—MapViewer will automatically convert them to ground
coordinates.

The function also allows you to pass a rectangle as search criteria, instead of a point. This will
be useful when you want to identify a point object; it allows you to enlarge the clicked area so that
your query can return the proper point.

Other methods are available to select objects within various spatial shapes. They all select from
a chosen theme (not a table) and can use indifferently image (pixel) or ground coordinates.

• queryAtPoint() selects features at a chosen point. Note that this works fine for polygons
(areas) but not for points or lines, since it is impossible to guarantee that the mouse click
falls exactly on the point or line.

• queryWithinRadius() selects all features that are completely inside a chosen radius from
a point.

• queryWithinRectangle() selects all features that are completely inside a chosen rectangle
(defined using the lower-left and upper-right corners).

• queryWithinArea() selects features that are inside a chosen polygon area.

• queryNN() selects the nearest features to a point.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 541

8997ch13.qxd 9/28/07 10:12 AM Page 541

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

A parameter common to all of these methods is the list of columns to select. This is passed as an
array of strings (String[]). Passing a single string (*) is the same as passing the names of all columns.

Finally, you can use the following methods to perform any SQL query against a data source.

• doQuery() performs the SQL query you passed, as is.

• doQueryInMapWindow() performs the SQL query you passed but appends a spatial filter that
limits the results to only those objects that are within the bounds of the current map window.

■Caution The doQuery() method allows you to perform any SELECT statement against the data source—
within the limits of the rights granted to the user defined for that data source in MapViewer’s configuration.
Nevertheless, this capability is a potential security risk. You can disable this risk by removing the possibility of
performing nonmap requests from applications. See the “Configuring MapViewer” section in Chapter 12 for details.
Disabling nonmap requests will disable all of the previous queries.

All methods return their results as an array of string arrays (String[][]). The first row of strings
contains the names of the columns. Each subsequent row contains the values for each column in
each matching row. This format is easy to output in an HTML table.

Let’s examine how the example in Figure 13-12 is programmed. You construct the radio button
for choosing the themes to select in much the same way as the theme selector you saw in an earlier
example:

<table>

<% String[] ts = mv.getThemeNames(); %>

<% for(int i=0; i<ts.length; i++) {%>

<tr><td>

<input type="radio"

name="identifyTheme"

value="<%=ts[i]%>"

<%=ts[i].equals(identifyTheme)?"checked":""%>

>

<%= ts[i] %>

</td></tr>

<%}%>

</table>

The result of checking the radio box is passed back to the JSP page. Here is how the name of the
selected theme is extracted:

String identifyTheme = request.getParameter("identifyTheme");

The actual identification is performed as follows. You need to extract the coordinates of the
mouse click:

imgCX = Integer.parseInt(request.getParameter("mapImage.x"));

imgCY = Integer.parseInt(request.getParameter("mapImage.y"));

Then you query the feature at that point:

String[] colsToSelect = new String[]{"*"};

String[][] featureInfo = mv.queryAtPoint (

dataSource, // Datasource

identifyTheme, // Theme name

colsToSelect, // Names of columns to select

imgCX, imgCY, // Mouse click

null, // No extra conditions

true); // Coords are in pixels

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS542

8997ch13.qxd 9/28/07 10:12 AM Page 542

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

and you add a point at the place you clicked:

Point2D p = mv.getUserPoint(imgCX,imgCY);

mv.addPointFeature (p.getX(), p.getY(), 8307,"M.CYAN PIN", null, null, null);

Finally, you format the results as an HTML <table>:

<table border="1">

<% for (int i=0; i<featureInfo.length; i++) {%>

<tr>

<% String[] row = featureInfo[i];

for (int k=0; k<row.length; k++) {%>

<td><%= row[k] %></td>

<% } %>

</tr>

<% } %>

</table>

Dynamic Features
Some methods enable you to draw features on top of the map:

• addPointFeature() adds a point feature to the current map request.

• addLinearFeature() adds a line feature to the current map request.

• addPolygonFeature() adds a polygon feature to the current map request.

• getNumGeoFeatures() returns the number of dynamic features added to the current map
request. You can also use more specific methods, such as getNumPointFeatures(),
getNumLinearFeatures(), or getNumPolygonFeatures().

• removeAllPointFeatures() removes all the point features from the map request.

• removeAllLinearFeatures() removes all the line features from the map request.

• removeAllPolygonFeatures() removes all the polygon features from the map request.

The features are defined by a list of coordinates, a rendering style, and a label style. The style
names refer to styles that must exist on the MapViewer server, either as permanent styles or as
dynamic styles that you created previously. For point features, you can optionally specify the radius
for a number of circles to be drawn around the point, as well as variable values, that can be used to
build complex markers, based on an advanced style.

Legends
Once your map becomes complex and includes many different features, your users will need assis-
tance in understanding the meaning of your many different symbols. For that, you will add a legend
to your map. A legend essentially lists the styles used on your map, together with a short explanatory
text. Figure 13-13 illustrates a map with a legend that explains the meaning of the various symbols
used.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 543

8997ch13.qxd 9/28/07 10:12 AM Page 543

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 13-13. Example of a legend

The following methods let you define a legend:

• setMapLegend() sets the map legend. You need to define the elements that make up the
legend as a Java String array.

• getMapLegend() gets the map legend.

• deleteMapLegend() deletes the legend.

Listing 13-5 explains how to generate the legend shown in Figure 13-13.

Listing 13-5. Building a Legend

String[][][] legend = new String[][][]

{

{

{"Map Legend", null, "true", null, "false"},

{"Counties", "C.US MAP YELLOW", "false", null, "false"},

{"Rivers", "C.RIVER", "false", null, "false"},

{"Parks", "C.PARK FOREST", "false", null, "false"}

},

{

{"", null, "false", null, "true" },

{"Interstates", "L.PH", "false", null, "false"},

{"Major Cities","M.CITY HALL 4", "false", null, "false"}

}

};

mv.setMapLegend(

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS544

8997ch13.qxd 9/28/07 10:12 AM Page 544

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

"white", // Fill color

"128", // Fill opacity

"red", // Stroke color

"medium", // Legend size

"SOUTH_EAST", // Legend position

legend // Legend array

);

To define the legend, you need to fill a three-dimensional array of strings. The first dimension
represents the columns in your legend; in our example, we place the legend on two columns. The
second dimension represents the entries in each column. In our case, the first column has four
entries, while the second one has only three entries.

Finally, the third dimension describes the content of each entry. Here you need to specify five
items:

• The descriptive text to include for that entry

• The name of the style

• Whether this entry is a title (specify as "true" or "false")

• Whether this entry is a tabulation (specify as "true" or "false")

• Whether this entry is a separator (specify as "true" or "false")

You can now call the setMapLegend() method and pass it the array you just built, together with
additional parameters to set the color and transparency of the backdrop of the legend, the color of
the line around the legend, the size (as SMALL, MEDIUM, or LARGE), and the location of the legend on
the map (for example, SOUTH_EAST to position it in the lower-right corner).

■Note You can also construct the legend definition in XML and pass that directly to the setMapLegend()
method. We will cover the syntax of this XML later in the chapter when covering the XML API. Note that the
getMapLegend() method actually returns the definition of your legend in this XML notation.

Map Decorations
The Java API provides you with a number of methods to control map decorations: title, footnote,
logo, and scale bar. Adding a title or footnote is easy.

• setMapTitle() sets the map title. Set it to a blank string (not an empty string) if you want no
title at all. If you do not specify any title (or specify a null title), then MapViewer will auto-
matically include the title you specified in the global configuration file. The title will go in the
position you specified for the default title in the configuration—you have no way to override
this position.

• setMapTitleStyleName() sets the style for the map title.

• setMapFootNote() sets a footnote on the map. Set it to a blank string if you want no footnote.
If you do not specify any footnote, then MapViewer automatically displays the note specified
in the configuration file.

• setMapFootNoteStyleName() sets the style for the footnote.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 545

8997ch13.qxd 9/28/07 10:12 AM Page 545

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Adding a scale bar is a little more involved. You must first create a separate ScaleBarDef object
and then add it to the map. The following example creates a scale bar that shows both a metric and
an imperial scale, located in the bottom-right corner of the map. Other methods give you finer con-
trol over the colors, label styles, and size of the scale bar.

// Define and setup a new scale bar

ScaleBarDef myScaleBar = new ScaleBarDef();

myScaleBar.setPosition("SOUTH_EAST");

myScaleBar.setMode("DUAL_MODES");

// Add the scale bar to your request

mv.setScaleBar(myScaleBar);

Finally, you can choose to not show the decorations on a map request. Just disable and reen-
able them using the following method:

• setMapPiecesRendered() enables or disables the rendering of map decorations.

Using the Map Cache
A powerful possibility is the ability to combine map caches with the Java API. You can use a map
cache in two ways: at the map level and at the theme level.

At the map level, you must first decide whether you want to use the cache for a map:

• setUseCachedBaseMap() sets whether to use the cached base map. If true, MapViewer will use
the base map image cached by the map cache server. This setting takes effect only if a cache
exists for the base map. If no cache exists for the base map, then a custom map is built.

Then you need to specify the way the map cache should be used:

• setSnapToCachedZoomLevel() sets whether to snap the map scale to match the cached zoom
levels.

If you specify false (the default setting), then the cached base map will be used only when the
map scale specified by the map request matches exactly that of one of the predefined cached zoom
levels. For requests at other scales, MapViewer will generate a custom map the usual way.

If you specify true, the cached base map will be used even when the map scale specified by the
map request does not match any of the predefined cached zoom levels. In this case, MapViewer will
automatically adjust your query window so that the scale matches a predefined cached zoom level.

This technique means you could program your application so that the zoom levels available to
the end user match those of the map cache, thus providing high performance to common zoom
operations while still giving the user the ability to use custom zoom controls in exceptional cases
(or giving this ability only to selected users).

Another powerful possibility is to define a theme on a cached base map:

• addMapCacheTheme() adds a cached base map as a new theme in the current map request.

Just like when using a full base map from the cache, you can specify the snapping behavior for
that theme. This possibility is especially interesting to include WMS-based themes in your map. By
accessing the WMS via a map cache, you can avoid having to get map tiles from the WMS on every
zoom or pan and instead let the map cache server get the map tiles from its cache.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS546

8997ch13.qxd 9/28/07 10:12 AM Page 546

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Discovering Data Sources, Maps, Themes
In all of the previous discussions, we assumed that you know which data sources are available,
which maps are defined, which themes exist, and so on. However, sometimes you may need to dis-
cover dynamically what information exists. This is what the following methods let you do:

• getDataSources() gets the names of the data sources defined on the server. Those can be
permanent data sources (defined in MapViewer’s configuration file) or data sources dynami-
cally added using the administrative API.

• dataSourceExists() determines whether a data source exists on the server.

• getBaseMapNames() gets the names of all base maps defined in a data source.

• getPredefinedThemes() gets the name of all themes defined in a data source. A variant lets
you find the themes used by a specific base map.

• getPermanentStyles() gets the list of styles defined in a data source.

• styleExists() determines whether a style exists on the server.

You can also dynamically define a new data source using the addDataSource() method. You
need to pass the usual information needed for setting up a JDBC connection to an Oracle database
(that is, host name, port number, database name, user name, and password).

Using JSP Tags
Some applications may not need the full flexibility of the MapViewer Java API. For such applications,
you can use a set of JSP tags that let you embed maps in JSP with minimal programming. Note that
tags use the MapViewer Java API internally, which enables you to combine the use of the tags and
the Java API in the same application.

The definition of the JSP tags is in your MapViewer installation (at $OC4J_HOME/j2ee/home/
applications/mapviewer/web/WEB-INF/mvtaglib.tld). You need to include a pointer to this file in
your JSP pages.

Figure 13-14 shows the output of the SimpleViewerTags.jsp page. The center of the page shows
the map produced by MapViewer. Interacting with the map uses a different technique from the pre-
vious examples; all interactions take place via mouse clicks on the map. A radio button underneath
the map defines what happens when you click the map:

• Recenter: A new map is produced, centered on the point clicked.

• Zoom In: The new map is centered on the point clicked, zoomed in by a factor of two.

• Zoom Out: The new map is centered on the point clicked, zoomed out by a factor of two.

• Identify: The application fetches the details about the county in which the mouse click is
located and displays those details at the bottom of the page.

Under the radio buttons are the coordinates of the current center of the map, as well as the
scale of the current map.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 547

8997ch13.qxd 9/28/07 10:12 AM Page 547

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 13-14. JSP page that uses the MapViewer JSP tags

Table 13-3 lists the JSP tags available.

Table 13-3. JSP Tags for MapViewer

Tag Name Usage

init Creates the MapViewer bean and places it in the current session. This tag
must appear before any other MapViewer JSP tags.

setParam Specifies one or more parameters for the current map request.

importBaseMap Adds the predefined themes that are in the specified base map to the
current map request.

addPredefinedTheme Adds a predefined theme to the current map request.

addJDBCTheme Adds a dynamically defined theme to the map request.

makeLegend Creates a legend (map inset illustration) drawn on top of the generated map.

run Submits the current map request to the MapViewer service for processing.
The processing can be to zoom in or out, to recenter the map, or to
perform a combination of these operations.

getParam Gets the value associated with a specified parameter for the current map
request.

getMapURL Gets the HTTP URL for the currently available map image, as generated by
the MapViewer service.

identify Gets nonspatial attribute (column) values associated with spatial features
that interact with a specified point or rectangle on the map display and
optionally uses a marker style to identify the point or rectangle.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS548

8997ch13.qxd 9/28/07 10:12 AM Page 548

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

We will now cover the main JSP tags and the way they are used in the example application.

Initialization and Setup: The init Tag
Your JSP application must include a pointer to the JSP tags library. It also must indicate that the JSP
uses sessions to keep context. Finally, you can import the definitions of the MapViewer Java API if
you want to use some of its features in conjunction with the JSP tags, as is the case in the example:

<%@ taglib uri="/WEB-INF/mvtaglib.tld" prefix="mv" %>

<%@ page session="true" %>

<%@ page import="oracle.lbs.mapclient.MapViewer" %>

Use the init tag to initialize the connection with the MapViewer servlet; it creates a MapViewer

object and saves it in the session for the JSP page:

<!-- Initialize MapViewer handle and save it in the session -->

<mv:init

url="<%=mapViewerURL%>"

datasource="spatial"

id="mvHandleSimpleViewerTags" />

• The url argument specifies the URL to the MapViewer server. Note that it is provided by
a JSP substitution from variable mapViewerURL. This allows you to construct it dynamically
from the request parameters, as shown in the discussion of the Java API.

• The datasource argument defines the name of the data source. This could also come from
a substituted variable.

• The id argument is the name used to save the MapViewer object into the session for the JSP
page. It must be constant (no substituted variable).

Setting Up the Map
Several tags are available to specify the format and content of the map. Here is how they are used in
the example page.

First, we define the general size of the map in pixels, as well as the title to show on the map:

<!-- Set map format and size -->

<mv:setParam

title="Example map using JSP tags"

width="480"

height="360"/>

Then we define the name of the base map to display together with any additional predefined
themes:

<!-- Add themes from the base map -->

<mv:importBaseMap name="us_base_map"/>

<!-- Additional themes -->

<mv:addPredefinedTheme name="parks.us_parks"/>

Finally, we set the center and size of the map:

<!-- Set initial map center and size -->

<mv:setParam

centerX="-122.0"

centerY="37.8"

size="1.5" />

In addition, you can use the addJDBCTheme tag to add themes based on SQL queries. This tech-
nique is not used in the example.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 549

8997ch13.qxd 9/28/07 10:12 AM Page 549

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Interacting with the Map: The run Tag
The previously discussed tags define only the parameters for the map. To actually generate the map,
use the run tag. The run tag does more than just generate a new map—it also allows you to dynami-
cally interact with the map.

<mv:run

action="<%=userAction%>"

x="<%= imgCX %>"

y="<%= imgCY %>" />

• The action argument defines the action to take against the current map. It can be specified
as recenter, zoomin, or zoomout.

• The x and y arguments define the coordinates of the center of the new map. They are passed
as image coordinates (that is, they represent the coordinates of the mouse click in the map
image).

In the preceding example, the action argument is provided by the userAction variable, which
contains the current setting of the radio button displayed underneath the map image on the HTML
page:

String userAction = request.getParameter("userAction");

The userAction request parameter contains the current setting of the radio button. Here is the
HTML definition of the button:

<!-- Map click action -->

<tr>

<td align="center">

<input type="radio" name="userAction" value="recenter"

<%= "recenter".equals(userAction)?"checked":""%> >Re-center

<input type="radio" name="userAction" value="zoomin"

<%= "zoomin".equals(userAction)?"checked":""%> >Zoom In

<input type="radio" name="userAction" value="zoomout"

<%= "zoomout".equals(userAction)?"checked":""%> >Zoom Out

<input type="radio" name="userAction" value="identify"

<%= "identify".equals(userAction)?"checked":""%> >Identify

</td>

</tr>

The x and y arguments are set from variables (imgCX and imgCY) that contain the coordinates of
the mouse click:

String imgCX = request.getParameter("userClick.x");

String imgCY = request.getParameter("userClick.y");

Displaying the Map: The getMapURL Tag
This tag returns the URL of the map image produced by the run tag. Use it in your HTML code to
display the map in an tag or in an <input type="image"> tag, as follows:

<!-- Map display -->

<tr>

<td valign="top" align="center" >

<input type="image"

border="1"

src="<mv:getMapURL />"

name="userClick"

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS550

8997ch13.qxd 9/28/07 10:12 AM Page 550

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

alt="Click on the map for selected action"

>

</td>

</tr>

Getting Feature Details: The identify Tag
The identify tag lets you extract details about a selected feature and flag it on the map:

<mv:identify

id="identifyResults"

table="us_counties"

spatial_column="geom"

srid="8307"

x="<%= imgCX %>" y="<%= imgCY %>"

style="M.CYAN PIN">

county, state_abrv state, totpop, landsqmi, poppsqmi

</mv:identify>

Here’s what the attributes mean:

• id is the name of the variable (of type String[][]) that receives the results of the identifica-
tion query. The first row of strings contains the names of the columns. Each subsequent row
contains the values for each column in each matching row. This format is easy to output in
an HTML table.

• table is the name of the table to query.

• spatial_column is the name of the spatial column to query in that table (of type SDO_GEOMETRY).

• srid is the coordinate system for that spatial column.

• x and y are the coordinates of the mouse click (in image coordinates).

• style is optional. If specified, it indicates the style to use for the symbol that marks the spot
clicked on the resulting map. If omitted, then no mark is set on the map.

The content of the tag (county, and so on) represents the names of the columns to read from
the specified table. Notice that the state_abrv column is renamed to state.

The results of the query are formatted as an HTML <table> as follows:

<!-- Identification result -->

<% if (featureInfo !=null && featureInfo.length>0) {%>

<tr><td align="center">

<table border="1">

<% for (int i=0; i<featureInfo.length; i++) {%>

<tr>

<% String[] row = featureInfo[i];

for (int k=0; k<row.length; k++) {%>

<td><%= row[k] %></td>

<% } %>

</tr>

<% } %>

</table>

</td></tr>

<% } %>

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 551

8997ch13.qxd 9/28/07 10:12 AM Page 551

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Combining MapViewer JSP Tags and the Java API
Since the JSP tags use a MapViewer object, you can combine the tags with MapViewer’s Java API. This
is particularly useful for extracting various pieces of information from the MapViewer object not
accessible through the JSP tags.

Before using MapViewer’s Java API, you need to extract the MapViewer object saved in the page
session:

MapViewer mvHandle = (MapViewer) session.getAttribute("mvHandleSimpleViewerTags");

The following HTML code displays the coordinates of the center of the current map, as well as
the scale of that map, using the getRequestCenter() and getMapScale() methods of the MapViewer
object:

<!-- Current position -->

<tr>

<td align="center">

<i>Center</i>[

<%=mvHandle.getRequestCenter().getX()+ ","+

mvHandle.getRequestCenter().getY()%>]

<i>Scale</i>[<%=mvHandle.getMapScale()%>]

</td>

</tr>

Using the XML API
Let’s now examine how to use the XML API. This is the most basic technique to use MapViewer, and
you can use it from any application development environment: Java servlets, Java Server Pages
(JSP), Java applets, C or C++, .NET, PHP, Perl, and so on. All you need is the ability to send XML to an
HTTP URL and parse an XML response.

We will not go through the details of submitting the requests to MapViewer, since this is very
dependent on the development environment you use. We will cover only a number of typical map
requests.

If you installed the examples provided with the book, you will be able to access those requests
at http://127.0.0.1:8888/mapviewer/spatial-book/map-requests.html. The XML requests are
shown in a set of forms. Clicking the Submit button on each form sends the request for execution by
your MapViewer installation.

You can interact with the MapViewer server using the XML API in two ways, depending on the
format you specify for the resulting map:

• If the format is GIF_URL (the default), PNG_URL, or JPEG_URL, then you are returned an XML
form that contains a URL to the generated map.

• If the format is GIF_STREAM, PNG_STREAM, or JPEG_STREAM, then the image is returned directly.
No XML parsing is needed. The examples in the map-requests.html page use the “stream”
technique so that you can easily see the results.

■Note Map requests return XML. To view this XML correctly, you should use a browser that is able to show an
XML document in a tree structure, such as Microsoft Internet Explorer 6 or Firefox 2.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS552

8997ch13.qxd 9/28/07 10:12 AM Page 552

www.it-ebooks.info

www.freepdf-books.com

http://127.0.0.1:8888/mapviewer/spatial-book/map-requests.html
http://www.it-ebooks.info/

Simple Map Requests
Let’s first examine a simple map request. It looks like this:

<map_request

title="Simple Map"

basemap="US_BASE_MAP"

datasource="spatial"

width="480"

height="400"

format="PNG_STREAM">

<center size="12">

<geoFeature>

<geometricProperty>

<Point>

<coordinates>-120.0, 39.0</coordinates>

</Point>

</geometricProperty>

</geoFeature>

</center>

</map_request>

As its name implies, the <map_request> element describes a request to MapViewer. Its parame-
ters define the generic format and aspect of the map:

• datasource is the name of the JDBC data source from which to get the map. That data source
can be a permanent one (defined in the configuration file) or one that was dynamically added
via the administrative API. This is a required parameter.

• basemap is the name of the base map to display. This corresponds to a map defined in the
USER_SDO_MAPS table in the database. This is actually an optional parameter, since a map can
also be constructed from a list of themes (as we will show in the next example).

• width and height represent the size (in pixels) of the resulting image.

• format is the format of the image to produce. MapViewer is able to produce maps in the GIF,
PNG, or JPEG graphic format. In addition, it can return the image in one of the following two
ways:

• As a URL in an XML response: Specify GIF_URL, PNG_URL, or JPEG_URL.

• As a directly streamed image: Specify GIF_STREAM, PNG_STREAM, or JPEG_STREAM.

The default is GIF_URL.

• title is an optional string that will appear on the map as a title. The title is positioned as
specified in the configuration file. By default, it goes at the top of the map. If no title is speci-
fied, then the default title from the configuration file is used. If you do not want the default
title to appear, then pass an empty string.

Some other parameters not mentioned in the preceding example are as follows:

• bgcolor is the color to use for the background. The default is to use an “ocean blue” backdrop.
To get a white background instead, set it to #FFFFFF.

• antialiasing can be true or false (the default). When this parameter is set to true, MapViewer
renders the map image in an antialiased manner. This usually provides the map with better
graphic quality, but it may take longer for the map to be generated.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 553

8997ch13.qxd 9/28/07 10:12 AM Page 553

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You still need to specify the area to be included in the map. You do this by specifying the center
point of the map and its size using the <center> element. The <center> element contains a <geoFeature>

element, which contains a <geometricProperty> element, which itself contains a <Point> element,
which finally contains a <coordinates> element that defines the x,y coordinates of the map center
point.

■Note The <geometricProperty> element is coded using the OGC GML v1.0 specification.

The size parameter of the <center> element sets the size of the map (actually, the height of the
map). It is expressed in the units of the spatial tables used for the map. In the preceding example,
we use geodetic data, so the size is expressed in decimal degrees. The value 180 means that you
want a map that goes from the South Pole to the North Pole.

When you run the preceding example, you should get the map shown in Figure 13-15 as a result.

Figure 13-15. A simple map

If you modify the format parameter to be PNG_URL, then the map image is generated as a file on
the OC4J server, and you are returned an XML form that contains the URL to the generated image,
as shown in Figure 13-16.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS554

8997ch13.qxd 9/28/07 10:12 AM Page 554

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 13-16. XML response

Another possibility is to use a <box> element instead of a <center> element. In this case, you
specify the exact geographical area to display by specifying the coordinates of the lower-left and
upper-right corners of that area. The XML request becomes the following:

<?xml version="1.0" standalone="yes"?>

<map_request

title="Box query"

basemap="US_BASE_MAP"

datasource="spatial"

width="400"

height="400"

format="PNG_STREAM">

<box>

<coordinates>-126,33 -114,45</coordinates>

</box>

</map_request>

Adding Themes to a Base Map
You can complement your map with additional themes that are not defined in the base map. This
lets you control which themes appear on the map. Consider the following example. It is identical to
our first simple map request, but we now ask for interstates and parks to appear on top of the base
information.

<?xml version="1.0" standalone="yes"?>

<map_request

title="Base Map with Additional Themes"

basemap="US_BASE_MAP"

datasource="spatial"

width="480"

height="400"

format="PNG_STREAM">

<center size="12">

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 555

8997ch13.qxd 9/28/07 10:12 AM Page 555

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<geoFeature>

<geometricProperty>

<Point>

<coordinates>-120.0,39.0</coordinates>

</Point>

</geometricProperty>

</geoFeature>

</center>

<themes>

<theme name="PARKS.US_PARKS" />

<theme name="INTERSTATES.US_INTERSTATES" />

</themes>

</map_request>

When you run the preceding example, you should get the map shown in Figure 13-17 as a result.

Figure 13-17. A simple map with additional themes

Note that the order in which you specify the additional themes is important. The themes in the
base map are rendered first (in the order they are defined in the map definition), and then the addi-
tional layers are rendered in the order they appear. In the preceding example, parks are rendered
first, and then interstates are rendered on top of the parks.

Using Multiple Data Sources
The preceding example assumes that all the data needed to produce a map exist in a single data
source. In real applications, it is common to separate application data (for example, the branches
and competitors tables) from the base geographical data tables (for example, US_STATES). Use the
datasource parameter in the <theme> element to indicate where each theme comes from. If no data
source is specified, then the theme is assumed to come from the main data source (defined by the
datasource parameter in the top-level <map_request> element).

This technique is illustrated in the following example. The data source for each additional
theme is explicitly specified. The resulting map is identical to that from the previous example.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS556

8997ch13.qxd 9/28/07 10:12 AM Page 556

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<?xml version="1.0" standalone="yes"?>

<map_request

title="Base Map with Additional Themes"

basemap="US_BASE_MAP"

datasource="spatial"

width="480"

height="400"

format="PNG_STREAM">

<center size="12">

<geoFeature>

<geometricProperty>

<Point>

<coordinates>-120.0,39.0</coordinates>

</Point>

</geometricProperty>

</geoFeature>

</center>

<themes>

<theme name="PARKS.US_PARKS" datasource="spatial" />

<theme name="INTERSTATES.US_INTERSTATES" datasource="spatial" />

</themes>

</map_request>

Constructing a Map from Themes
You can construct a map entirely from individual themes. In this case, there is no basemap parame-
ter in the map request; instead, you list the themes to appear on the map. The themes must be
listed in the order in which they should be rendered—that is, the first theme listed gets rendered
first, and then the others are rendered one after the other. The last theme listed is rendered last.

As you just saw, each theme could come from a different data source:

<?xml version="1.0" standalone="yes"?>

<map_request

title=""

datasource="spatial"

width="480"

height="400"

format="PNG_STREAM">

<center size="1.5">

<geoFeature>

<geometricProperty>

<Point>

<coordinates>-77.0,39.0</coordinates>

</Point>

</geometricProperty>

</geoFeature>

</center>

<themes>

<theme name="STATES.US_STATES" />

<theme name="COUNTIES.US_COUNTIES" />

<theme name="RIVERS.US_RIVERS" />

<theme name="PARKS.US_PARKS" />

<theme name="INTERSTATES.US_INTERSTATES" />

<theme name="CITIES.US_CITIES" />

</themes>

</map_request>

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 557

8997ch13.qxd 9/28/07 10:12 AM Page 557

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

This technique is useful to let the application (or the user of the application) control which
themes should be displayed. The Java examples will show an application that lets the end user
select the themes to display.

Note that in the preceding example, all themes are always rendered, irrespective of the zoom
level. This may not be what you want. If you want the themes to be rendered only at the appropriate
zoom level, you then need to include scale limits in the theme definitions, like this:

<theme name="STATES.US_STATES"

min_scale="100000000" max_scale="20000000" scale_mode="RATIO" />

<theme name="COUNTIES.US_COUNTIES"

min_scale="20000000" max_scale="0.0" scale_mode="RATIO" />

<theme name="STATES.US_STATE_LINES"

min_scale="20000000" max_scale="0.0" scale_mode="RATIO" />

<theme name="CITIES.US_MAJOR_CITIES"

min_scale="10000000" max_scale="0.0" scale_mode="RATIO" />

<theme name="CITIES.US_CITIES"

min_scale="500000.0" max_scale="0.0" scale_mode="RATIO" />

Dynamic Themes
The examples you have seen so far construct maps from predefined theme definitions. We will now
add information from themes that we will dynamically define for a specific map request. We do this
using a <jdbc_query> element inside a <theme> element. The <jdbc_query> element includes a SQL
query that selects the additional information to display on the map.

Consider the following example:

<?xml version="1.0" standalone="yes"?>

<map_request

title=" "

basemap="US_CITY_MAP_FINE"

datasource="SPATIAL"

width="480"

height="400"

format="PNG_STREAM">

<center size="0.02">

<geoFeature>

<geometricProperty>

<Point>

<coordinates>-122.40, 37.79</coordinates>

</Point>

</geometricProperty>

</geoFeature>

</center>

<themes>

<theme name="Branches">

<jdbc_query

datasource="SPATIAL"

spatial_column="LOCATION"

jdbc_srid="8307"

render_style="M.CYAN PIN">

select * from branches

</jdbc_query>

</theme>

</themes>

</map_request>

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS558

8997ch13.qxd 9/28/07 10:12 AM Page 558

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The <jdbc_query> element contains the SQL query to execute and has the following parameters:

• datasource is the name of a JDBC data source to use for executing the query. This is
a required setting.

• spatial_column is the name of the spatial column (of type SDO_GEOMETRY) returned by the SQL
query.

• jdbc_srid is the coordinate system of the geometries returned by the SQL query.

• render_style is the name of the style to apply.

• label_column is the name of the column used for labeling the features in this theme.

• label_style is the name of the style to use for labeling.

This assumes that the table processed by the SQL statement is in a data source known to
MapViewer. You can also get data from any other database by specifying the JDBC connection details:

• jdbc_host: Server name

• jdbc_port: Database port (1521 is the default)

• jdbc_sid: Database name

• jdbc_user: User name for the connection

• jdbc_password: Password for the user name

• jdbc_mode: Driver type (OCI8 or thin)

See Figure 13-18 for the map produced by running the preceding request. It overlays the
branches on top of a map of San Francisco. This is the same as the map in Figure 12-1 in Chapter 12.

Figure 13-18. A map with a dynamically constructed theme

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 559

8997ch13.qxd 9/28/07 10:12 AM Page 559

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can include any number of dynamic and static themes in a map request. You must, how-
ever, make sure that all dynamic themes have names and that those names are unique (that is, no
two themes should have the same name).

There is no limit to the number of dynamic themes you can include in a map. The following
example shows the same map as the preceding example, but this time we include the location of the
branches as well as the competitors. This results in the map shown in Figure 12-2 in the previous
chapter.

<?xml version="1.0" standalone="yes"?>

<map_request

title=" "

basemap="US_CITY_MAP_FINE"

datasource="SPATIAL"

width="480"

height="400"

format="PNG_STREAM">

<center size="0.02">

<geoFeature>

<geometricProperty>

<Point>

<coordinates>-122.40, 37.79</coordinates>

</Point>

</geometricProperty>

</geoFeature>

</center>

<themes>

<theme name="Competitors">

<jdbc_query

datasource="SPATIAL"

spatial_column="LOCATION"

render_style="M.BUSINESS RED SQUARE"

label_column="NAME"

label_style="T.BUSINESS NAME RED"

jdbc_srid="8307">

select * from competitors

</jdbc_query>

</theme>

<theme name="Branches">

<jdbc_query

datasource="SPATIAL"

spatial_column="LOCATION"

render_style="M.CYAN PIN"

jdbc_srid="8307">

select * from branches

</jdbc_query>

</theme>

</themes>

</map_request>

■Note Contrary to static (predefined) themes, the information fetched by dynamic themes is never cached.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS560

8997ch13.qxd 9/28/07 10:12 AM Page 560

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Dynamic Features
In addition to having a map display features extracted from a database, you can also add manually
defined features onto the map. These are generally constructed by the client application, for example,
to visualize the place where a user clicked the map.

You do this with the <geoFeature> element. This element includes a <geometricProperty> element
that describes the geometric shape (using GML v1.0 notation), as well as parameters for rendering and
labeling styles.

The first example is to visualize the center of the current map. All you need to do is add some
rendering information to the existing <geoFeature> element that defines the map center, like this:

<?xml version="1.0" standalone="yes"?>

<map_request

title=" "

basemap="US_BASE_MAP"

datasource="SPATIAL"

width="480"

height="400"

format="PNG_STREAM">

<center size="4">

<geoFeature

render_style="M.CYAN PIN"

label="Map center" label_always_on="true"

text_style="T.TITLE"

radius="100000,150000,200000">

<geometricProperty>

<Point srsName="SDO:8307">

<coordinates> -82.0,35.0 </coordinates>

</Point>

</geometricProperty>

</geoFeature>

</center>

</map_request>

Here are the parameters you supply to the <geoFeature> element:

• render_style is the style to use for rendering the map’s center point.

• label is the hard-coded text to use as a label for the center point.

• text_style is the style to use for rendering the label.

• label_always_on is optional. It tells MapViewer to always show the center label, even if it
collides with other labels.

• radius is a comma-separated list of radius values. MapViewer will draw a circle around the
center point at each of the radii you specify.

See Figure 13-19 for the map produced by running the preceding request.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 561

8997ch13.qxd 9/28/07 10:12 AM Page 561

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 13-19. Circles around the map center

■Note Make sure to specify the coordinate system used to specify the map center. In this section’s first exam-
ple, it is passed to the <Point> element as the parameter srsName. That way, you can specify the radius values in
meters.

The second example draws a polygon on top of a map:

<?xml version="1.0" standalone="yes"?>

<map_request

title=" "

basemap="US_BASE_MAP"

datasource="SPATIAL"

width="480"

height="400"

format="PNG_STREAM">

<center size="6">

<geoFeature>

<geometricProperty>

<Point>

<coordinates> -82.0,35.0 </coordinates>

</Point>

</geometricProperty>

</geoFeature>

</center>

<geoFeature

label="Query Window"

text_style="T.WINDOW_NAME"

render_style="C.WINDOW">

<geometricProperty>

<Polygon>

<outerBoundaryIs>

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS562

8997ch13.qxd 9/28/07 10:12 AM Page 562

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<LinearRing>

<coordinates>

-84.0,35.0 -83.0,34.0 -81.0,34.0 -80.0,35.0 -80.0,36.0

-82.0,37.0 -84.0,35.0

</coordinates>

</LinearRing>

</outerBoundaryIs>

</Polygon>

</geometricProperty>

</geoFeature>

</map_request>

We described the label, text_style, and render_style parameters of the <geoFeature> element
earlier. The <geometricProperty> element is used to describe the geometric shape in GML v1.0
notation. In the preceding example, we draw a polygon shape. A MapViewer request can include
any number of <geoFeature> elements. See Figure 13-20 for the map produced by running the pre-
ceding request.

Figure 13-20. A map with a polygon overlay

Legends
Legends are an important aid to make maps readable. Here is an example of a map request that
includes a legend:

<?xml version="1.0" standalone="yes"?>

<map_request

title=" "

basemap="US_BASE_MAP"

datasource="spatial"

width="480"

height="400"

format="GIF_STREAM">

<center size="8.0">

<geoFeature>

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 563

8997ch13.qxd 9/28/07 10:12 AM Page 563

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<geometricProperty>

<Point>

<coordinates>-94.0,37.0</coordinates>

</Point>

</geometricProperty>

</geoFeature>

</center>

<legend profile="MEDIUM" position="SOUTH_EAST">

<column>

<entry text="Map Legend" is_title="true" />

<entry text="Counties" style="C.US MAP YELLOW" />

<entry text="Rivers" style="C.RIVER" />

<entry text="Parks" style="C.PARK FOREST" />

</column>

<column>

<entry text=" " is_title="true" />

<entry text="Interstates" style="L.PH" />

<entry text="Major Cities" style="M.CITY HALL 4" />

</column>

</legend>

</map_request>

The legend is defined in a <legend> element and by groups of <entry> elements. Each <entry>
element corresponds to a theme shown on the map. There are special kinds of entries to represent
titles or separators. Entries are further grouped into columns.

The <legend> element has a number of optional parameters that let you control the size, posi-
tion, and background of the legend:

• size can be specified as SMALL, MEDIUM, or LARGE. The default is MEDIUM, which should be ade-
quate for most cases.

• position is one of NORTH, SOUTH, EAST, or WEST, or a corner such as NORTH_EAST or SOUTH_WEST.
The default is SOUTH_EAST (that is, the lower-right corner of the map).

• bgstyle lets you specify the background of the legend. You code this using an SVG notation.
For example, "fill:#ffffff;stroke:#ff0000" sets the legend to a white background with
a red boundary.

Each <entry> element should correspond to a layer on the map. For each entry, you specify two
parameters:

• text: A text string to appear on the legend (it should be the name of a theme)

• style: A style name (it should be the style for that theme)

Figure 13-21 shows the map produced by running the preceding request.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS564

8997ch13.qxd 9/28/07 10:12 AM Page 564

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 13-21. A map with a legend

The XML Map Response
Unless you asked for MapViewer to return a map image directly to you (in the format GIF_STREAM,
PNG_STREAM, or JPEG_STREAM), you need to parse the XML map response to extract the URL to the
map that MapViewer generated on the server.

A typical map response looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<map_response>

<map_image>

<map_content url="/mapviewer/images/omsmap63.tif?refresh=-399141980181404304" />

<box srsName="default">

<coordinates> -18.0,-15.0 18.0,15.0 </coordinates>

</box>

<themes>

<theme name="COUNTIES.US_COUNTIES"/>

<theme name="STATES.US_STATE_LINES"/>

<theme name="CITIES.US_MAJOR_CITIES"/>

</themes>

<xfm matrix="0.075 0.0 0.0 -0.075 -18.0 15.0" />

<WMTException version="1.0.0" error_code="SUCCESS">

</WMTException>

</map_image>

</map_response>

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 565

8997ch13.qxd 9/28/07 10:12 AM Page 565

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The <map_response> element contains only one element, <map_image>, which itself contains the
following main elements:

• <map_image> contains the url parameter, which in turn contains the relative URL to the gen-
erated map image (constructed using the url parameter of the <save_images_at> element in
the MapViewer configuration file).

• <box> defines the actual area covered by the map as the coordinates of the lower-left and
upper-right corners of the map.

• <themes> lists only those themes that are actually visible on the map at the current scale.
Note that the list includes not only the themes you explicitly specified in your map request
but also the themes implicitly defined in the base map you specified. You can use this infor-
mation in your application to dynamically adjust the map legend to reflect the exact content
of the map at all times.

• <xfm> represents the matrix values that are the parameters for an AffineTransform, which
you can use to convert a screen coordinate (such as a user’s mouse click position on the
returned map image) to the coordinate in the user’s data space. This happens automatically
in the Java API.

In case the request failed, you will receive an error response similar to this:

<?xml version="1.0" encoding="UTF-8"?>

<oms_error>

Message:[oms] : data source not found.

Sat Jan 24 00:41:35 CET 2004

Severity: 0

Description:

at oracle.lbs.mapserver.oms.doPost(oms.java:273)

...

at java.lang.Thread.run(Thread.java:536)

</oms_error>

Using the PL/SQL API
You always had the possibility of using MapViewer from PL/SQL. All you needed was to build suit-
ably formatted XML requests and then send them to the MapViewer server using functions from the
UTL_HTTP package. However, that approach was rather cumbersome and involved the parsing of XML
responses. MapViewer now provides a dedicated API.

The PL/SQL API is provided as a set of functions and procedures in a package called SDO_MVCLIENT.
This package is not present in the database. To use it, you must first install it.

Installing the API
The package is provided in your MapViewer installation at $OC4J_HOME/j2ee/home/applications/
mapviewer/sql. To install the package, connect to the database as system, and then run both SQL
scripts provided in the folder indicated.

SQL> connect system/********

SQL> @sdomvclh.sql

SQL> @sdomvclb.sql

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS566

8997ch13.qxd 9/28/07 10:12 AM Page 566

www.it-ebooks.info

www.freepdf-books.com

mailto:@sdomvclh.sql
mailto:@sdomvclb.sql
http://www.it-ebooks.info/

Installing the package is not all you have to do. The functions and procedures actually call the
equivalent methods of the Java API. Therefore, you must also install the Java API in your database.
Do this using the loadjava tool as shown next. The mvclient.jar file is in $OC4J_HOME/j2ee/home/
applications/mapviewer/web/WEB-INF/lib.

loadjava -force -schema mdsys -grant PUBLIC -user system/******* mvclient.jar

You still need to go through one more step before you are able to use the API. You need to grant
yourself the proper rights that will allow the Java API library to perform HTTP network calls. Do this
by executing the following (again, connected as SYSTEM). Note that you must also grant the same
rights to user MDSYS.

SQL> connect system/********

SQL> call dbms_java.grant_permission('SPATIAL', 'SYS:java.net.SocketPermission',

'127.0.0.1:8888', 'connect, resolve');

SQL> call dbms_java.grant_permission('MDSYS', 'SYS:java.net.SocketPermission',

'127.0.0.1:8888', 'connect, resolve');

A Simple Example
The functions and procedures correspond almost exactly to the methods of the Mapviewer class in
the Java API.

Your first step is to connect to the MapViewer server, like this:

SQL> call sdo_mvclient.createmapviewerclient('http://127.0.0.1:8888/mapviewer/omserver');

Note that this call does not actually set up the connection to the MapViewer server. The con-
nection will take place only on the first call that needs information from the server. To confirm that
you can actually use the server, get the list of available data sources, like this:

SQL> select sdo_mvclient.getdatasources() datasources from dual;

DATASOURCES

SDO_1D_STRING_ARRAY('spatial', 'world_sample')

You can now set up a map request by calling the appropriate functions, much like you would
do in Java:

SQL> call sdo_mvclient.setDataSourceName('SPATIAL');

SQL> call sdo_mvclient.setImageFormat('PNG_URL');

SQL> call sdo_mvclient.setMapTitle('Simple Map');

SQL> call sdo_mvclient.setBaseMapName('US_BASE_MAP') ;

SQL> call sdo_mvclient.setCenter(-120, 39);

SQL> call sdo_mvclient.setSize(12);

SQL> call sdo_mvclient.setDevicesize(480,400);

You can also add dynamic styles:

SQL> call sdo_mvclient.addColorStyle('C.FUNNY COLOR', 'blue', 'yellow', 100,100);

or add a dynamic (JDBC) theme to your request:

SQL> select sdo_mvclient.addJDBCTheme(

'SPATIAL',

'SELECTED-STATES',

'select * from us_states where state_abrv = ''CA''',

'geom',

'8307', 'C.RED', null, null, 'FALSE')

from dual ;

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 567

8997ch13.qxd 9/28/07 10:12 AM Page 567

www.it-ebooks.info

www.freepdf-books.com

http://127.0.0.1:8888/mapviewer/omserver
http://www.it-ebooks.info/

and then send the map request:

SQL> select sdo_mvclient.run() from dual;

SDO_MVCLIENT.RUN()

--

TRUE

Note that this is actually a function call that returns a string always set to 'TRUE'. You can also
use such methods as sdo_mvclient.zoomIn() and sdo_mvclient.zoomOut() to get zoomed maps.

Finally, you can now extract results from the request. The most common result will be the URL
of the map produced.

SQL> select sdo_mvclient.getgeneratedMapImageURL() from dual;

SDO_MVCLIENT.GETGENERATEDMAPIMAGEURL()

--

http://127.0.0.1:8888/mapviewer/images/map15_29.tif?refresh=-725304371952178

Using the Administrative API
In addition to the map request APIs (XML and Java) described previously, MapViewer also provides
an administrative API, which lets applications perform such actions as discovering data sources,
maps, themes, and styles or managing data sources and caches.

Browsing Map Definitions
The functions in the administrative API are useful for building generic applications that enable
users to discover what map definitions exist. They let you find out the data sources defined on the
MapViewer server, as well as browse the maps, themes, and styles defined in a data source. You can
access those functions via the MapViewer home page (http://host:port/mapviewer).

Listing Data Sources
The following XML request returns a list of the data sources known by the server:

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<list_data_sources />

</non_map_request>

The response is an XML form that looks like this:

<?xml version="1.0" ?>

<non_map_response>

<map_data_source_list succeed="true">

<map_data_source name="spatial />

<map_data_source name="mvdemo" />

</map_data_source_list>

</non_map_response>

Note that this gives you only the names of the data sources. To obtain further details, such as
JDBC connection details, you need to use a secure variant, which we discuss shortly.

You can also verify the existence of a data source:

<?xml version="1.0" standalone="yes"?>

<non_map_request>

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS568

8997ch13.qxd 9/28/07 10:12 AM Page 568

www.it-ebooks.info

www.freepdf-books.com

http://127.0.0.1:8888/mapviewer/images/map15_29.tif?refresh=-725304371952178
http://host:port/mapviewer
http://www.it-ebooks.info/

<data_source_exists data_source="mvdemo"/>

</non_map_request>

Listing Maps
The following XML request returns a list of the base maps defined for a data source:

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<list_maps data_source="spatial" />

</non_map_request>

The response is an XML form like this:

<?xml version="1.0" ?>

<non_map_response>

<map_list succeed="true">

<map name="CITY_MAP" />

<map name="US_BASE_MAP" />

<map name="US_CITY_MAP" />

<map name="US_DETAILED_MAP" />

<map name="WORLD_MAP" />

<map name="WORLD_MAP_COLORED" />

</map_list>

</non_map_response>

Listing Themes
Use the following request to get the list of all themes defined in a data source:

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<list_predefined_themes data_source="spatial" />

</non_map_request>

The response is an XML form that contains the names of the themes:

<?xml version="1.0" ?>

<non_map_response>

<predefined_theme_list succeed="true">

<predefined_theme name="COUNTRIES.WORLD_COUNTRIES" />

<predefined_theme name="COUNTIES.US_COUNTIES" />

<predefined_theme name="RIVERS.US_RIVERS" />

<predefined_theme name="STATES.US_STATES" />

<predefined_theme name="WORLD.WORLD_CONTINENTS" />

<predefined_theme name="WORLD.WORLD_COUNTRIES" />

<predefined_theme name="WORLD.WORLD_COUNTRIES_COLORED" />

</predefined_theme_list>

</non_map_response>

You can also get the themes used in a specific base map:

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<list_predefined_themes data_source="spatial" map="US_BASE_MAP"/>

</non_map_request>

The response lists the themes with their scale limits:

<?xml version="1.0" ?>

<non_map_response>

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 569

8997ch13.qxd 9/28/07 10:12 AM Page 569

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<predefined_theme_list succeed="true">

<predefined_theme name="STATES.US_STATES"

min_scale="1.0E8" max_scale="2.0E7" scale_mode="RATIO" />

<predefined_theme name="COUNTIES.US_COUNTIES"

min_scale="2.0E7" max_scale="0.0" scale_mode="RATIO" />

<predefined_theme name="STATES.US_STATE_LINES"

min_scale="2.0E7" max_scale="0.0" scale_mode="RATIO" />

<predefined_theme name="CITIES.US_MAJOR_CITIES"

min_scale="1.0E7" max_scale="0.0" scale_mode="RATIO" />

<predefined_theme name="CITIES.US_CITIES"

min_scale="500000.0" max_scale="0.0" scale_mode="RATIO" />

</predefined_theme_list>

</non_map_response>

Listing Styles
Use the following request to get the names of all styles defined in a data source. This list contains
only the permanent styles (those stored in the database). Dynamically created styles do not appear.

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<list_styles data_source="spatial" />

</non_map_request>

The response is an XML form that looks like this:

<?xml version="1.0" ?>

<non_map_response>

<style_list succeed="true">

<style name="A.PATTERN 1" />

...

<style name="V.WORLD_COUNTRIES" />

</style_list>

</non_map_response>

You can restrict the list to specific style types by adding a style_type parameter.

Managing the MapViewer Server
The normal way to manage the MapViewer server is via its administration console, which you have
seen in the previous chapter (see Figure 12-10). But you can also control MapViewer directly via XML
requests that allow you to do the following:

• Manage data sources (JDBC connections) by adding, removing, and listing data sources.

• Manage caches by clearing data and metadata caches.

• Restart MapViewer after you change its configuration settings.

Security and Access Control
The management functions are protected. When you attempt to call one, you will be asked to specify
a user name and password.

If MapViewer is deployed in a stand-alone OC4J, then the user name will be oc4jadmin. The
password is the administrative password you specified when you started the OC4J server for the
first time.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS570

8997ch13.qxd 9/28/07 10:12 AM Page 570

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

When MapViewer is deployed in the Oracle Internet Application Server, you need to create an
administration user in the OC4J instance where MapViewer is running and map this administration
user to MapViewer’s built-in security role, map_admin_role.

Managing Data Sources
One of the major functions of the administrative API is that it lets you dynamically manage the data
sources. You can define new data sources, redefine existing data sources, and remove data sources.
Those changes are temporary; they take place only in the running MapViewer server. Any new data
source you define disappears if the MapViewer server is restarted.

Adding a Data Source

Here is the XML request you submit to define a new data source:

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<add_data_source

name="spatial"

jdbc_host="127.0.0.1"

jdbc_port="1521"

jdbc_sid="orcl111"

jdbc_user="spatial"

jdbc_password="spatial"

jdbc_mode="thin"

number_of_mappers="3" />

</non_map_request>

The data source will be available to all users of the MapViewer server. However, its definition is
not persistent; the data source definition will disappear at the next shutdown of the server.

Listing Data Sources

The following XML request returns a list of the data sources known by the server:

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<list_data_sources />

</non_map_request>

The response is an XML form that looks like this:

<?xml version="1.0" ?>

<non_map_response>

<map_data_source_list succeed="true">

<map_data_source name="spatial" host="127.0.0.1" sid="orcl111"

port="1521" user="spatial" mode="thin" numMappers="3" />

<map_data_source name="mvdemo" host="127.0.0.1" sid="orcl111"

port="1521" user="mvdemo" mode="thin" numMappers="3" />

</map_data_source_list>

</non_map_response>

Note that this request can also be sent in a “nonprivileged” mode—that is, without being logged
in as the MapViewer administrator. In that case, the XML response lists only the data source names.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 571

8997ch13.qxd 9/28/07 10:12 AM Page 571

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Modifying a Data Source

The following XML request changes number of mappers (the maximum number of concurrent threads)
and the maximum number of connections for a data source:

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<redefine_data_source

name="spatial"

jdbc_host="127.0.0.1"

jdbc_port="1521"

jdbc_sid="orcl111"

jdbc_user="spatial"

jdbc_password="spatial"

jdbc_mode="thin"

number_of_mappers="4"

max_connections="40" />

</non_map_request>

Note that you cannot change the host, port, user name, or password. Those must match exactly
the values specified when the data source was defined. If they do not, then you will receive an error
indicating that the data source cannot be found.

To modify any of those parameters, you need to remove the data source and re-create it with
the new parameters. You can modify the parameters for a permanent data source (one defined in
MapViewer’s configuration file), but those changes will disappear when MapViewer is restarted.

Removing a Data Source

To remove a data source, you must provide the JDBC password for that data source:

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<remove_data_source data_source="spatial" jdbc_password="spatial" />

non_map_request>

You can remove a permanent data source (one defined in MapViewer’s configuration file), but
it will come back when MapViewer is restarted.

Managing Caches
The MapViewer server maintains a cache for the data it reads from the database, as well as a cache
for the map definitions, called the metadata cache. The following commands enable you to clear
those caches.

Clearing the Data Cache

Use this request to clear the data cache for a named theme in a named data source:

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<clear_theme_cache data_source="spatial" theme="us_states" />

</non_map_request>

Clearing the Metadata Cache

The following request clears the styles, maps, and themes from the cache of the MapViewer server
for a given data source:

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS572

8997ch13.qxd 9/28/07 10:12 AM Page 572

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<clear_cache data_source="spatial" />

</non_map_request>

This operation is necessary if you change any style, theme, or map definition in the database. It
forces MapViewer to reload the definitions from the database the next time they are needed.

Restarting MapViewer
The following restarts the MapViewer server. All data and metadata caches are cleared, all data
sources are closed, and all dynamically added data sources are removed. MapViewer then rereads
the configuration file and starts up again.

<?xml version="1.0" standalone="yes"?>

<non_map_request>

<restart/>

</non_map_request>

This operation is necessary if you change settings in MapViewer’s configuration file, such as if
you add a new permanent data source or if you modify the logging parameters.

Web Map Service (OGC WMS) Interface
The WMS protocol is an international standard (ISO/DIS 19128:2005) originally defined by the OGC.
The standard describes the behavior of a service that produces spatially referenced maps dynamically
from geographic information. It specifies operations to retrieve a description of the maps offered by
a server, to retrieve a map, and to query a server about features displayed on a map.

MapViewer implements the WMS protocol, specifically the WMS 1.1.1 implementation specifi-
cation. MapViewer supports the GetMap, GetFeatureInfo, and GetCapabilities requests as defined
in the WMS standard. The URL to invoke the Web Map Service is http://server:port/mapviewer/wms,
where server and port are the name and port of your MapViewer server.

The GetCapabilities Request
WMS requests are passed as annotated URLs. For example, the following URL will return the capa-
bilities of your local Web Map Service, that is, the list of data sources, base maps, and themes known
to the MapViewer server:

http://127.0.0.1:8888/mapviewer/wms

?REQUEST=GetCapabilities

&SERVICE=WMS

&VERSION=1.1.1

■Note The URLs shown in this section are broken down so that each request parameter occupies one line. This
is only for making the examples more readable. In reality, all parameters must be attached to form a single line.

The response will be an XML document. For the exact structure of this document, please refer
to the official WMS standard definition.2 Listing 13-6 shows an excerpt of a typical response.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 573

2. The specification is available from the Open Geospatial Consortium at http://www.opengeospatial.org/
standards/wms.

8997ch13.qxd 9/28/07 10:12 AM Page 573

www.it-ebooks.info

www.freepdf-books.com

http://server:port/mapviewer/wms
http://127.0.0.1:8888/mapviewer/wms
http://www.opengeospatial.org
http://www.it-ebooks.info/

Listing 13-6. Example GetCapabilities Response

<?xml version="1.0" encoding="UTF-8" ?>

<WMT_MS_Capabilities version="1.1.1">

<Service>

<Name>OGC:WMS</Name>

<Title>WMS 1.1 interface for Oracle Application Server MapViewer</Title>

<Fees>none</Fees>

<AccessConstraints>none</AccessConstraints>

</Service>

<Capability>

<Request>

<GetCapabilities>

<Format>application/vnd.ogc.wms_xml</Format>

</GetCapabilities>

<GetMap>

<Format>image/png</Format>

<Format>image/gif</Format>

<Format>image/jpeg</Format>

<Format>image/svg+xml</Format>

<Format>image/png8</Format>

</GetMap>

<GetFeatureInfo>

<Format>text/xml</Format>

</GetFeatureInfo>

</Request>

<Exception>

<Format>text/xml</Format>

</Exception>

<Layer>

<Name>WMS</Name>

<Title>Oracle WebMapServer Layers by data source.</Title>

<SRS>EPSG:4326</SRS>

<LatLonBoundingBox

minx="-180.0" miny="-90.0" maxx="180.0" maxy="90.0"/>

<Layer>

<Name>spatial</Name>

<Title>Datasource spatial</Title>

<Layer>

<Name>US_BASE_MAP</Name>

<Title>Basemap US_BASE_MAP</Title>

<SRS>EPSG:4326</SRS>

<LatLonBoundingBox minx="-180.0" miny="-90.0" maxx="180.0" maxy="90.0"/>

<Layer queryable="1">

<Name>US_STATES</Name>

<Title>US_STATES</Title>

<SRS>EPSG:4326</SRS>

<BoundingBox SRS="EPSG:4326"

minx="-180.0" miny="-90.0"

maxx="180.0" maxy="90.0"

resx="1.0" resy="1.0"/>

<ScaleHint min="1000000" max="5.0"/>

</Layer>

<Layer queryable="1">

<Name>US_COUNTIES</Name>

<Title>US_COUNTIES</Title>

<SRS>EPSG:4326</SRS>

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS574

8997ch13.qxd 9/28/07 10:12 AM Page 574

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<BoundingBox SRS="EPSG:4326"

minx="-180.0" miny="-90.0"

maxx="180.0" maxy="90.0"

resx="1.0" resy="1.0"/>

<ScaleHint min="5.0" max="0.0"/>

</Layer>

<Layer queryable="1">

<Name>US_CITIES</Name>

<Title>US_CITIES</Title>

<SRS>EPSG:4326</SRS>

<BoundingBox SRS="EPSG:4326"

minx="-180.0" miny="-90.0"

maxx="180.0" maxy="90.0"

resx="1.0" resy="1.0"/>

<ScaleHint min="0.15" max="0.0"/>

</Layer>

</Layer>

</Layer>

</Layer>

</Capability>

</WMT_MS_Capabilities>

Notice that the response contains a series of nested <layer> elements. The top <layer> element
is always called WMS. It contains one <layer> element for each data source. Each data source further
contains one <layer> element per base map, which in turns contains one <layer> element for each
theme it uses.

The GetMap Request
The GetMap request is the main mapping request; use it to tell the Web Map Service what data to use
and how to format the resulting map. The response of the GetMap request is a streamed image. Here
is an example of a GetMap request:

http://127.0.0.1:8888/mapviewer/wms

?VERSION=1.1.1

&REQUEST=GetMap

&FORMAT=image/gif

&WIDTH=480

&HEIGHT=400

&SRS=EPSG:4326

&BBOX=-126,33,-114,45

&LAYERS=US_STATES,US_COUNTIES,US_PARKS,US_INTERSTATES,US_CITIES

&BASEMAP=US_BASE_MAP

&DATASOURCE=spatial

Table 13-4 lists the main parameters you can pass with a GetMap request. Again, you should
refer to the official WMS standard definition for the full details. Note that the WMS standard allows
implementers to add their own specific parameters to the requests. This is the case for the BASEMAP
and DATASOURCE parameters, which are specific to MapViewer. Some parameters are not supported
by MapViewer and will be ignored if used.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 575

8997ch13.qxd 9/28/07 10:12 AM Page 575

www.it-ebooks.info

www.freepdf-books.com

http://127.0.0.1:8888/mapviewer/wms
http://www.it-ebooks.info/

Table 13-4. Main WMS GetMap Request Parameters

Parameter Usage

FORMAT Specifies the format of the resulting map image. The formats supported by
the server are listed in the response to the GetCapabilities request. They
correspond to the formats supported by MapViewer: image/png, image/gif,
and image/jpeg, as well as image/jpeg+svg and image/png8.

WIDTH The width in pixels of the resulting map image.

HEIGHT The width in pixels of the resulting map image.

BGCOLOR Color to be used for the background of the map. Specify using the hexadecimal
RGB notation. The default is 0xFFFFFF, or white. To get an “ocean-blue”
background (the default for regular MapViewer requests) use 0xA6CAE0.

TRANSPARENT A string (TRUE or FALSE, the default) indicating whether the background of the
map should be transparent. This parameter applies only if the output format
is PNG.

SRS The spatial reference system of the resulting map. This is specified as
a namespace (here EPSG) followed by the number of the spatial reference
system (here 4326). See the “Spatial Reference Systems (SRS) Mapping”
section for a discussion on the mapping of EPSG codes to Oracle Spatial
codes.

BBOX The spatial coordinates of the area covered by the map. The coordinates are in
the coordinate system specified by the SRS parameter.

LAYERS A comma-separated list of layers to include on the map. Note that the server
will render the layers in the opposite order from that of MapViewer, in other
words, by drawing the leftmost in the list bottommost, the next one over that,
and the first in the list at the top.

MapViewer-Specific Extensions

BASEMAP The name of a base map.

DATASOURCE The name of a data source. If not specified, then the server will use a default
data source called WMS.

DYNAMIC_STYLES A list of style descriptors, encoded in XML.

MVTHEMES A list of themes, encoded in XML.

LEGEND_REQUEST A legend descriptor, encoded in XML.

Parameters Not Supported by MapViewer

TIME The time dimension.

ELEVATION The elevation dimension.

STYLES Styled layer descriptors.

■Caution The LAYERS parameter is required, even if all you want is to display a base map. If this is the case,
specify LAYERS=NULL.

The GetFeatureInfo Request
Use the GetFeatureInfo request to get attribute information about features located at a specific
location on the map produced by a GetMap request. The goal of the GetFeatureInfo request is to
allow an application to capture the point a user clicked on and query the server for features located
on the map at that point. The point is passed in image coordinates, that is, in pixels from an origin
(0,0) at the upper-left corner of the map.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS576

8997ch13.qxd 9/28/07 10:12 AM Page 576

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Here is an example of a GetFeatureInfo request that queries three layers for features at a given
point location:

http://127.0.0.1:8888/mapviewer/wms

?VERSION=1.1.1

&REQUEST=GetFeatureInfo

&FORMAT=image/gif

&WIDTH=480

&HEIGHT=400

&SRS=EPSG:4326

&BBOX=-126,33,-114,45

&LAYERS=US_STATES,US_COUNTIES,US_RIVERS,US_PARKS,US_INTERSTATES,US_CITIES

&DATASOURCE=spatial

&INFO_FORMAT=text/xml

&QUERY_LAYERS=US_STATES,US_COUNTIES,US_PARKS

&X=240&Y=200

When calling the GetFeatureInfo request, you must include the same parameters as those you
passed to the GetMap request, followed by the additional query parameters, listed in Table 13-5.

Table 13-5. Main WMS GetFeatureInfo Request Parameters

Parameter Usage

INFO_FORMAT Specifies the format of the resulting output. The only format supported by
MapViewer is text/xml.

QUERY_LAYERS A comma-separated list of layers to query. The list must be a subset of the
layers shown on the map (listed in the LAYERS parameter).

X The X location of the query point (in image coordinates, in other words, in
pixels counted down from the top of the map).

Y The Y location of the query point (in image coordinates, in other words, in
pixels counted from the left of the map).

FEATURE_COUNT The number of features to return (1 by default). If more features than the
specified number exist at the query point, then MapViewer will return
a random subset of those features.

MapViewer-Specific Parameters

QUERY_TYPE The standard spatial selection mechanism proposed by the WMS protocol is to
select features that interact with a given point. The QUERY_TYPE parameter allows
you to use other kinds of spatial queries: AT_POINT (the default) is identical to
the WMS default; NN returns the nearest neighbors with the number of results
specified in FEATURE_COUNT; and WITHIN_RADIUS (or WITHIN_DISTANCE) returns
the features that are within the distance specified by the RADIUS parameter.

RADIUS The radius value for the QUERY_TYPE=WITHIN_RADIUS search.

UNIT The unit in which the RADIUS value is specified. Use one of the units known to
MapViewer, defined in the SDO_DIST_UNITS view.

The result of the previous query is an XML document:

<?xml version="1.0" encoding="UTF-8"?>

<GetFeatureInfo_Result>

<ROWSET name="STATES.US_STATES" >

<ROW num="1">

<ROWID>AAAQykAAEAAACFUAAE</ROWID>

</ROW>

</ROWSET>

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS 577

8997ch13.qxd 9/28/07 10:12 AM Page 577

www.it-ebooks.info

www.freepdf-books.com

http://127.0.0.1:8888/mapviewer/wms
http://www.it-ebooks.info/

<ROWSET name="COUNTIES.US_COUNTIES" >

<ROW num="1">

<COUNTY>Tuolumne</COUNTY>

<LAND>2235.2656</LAND>

<POPULATION>48456</POPULATION>

</ROW>

</ROWSET>

<ROWSET name="PARKS.US_PARKS" >

</ROWSET>

</GetFeatureInfo_Result>

The query found one state and one county at the designated location, but no park. For the
state, the query returned only the ROWID of the feature. For the county, the query returned a number
of attributes; those are the attributes defined as “information columns” in the theme definition.

Spatial Reference Systems (SRS) Mapping
MapViewer’s WMS server supports two namespaces for encoding spatial reference systems: EPSG
and SDO. The EPSG namespace uses the numbers defined by the European Petroleum Support
Group (EPSG). SDO uses Oracle’s native numbers.

The WMS specification recommends using EPSG codes for identifying coordinate systems. To
ease the transition between Oracle’s numbering and the EPSG numbering, MapViewer provides
a built-in mapping list for some common coordinate systems. For example, EPSG:4326 is the same
as SDO:8307. Both represent the WGS84 coordinate system.

You can use either notation interchangeably in your Getmap and GetFeatureInfo requests. The
GetCapabilities response always attempts to return EPSG codes, provided it has a mapping in its
internal table. For example, see the response in Listing 13-5. The layers are really stored using SRID
8307, but the response returns the corresponding EPSG code. If it cannot find a mapping, then it
just returns SDO: followed by the Oracle SRID.

You can also use your own set of mappings by writing them into a text file. Use one line per
mapping, where each line is in the format sdo_srid=epsg_srid. Specify the name of the file in the
<srs_mapping> element in MapViewer’s configuration file. For example:

<srs_mapping>

<sdo_epsg_mapfile>

../conf/epsg_srids.properties

</sdo_epsg_mapfile>

</srs_mapping>

Summary
In this chapter, you learned how to add maps to your applications and how to let your users interact
with your maps. MapViewer is a very powerful product, and we touched on only the most impor-
tant aspects of it. In the next chapter, we will use many of the techniques we presented here to build
two complete applications, one using the Oracle Maps (Ajax/JavaScript) approach and one using
a Java Server Page approach.

CHAPTER 13 ■ USING MAPS IN YOUR APPLICATIONS578

8997ch13.qxd 9/28/07 10:12 AM Page 578

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Spatial in Applications

P A R T 5

8997ch14.qxd 10/2/07 4:24 PM Page 579

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997ch14.qxd 10/2/07 4:24 PM Page 580

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Sample Applications

To create the sample application in this chapter, you need to load the following datasets
and run the following scripts:

imp spatial/spatial file=app_data.dmp full=y

imp spatial/spatial file=gc.dmp full=y

imp spatial/spatial file=map_large.dmp full=y

imp spatial/spatial file=map_detailed.dmp full=y

imp spatial/spatial file=styles.dmp full=y

Throughout this book, you have learned many techniques relating to spatial technology: how to
location-enable an application, how to perform spatial analysis, and how to view the results using
dynamically generated maps.

The time has come to use all of these techniques in a single application that integrates spatial
analysis and visualization. This chapter presents and dissects two such applications. Both are web-
based applications. The first one uses Ajax and MapViewer’s JavaScript API (Oracle Maps). The second
one uses MapViewer’s Java API in a JSP page. Table 14-1 lists the main requirements for the applica-
tions, along with the features of Oracle Spatial exercised and the chapters that discuss those features.

Table 14-1. Application Requirements

Application Requirement Features Used

Display a map showing the locations of customers, Map generation (Chapters 12 and 13)
competitors, and branches, along with additional
geographical information such as streets, public
buildings, administrative boundaries, and so on.

Select the information to appear on the map, and Map generation (Chapters 12 and 13)
allow the usual map navigation, such as zoom in
and out, pan, and recenter.

Enter a street address, and center the map on that address. Geocoding (Chapter 6)

Find all customers, competitors, or branches Proximity analysis and geometry
within a specified distance from a location on processing (Chapters 8 and 9)
the map. This location could be the location of
a branch, a customer, a competitor, or a street
address. The results are highlighted on the map.

Find a specified number of neighboring customers, Proximity analysis and geometry
competitors, or branches closest to a specified location processing (Chapters 8 and 9)
on this map. This location could be the location of
a customer, a competitor, a branch, or a street address.
The results are highlighted on the map.

581

C H A P T E R 1 4

8997ch14.qxd 10/2/07 4:24 PM Page 581

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

We begin this chapter with a study of the data needed by the applications. Much of that data
should have been loaded and prepared as you proceeded through the examples in the preceding
chapters.

We then walk you through the applications, showing you how to install and run them, how to
use them, and how the various functions of the applications were implemented.

You will find the complete source code for both applications on the Apress website
(www.apress.com).

Data Preparation and Setup
The sample applications require several types of data before you can actually run them:

• Geographical data: This is the data that will appear as a “backdrop” on your map. Without it,
you would see only colored dots, without anything to relate them to. This data includes the
data used by the geocoder.

• Location-enabled application tables: The branches, customers, and competitors tables con-
tain only street addresses. To use them in the application, they must first be extended with
a spatial column (SDO_GEOMETRY), and this column must be populated.

• Map definitions and styles: The applications use a predefined map, themes, and styles.

Loading the Geographical Data
If you have not done so yet, now is the time to load your database with the base geographical data.
For clarity and ease of use, we provide the data as several Oracle dump files.

You need to import those files using the Oracle Import tool. The code shown in Listing 14-1
performs the following actions:

• Loads the large-scale data (countries, states, counties, and so on)

• Loads the detailed data (city streets, and so on)

• Loads the geocoding data

Listing 14-1. Loading the Geographical Data

imp spatial/spatial file=map_large.dmp full=y

imp spatial/spatial file=map_detailed.dmp full=y

imp spatial/spatial file=gc.dmp full=y

Location-Enabling the Application Data
If you have performed the steps detailed in Chapter 6 and you have run the examples in the follow-
ing chapters, you should now have your customers, branches, and competitors tables spatially enabled
and ready for use.

In case you did not complete those steps, you can now load them in the “spatially enabled”
format by importing the file app_data_with_loc.dmp as follows:

imp spatial/spatial file=app_data_with_loc.dmp full=y

CHAPTER 14 ■ SAMPLE APPLICATIONS582

8997ch14.qxd 10/2/07 4:24 PM Page 582

www.it-ebooks.info

www.freepdf-books.com

http://www.apress.com
http://www.it-ebooks.info/

Loading Map, Theme, Style, and Map Cache Definitions for
MapViewer
Maps, themes, and style definitions are provided ready for use. All you need to do is import them
into the database. Importing the style dump file creates and populates three tables: my_maps,
my_themes, and my_styles. The definitions must still be loaded into the dictionary tables used by
MapViewer. Listing 14-2 illustrates this process. Note that you also load the definitions of map
caches needed by the Oracle Maps application.

Listing 14-2. Loading Map Definitions

imp spatial/spatial file=styles.dmp full=y

SQL> INSERT into user_sdo_styles

select * from my_styles;

SQL> insert into user_sdo_themes

select * from my_themes;

SQL> insert into user_sdo_maps

select * from my_maps;

SQL> insert into user_sdo_cached_maps

select * from my_cached_maps;

SQL> commit;

Applications Setup
To run the sample applications, you must have a running Oracle Application Server or, at a minimum,
the stand-alone Oracle Containers for Java (OC4J) software. You also need to have the MapViewer
component up and running. If you ran any of the examples presented in Chapters 12 and 13, then
you should be all set. If not, just refer to Chapter 12; specifically, review the section “Getting Started
with MapViewer.” That section includes instructions on how to install and set up the OC4J software.

The sample applications, together with all the MapViewer examples used in this book, are in
a file called web-examples.zip. Expand it into $OC4J_HOME/j2ee/home/applications/mapviewer/
web/spatial-book, where $OC4J_HOME is the root folder where you installed OC4J.

The next step is to define a permanent data source in MapViewer’s configuration file. This is not
strictly necessary, since you could also add a data source via MapViewer’s administration page, but hav-
ing a permanent data source makes it easier for you when you stop and start OC4J and MapViewer.

To add the data source, you edit the configuration file, as explained in Chapter 12. The file is
located at $OC4J_HOME/j2ee/home/applications/mapviewer/web/WEB-INF/conf/MapViewerConfig.xml.
Add the following definition in the main <MapperConfig> element:

<map_data_source name="spatial"

jdbc_host="127.0.0.1"

jdbc_port="1521"

jdbc_sid="orcl111"

jdbc_user="spatial"

jdbc_password="!spatial"

jdbc_mode="thin"

max_connections="5"

number_of_mappers="3"

/>

Replace the JDBC connection details (host, port, sid, user, and password) with your own infor-
mation. The user name should be the one into which you loaded the example data.

If your OC4J server is not up and running, then start it now by going to $OC4J_HOME/j2ee/home
and entering the command java -jar oc4j.jar.

CHAPTER 14 ■ SAMPLE APPLICATIONS 583

8997ch14.qxd 10/2/07 4:24 PM Page 583

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The JavaScript Application
The first application is written in JavaScript and uses MapViewer’s JavaScript mapping library. It
allows your users to view the location of your branches, your customers, and the branches of your
competitors on a street-level map, as well as to find details about them and search them. It also lets
your users position the map on a street address and perform searches around that address.

Application Walk-Through
Let’s first walk through the application from a user’s perspective and see what it can do. Then we
will look under the hood to see how the various features and functions are implemented.

Starting the Application
Enter the following URL in your browser:

http://127.0.0.1:8888/mapviewer/spatial-book/sample-app/SampleApplication.html

Note that this URL assumes you installed OC4J on your local machine. If you installed it on
some other machine, then just replace the IP address 127.0.0.1 with that of your server.

If your setup is correct, you should now see a page like the one shown in Figure 14-1.

Figure 14-1. Home page of the sample JavaScript application

The map is centered to downtown San Francisco. You can also center it to Washington, D.C., by
clicking the link in the “Direct Links” section.

The home page of the application consists of three main areas:

CHAPTER 14 ■ SAMPLE APPLICATIONS584

8997ch14.qxd 10/2/07 4:24 PM Page 584

www.it-ebooks.info

www.freepdf-books.com

http://127.0.0.1:8888/mapviewer/spatial-book/sample-app/SampleApplication.html
http://www.it-ebooks.info/

• The center area contains the map proper with its controls and decorations: scale bar, naviga-
tion panel, overview map, and marquee zoom control.

• The left area lets you control what application data should appear on the map—that is,
which application themes (branches, customers, or competitors) should be enabled—and
whether the application data should refresh automatically as you pan and zoom. It also lets
you enter an address on which to position the map.

• The area on the right (not shown on the figure) will list the details about the application
objects shown on the current map. This is also where the results of searches and queries will
appear.

You can move around the map by dragging it, using the navigation panel, or using the overview
map. To zoom, use the navigation panel, or use marquee zoom.

Adding Application Data to the Map
You can add application features to the map by selecting one or more of the check boxes on the left.
As you click a box, the corresponding features will be read from the database and shown on the
map. Details about each feature also appear in a list in the area at the right of the map area, as
shown in Figure 14-2, which shows the map with the branches and competitors themes enabled.

Figure 14-2. Map with branches and competitors shown

As you move around the map, the application features will be automatically refreshed, together
with the list in the right window. To disable this automatic updating, just uncheck the Auto Refresh
box. You can always ask for a manual refresh by clicking the Refresh button.

CHAPTER 14 ■ SAMPLE APPLICATIONS 585

8997ch14.qxd 10/2/07 4:24 PM Page 585

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Identifying an Application Feature
Clicking an application feature on the map opens an information window, as shown in Figure 14-3.
You can also get that window by clicking a details line.

Figure 14-3. An information window

Clicking the More Info link will replace the right window with full details on the feature you
selected. See Figure 14-4 for an example.

Figure 14-4. Full details about an application feature

CHAPTER 14 ■ SAMPLE APPLICATIONS586

8997ch14.qxd 10/2/07 4:24 PM Page 586

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Searching “Within Radius”
Clicking the Search Around link in the information window expands it, as shown in Figure 14-5.
Choose the kind of features to search and a radius in meters. Then click the Search button.

Figure 14-5. Searching around a feature

MapViewer will then issue a spatial search to retrieve those features of your chosen type that
are within the chosen distance from the originally selected feature. Figure 14-6 shows the results of
such a search. The map shows the area searched, and the features found are highlighted with small
pins. You will notice that the map was automatically recentered and expanded in such a way that it
shows the full search area.

■Note The search area is a circle, but the map shows an ellipse. This is just a side effect of the projection cur-
rently used by MapViewer to produce its maps.

The area on the right contains a list of the features found. Clicking any of the features (or a fea-
ture in the list) will open a new information window, allowing you to repeat the process if you want.

CHAPTER 14 ■ SAMPLE APPLICATIONS 587

8997ch14.qxd 10/2/07 4:24 PM Page 587

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 14-6. Map with highlighted search results

To dismiss the results of the search, click the Clear Results link. The Show All and Show Search
Results links allow you to toggle between showing all the features on the current map or only the
results of your search.

Positioning on a Street Address
Just enter an address in free form into the input box on the left, and click the Go button. The map
then centers on the location of that address, highlighted using a yellow pin marker, with an infor-
mation window pointing to it, as shown in Figure 14-7.

Figure 14-7. Map positioned on a street address

CHAPTER 14 ■ SAMPLE APPLICATIONS588

8997ch14.qxd 10/2/07 4:24 PM Page 588

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Notice that MapViewer automatically refreshed the features shown on the map (and their
details in the right window).

To remove the address marker and the information window, just click the Clear link in that
window. The Search Around link allows you to search for features around the address, just like you
have seen before.

Under the Hood
We’ll now explain in detail how to implement the various functions we have just walked you through.
All the logic of the application is written in JavaScript, contained in a file called SampleApplication.js.
The overall structure and appearance of the HTML page is in two separate files, SampleApplication.
html and SampleApplication.css.

Creating the HTML Page
The HTML page is essentially a collection of empty <DIV> sections organized in a table structure to
help place them precisely on the page. Those sections will be filled dynamically by the application.
The size of the <DIV> sections is specified in the style sheet. Listing 14-3 shows the content of the page.

Listing 14-3. The Application HTML Page

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN">

<html>

<head>

<META http-equiv="Content-Type" content="text/html;">

<title> Pro Oracle Spatial for Oracle Database 11g - Sample Ajax

Application</title>

<link rel="stylesheet" href="SampleApplication.css" type="text/css">

<script language="Javascript"

src="/mapviewer/fsmc/jslib/oraclemaps.js"></script>

<script language="JavaScript"

src="SampleApplication.js"> </script>

</head>

<body onLoad="loadMainMap(0);" style="width:100%;">

<table>

<tr>

<td valign="top">

<div id="PANEL_CONTROL">

<form name="controlPanel">

Select Themes

<div id="THEMES_LIST"></div>

Select:

All

None

<p><input type="checkbox" name="autoRefresh"

onclick="toggleAutoRefresh(this);">Auto Refresh

<input type=button onclick="refreshAllThemes();" value="Refresh">

<p>Enter Address

<input type="text" id="address" size="24"/>

<input type=button onclick="geocodeAddress();" value="Go">

<p>Direct Links

<div id="DIRECT_LINKS"></div>

</form>

</div>

</td>

<td valign="top">

CHAPTER 14 ■ SAMPLE APPLICATIONS 589

8997ch14.qxd 10/2/07 4:24 PM Page 589

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<table>

<tr><td valign="top"> <div id="PANEL_MAP"> </div> </td></tr>

<tr><td valign="top"> <div id="PANEL_STATUS" > </div> </td> </tr>

</table>

</td>

<td valign="top">

<table>

<tr>

<tr><td valign="top"> <div id="PANEL_INFO" > </div> </td> </tr>

<td valign="top">

<div id="PANEL_SEARCH_CONTROL">

Show All

Show Search Results

Clear Results

</div>

</td>

</tr>

</table>

</td>

</tr>

</table>

</body>

</html>

You load two JavaScript libraries in the header of the page: oraclemaps.js, which is the main
MapViewer (Oracle Maps) library providing all mapping functions, and the application code, which
is SampleApplication.js.

The <body> specification contains the onLoad="loadMainMap(0);" specification, which instructs
your browser to automatically invoke the application’s main entry point when the page is loaded.

The page contains a number of links (href) and buttons. All invoke JavaScript functions con-
tained in the application code.

Creating the JavaScript Code
The JavaScript code of the application begins with some global variables, visible to all functions.
The majority are actually constants used to configure the application, such as the name of the base
map and data source, the projection (SRID) of the map, and the list of the application data themes
and various zoom levels.

There are also true global variables, used to share information between the various functions
that make up the application. The main one is the variable used to hold the MVMapView object:

var mapview = null;

It will be set during initialization and then used in many of the functions.

Initializing the Application
The application begins its execution with the loadMainMap() function, automatically invoked when
the HTML page gets loaded. The function receives one input parameter (location), which is the
number of the location to start from. Locations are defined in an array:

var locations = new Array (

new Array ("San Francisco, CA", -122.43302833333328, 37.7878425, 16),

new Array ("Washington, DC", -77.016167, 38.90505, 16)

)

CHAPTER 14 ■ SAMPLE APPLICATIONS590

8997ch14.qxd 10/2/07 4:24 PM Page 590

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Each location is defined by a name, the longitude and latitude, and the zoom level to use when
showing this location.

You first create and initialize the MVMapView object:

// Define initial map center and scale based on chosen location

mapCenterX = locations[location][1];

mapCenterY = locations[location][2];

mapZoom = locations[location][3];

// Create an MVMapView instance to display the map

mapview = new MVMapView(document.getElementById("PANEL_MAP"), baseURL);

// Add a base map layer as background.

var basemap = new MVBaseMap(datasourceName+"."+baseMapName);

mapview.addBaseMapLayer(basemap);

// Set the initial map center and zoom level

var center=MVSdoGeometry.createPoint(mapCenterX, mapCenterY, mapSRID);

mapview.setCenter(center);

mapview.setZoomLevel(mapZoom);

Then you add some decorations and tools, such as a navigation panel, scale bar, overview map,
and so on:

// Add a navigation panel on the right side of the map

mapview.setHomeMap(center, mapZoom);

mapview.addNavigationPanel("EAST");

// Add a scale bar

mapview.addScaleBar();

// Add a copyright notice

mapview.addCopyRightNote("Powered by Oracle Maps");

You also build and add a marquee-zoom control:

// Add a marquee zoom control

var toolBar =

'<div style="background-color:white; border:1px solid black;">'+

' Marquee Zoom: '+

'<input id="marqueezoom" type="checkbox" value="marqueezoom" ' +

'onclick="toggleMarqueeZoom(this)" unchecked/>'+

'</div>'

md = new MVMapDecoration(toolBar, 0, 0) ;

mapview.addMapDecoration(md);

The next step is to set up and add the application data layers as FOI themes to the map view.
Just like the locations, they are defined in a constant table:

var foiThemes = new Array(

"BRANCHES",

"CUSTOMERS",

"COMPETITORS"

);

Here is how the FOI themes are defined:

for (i in foiThemes) {

theme = new MVThemeBasedFOI(foiThemes[i],datasourceName+"."+foiThemes[i]);

theme.setMinVisibleZoomLevel(minVisibleZoomLevel);

CHAPTER 14 ■ SAMPLE APPLICATIONS 591

8997ch14.qxd 10/2/07 4:24 PM Page 591

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

theme.setMaxWholeImageLevel(maxWholeImageLevel);

theme.setMinClickableZoomLevel(minClickableZoomLevel);

theme.setAutoRefresh(autoRefresh);

theme.enableInfoWindow(false);

theme.addEventListener('mouse_click', foiMouseClickEvent) ;

theme.addEventListener('after_refresh',foiAfterRefreshEvent);

theme.setVisible(false);

mapview.addThemeBasedFOI(theme);

}

You begin by setting the zoom levels that control the visibility of the themes. See Chapter 13 for
explanations of the meaning of the various levels:

theme.setMinVisibleZoomLevel(minVisibleZoomLevel);

theme.setMaxWholeImageLevel(maxWholeImageLevel);

theme.setMinClickableZoomLevel(minClickableZoomLevel);

Set the theme to refresh automatically (or not) based on setting one of the configuration constants:

theme.setAutoRefresh(autoRefresh);

Disable the display of the standard information window; you will use a custom-built window
instead:

theme.enableInfoWindow(false);

Add event listeners; one will be called each time you click one of the features in this theme.
This is how you will trigger your own information window. The second event will be called each
time the theme is refreshed by dragging the map or zooming. This will be used to maintain the side
list of features.

theme.addEventListener('mouse_click', foiMouseClickEvent) ;

theme.addEventListener('after_refresh',foiAfterRefreshEvent);

Finally, add the theme to the map. But before that, set it to be invisible. Nothing will happen
with this theme (no data read, no display) until it is set to be visible again.

theme.setVisible(false);

mapview.addThemeBasedFOI(theme);

The final step in the initialization sequence is to display the map:

mapview.display();

This effectively passes the control to MapViewer. All the other functions in our application will
be called as a consequence of some explicit or implicit user action, including mouse clicks, button
presses, URLs, and so on. This also means that control never returns from this call. Any code that
follows will never be executed.

Displaying the List of Features Currently on the Map
Whenever you move the map around by panning or zooming, whether directly or using the overview
map of the navigation panel, details about the features currently visible on the map will be shown in
a list format in the window at the right side of the map (the information panel). This works thanks to
the after_refresh event you declared for each FOI theme. The function foiAfterRefreshEvent()
handles the event and simply calls refreshInfoPanel().

function foiAfterRefreshEvent()

{

refreshInfoPanel()

}

CHAPTER 14 ■ SAMPLE APPLICATIONS592

8997ch14.qxd 10/2/07 4:24 PM Page 592

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The function refreshInfoPanel() shown in Listing 14-4 is actually called from multiple places:
when enabling or disabling a theme or when clicking the Refresh button. The information panel can
contain either the full list of visible features or the list of features returned by a radius query. The
function calls a separate function to handle each case.

Listing 14-4. Function refreshInfoPanel()

// --

// refreshInfoPanel()

// Updates the list of FOIs currently displayed in the info panel

// --

function refreshInfoPanel()

{

if (showSearchResults)

showSelectedFOIs();

else

showAllVisibleFOIs();

}

Function showAllVisibleFOIs() shown in Listing 14-5 processes the case where you are show-
ing all visible features. It runs through the list of themes, retaining only those that are currently
visible and, if they are, calls displayFOIList() to format the list of features currently on the map for
that theme. The function showSelectedFOIs() processes only the list of features selected in the cur-
rent radius search and also calls displayFOIList() to format them.

Listing 14-5. Function showAllVisibleFOIs()

// --

// showAllVisibleFOIs()

// List all currently visible FOIs in the right panel (PANEL_INFO)

// Do this only if FOIs are clickable, i.e. if the current zoom level

// is >= minClickableZoomLevel

// --

function showAllVisibleFOIs()

{

if (mapview.getZoomLevel() < minClickableZoomLevel)

return;

var html = '';

for (var i in foiThemes) {

theme = mapview.getThemeBasedFOI(foiThemes[i]);

if (theme.isVisible())

html += displayFOIList(theme, foiThemes[i]);

}

document.getElementById("PANEL_INFO").innerHTML=html;

}

The function displayFOIList() formats the list of features to be shown in the information
panel. It does so by dynamically generating an HTML table. See Listing 14-6.

Listing 14-6. Function displayFOIList()

// --

// displayFOIList()

// Display a list of FOIs

// --

function displayFOIList (theme, themeName)

{

CHAPTER 14 ■ SAMPLE APPLICATIONS 593

8997ch14.qxd 10/2/07 4:24 PM Page 593

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

// Extract the FOIs in this theme

var fois = theme.getFOIData();

// Nothing to display if list is empty

if (!fois)

return '';

var html = '<table>';

html += '<tr><td colspan="3">'+themeName+'</td></tr>';

for (var i in fois) {

// Build URL to display function

var href = 'javascript:locateFOI("' + themeName + '","' + fois[i].id + '")';

html += '<tr>';

// Marker symbol

html += '<td>' +

'' +

'<img src=' + baseURL + '/omserver?sty=m.' + themeName + '&ds=' +

datasourceName +'&f=png&w=12&h=12&aa=true" border="0">' +

'</td>';

// FOI ID

html += '<td>' +

'' + fois[i].attrs[0] + '</td>';

// FOI Name and telephone

html += '<td>' +

'<td>'+ fois[i].attrs[1] + ' ('+fois[i].attrs[2] +')</td>'

html += '</tr>';

}

html += '</table>
';

return html;

}

Notice that you add a link in each entry of the list that, when clicked, will display an informa-
tion window for this feature. The link calls the JavaScript function locateFOI(), which gets passed
two arguments: the name of the theme this feature belongs to (as in CUSTOMERS, BRANCHES, or
COMPETITORS) and the unique identifier of the feature.

Creating the Information Window
Just like the feature list is refreshed, an information window is displayed when triggered by an
event. This is the mouse_click event, handled by function foiMouseClickEvent(). The event handler
receives two input parameters: the location of the click and an object containing the data of the fea-
ture. You ignore the location of the click, since the actual location of the feature is contained in the
data object. Note that you save the data object in the global variable currentFOI. This is because you
need to pass the data object around between multiple functions invoked via dynamically generated
links.

function foiMouseClickEvent (loc, foi)

{

currentFOI = foi;

displayInfoWindow()

}

The function displayInfoWindow() shown in Listing 14-7 formats the information window using
input from the data object saved in the global variable and then adds it to the map view. It adds two
links on the window, both calling JavaScript functions. One of the links calls showFOIDetails() to dis-
play the complete content of the data object in the information panel at the right side of the map.
The other calls displaySearchWindow() to handle the search function.

CHAPTER 14 ■ SAMPLE APPLICATIONS594

8997ch14.qxd 10/2/07 4:24 PM Page 594

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 14-7. Function displayInfoWindow()

// --

// displayInfoWindow()

// Displays the information window when a FOI object is clicked.

// --

function displayInfoWindow()

{

foi = currentFOI

var html = '';

html += 'Id: '+foi.attrs[0]+'
';

html += 'Phone: '+foi.attrs[2]+'
';

html += '<p>More Info<a> ';

html += 'Search Around<a>';

width = 250;

height = 120;

loc = MVSdoGeometry.createPoint(foi.x,foi.y);

mapview.displayInfoWindow(loc, html, width, height,

"MVInfoWindowStyle1", " "+foi.name+" ");

}

Listing 14-8 shows the function showFOIDetails(). All it does is format the content of variable
currentFOI into the information panel.

Listing 14-8. Function showFOIDetails()

// --

// showFOIDetails()

// Shows details about one selected FOI in the INFO panel

// --

function showFOIDetails()

{

foi = currentFOI;

var html = '<h2>'+foi.name+'</h2>';

for (var i=0; i<foi.attrs.length; i++)

html += ''+foi.attrnames[i]+': '+foi.attrs[i]+'
';

document.getElementById("PANEL_INFO").innerHTML=html;

}

Searching “Within Radius”
Searching begins with the function displaySearchWindow() detailed in Listing 14-9 whose goal it is
to redraw the information window, allowing the user to select the parameters to be used for the
search. The parameters are a set of radio buttons allowing the user to choose the theme to search,
then a text input to enter the radius to search (in meters), and finally a button that, when clicked,
calls the function searchAround() to perform the actual search.

Listing 14-9. Function displaySearchWindow()

// --

// displaySearchWindow()

// Redisplays the information window with search selection information

// --

function displaySearchWindow()

{

foi = currentFOI;

var html = '';

CHAPTER 14 ■ SAMPLE APPLICATIONS 595

8997ch14.qxd 10/2/07 4:24 PM Page 595

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

html += 'Id: '+foi.attrs[0]+'
';

html += 'Phone: '+foi.attrs[2]+'
';

html += '<dl>';

for (i in foiThemes) {

html += '<dt>' +

'<input type="radio" name="searchThemes" value="' + foiThemes[i] + '"/>' +

foiThemeLabels[i];

}

html += '</dl>';

html += 'Radius: <input id="searchRadiusInput" size=2 value=500> meters';

html += ' <input type=button onclick="searchAround();" '+

'value="Search">'

html += '<p>Back<a>';

width = 250;

height = 120;

loc = MVSdoGeometry.createPoint(foi.x,foi.y);

mapview.displayInfoWindow(loc, html, width, height,

"MVInfoWindowStyle1", " "+foi.name+" ");

}

The function searchAround() extracts the name of the theme to search as well as the radius
from named HTML elements in the information window. Before going any further, it makes sure the
radio button selects a theme. It then proceeds to construct two more themes and adds them to the
map view. See Listing 14-10 for the source code.

Listing 14-10. Function searchAround()

// ---

// searchAround()

// Selects all features around the currently selected FOI

// ---

function searchAround()

{

// Get the currently selected FOI

var foi = currentFOI;

// Get the value of the chosen radius

var searchRadius = document.getElementById('searchRadiusInput').value;

// Get the name of the theme to search

var searchThemes = document.getElementsByName('searchThemes');

var searchThemeName = null;

for (var i=0; i<searchThemes.length; i++) {

if (searchThemes[i].checked)

searchThemeName = searchThemes[i].value;

}

if (!searchThemeName) {

alert ("Please select the theme to search");

return;

}

// Build the parameters for the search

var loc = MVSdoGeometry.createPoint(foi.x,foi.y,mapSRID);

var distanceString = 'distance='+searchRadius+' unit=m';

// Add the search window theme to the map view

if (searchBufferTheme)

CHAPTER 14 ■ SAMPLE APPLICATIONS596

8997ch14.qxd 10/2/07 4:24 PM Page 596

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

mapview.removeThemeBasedFOI(searchBufferTheme);

searchBufferTheme = new MVThemeBasedFOI('buffer', 'DYNAMIC_CIRCULAR_BUFFER');

searchBufferTheme.setQueryParameters(loc, searchRadius) ;

searchBufferTheme.setBoundingTheme(true);

searchBufferTheme.setClickable(false);

searchBufferTheme.enableImageCaching(true);

searchBufferTheme.setAutoRefresh(false);

mapview.addThemeBasedFOI(searchBufferTheme);

// Add the search theme to the map view. Remove it first if already shown

if (searchTheme)

mapview.removeThemeBasedFOI(searchTheme);

searchTheme = new MVThemeBasedFOI('search', searchThemeName+'_WD');

searchTheme.setQueryParameters(loc, distanceString) ;

searchTheme.setRenderingStyle("M.CYAN PIN");

searchTheme.enableImageCaching(true);

searchTheme.setAutoRefresh(false);

searchTheme.addEventListener('mouse_click', foiMouseClickEvent);

searchTheme.addEventListener('after_refresh', foiAfterRefreshEvent);

mapview.addThemeBasedFOI(searchTheme);

// Make controls appear

document.getElementById("PANEL_SEARCH_CONTROL").style.visibility="visible";

showSearchResults = true;

}

The first theme it adds (searchBufferTheme) is the one that renders a circular buffer represent-
ing the area searched (in other words, a circle of the chosen radius), centered on the point location
we search from. The buffer is generated using a predefined parameterized theme. Here is the defini-
tion of the theme:

insert into user_sdo_themes

(name, description, base_table, geometry_column, styling_rules)

values ('DYNAMIC_CIRCULAR_BUFFER','Dynamic circular buffers','DUAL','BUFFER_GEOM',

'<?xml version="1.0" standalone="yes"?>

<styling_rules>

<rule>

<features asis="true" style="C.BUFFER">

select sdo_geom.sdo_buffer (:1, :2, 0.05) buffer_geom from dual

</features>

</rule>

</styling_rules>'

);

The buffer is produced using the function SDO_GEOM.SDO_BUFFER(). The parameters to the func-
tion are set into the theme definition in JavaScript using this statement:

searchBufferTheme.setQueryParameters(loc, searchRadius) ;

The second theme added to the map view (searchTheme) is the one that actually selects the
features within the chosen radius from the origin point location. It is also built on a predefined
parameterized theme that corresponds to the theme being searched. Here is the definition of the
theme for searching customers:

insert into user_sdo_themes

(name, description, base_table, geometry_column, styling_rules)

values ('CUSTOMERS_WD','Searching customers','CUSTOMERS','LOCATION',

'<?xml version="1.0" standalone="yes"?>

CHAPTER 14 ■ SAMPLE APPLICATIONS 597

8997ch14.qxd 10/2/07 4:24 PM Page 597

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<styling_rules>

<hidden_info>

<field column="DATASRC_ID" name="POI Number"/>

<field column="NAME" name="Name"/>

<field column="PHONE_NUMBER" name="Telephone"/>

<field column="STREET_NUMBER" name="Number"/>

<field column="STREET_NAME" name="Street"/>

<field column="CITY" name="City"/>

<field column="POSTAL_CODE" name="ZIP"/>

<field column="STATE_ABRV" name="State"/>

<field column="CUSTOMER_GRADE" name="Grade"/>

<field column="CATEGORY" name="Category"/>

</hidden_info>

<rule >

<features asis="true" style="M.CUSTOMERS">

(sdo_within_distance (location, :1, :2) = 'TRUE')

</features>

<label column="NAME" style="T.BUSINESS NAME BLUE"> 1 </label>

</rule>

</styling_rules>

');

Here the parameters get inserted into an SDO_WITHIN_DISTANCE() operator. The first parameter
is the point location you search from, and the second is a distance expression. The following state-
ment sets the parameter values in the theme definition:

var distanceString = 'distance='+searchRadius+' unit=m';

searchTheme.setQueryParameters(loc, distanceString) ;

Notice that you also add two event listeners to the theme:

searchTheme.addEventListener('mouse_click', foiMouseClickEvent);

searchTheme.addEventListener('after_refresh', foiAfterRefreshEvent);

Both events are handled by the same listeners you defined earlier on the regular application
data themes. The mouse_click event allows the user to select individual features returned by the
search, therefore also enabling the user to get the full details about a feature and perform more
searches around a selected feature.

The after_refresh event makes sure the details of the features returned by the search appear
in the information panel.

Positioning on a Street Address
The start point for positioning on an address is the function geocodeAddress(), detailed in
Listing 14-11.That function is invoked when the user enters an address in the address input field
and clicks the Go button next to it. You first extract the address from the input field and then split
it up into an array of address lines, based on the commas present in the input. For example:
1250 Clay Street, San Francisco, CA will be split into three lines:

1250 Clay Street

San Francisco

CA

Then you build the XML request for the geocoding service. For details on the syntax of the XML
requests and responses, see Chapter 6.

CHAPTER 14 ■ SAMPLE APPLICATIONS598

8997ch14.qxd 10/2/07 4:24 PM Page 598

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 14-11. Function geocodeAddress()

// ---

// geocodeAddress()

// ---

function geocodeAddress()

{

// Get input address and split it into lines

var address = document.getElementById("address").value;

if (!address)

return;

var addressLines = address.split(',');

// Construct the XML request to the Geocoder

gcXML = '<geocode_request>'

gcXML += ' <address_list>'

gcXML += ' <input_location id="1" >'

gcXML += ' <input_address>'

gcXML += ' <unformatted country="US" >'

for (var i in addressLines)

gcXML += ' <address_line value="'+addressLines[i]+'" />';

gcXML += ' </unformatted >'

gcXML += ' </input_address>'

gcXML += ' </input_location>'

gcXML += ' </address_list>'

gcXML += '</geocode_request>'

var serverURL = "http://"+document.location.host+"/"+"geocoder/gcserver";

var queryString = encodeURI("xml_request="+gcXML);

// Call the geocoder via an asynchronous XMLHTTPRequest call

var response = callServer(serverURL, queryString, geocodeAddressComplete);

}

The last statement of the function calls the geocoding server. This is an asynchronous call. You
call the function callServer(), which uses the XMLHttpRequest mechanism to send the query to the
server. The callServer() function is detailed later in Listing 14-14. It needs three arguments:

• The first argument is the URL of the service to call.

• The second argument is the query string passed to the service.

• The third argument is the function to call when the response from the service is received.

In this case, when the call to the geocoding service completes, the function
geocodeAddressComplete() will be called. This function will receive one argument: the response
object returned by the XMLHttpRequest mechanism. See Listing 14-12 for the code of the function
geocodeAddressComplete().

Listing 14-12. Function geocodeAddressComplete()

// ---

// geocodeAddressComplete()

// This function gets called when the asynchronous XMLHTTPRequest call completes

// ---

function geocodeAddressComplete(response)

{

CHAPTER 14 ■ SAMPLE APPLICATIONS 599

8997ch14.qxd 10/2/07 4:24 PM Page 599

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

// The Geocode XML response looks like this:

/*

<geocode_response>

<geocode id="1" match_count="1">

<match sequence="0" longitude="-122.4135615" latitude="37.7932878"

match_code="1"

error_message="????#ENUT?B281CP?"

match_vector="????0101010??000?">

<output_address name="" house_number="1250" street="CLAY ST"

builtup_area="SAN FRANCISCO"

order1_area="CA" order8_area="" country="US" postal_code="94108"

postal_addon_code=""

side="L" percent="0.49" edge_id="23600695" />

</match>

</geocode>

</geocode_response>

*/

// Extract the results from the XML response returned by the server

var geocode = response.getElementsByTagName('geocode');

var match = geocode[0].getElementsByTagName('match');

var output_address = match[0].getElementsByTagName('output_address');

gc_longitude = match[0].getAttribute('longitude');

gc_latitude = match[0].getAttribute('latitude');

gc_house_number = output_address[0].getAttribute('house_number');

gc_street = output_address[0].getAttribute('street');

gc_builtup_area = output_address[0].getAttribute('builtup_area');

gc_state = output_address[0].getAttribute('order1_area');

gc_postal_code = output_address[0].getAttribute('postal_code');

if (gc_longitude == 0) {

alert ("Address not found");

return;

}

// Delete existing marker, if any

if (gcMarker)

mapview.removeFOI (gcMarker);

// Add a marker on the map

var gc_loc = MVSdoGeometry.createPoint(gc_longitude, gc_latitude, mapSRID);

gcMarker = new MVFOI("ADDRESS LOCATION", gc_loc, "SPATIAL.M.YELLOW PIN");

gcMarker.setWidth(30);

gcMarker.setHeight(50);

mapview.addFOI(gcMarker);

// Build an info window and add it to the marker

var html = '';

html += gc_house_number + " " + gc_street + "
";

html += gc_builtup_area + " " + gc_state + " " + gc_postal_code +"
";

html += '<p>Search Around<a>';

html += ' Clear<a>';

width = 250;

height = 120;

gcMarker.setInfoWindow (html, width, height);

CHAPTER 14 ■ SAMPLE APPLICATIONS600

8997ch14.qxd 10/2/07 4:24 PM Page 600

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

// Show the info window

mapview.displayInfoWindow(gc_loc, html, width, height, "MVInfoWindowStyle1");

// Center the map on the marker

mapview.setCenter(gc_loc) ;

// Save the marker

currentFOI = gcMarker;

}

The function first extracts the relevant information from the XML response, which includes the
longitude and latitude but also the corrected and completed address elements. The values are saved
in global variables so that they can easily be used by other functions.

■Note The parsing as done is not very sophisticated. All you do is extract the information from the first match in the
result, and you really do not check the various response codes (match_code, error_message, and match_vector).

The following step is to add a stand-alone FOI on the map at the point indicated by the coordi-
nates returned from the geocoder and to build an information window on the marker.

Finally, you display that information window and center the map on the location of the marker.

Searching Around the Street Address
Just like for regular information windows, the one built on the address marker contains a Search
Around link, pointing to the function displayMarkerSearchWindow(), shown in Listing 14-13.

Listing 14-13. Function displayMarkerSearchWindow()

// --

// displayMarkerSearchWindow()

// Redisplays the information window with search selection information

// --

function displayMarkerSearchWindow()

{

var foi = currentFOI;

var html = '';

html += gc_house_number + " " + gc_street + "
";

html += gc_builtup_area + " " + gc_state + " " + gc_postal_code +"
";

html += '<dl>';

for (i in foiThemes) {

html += '<dt>' +

'<input type="radio" name="searchThemes" value="' + foiThemes[i] + '"/>' +

foiThemeLabels[i];

}

html += '</dl>';

html += 'Radius: <input id="searchRadiusInput" size=2 value=500> meters';

html +=

' <input type=button onclick="searchAround();" value="Search">'

html += '<p>Back<a>';

width = 250;

height = 120;

loc = MVSdoGeometry.createPoint(foi.x,foi.y);

mapview.displayInfoWindow(loc, html, width, height, "MVInfoWindowStyle1");

}

CHAPTER 14 ■ SAMPLE APPLICATIONS 601

8997ch14.qxd 10/2/07 4:24 PM Page 601

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The information window is very much like the one you built before for other searches. It allows
the user to choose the theme to query and the radius to use. The Search button links to the same
searchAround() function we have already discussed.

Using the XMLHTTPRequest Mechanism
Listing 14-14 shows the functions used for the asynchronous server call. They are pretty much stan-
dard Ajax calls. The first function, callServer(), sends the request to the server, checks the result,
and invokes the response handler function.

The second function, getXMLHttpRequest(), contains the browser-dependent way to get the
XMLHttpRequest object.1

Listing 14-14. The XMLHTTPRequest Mechanism

// --

// callServer()

// --

function callServer(url, query, handler)

{

var req = getXMLHttpRequest();

req.open("POST", url, true);

req.setRequestHeader("Content-Type","application/x-www-form-urlencoded");

req.onreadystatechange = function() {

try {

if (req.readyState == 4)

if (req.status==200)

handler(req.responseXML);

else

alert ('Server call failed - '+req.status+' '+req.statusText);

}

catch (e) {

alert(e);

}

}

req.send(query);

}

// --

// getXMLHttpRequest()

// Get the XMLHttpRequest object (browser-dependent)

// --

function getXMLHttpRequest ()

{

if(window.ActiveXObject)

{

var req = null ;

CHAPTER 14 ■ SAMPLE APPLICATIONS602

1. For more details about Ajax and browser-dependencies, refer to Foundations of Ajax by Ryan Asleson and
Nathaniel T. Schutta (Apress, 2005).

8997ch14.qxd 10/2/07 4:24 PM Page 602

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

try

{

req=new ActiveXObject("Microsoft.XMLHTTP");

}

catch(e)

{

req=new ActiveXObject("Msxml2.XMLHTTP");

}

return req;

}

else

return new XMLHttpRequest();

}

The Java (JSP) Application
The second example application is written in Java, embedded in JavaServer Page (JSP), which includes
both the logic and the HTML code. To interact with MapViewer, you’ll use MapViewer’s Java API.

The features of the application are fairly similar to those of the JavaScript variant. The users will
be able to view the location of your branches, your customers, and the branches of your competitors
on a street-level map. They can find details about them and search them. They can enter a street
address, position the map on that address, and perform searches around that address.

Application Walk-Through
Just like for the JavaScript application, we will first walk you through the application and see what it
can do. Then we will explain how to implement the various features.

Starting the Application
Enter the following URL in your browser:

http://127.0.0.1:8888/mapviewer/spatial-book/sample-app/SampleApplication.jsp

If your setup is correct, you should now see a page like the one shown in Figure 14-8.
Just like for the JavaScript application, the map is centered on downtown San Francisco. The

initial center and size of the map is actually controlled by parameters you can pass to the applica-
tion. For example, the following URL positions the initial map on downtown Washington, D.C.:

http://127.0.0.1:8888/mapviewer/spatial-book/sample-app/SampleApplication.jsp➥
?initialCx=-77.03497825&initialCy=38.90819015

CHAPTER 14 ■ SAMPLE APPLICATIONS 603

8997ch14.qxd 10/2/07 4:24 PM Page 603

www.it-ebooks.info

www.freepdf-books.com

http://127.0.0.1:8888/mapviewer/spatial-book/sample-app/SampleApplication.jsp
http://127.0.0.1:8888/mapviewer/spatial-book/sample-app/SampleApplication.jsp%E2%9E%A5
http://www.it-ebooks.info/

Figure 14-8. Home page of the sample JSP application

Creating Application Home Page
The home page of the application consists of three main areas:

• The center area contains the map proper, with navigation buttons and controls.

• The left area lets you enter an address on which to position the map. It shows the current
position of the location mark (see the next section for details) and lets you perform searches
around it. This is also where you indicate what should happen when you click the map.

• The right area lets you control what application data should appear on the map—that is,
which application themes (branches, customers, or competitors) should be enabled. Once
a theme is displayed on a map, the application will allow you to click that theme (such as,
a particular branch) and display details specific to that theme. This information will also
appear in the right window (though none appears in Figure 14-8).

The bottom of the page contains a status area (the gray area where “New Session Started”
appears). This is where the application displays the SQL statements it sends to the database. It also
uses the status window to report any errors.

Underneath you can see various pieces of information, such as the name of the data source
used to connect to the database and the name of the base map used. The second row shows the cur-
rent center and size of the map, as well as the current scale.

CHAPTER 14 ■ SAMPLE APPLICATIONS604

8997ch14.qxd 10/2/07 4:24 PM Page 604

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Setting the Location Mark
The left area shows the current position (longitude and latitude) of a location mark. Initially, there is
no mark set, and the coordinates are shown as zero.

The location mark is the pivotal concept of the application. You use functions provided by
the application to set the location mark and other functions to perform searches and analyses
from that mark.

You can set the location mark by entering a street address; by selecting a branch, customer, or
competitor; or simply by clicking the map, as illustrated in Figure 14-9.

Figure 14-9. Using the location mark

The current position of the location mark is shown on the map using a yellow pin. The Clear
button next to the Location Mark setting resets it to zero. It also removes the yellow pin marker from
the map.

CHAPTER 14 ■ SAMPLE APPLICATIONS 605

8997ch14.qxd 10/2/07 4:24 PM Page 605

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Zooming, Panning, and Recentering
The application provides buttons for navigating around the map and adjusting the zoom level:

• The Pan buttons are used to shift the map in the indicated direction.

• The Zoom In and Zoom Out buttons do exactly what you would expect them to do.

• The Reset button essentially restarts the application. It resets the map to the origin settings
and clears all query and search results as well as the location mark.

• The Go to Mark button is an easy way to recenter the map on the current coordinates of the
location mark.

You can also reposition the map by simply clicking it. Make sure the radio button on the left is
set to Recenter.

Adding Application Data to the Map
The area on the right side of the page shows a list of business tables, from which you can select data
to incorporate into the map. Next to each table name is a radio button and a check box. Select the
check box for each of the tables you want to use to populate the map, and click the Update Map
button. The radio button lets you choose which of the application theme to query when you click
the map to identify objects. You’ll learn more about that later in this chapter.

The map in the center window is then refreshed with the tables you have chosen. Branches appear
as green triangles, customers appear as blue lozenges, and competitors appear as red squares. Notice
that not all these elements are labeled. This is because MapViewer tries its best to not overlay labels,
as shown in Figure 14-10.

Figure 14-10. Map showing the business information

The Clear All and Check All buttons clear and set all application themes, respectively. Note that
you still need to click the Update Map button to refresh the map.

CHAPTER 14 ■ SAMPLE APPLICATIONS606

8997ch14.qxd 10/2/07 4:24 PM Page 606

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Positioning on a Street Address
You can reposition the map at any time by simply entering a valid street address in the window at
the top left and clicking the Find button. Be sure to format the address on two lines. For example,
you can enter the following address:

600 Stockton Street

San Francisco, CA

The address is marked with a yellow pin. The right-side window shows the normalized and cor-
rected address.

■Note `The first time you position the map to a street address after starting up the application server, you will
notice a delay. This is because the Oracle geocoder initializes itself by reading and parsing the address-description
parameters in the database.

If the address you entered is incorrect or could not be found, the status window at the bottom
of the page will indicate this. Otherwise, you will see the SQL statement sent to the database to call
the geocoding function.

Note that the yellow pin indicates the current position of your location mark. The coordinates
(longitude and latitude) of that location mark are shown in the left area. This mark is important,
because you will use it as a starting point for searches. The status area shows the SQL statement
issued to perform the geocoding.

Figure 14-11 shows the result of positioning the map on the preceding address and showing the
branches.

Figure 14-11. Map positioned on an address

CHAPTER 14 ■ SAMPLE APPLICATIONS 607

8997ch14.qxd 10/2/07 4:24 PM Page 607

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Selecting and Identifying a Branch, Customer, or Competitor
Now that you can see all the application data (branches and so forth), you can find out more about
them by selecting one of them using the mouse.

First, you need to tell the application what it should do when you click the map. For example,
you should indicate that when you next click the map, you do not want to reposition it on the point
you clicked; rather, you want to get information on the application theme object (the branch) that is
on the map on that point. For that, make sure to select the Identify option.

Then you need to tell the application which of the application themes you will be selecting
from by using the radio button in front of the theme names. For example, if you want to find out
details of a branch by clicking the map, first select the radio button in front of the branches table in
the selection area.

Now to select a branch, simply move the mouse on the symbol for that branch (the green triangle),
and click. The branch will be flagged using a yellow pin, and details on the branch will be shown
inside the right window.

Figure 14-12 shows the results of identifying a branch.

Figure 14-12. Identifying a branch

The location mark is now set to the location of the branch you just selected. You can use this mark
to search from the selected branch. The process is identical to selecting a customer or a competitor.

■Note The selection could actually return multiple matches (multiple customers or competitors) if they are at the
same address or are close together.

CHAPTER 14 ■ SAMPLE APPLICATIONS608

8997ch14.qxd 10/2/07 4:24 PM Page 608

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Searching “Within Distance”
The application lets you search only for visible information. In other words, the theme you want to
search (branches, customers, or competitors) must be shown on the map.

Remember that to make a theme visible, you need to select the check box directly in front of
the theme’s name in the right window and then click the Update Map button.

Next, go to the “Search from Location Mark” area. Select the competitors theme from the drop-
down list and enter a distance (for example, 150 meters). Then click the Find button.

The new map marks all competitors within the specified distance with a blue pin. The com-
petitors’ details are shown in the right window, as illustrated in Figure 14-13, which shows the results
of a search for all competitiors within 150 meters from the branch selected in the previous example.
Notice the new SEARCH RESULTS theme that appears in the right window to represent the dynamic
results of the search. You can uncheck it to remove the results from the map.

Figure 14-13. Results of a “within distance” search

Note that the search radius could be larger than the area currently shown on the map. All
matches will be returned, even those that are outside the current map window. However, you will
have to zoom out manually to make those matches appear on the map.

The SQL query used to find those competitors is shown in the status window. Clicking the Clear
button in the search area removes the query results from the map.

You can repeat this operation for customers. First add the customers to the map, then select
the customers table from the drop-down list, and finally click the Find button.

Setting a Mark on the Map
You can also set the location mark directly on the map. This lets you perform searches from
anywhere. All you need to do is select the Mark option under the map window and then click any-
where on the map.

The location mark, identified by the yellow pin, is now set to the place you clicked.

CHAPTER 14 ■ SAMPLE APPLICATIONS 609

8997ch14.qxd 10/2/07 4:24 PM Page 609

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Searching for Nearest Neighbors
Navigate to the “Find nearest from Location Mark” area of the left window. Select the branches table
from the drop-down list, and enter the number of branches to show. Then click the Find button.

The result is much like the one from the previous search; the nearest branches to the location
mark you set are marked with blue pins, and their details are shown in the window on the right. See
Figure 14-14 for an illustration.

Note that the nearest branch may actually be far away and outside the area currently shown on
the map. You will see it by zooming out.

The status window shows the SQL query used to find the nearest branch.

Figure 14-14. Results of a “nearest neighbor” search

Under the Hood
The general logic of the application is fairly simple, as shown in Figure 14-15. The application is
written as a single JSP page, which contains the application logic proper (in Java) as well as the
HTML output.

CHAPTER 14 ■ SAMPLE APPLICATIONS610

8997ch14.qxd 10/2/07 4:24 PM Page 610

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 14-15. Flow of the sample application

The HTML page contains a single form. All user actions (for example, button presses and mouse
clicks on the map) are posted back to the JSP as request parameters.

The main logic of the application is therefore as follows:

1. Parse the request parameters.

2. Process the user request.

3. Display the HTML output.

We will now look at the major functions implemented by the application.

Initializing the Application: The “Reset” Action
This is where you initialize the MapViewer object and save it in your session. Here, you also set up
and request the initial map. See Listing 14-15 for the source code.

Note that this action is called under three circumstances:

• When the application is launched the first time

• When the user clicks the Reset button

• If the MapViewer object is no longer in the session, which means the session expired

CHAPTER 14 ■ SAMPLE APPLICATIONS 611

8997ch14.qxd 10/2/07 4:24 PM Page 611

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The name of the base map, the data source, the initial center and size of the map, and the size
of the map in pixels are all defined in variables. The defaults are such that the initial map is posi-
tioned on downtown San Francisco.

Listing 14-15. Reset Action

// ---

// [Reset] button clicked

// Initialize the MapViewer object with the original center and size

// ---

if (userAction.equals("Reset")) {

// Create and initialize new MapViewer object)

mv = new MapViewer(mapViewerURL);

mv.setDataSourceName(dataSource); // Data source

mv.setBaseMapName(baseMap); // Base map

for(int i=0; i<appThemes.length; i++) { // Additional themes

mv.addPredefinedTheme(appThemes[i]); // Theme name

mv.setThemeScale(appThemes[i],

appThemeMinScale, 0.0); // Scale limits

}

mv.setAllThemesEnabled(false); // Themes disabled

mv.setMapTitle(" "); // No title

mv.setImageFormat(MapViewer.FORMAT_PNG_URL); // Map format

mv.setDeviceSize(new Dimension(mapWidth, mapHeight)); // Map size

// Save MapViewer object in session

session.setAttribute("MapviewerHandle", mv);

// Set initial map position and display it

mv.setCenterAndSize(initialCx, initialCy, initialSize);

mv.run();

// Set default options

clickAction = "recenter";

markX = 0;

markY = 0;

}

Zooming, Panning, and Recentering
Zooming is straightforward. You just use the zoomIn() or zoomOut() method of the MapViewer object.
Those methods take a zoom factor value as argument. To make the application more flexible, this
factor is defined in a variable:

double zoomFactor = 1.5; // Zoom factor

The zoomIn() and zoomOut() methods behave like the run() method. They submit a map
request to the MapViewer server and process the response. Listing 14-16 shows the source code for
using these methods.

CHAPTER 14 ■ SAMPLE APPLICATIONS612

8997ch14.qxd 10/2/07 4:24 PM Page 612

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 14-16. Zoom Actions

// ---

// [Zoom XXX] button clicked

// Zoom in or out by a fixed factor

// ---

else if (userAction.equals("Zoom In"))

mv.zoomIn(zoomFactor);

else if (userAction.equals("Zoom Out"))

mv.zoomOut(zoomFactor);

Panning is just as straightforward as zooming. The pan() method of the MapViewer object recen-
ters the map to a new location. Note that the coordinates that pan() expects should be in image
coordinates (not in geographical coordinates).

Like the zoomIn() and zoomOut() methods, pan() submits a new map request to the MapViewer
server and processes the response. Listing 14-17 shows the source code.

Listing 14-17. Pan Actions

// ---

// [Pan XXX] button clicked

// Shift map 50% in the desired direction.

// ---

else if (userAction.equals("Pan W"))

mv.pan (0, mapHeight/2);

else if (userAction.equals("Pan N"))

mv.pan (mapWidth/2, 0);

else if (userAction.equals("Pan S"))

mv.pan (mapWidth/2, mapHeight);

else if (userAction.equals("Pan E"))

mv.pan (mapWidth, mapHeight/2);

Recentering the map to the point identified by a mouse click is easy as well. All you need to do
is extract the coordinates of the mouse click. They are passed as subattributes .x and .y of the
attribute that corresponds to the map image on the HTML page (defined as an input element of
type image).

Again, the fact that the pan() method uses image coordinates makes the repositioning easy to
write—just pass it the coordinates of the mouse click directly. It will convert the coordinates to geo-
graphical coordinates and submit a new map request. Listing 14-18 shows the source code.

Listing 14-18. reCenter Action

// ---

// Map clicked to recenter

// Use the coordinates of the clicked point as new map center

// ---

else if (userAction.equals("reCenter")) {

// Extract coordinates of mouse click

int imgCX = Integer.parseInt(request.getParameter("mapImage.x"));

int imgCY = Integer.parseInt(request.getParameter("mapImage.y"));

// Pan to that position

mv.pan (imgCX, imgCY);

}

CHAPTER 14 ■ SAMPLE APPLICATIONS 613

8997ch14.qxd 10/2/07 4:24 PM Page 613

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Adding Application Data to the Map
The application themes (whose names are defined in the variable appThemes) are initially not visible.
Their visibility is controlled using the enableThemes() method of the MapViewer object, as shown in
Listing 14-19.

The list of themes to be enabled is in the variable checkedThemes[]. This is a string array that is
populated from the request parameter of the same name, which itself gets set via a <checkbox>

element in the HTML page. If that list is empty, then you use the setAllThemesEnabled(false)
method to disable all the application themes. Finally, the run() method requests a refresh of the map.

Listing 14-19. updateMap Action

// ---

// [Update Map] button clicked

// Enable the themes selected by the user and refresh the map

// ---

else if (userAction.equals("Update Map")) {

if (checkedThemes == null)

mv.setAllThemesEnabled(false);

else

mv.enableThemes(checkedThemes);

mv.run();

}

Positioning on a Street Address
Let’s now examine how to position the map on a street address. For that, you call the geocoder and
use the resulting coordinates. The format of the address must be acceptable to the geocoder. The appli-
cation passes it to the geocoder exactly as you type it. For U.S. addresses, you can write the address on
two, three, or more lines. See Chapter 6 for details.

After splitting the input address, you construct the SQL statement to call the geocoder. Here
you will submit the query using the doQuery() method of the MapViewer object. However, just like
identify(), the doQuery() method returns the result as arrays of strings—it cannot return objects.
You therefore need to write the query in a slightly convoluted way to extract individual results from
the SDO_GEO_ADDR object returned by the call to the geocoder.

A typical query sent to the database looks like this:

SELECT G.GEO_ADDR.MATCHCODE,

G.GEO_ADDR.LONGITUDE,

G.GEO_ADDR.LATITUDE,

G.GEO_ADDR.HOUSENUMBER || ' ' || G.GEO_ADDR.STREETNAME,

G.GEO_ADDR.SETTLEMENT || ' ' || G.GEO_ADDR.POSTALCODE

FROM (

SELECT SDO_GCDR.GEOCODE(

USER,

SDO_KEYWORDARRAY(

'600 Stockton Street','San Francisco, CA'),

'US', 'DEFAULT')

GEO_ADDR

FROM DUAL) G

Once the query is completed, you extract the results: the match code, the longitude and lati-
tude, and the first address line.

You then add a point feature (a yellow pin) at the location returned and save the coordinates as
the new value for the location mark. Note that the point feature is also labeled with the corrected
address returned by the geocoder.

CHAPTER 14 ■ SAMPLE APPLICATIONS614

8997ch14.qxd 10/2/07 4:24 PM Page 614

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 14-20 shows the source code.

Listing 14-20. Find Action

// ---

// [Find] button clicked:

// Geocode the entered address.

// Center map on the resulting coordinates.

// Set mark on that point.

// ---

else if (userAction.equals("Find")) {

// Extract address details

String[] addressLines = findAddress.split("\r\n");

// Construct query to geocoder

String gcQuery =

"SELECT "+

"G.GEO_ADDR.MATCHCODE, G.GEO_ADDR.LONGITUDE, "+

"G.GEO_ADDR.LATITUDE, " +

"G.GEO_ADDR.HOUSENUMBER || ' ' || G.GEO_ADDR.STREETNAME, " +

"G.GEO_ADDR.SETTLEMENT || ' ' || G.GEO_ADDR.POSTALCODE " +

"FROM (SELECT SDO_GCDR.GEOCODE(USER ,SDO_KEYWORDARRAY(";

for (int i=0; i<addressLines.length; i++) {

gcQuery = gcQuery + "'" + addressLines[i] + "'";

if (i < addressLines.length-1)

gcQuery = gcQuery + ",";

}

gcQuery = gcQuery + "), 'US', 'DEFAULT') " +

"GEO_ADDR FROM DUAL) G";

// Send query

String[][] f = mv.doQuery(dataSource, gcQuery);

// Extract match code. Proceed only if > 0

int matchCode = Integer.parseInt(f[1][0]);

if (matchCode > 0) {

// Extract X and Y coordinates from geocode result

double destX = Double.valueOf(f[1][1]).doubleValue();

double destY = Double.valueOf(f[1][2]).doubleValue();

// Extract full street address from result

String streetAddress = f[1][3];

// Transform result from row-major to column-major

geocodeInfo = new String[f[0].length-3];

for (int i=0; i<f[0].length-3; i++)

geocodeInfo[i] = f [1][i+3];

// Center map on the new address and zoom in

mv.setCenterAndSize(destX, destY, markerMapSize);

// Remove any existing marker

mv.removeAllPointFeatures();

CHAPTER 14 ■ SAMPLE APPLICATIONS 615

8997ch14.qxd 10/2/07 4:24 PM Page 615

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

// Add a marker at the point clicked and label it

// with the first address line

mv.addPointFeature (

destX, destY,

mapSrid,

markerStyle,

streetAddress,

markerLabelStyle,

null,

true);

// Save new mark

markX = destX;

markY = destY;

// Show SQL statement

mapError = gcQuery;

// Refresh map

mv.run();

}

else

mapError = "Address not found";

}

Identifying a Branch, Customer, or Competitor
Here is how you get details about business data shown on the map, including branches, customers,
and competitors.

The first step is, as for other map click actions, to get the coordinates of the point clicked on the
map. You also verify that a theme (branches, customers, or competitors) is selected for identification
and that the theme is also shown on the map.

You then use the identify() method of the MapViewer object. This method is passed the name
of the theme to select from as well as the list of columns to return. It also needs the coordinates of
the mouse click.

Since you are selecting points, it is impossible to click exactly on the point to identify. You
therefore enlarge the area of the click by passing a small rectangular region to the method. This rec-
tangle is constructed by specifying the coordinates of the lower-left and upper-right corners as 4 pixels
away from the user click.

The colsToSelect argument defines the name of the columns to return:

String[] colsToSelect // Columns to select for application themes

= new String[]{

"ID",

"NAME",

"STREET_NUMBER||' '||STREET_NAME ADDRESS",

"CITY",

"POSTAL_CODE",

"STATE",

"PHONE_NUMBER"

};

CHAPTER 14 ■ SAMPLE APPLICATIONS616

8997ch14.qxd 10/2/07 4:24 PM Page 616

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that you ask for the street_number and street_name columns to be concatenated. The
result of the identify() method is an array of string arrays (String[][]). The first row of strings con-
tains the names of the columns, and the following row contains the value returned for each column.
You transpose this result into another array so that the first column contains the column names and
the subsequent columns contain the corresponding values.

Finally, proceed the same way as for the manual setting of the mark; add a point feature on the
object found, and save the coordinates as the new value for the location mark.

Listing 14-21 shows the source code.

Listing 14-21. identify Action

// ---

// Map clicked to identify a feature.

// Get the coordinates of the clicked point

// use them to query the feature from the selected theme

// ---

else if (userAction.equals("identify")) {

// Extract coordinates of mouse click

int imgCX = Integer.parseInt(request.getParameter("mapImage.x"));

int imgCY = Integer.parseInt(request.getParameter("mapImage.y"));

if (identifyTheme == null)

mapError = "No theme selected to identify";

else if (!mv.getThemeEnabled(identifyTheme))

mapError = "Theme "+identifyTheme+" is not visible";

else {

// Locate the feature and get details

// Notes:

// 1. The identify() method needs a TABLE NAME, not a theme name.

// We just assume that the theme and table name are the same.

// 2. We query a rectangle of 4 pixels around the user click. Notice,

// however, that pixels have their origin at the UPPER-LEFT corner

// of the image, whereas ground coordinates use the LOWER-LEFT

// corner.

String[][] f = mv.identify(dataSource, identifyTheme, colsToSelect,

geoColumn, mapSrid,

imgCX-4, imgCY+4,

imgCX+4, imgCY-4,

false);

// The result is one row per matching record, but we want to display

// results as one column per record.

if (f!= null && f.length > 0) {

featureInfo = new String[f[0].length][f.length];

for (int i=0; i<f.length; i++)

for (int j=0; j<f[i].length; j++)

featureInfo[j][i] = f [i][j];

featuresFound = f.length-1;

} else

mapError = "No matching " + identifyTheme + " found";

CHAPTER 14 ■ SAMPLE APPLICATIONS 617

8997ch14.qxd 10/2/07 4:24 PM Page 617

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

if (featuresFound > 0) {

// Remove any existing marker

mv.removeAllPointFeatures();

// Add a marker at the point clicked

Point2D p = mv.getUserPoint(imgCX,imgCY);

mv.addPointFeature (p.getX(), p.getY(),

mapSrid, markerStyle, null, null, null);

// Save new mark

markX = p.getX();

markY = p.getY();

// Refresh map

mv.run();

}

}

}

■Note The identify() method needs a table name as input, not a theme name. MapViewer does not provide
a method to retrieve the name of the table associated with a theme. For this application, you assume the themes
to identify have the same names as the tables they use. For example, the competitors theme is defined on the
competitors table.

Setting a Mark on the Map
As for the reCenter action, you first must get the coordinates of the point just clicked for this action.
You then use the addPointFeature() method to define a new point feature to the map.

However, the addPointFeature() method wants geographical coordinates, so you must first
convert the mouse click from image to geographical coordinates by using the getUserPoint()
method:

Point2D p = mv.getUserPoint(imgCX,imgCY);

This method returns a java.awt.geom.Point2D object from which you extract the x,y coordi-
nates and pass them to addPointFeature(). You also save those coordinates as the location mark
(that is, in the markX and markY variables).

The markerStyle argument defines the style to be used for rendering the location mark on the
map. It is defined as follows:

String markerStyle ="M.YELLOW PIN"; // Style for location mark

Listing 14-22 shows the source code.

Listing 14-22. setMark Action

// ---

// Map clicked to set a mark

// Get the coordinates of the clicked point and use them to set a mark

// at that point

// ---

else if (userAction.equals("setMark")) {

CHAPTER 14 ■ SAMPLE APPLICATIONS618

8997ch14.qxd 10/2/07 4:24 PM Page 618

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

// Extract coordinates of mouse click

int imgCX = Integer.parseInt(request.getParameter("mapImage.x"));

int imgCY = Integer.parseInt(request.getParameter("mapImage.y"));

// Remove any existing marker

mv.removeAllPointFeatures();

// Add a marker at the point clicked

Point2D p = mv.getUserPoint(imgCX,imgCY);

mv.addPointFeature (p.getX(), p.getY(),

mapSrid, markerStyle, null, null, null);

// Save new mark

markX = p.getX();

markY = p.getY();

// Refresh map

mv.run();

}

Searching “Within Distance”
All the code you have seen so far deals with displaying the map and locating places, filling the loca-
tion mark. The rest of the code will use the location mark as a starting point for performing searches.

The first search operation is to find all the customers, branches, or competitors that are within
a chosen distance from the current location mark. Listing 14-23 shows the source code for this.

First check whether all the information is available to do the search; the location mark must
have been set (either manually; by going to a street address; or by selecting a branch, customer, or
competitor). The theme to search must be visible. You can search for customers, for example, only if
they are shown on the map.

You want the results of the search in two formats:

• Highlight the matching objects on the screen (mark them with blue pins).

• Show information about each object (name, address, telephone number, and so on).

Unfortunately, MapViewer provides no method that can combine both effects. You therefore
have to perform the two operations separately.

You will start by constructing a SQL query that uses the SDO_WITHIN_DISTANCE operator. You will
then add this query to the map as a dynamic JDBC theme using the addJdbcTheme() method. The
queryStyle argument defines the style to be used for rendering the results on the map. It is defined
as follows:

String queryStyle = "M.CYAN PIN"; // Style for query result markers

Continue by using the queryWithinRadius() method. This method returns all objects in a theme
that are within a chosen radius from a starting point. Just like the identify() and doQuery() methods,
the results are returned as a string array that you have to reformat.

■Note The distance is entered in meters. This is because queryWithinRadius() has no mechanism to let the
user specify a unit for the radius to search. The radius is always assumed to be in the units used for the theme
being queried or meters if the theme is in a geodetic coordinate system, which is the case in this example. Allow-
ing the user to choose a different unit is left as an exercise for the reader.

CHAPTER 14 ■ SAMPLE APPLICATIONS 619

8997ch14.qxd 10/2/07 4:24 PM Page 619

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 14-23. distSearch Action

// ---

// [distSearch] button clicked

// Search for all neighbors within distance D from the current set mark.

// ---

else if (userAction.equals("distSearch")) {

if (markX == 0 && markY == 0)

mapError = "No address or mark set";

else if (!mv.getThemeEnabled(distSearchTheme))

mapError = "Theme "+distSearchTheme+" is not visible";

else if (distSearchParam <= 0)

mapError = "Enter search distance";

else {

// Construct spatial query

String sqlQuery = "SELECT "+geoColumn+" FROM " + distSearchTheme

+ " WHERE SDO_WITHIN_DISTANCE ("+ geoColumn + ","

+ " SDO_GEOMETRY (2001," + mapSrid + ", SDO_POINT_TYPE("

+ markX + "," + markY + ",NULL), NULL, NULL), "

+ "'DISTANCE="+distSearchParam+" UNIT=M') = 'TRUE'";

mapError = "Executing query: "+ sqlQuery;

// Add a JDBC theme to highlight the results of the query

mv.addJDBCTheme (

dataSource, // Data source

"SEARCH RESULTS", // Theme to search

sqlQuery, // SQL Query

geoColumn, // Name of spatial column

null, // srid

queryStyle, // renderStyle

null, // labelColumn

null, // labelStyle

true // passThrough

);

// Perform the query

String[][] f = mv.queryWithinRadius(

dataSource, // Data source

distSearchTheme, // Theme to search

colsToSelect, // Names of columns to select

null, // Extra condition

markX, markY, // Center point (current mark)

distSearchParam, // Distance to search

false // Center point is in ground coordinates

);

if (f!= null && f.length > 0) {

// The result is one row per matching record, but we want to display

// results as one column per record.

featureInfo = new String[f[0].length][f.length];

for (int i=0; i<f.length; i++)

for (int j=0; j<f[i].length; j++)

featureInfo[j][i] = f [i][j];

featuresFound = f.length-1;

CHAPTER 14 ■ SAMPLE APPLICATIONS620

8997ch14.qxd 10/2/07 4:24 PM Page 620

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

// Refresh map

mv.run();

} else

mapError = "No matching " + distSearchTheme + " found";

}

}

Searching for Nearest Neighbors
The “nearest neighbor” search is similar to the previous case. The only differences are that you gen-
erate a query that uses the SDO_NN operator and that you use the queryNN() method of the MapViewer
object instead of the queryWithinRadius() method. Listing 14-24 shows the source code.

Listing 14-24. nnSearch Action

// ---

// [nnSearch] button clicked

// Search the N nearest neighbors from the current set mark.

// ---

else if (userAction.equals("nnSearch")) {

if (markX == 0 && markY == 0)

mapError = "No address or mark set";

else if (!mv.getThemeEnabled(nnSearchTheme))

mapError = "Theme "+nnSearchTheme+" is not visible";

else if (nnSearchParam <= 0)

mapError = "Enter number of matches to search";

else {

// Construct spatial query

String sqlQuery = "SELECT "+geoColumn+", SDO_NN_DISTANCE(1) DISTANCE"

+ " FROM " + nnSearchTheme

+ " WHERE SDO_NN ("+ geoColumn + ","

+ " SDO_GEOMETRY (2001," + mapSrid + ", SDO_POINT_TYPE("

+ markX + "," + markY + ",NULL), NULL, NULL), "

+ "'SDO_NUM_RES="+nnSearchParam+"',1) = 'TRUE'"

+ " ORDER BY DISTANCE";

mapError = "Executing query: "+ sqlQuery;

// Add a JDBC theme to highlight the results of the query

mv.addJDBCTheme (

dataSource, // Data source

"SEARCH RESULTS", // Theme to search

sqlQuery, // SQL Query

geoColumn, // Name of spatial column

null, // srid

queryStyle, // renderStyle

null, // labelColumn

null, // labelStyle

true // passThrough

);

// Perform the query

String[][] f = mv.queryNN(

dataSource, // Data source

CHAPTER 14 ■ SAMPLE APPLICATIONS 621

8997ch14.qxd 10/2/07 4:24 PM Page 621

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

nnSearchTheme, // Theme to search

colsToSelect, // Names of columns to select

nnSearchParam, // Number of neighbors

markX, markY, // Center point (current mark)

null, // Extra condition

false, // Center point is in ground coordinates

null

);

if (f== null || f.length == 0)

mapError = "No matching " + nnSearchTheme + " found";

else {

// The result is one row per matching record, but we want to display

// results as one column per record.

featureInfo = new String[f[0].length][f.length];

for (int i=0; i<f.length; i++)

for (int j=0; j<f[i].length; j++)

featureInfo[j][i] = f [i][j];

featuresFound = f.length-1;

// Refresh map

mv.run();

}

}

}

Summary
In this chapter, we described how to create sample applications to perform a variety of spatial
analyses and integrate the results with visualization using MapViewer.

We explained how to set up each component, such as the geocoder and MapViewer, and how
to integrate these components in a simple application. This application can be easily integrated
into the business logic of most Oracle applications.

In the next chapter, we describe several case studies using Oracle Spatial technology in different
applications. These case studies will give you an idea of how businesses are using and integrating dif-
ferent components of spatial functionality.

CHAPTER 14 ■ SAMPLE APPLICATIONS622

8997ch14.qxd 10/2/07 4:24 PM Page 622

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Case Studies

This chapter describes five case studies that illustrate how to use Oracle Spatial for storing, analyz-
ing, visualizing, and integrating spatial data in business and government applications. These are
large, complex applications that include several components and software tools besides Oracle Spa-
tial, but they rely on Oracle Spatial for handling all spatial data.

The emphasis in this chapter is on the requirements and the implementation context for these
applications, as well as on the way Oracle Spatial was introduced to satisfy these requirements. In
each case study, we identify the main uses of Oracle Spatial and, where appropriate, provide some
detailed examples. It is outside the scope of this chapter to provide a comprehensive and detailed
description of the technical implementation of Oracle Spatial in these cases. However, most of the
steps illustrated in detail in Chapter 14 have been used in these applications.

All solutions described here are in use, and a number have been in use for some time already.
For each case study, we introduce the context in which the application was conceived and designed
so that you can understand the needs and constraints of each implementation. We then focus on
the part of the solution/system that uses Oracle Spatial and describe how, why, and with what bene-
fits it was deployed.

Overview of the Case Studies
The first case study we examine in this chapter, BusNet, illustrates how to use Oracle Spatial for
managing the bus network of London. It serves to improve the planning and management of the
bus schedules and routes, to share information with users of this information, and to integrate the
system with the de facto national standard for spatial data. The case study illustrates data loading
and validation (see Chapter 5), spatial analysis (see Chapter 8), and network analysis (see Chapter
10). The system extensively uses the linear referencing model of Oracle Spatial (see Appendix B).

The P-Info case study describes a system to provide mobile, location-enabled access to
mission-critical information for police officers operating in the field. P-Info provides secure access
to all databases of the Dutch police from a handheld device that exchanges data with the servers
using the GSM or UMTS telephone network. Spatial information is used for spatial selections and
overlays (see Chapters 8 and 9), to visualize locations and maps (see Chapter 12), and to geocode
and reverse geocode addresses (see Chapter 6).

The Risk Repository for Hazardous Substances is a national system in the Netherlands that gives
access to information on risk and possible effects for all locations involved in storing, processing,
and transporting hazardous substances. This information is available to citizens from the Web and to
professional users involved in the prevention, response, and mitigation of incidents related to haz-
ardous substances. This case study discusses spatial analysis (see Chapters 8 and 9) and data loading
and validation (see Chapter 5).

623

C H A P T E R 1 5

■ ■ ■

8997ch15.qxd 9/28/07 10:17 AM Page 623

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The USGS National Land Cover Visualization and Analysis Tool case study provides a single access
point to land-cover data for the United States. The tool provides to both expert and nonexpert users
access to the USGS Land Cover data, which incorporates the entire 30m×30m-resolution National Land
Cover Data repository for 1992 and 2001, as well as the changes occurred in the meantime. This case
study discusses storing raster data in Oracle (see Appendix D) and the Oracle Java API (see Chapter 7).

The MilitaryHOMEFRONT LBS case study illustrates how to use Oracle Spatial for
storing and accessing point-of-interest information, as well as for geocoding and routing.
The MilitaryINSTALLATIONS web portal is intended as a source of information for troops and
their families who relocate to a different site as part of their careers in the U.S. military. The site
provides information on services, base layout, proximity to schools, clinics, and other points of
interest to allow families to become accustomed with their new home. The case study illustrates
the use of Oracle Spatial for storing and geocoding spatial data (see Chapter 6) and for routing
(see Chapter 11).

Notice that these applications are fully deployed and operational and therefore utilize earlier
versions of Oracle Spatial, usually 9i or 10g. This means all features and capabilities discussed in the
case studies are part of Oracle Spatial 11g, but some features of Oracle Spatial 11g are not visible in
these case studies.

Notice also that in these case studies, Oracle Spatial is used to store and retrieve all spatial data
used in the applications. The applications also use the loading mechanisms discussed in Chapter 5,
and they extensively use the spatial analysis discussed in Chapters 8 and 9; however, they also exploit
the possibility of accessing the SDO_GEOMETRY objects in Java to implement specific functionalities
required by the applications, as discussed in Chapter 7.

Spatial Information for Managing the London
Bus Network

■Note This section is based on the work of Olliver Robinson (business analyst at Transport for London, London
Buses), Prashan Rampersad, and Terry Allen. The authors want also to thank Transport for London for making the
background material available for this section of the chapter. You can find additional information on Transport for
London at www.tfl.gov.uk.

London’s transport system is one of the most comprehensive, complex, and articulate urban trans-
port systems in the world. It covers a vast area with 13,600 km of roads, 3,730 km of bus routes, 205 km
of dedicated bus lanes, 329 km of subway lines, 26 km of Docklands Light Railway (DLR) lines, 28 km
of new tramways, and 788 km of national rail lines in Greater London. Every day, more than 27 mil-
lion journeys are made in Greater London, 8.5 million of which take place on public transport
(4.5 million by bus, 3 million by subway, and 1 million by rail). The London bus system plays a cru-
cial role in getting and keeping London moving. About 6,500 buses are scheduled every day on more
than 700 different routes, amounting to about 1.5 billion passengers per year.

Transport for London (TfL) is the body responsible for managing the London transport system.
TfL is accountable for the planning and delivery of transport facilities, including London Buses, London
Underground, DLR, and London Trams. London Buses manages the bus services in London and,
along with London Underground, is the primary provider of urban public transport for the city. The
extent of the bus network and the number of passengers carried makes London Buses one of the largest
public transport providers in the world. The tasks of London Buses include bus route planning,
service-level definition, and quality of service monitoring. London Buses does not include the bus
services that are operated by private operators working under contract to London Buses. Each route
is competitively tendered every five years.

CHAPTER 15 ■ CASE STUDIES624

8997ch15.qxd 9/28/07 10:17 AM Page 624

www.it-ebooks.info

www.freepdf-books.com

http://www.tfl.gov.uk
http://www.it-ebooks.info/

London Buses is a success story of public transport that has been reshaped to meet the needs
of 21st-century urban life. Thanks to a more modern, punctual, and customer-focused network, the
buses of London are now carrying the highest number of passengers in more than 40 years. These
results can be achieved only with the sophisticated management of the bus network and an appro-
priate information system. London Buses needs to manage and maintain a complex bus network
that adapts continuously in response to changes in London’s growth, spatial pattern, and economic
and social developments. On average, half of the network is subject to some level of review each
year. Oracle Spatial has been introduced by London Buses as the core spatial component of BusNet,
the information system that supports the route network management.

BusNet
A variety of information systems are used to support London Buses’ responsibilities, including sys-
tems to record passenger information and surveys, to manage contracts with operators, to support
service controls, and to manage stops and shelters.

BusNet is the back-office application dedicated to bus-route network management. The sys-
tem is networked to about 400 staff and enables TfL to maintain and share reference information
supporting the following:

• Route definition: This includes the sequence of streets for each bus run on each route (contain-
ing a list of the road names composing the run) and the sequence of transit nodes (containing
the list of service access points for the runs).

• Version control for bus-route records for past, present, and future routes: The bus routes change
for several reasons, such as because of changes in the route segments, start and end points,
or stops. For a given route, BusNet usually contains several past expired records, the current
route, and one or more proposed versions for the future.

• Service change records that aid task workflow and enforce business rules: Examples are the
issue of a briefing and an amended route description.

• Detailed service definition: This includes, for instance, the operator name, the vehicles used,
the day type of service (for example, Monday–Friday nights), the time periods, the number of
buses per hour, and so on.

The introduction of Oracle Spatial as a basis for BusNet came at a time when London Buses real-
ized the need to improve the quality control of the route information, integrate the system with the de
facto national reference set for road data (the Ordnance Survey’s Integrated Transport Network [ITN],
and its predecessor called OSCAR1), and share route geometry definitions among internal and exter-
nal stakeholders such as local authorities. The existing systems were unable to achieve these goals,
and a new integrated system, BusNet, was developed to replace them. Spatial information manage-
ment is at the core of BusNet, which makes it possible to do the following:

• Store route diagrams as persistent data, based accurately on London’s road network.
This accommodates changes not only to bus routes over time but also to the road net-
work itself. (A route is the composition of route runs, the sequence of streets composing
the run, and turning points required at each extremity of the route or at intermediate
points to allow buses running late to turn around and get back on schedule.)

• Establish directionality to diagrams so that sequential street names could be derived with no
need for text data entry, in particular to support the route description document included in
the contract with each operator to run a route.

CHAPTER 15 ■ CASE STUDIES 625

1. www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/itn/

8997ch15.qxd 9/28/07 10:17 AM Page 625

www.it-ebooks.info

www.freepdf-books.com

http://www.ordnancesurvey.co.uk/oswebsite/products/osmastermap/itn
http://www.it-ebooks.info/

• Support complex diagram patterns such as loops and figure eights.

• Support the recording of passenger drop-off and pick-up points at terminal and intermediate
turning points on routes.

• Import and display related datasets such as bus stops owned by other systems so that they
can be displayed in conjunction with the routes they serve.

Spatial Data and Oracle Spatial in BusNet
The data model implemented in BusNet reflects the information needs illustrated in Figure 15-1.
This figure identifies an operator’s view and a technical planner’s view. The operator’s view focuses
on the detailed routing of a bus route and contains information such as the sequence of streets tra-
versed for each route run, the turning points, and the stands. This information allows operators to
implement the bus service on the route and is part of the contract with the operator. The technical
planner’s view includes details of how each route is physically operated in terms of legs of service,
days of the week, frequency per hour, vehicle types, and so on.

Figure 15-1. The operator’s and technical planner’s views

Figure 15-2 shows the data model used by BusNet to support just the operator’s view. The road
links are contained in a roads table (oscar_road) populated with the OSCAR road segments (“links”
consisting of lines and nodes, with attributes including the road number; the road name; the form
of the way, such as a divided highway or rotary; the road length; and so on). The passenger set-down
and pick-up locations associated with turning points are contained in a points table (point), which
also provides a warehouse for different types of spatial points, such as bus-stop locations, owned by

CHAPTER 15 ■ CASE STUDIES626

8997ch15.qxd 9/28/07 10:17 AM Page 626

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

and imported from other systems. These two tables contain an SDO_GEOMETRY column named geoloc
in Figure 15-2 and are the source of most spatial data used by BusNet.

Figure 15-2. The oscar_road and point tables contain an SDO_GEOMETRY.

The road links are sequences in the runolot table. The runtrav table derives sequenced street
names from the sequenced links and optionally chooses different street names where convenient
(for example, on a rotary). The route_run table combines all the links into a single route geometry.
The same data structure is used for maneuvers, which are micro-runs associated with the turning
points at each extremity of the route.2 Maneuvers also include set-down and pick-up point informa-
tion from the point table.

The oscar_road table is populated from ITN files supplied by Ordnance Survey. The custom-
built data-loading process is based on SQL*Loader, a bulk-loading utility used for moving data from
external files into the Oracle database. The loading steps are as follows:

1. Create a SQL*Loader control file.

2. Load the ITN table in BusNet from SQL*Loader.

3. Update SDO_GEOM_METADATA to introduce x,y and m parameters, where m (measure) supports
the Linear Referencing System (LRS).

4. Run SDO_LRS.REDEFINE_GEOM_SEGMENT to calculate the measure values (that is, the ms).

5. Run SDO_GEOM.VALIDATE_LAYER.

6. Create an R-tree index.

For each update of ITN, the new and live road datasets are compared with SDO_GEOM.RELATE,
which returns “equals” if geometries match. If a segment exists in the live database but not in the
new data, the status of the record is updated to Withdrawn. This prevents it from being used in new
route diagrams but allows the system to retain it as part of historic, or Expired, status routes. If
a record exists in the new dataset but not in the live one, the new record is inserted.

CHAPTER 15 ■ CASE STUDIES 627

2. Note that to allow buses running late to turn around and get back on schedule, a number of turning points
are also defined along the route.

8997ch15.qxd 9/28/07 10:17 AM Page 627

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

BusNet is available to end users through a client interface developed in Visual Basic. The spatial
functions provide the GIS interface to the system. This is particularly useful, for instance, in facilitating
the route definition (a record in the route_run table) based on selection of road links. Links can be
manually selected from the screen, or they can be identified automatically with an auto trace function.
The auto trace selects the minimum distance path between two points on the route network graph and
applies Dijkstra’s shortest path algorithm. The algorithm is implemented in the client BusNet applica-
tion, but it uses the SDO_WITHIN_DISTANCE function to select the links to evaluate for the shortest path
algorithm. It also exploits the linear referencing model to weight the links based on their lengths. On
completion of sequencing, the runolot and runtrav records are automatically saved to the database,
and the oscar links thus used are combined into a single geometry to populate the geoloc column in
the route_run table. The function SDO_LRS.CONCATENATE_GEOM_SEGMENTS is again used for this purpose.

User Interface for Spatial Data in BusNet
Figure 15-3 shows the result of a polygon spatial query (highlighted in the center of the image) around
a small section of road outside the TfL London Buses office. The query is created using the BusNet GIS
application, which makes it possible for users to define query areas of any shape. In the User Selection
pane on the right side of the screen, all spatial business objects found by Oracle Spatial within the
polygon are delivered as parent “labels,” including the whole of each route run that intersects the
polygon. This gives the user the choice of which of these he wants to view, because it is unlikely—and
unwise—to want to see everything all at once. Note the dotted line around the coach station indicat-
ing a terminus turning point maneuver for route C10 around the block. Note also the passenger
pick-up and set-down point, each near to its related bus stops icons (the small house images indicate
each stop has a bus shelter with it).

Figure 15-3. Spatial query and visualization of route information

CHAPTER 15 ■ CASE STUDIES628

8997ch15.qxd 9/28/07 10:17 AM Page 628

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 15-4 shows a zoomed-out view from the same query in Figure 15-3, this time displaying
bus stops in both directions (Runs 1 and 2) on Route 11. Note there is a C around two of the bus stop
icons—one on the far left and one in the middle. This indicates a “Countdown” sign, which is the
brand name of a dot-matrix indicator system showing passengers waiting at the stop when the next
few buses on each route are predicted to arrive.

Figure 15-4. Spatial query and visualization of route information: zoomed-out view

Figure 15-5 shows the result of a query based on the planner’s view of the BusNet object model,
which enables calculation of combined buses-per-hour frequencies on a given day type and time
period (in this case, Monday–Friday p.m. peak) at each service access point representing a bus stop
or bus-stop pair. To get this result, the user must first run a polygon query, then run the function
that runs a PL/SQL procedure to get all frequencies for each leg of service, and finally add them up
to produce a total for each service access point. Note the different raster map background from the
Ordnance Survey 1:10,000, in which the user interface has been designed to allow switching between
easily during a session. All this is available to the user from a total of about five mouse clicks, whereas
before this implementation all the information presented in this way would have taken at least a day
to compile. It is all immediately available from the single BusNet Oracle database and requires no
more daily data maintenance by users than the predecessor systems, from which no spatial data or
GIS leverage was possible.

CHAPTER 15 ■ CASE STUDIES 629

8997ch15.qxd 9/28/07 10:17 AM Page 629

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 15-5. The “planner’s view”

BusNet Conclusions
The introduction of BusNet makes it possible to simplify, standardize, and automate the distribution
of reliable bus route information at London Buses. A key feature of the system is its data structure. It
is both simple and flexible, and above all, it is strictly derived from the business logic applied by
London Buses for its operations.

The spatial functionality of BusNet extensively uses the operators and functions of Spatial and
the features of SDO_GEOMETRY, such as the linear referencing model. The availability of this model
simplifies several operations in BusNet, such as data loading, data deduplication, and short-path
searches. This was one of the reasons for choosing Oracle Spatial as a basis for BusNet. In general,
BusNet benefits from the possibility of using one database for spatial and nonspatial data types and
from the use of one language (SQL) for all data operations. The availability of a vast range of spatial
PL/SQL options has made it possible to implement the needs of BusNet in a neat and straightforward
manner. Oracle Spatial has also allowed BusNet to implement a clear separation between data and
application layer, data model and functional logic, and application and storage layer. The structural
features of Oracle Spatial, such as scalability, security, reliability, and support for Open Geospatial
standards, are also important factors for BusNet.

CHAPTER 15 ■ CASE STUDIES630

8997ch15.qxd 9/28/07 10:17 AM Page 630

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

P-Info: A Mobile Application for Police Forces

■Note P-Info was developed by the IT Service Cooperative Association for the Dutch police, Judicial Authorities,
and Public Safety Services (ISC) and by Geodan Mobile Solutions under the coordination of the Dutch Ministry of
the Interior and Kingdom Relations and with the cooperation of regional police organizations.

The law enforcement sector faces an increasing demand for effective and efficient performance.
Recent increases in urban criminality, the growing concern about youth crime, and the sense of
insecurity generated by the threat of terrorism have led to a growing demand for security. The police
and other law enforcement agencies are expected to ensure more timely responses and improve
preventive measures. These demands, however, stress the capacity of these organizations and impose
on them more serious requirements than ever before.

Police work has always relied heavily on information management. Proper and timely informa-
tion makes it possible for law enforcement agencies to achieve expected goals, and it dictates the level
of effectiveness and efficiency of their operations. The growing demands on this sector have rendered
many of the current information systems inadequate. Simultaneously providing timely and accurate
information to the field, locating the resources deployed (vehicles and personnel), allowing data com-
munication during operations, and integrating multiple sources of information is often beyond the
capacity of current police IT systems.

This gap needs to be filled if the increasing requirements of law enforcement are to be met. At
the same time, there is a growing awareness that simply deploying more modern IT systems does
not automatically ensure benefits to the organization. IT managers are facing increasing pressure to
justify the large costs of IT investments. This can result in failed implementations, huge integration
costs, and never-ending upgrades. There is a growing skepticism of the maxim “IT investment equals
productivity gains.”

In the year 2000, the Dutch police started investigating the use of wireless technology and location
services to address the needs of officers in the field and of those in the control rooms. The result of this
process is the P-Info system, currently implemented by several Dutch police regions and adopted by
the national police organization in support of mobile police workers.

The application focuses on mobile officers, those who operate in the field to provide citizen
security, response services, and investigative capabilities. In the Netherlands, about 20,000 police
personnel operate in the field either full-time or part-time. A special group of these officers operates
almost exclusively in the field and performs systematic patrol and policing in urban and rural areas.
By focusing on crime prevention and mobilizing citizens’ support locally, their work reduces the
distance between citizens and the police while increasing mutual trust and cooperation. They are
assigned to, and operate in, a small area with the support and coordination of regional police offices.
They operate mostly outside of the office, and the goal of the police organization is to maximize
their presence in the field. Hence, these officers suffer particularly from the lack of proper informa-
tion availability. In several cases, they are forced to interrupt their fieldwork and return to the office
simply to gather information that is useful to the field operations.

Figure 15-6 illustrates the P-Info system at work and shows the main features of the mobile
interface, in this case displayed on a PDA device, which is one of the many devices supported by P-
Info. The figure shows a police officer (left) using P-Info during a routine check, the main interface
(center) of P-Info with access to all services, and an English version of the same interface (right)
together with a sample illustration of a spatial search for incidents.

CHAPTER 15 ■ CASE STUDIES 631

8997ch15.qxd 9/28/07 10:17 AM Page 631

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 15-6. The P-Info system at work

P-Info Functionality
The P-Info system contains three functionality groups:

• Database and data services

• Location services

• Office automation

The central component of P-Info is the database and data services module. It provides inte-
grated access to the whole range of regional, national, and international police databases. The
information sources are the same as those available at the office, while information search and
information provision is optimized for mobile users. Queries are predefined and the most used
query forms (for example, query by entry code, person, license plate, date, address, area, time, and
so on) are predefined for easy use. With this service, simultaneous searches in multiple databases
are performed in the background, and the full search results are provided in a single form. The
results are an overview of a given situation—for example, information about a suspect car collected
from all databases containing the search items (car data are extracted from the national car registra-
tion system, any fines on the car are extracted from the regional databases where fines are registered,
the charges to the car owner are extracted from the national databases, and so on). The databases
connected to P-info include the following:

CHAPTER 15 ■ CASE STUDIES632

8997ch15.qxd 9/28/07 10:17 AM Page 632

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Regional databases that contain all reports and their mutations, such as an incident report,
a theft report, and so on. They are logged and edited by the control room or collected and
edited by police staff on the basis of individual reports.

• A regional database of outstanding search warrants, fines, or parking tickets.

• National databases related to vehicles and driving licenses. They include vehicle registration
systems, such as license plate numbers, ownership, annual maintenance checks, and so on,
and driver’s licenses with their status.

• A national criminal records database that includes information on search warrants, missing
people, and stolen vehicles.

• NSIS, the national node of the European Schengen Information System (SIS), which coordi-
nates public safety matter under the European Schengen Convention. It contains personal
data supplied by member states relating to missing persons, people wanted as witnesses in
criminal proceedings, people wanted for arrest for extradition, aliens who have been refused
entry, and so on.

The main purpose of the location services is to provide location-enabled searches, such as proxim-
ity or area searches, to provide the visualization of results on a map, and in general to location-enable
the P-Info content.

Spatial searches serve to locate incidents, or any other type of record that has location informa-
tion, and to rank them based on how close or far they are from the user position or any other location.

Location services include a street guide that can be consulted directly to locate an address and
display it on a map or that can be consulted directly by the P-Info server to associate coordinates to
an address string or a certain database entry.

The ability to locate any database entry in space is at the basis of location notification services.
Users who register for notification receive an automatic voice message briefly describing an event
(for example, an incident) that occurred in the vicinity of the current position of the police officer.

Location functionality can also be used to locate the position of an officer on a map by applying
telecom location capability (Cell ID or GPS). This can be used to optimize information and proximity
searches, as well as to locate colleagues and other resources when needed. This functionality also
allows the optimization of resource allocation in the field.

Office functionality includes e-mail, a calendar, contacts, and tasks. It is based on wireless
access to the regular office facilities of the police. It is used to maintain communication between
officers in the field, to check appointments made by the office assistants, and to receive docu-
ments and notifications while working in the field.

P-Info Architecture
Figure 15-7 illustrates the P-Info architecture. Mobile users access the system through a variety of
handsets, such as PDAs, portable computers, or tablets. Data communication is currently based on
GSM-GPRS, a standard that ensures data transfer rates of about 40Kbps. The system is designed to
be bearer independent (thus it can work on, for example, GPRS, UMTS, or dedicated Tetra networks)
and to be device independent. The interface is adapted to each device with style sheets, and it uses
pure browser-based access to prevent any content from being stored on the handset. For security
reasons, information is never stored or cached in the mobile device; it is always accessed online.

CHAPTER 15 ■ CASE STUDIES 633

8997ch15.qxd 9/28/07 10:17 AM Page 633

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 15-7. Simplified architecture of the P-Info system

The access point ensures that only authorized devices can access the P-Info portal and server,
which in turn performs user authentication and authorization. The P-Info server and portal pro-
vides access to the underlying P-Info components. It routes the requests from the mobile users and
dispatches them to the national gateway or to the regional proxy.

The national gateway includes a series of XML wrappers serving as an interface between XML
(used within P-Info) and the legacy data models of some national databases.

The regional proxy plays a similar role as the national gateway, but in this case it decides whether
a query can be dispatched directly to the regional databases (for example, for details of an incident)
or whether it needs to access the P-Info spatial mirror. The term spatial mirror derives from the
function of this database, which mirrors a small portion of the content of the regional databases
while adding a spatial component to each record. In this way, each record in the regional database
corresponds to a record in the mirror database. They share code and the name of the record, but the
mirror version includes location information (the address in a standardized form and the x,y coor-
dinates). This is necessary because the regional databases contain spatial information in the form
of an address, but they do not account for x,y coordinates. Also, every address entry is a text string
formatted in slightly different ways (abbreviations, spelling mistakes, truncations, and so on). The
mirror database, which is an Oracle Spatial database, makes it possible to perform spatial search
and proximity analysis without accessing the regional databases, thus ensuring coherent location
information.

The mirror database and the regional database are coordinated by a replication server, which
monitors entries in the regional databases and intercepts differences to the mirror database. When
an addition is intercepted, the replication server invokes the geocoder to interpret and normalize
the address string and to associate it with x,y coordinates. It then copies the essential information
from the regional database and creates a new entry in the mirror table, from now on synchronized
with the regional repository. Notice that the geocoder needs to perform the regular normalization

CHAPTER 15 ■ CASE STUDIES634

8997ch15.qxd 9/28/07 10:17 AM Page 634

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

and geocoding activities (such as normalize “Bond Street, 5” and associate it to x,y coordinates), but
it also needs to interpret entries such as crossroads (such as an incident at the crossing between
“Bond Street” and “Large Street”) or building locations (such as a railway station).

Maps are created by an Open Geospatial–compliant web map server3 that extracts information
and spatial features from reference spatial databases (in Oracle Spatial) containing the full road net-
work, geocoding information, and other essential spatial display and analysis features.

The alert and notification service provides voice messages to officers operating in a given area
who have subscribed to the alert service. Based on the profile selected by the officer (such as “only
thefts and burglaries”), P-Info performs a match between notification profiles and entries in the
regional databases. When a match occurs—for instance, because a burglary has been notified to the
emergency 112 number—the system creates a VoiceXML message that stores the basic information
about the event (code, time, and location). The voice gateway makes a short call to the officer’s mobile
phone describing the essential information of the event. The full details can be checked in a dedicated
notification area of P-Info reserved for each registered officer.

Finally, the integrated search provides a sophisticated mechanism to dispatch a search—for
instance, for a certain name—to all connected databases simultaneously. Figure 15-8 shows a typi-
cal result. P-Info has found several entries in various databases for “GROE.” The results are organized
in a table with links to the entry list in each database. P-Info creates a series of nested hit lists, which
contain all information available to the police regarding the search item. This mechanism saves officers
a great deal of time and presents a coherent information picture to the users, independent of the
database structures that contain the information.

Figure 15-8. Summary results of an integrated search

All components of P-Info are developed in Java (J2EE and Java servlets) and run in any Java
environment. Oracle Application Server is used in this case.

Use of Oracle Spatial in P-Info
Oracle Spatial is used by P-Info to store and retrieve spatial information, perform proximity analysis,
and support overlay and spatial selections. The spatial mirror (see Figure 15-7) provides the basis
for these operations. The main methods for selecting data from regional databases (those contain-
ing police reports) through the spatial mirror are as follows:

CHAPTER 15 ■ CASE STUDIES 635

3. www.opengeospatial.org

8997ch15.qxd 9/28/07 10:17 AM Page 635

www.it-ebooks.info

www.freepdf-books.com

http://www.opengeospatial.org
http://www.it-ebooks.info/

• Select based on proximity to a current position.

• Select based on proximity to a certain address location.

• Select based on inclusion in a certain work area.

The spatial mirror contains only point objects. The table size grows continuously, with a rate of
increase of several hundreds of thousands of records per year, for each of the 25 police regions. The
table size at the national level grows at a rate of several million records per year.

Listing 15-1 shows the procedure to insert the spatial object for a new record into the table
place_table of the spatial mirror. This procedure is used by the replication server (see Figure 15-7).
The question marks are filled in by the application and represent the incident ID and the x and y
coordinates, respectively.

Listing 15-1. Inserting Records in the Spatial Mirror

INSERT INTO place_table (point_id, geo, creation_date)

VALUES(?, MDSYS.SDO_GEOMETRY(2001, 90112, MDSYS.SDO_POINT_TYPE(?, ?, NULL),

NULL, NULL), sysdate)

The geocoding of the incident information is complicated by the fact that officers report the
location of an event in three ways: address, crossing, and road section. Crossing and road section
are often used to specify the location of a road accident. Although geocoding on an address is well
supported (see Chapter 6), crossing and road-section geocoding required the development of spe-
cific procedures.

Reverse geocoding is used in P-Info to associate with an x,y coordinate to a specific address.
The most common use is to find the closest address to the current location of the user (for example,
based on GPS location or telecom location). Listing 15-2 shows an example. The query selects one
road segment (sdo_num_res=1) from the table tblstreet (which contains the streets database) that
is the closest to the current location. The location is represented by two question marks that are
filled in by the application that calls the query and passes on the x,y coordinates of the current location.

Listing 15-2. Reverse Geocoding in P-Info

SELECT d.street_id id, SDO_NN_DISTANCE(1) distance

FROM tblstreet d

WHERE SDO_NN(d.geo, MDSYS.SDO_GEOMETRY(2001,90112,

sdo_point_type(?, ?,null),null,null), 'sdo_num_res=1', 1) = 'TRUE'

Officers in the field select items based on their location using either a selection of the n closest
items (implemented using SDO_NN) or the items within a certain radius from the user (implemented
using SDO_WITHIN_DISTANCE). Listing 15-3 shows an example of the first that relates to the selection
of a certain number of incident locations (place codes and place names) that fall within the area of
responsibility of an officer. The place_table table contains the objects to be selected, and the
user_location table contains the officer’s location, which can be the current position or a default
position such as the center of the area of responsibility. The parameter $$nr_of_nearest_places
specifies how many places are selected.

The query uses SDO_NN to rank places based on distance from the user location. The first
and second AND conditions ensure that the location is that of the user, who logs in specifying
a user name ($$user_name) and the code of the area of responsibility ($$regio_code). The third
AND condition includes an SDO_RELATE statement that selects only places that fall within the area
of responsibility (the geoloc of the table work_areas). This query discards places that are closer
but not in the area for which the officer is responsible.

CHAPTER 15 ■ CASE STUDIES636

8997ch15.qxd 9/28/07 10:17 AM Page 636

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 15-3. Selecting Incidents Within a Certain Work Area

SELECT place_code, place_name

FROM

(

SELECT place_code, place_name

FROM place_table, user_location

WHERE

SDO_NN(place_table.geo, user_location.geo, sdo_num_res=500', 1) = 'TRUE'

AND upper(user_location.fldid) = upper('$$user_name')

AND upper(user_location.regio_id) = upper('$$regio_code')

AND SDO_RELATE

(

place_table.geo,

(select geoloc from work_areas

where upper(areas_id) = upper('$$regio_code')

),

'mask=INSIDE querytype=WINDOW'

) = 'TRUE'

ORDER BY SDO_NN_DISTANCE(1)

)

WHERE rownum <= $$nr_of_nearest_places

Bounding boxes are used in P-Info to display certain areas on a map. For orientation purposes,
an officer can request a map of a street, postal code area, administrative area, and so on. Listing 15-4
shows an example of selecting the display area for a certain postal code area, here replaced by
a question mark (as earlier, this is a parameter that is passed on by the Java code that calls the query).
The table tblpostcode contains the list of postal codes and their spatial boundaries (polygons). The
query results are passed on to the web-mapping application to display the full postal code area on
the handheld screen.

Listing 15-4. Selecting a Bounding Box for Display

SELECT t.postcode,

sdo_geom.sdo_min_mbr_ordinate(t.geo, m.diminfo, 1) left,

sdo_geom.sdo_min_mbr_ordinate(t.geo, m.diminfo, 2) bottom,

sdo_geom.sdo_max_mbr_ordinate(t.geo, m.diminfo, 1) right,

sdo_geom.sdo_max_mbr_ordinate(t.geo, m.diminfo, 2) top,

d.x_coordinaat_gem x,

d.y_coordinaat_gem y

FROM tblpostcode t, user_sdo_geom_metadata m

WHERE t.postcode = ?

Measurable Added Value of P-Info
The Dutch police corps have carried out various efficiency and effectiveness tests of P-Info. Their
main goal was to measure whether P-Info was able to provide a tangible benefit to the police opera-
tions. The metrics used for the tests reflected two of the original goals of the system: to increase the
visibility and presence of officers in the field and to be able to carry out the same work in less time.
Among the various measurements suitable for this purpose, tests were carried out to measure the
increase in time that agents would spend in the field and the amount of time required to carry out
the same operation with and without P-Info.

In the first test, a group of five policemen were monitored over a period of about four weeks.
Their field presence was compared to that of other colleagues who had the same tasks but operated
without P-Info (the control group). The results showed that P-Info increased the time spent by offi-
cers in the field by about 20 percent. This means the same amount of fieldwork could be carried out

CHAPTER 15 ■ CASE STUDIES 637

8997ch15.qxd 9/28/07 10:17 AM Page 637

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

by four rather than five agents or, alternatively, that a 20 percent larger area could be patrolled at the
same quality level. Considering the personnel costs and the costs of P-Info, the balance was dramat-
ically in favor of P-Info in terms of operation costs.

The second test regarded a comparison of work efficiency during roadblocks. Two roadblocks
were set up with the same number of personnel, with one group operating with P-Info and the other
group operating in the regular way (without P-Info). At the end of the operations, the number of
cars checked and fines issued were compared. The test demonstrated that about 50 percent more
cars could be screened using P-Info, with a proportional increase of the number of fines.

In spite of the limitations of the tests and the necessary caution in generalizing results, there is
clear evidence that P-Info improves the effectiveness and efficiency of police forces. Considering
the costs of P-Info and its benefits, a clear case can be made in favor of investing in P-Info.

It is worth stressing the role of location information in P-Info. Although there are some pure uses
of location information in P-Info—for instance, to locate an address or a user location on a map—in the
vast majority of cases, location information enables information search, provision, and visualization.
P-Info is essentially a portal to multiple legacy information sources, organized to serve the specific needs
of mobile officers. The combination of mobility requirements with legacy information systems put
some hard requirements on the design and management of spatial data in P-Info. The result is a system
that uses various forms of spatial data (reference road networks, geocoding databases, real-time user
positions, and backdrop maps) and various types of services that exploit this data (such as spatial repli-
cation, visualization, and notification) within the general purpose of P-Info: providing extensive and
meaningful information to officers in the field.

Risk Repository for Hazardous Substances

■Note This system was developed by Getronics PinkRoccade BV and Geodan IT BV for the National Institute for
Public Health and the Environment (RIVM) under supervision of the Netherlands Ministry of Housing, Spatial Plan-
ning, and the Environment (VROM).

On May 13, 2000, two explosions in a fireworks warehouse located in the urban center of the city of
Enschede in the Netherlands detonated an estimated 100 tons of explosives. The blast was felt up to
40 km away, and within minutes the surrounding residential quarter was devastated. Twenty-two
people died in the accident, and more than 1,000 people were injured. More than 400 houses were
reduced to ashes, and another 1,000 were damaged. The material costs of the incident were estimated
in the range between 500 million and 1 billion U.S. dollars.

In the aftermath of disasters such as this one, and also of Chernobyl (1986), Bhopal (1984), and
Seveso (1976), governments in industrialized and developing countries have introduced or toughened
legislation and controls over the transportation, storage, processing, and use of dangerous substances.

In the Netherlands, the Enschede disaster has triggered a number of important risk management
initiatives that are meant to improve the prevention, preparedness, and repression of industrial
incidents. One of those is the obligation to report to the authorities any situation that may involve
a risk related to hazardous substances. Generally speaking, these risks are the result of storing,
transporting, or processing a (bio)chemical substance.

The RRGS (the Dutch acronym for Register Risk Situations Hazardous Substances) is the central
repository for this information. It provides a single source for all information regarding high-risk
sources countrywide. The RRGS is accessible to professional users only, but the risk information is also
accessible to the public through the provincial risk maps. For the public, the RRGS provides informa-
tion to understand and assess possible risk situations in a certain neighborhood. National and local
government organizations use the RRGS for spatial planning, risk management, and disaster prevention.

CHAPTER 15 ■ CASE STUDIES638

8997ch15.qxd 9/28/07 10:17 AM Page 638

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Emergency services agencies use the information in the repository to plan and organize rescue opera-
tions and emergency response. Figure 15-9 shows an example of the RRGS information, including the
location of a gas station and its related risk contours.

The RRGS system is accessible through a web interface. It provides a set of forms, available to
registered users, to manage the information concerning an industrial site or a transportation infra-
structure and the nature and extent of the risks associated with these objects. The map interface
serves to visualize the location of risk sources, the risk contours, and the areas surrounding a facility
or a transport infrastructure affected by various risk levels. The RRGS include risk sources such as
the following:

• Major industrial plants

• LPG filling stations

• Storage facilities for hazardous chemical and biochemical substances

• Storage facilities for explosives and ammunitions

• Nuclear reactors or nuclear waste storage facilities

• Railway yards for shunting trains with hazardous substances

• Containers of hazardous substances (for example, container shipments)

The RRGS addresses risks related to transportation by road, rail, water, or pipeline.

Figure 15-9. Example of risk map for a gas station. Image © Provincie Utrecht
(www.provincie-utrecht.nl).

CHAPTER 15 ■ CASE STUDIES 639

8997ch15.qxd 9/28/07 10:17 AM Page 639

www.it-ebooks.info

www.freepdf-books.com

http://www.provincie-utrecht.nl
http://www.it-ebooks.info/

Table 15-1 shows the typical information included in the system. It is worth noting that risk
contours and risk profiles usually require detailed studies, which are site and incident specific. In
the case of RRGS, the risks are simplified representations of the actual risks and are based on
generic risk models.4 This allows a rapid risk assessment based on relatively limited information.

Table 15-1. Example of Data Included in the RRGS

General Data Data on Hazardous Substances Risk Data

Name of the installation Name and identification Risk contours for predefined
numbers (for example, risk thresholds, such as 10-5/year,
CAS, UN) of the substances 10-6/year, and 10-8/year, and

specific consequences

Address or coordinates Nature of the hazard Average population density in the
of a location (in other words, toxicity, area around the establishment

explosion, flammable) (or transport route)
Effect distances

The information in the RRGS is also available to other systems. Other systems can use the
RRGS as part of planning, logistics, or emergency management and to overlay risk maps on other
type of maps. This is one of the main requirements of the RRGS that implies an extensive adoption
of open standards and web services at all levels of the system.

RRGS Technology
The RRGS is based on a web services framework. Thanks to this architecture, the system can be
used stand-alone, or it can be integrated in regional and local risk-information systems, such as
desktop applications for the assessment or formulation of regional plans and development plans.

The RRGS implements the OpenGIS standard interfaces and services. The open standards
permit a seamless integration of external systems with the objects in the RRGS. Compliance with
these standards allows a faster, more consistent, and more economical structuring of the system.
Figure 15-10 provides a simplified architecture overview, completely implemented in Java (J2EE).

CHAPTER 15 ■ CASE STUDIES640

4. According to the U.S. Department of Transportation, Office of Hazardous Material Safety, hazard is the char-
acteristic of a substance that has the potential to cause harm to people, material goods, or the environment.
Consequence is the direct effect of an event or incident. It can be a health effect (for example, death, injury, or
exposure), property loss, environmental effect, and so on. Risk is the combination of the likelihood and the
consequence of a specified hazard being realized. Likelihood is expressed as a probability, such as one in
a million.

8997ch15.qxd 9/28/07 10:17 AM Page 640

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 15-10. Overview of the RRGS architecture

The RRGS is accessible through a web interface and requires an applet for the map component
of the application. The web adapter controls the main interfaces. The core of the web adapter is
a Struts framework that manages the system interface and delegates tasks to the business objects.5

Struts implements the Model View Controller (MVC) pattern. MVC organizes an interactive applica-
tion into three modules. The first includes the application model, with its data representation and
business logic. The second concerns the views that provide data presentation and user input. The
third includes the controller that manages flows and dispatches requests. The web adapter also offers
access to data services to external applications.

The business objects provide data handling, including data storage and access. The RRGS uses
a Data Access Object (DAO) to communicate with the data services. A DAO abstracts and encapsu-
lates all access to the data source and implements the access mechanism required to work with the
data source (such as an RDBMS or LDAP). The business component that relies on the DAO uses the
simpler interface exposed by the DAO, which hides the data source implementation details from its
clients. Because the interface exposed by the DAO to clients does not change when the underlying
data source implementation changes, this pattern allows the DAO to adapt to different storage
schemes without affecting its business components. The DAO therefore acts as an adapter between
the business object and the data source.

CHAPTER 15 ■ CASE STUDIES 641

5. For more information on Struts, please visit http://struts.apache.org.

8997ch15.qxd 9/28/07 10:17 AM Page 641

www.it-ebooks.info

www.freepdf-books.com

http://struts.apache.org
http://www.it-ebooks.info/

All communication between the DAO and the data sources is based on Geography Markup
Language (GML), an XML-based encoding standard for geographic information developed by the
OpenGIS Consortium (OGC). The data used by the RRGS is mediated by two OGC servers: the web
feature server and the web map server. The web map server allows a client to overlay maps for dis-
play served from multiple web map services on the Internet. The web feature server allows a client
to retrieve geospatial data encoded in GML from multiple web feature services.

The web feature server accesses alphanumeric and geographic objects from the database. The
web map server generates a map in a certain format (for example, JPEG) and sends it to the map
applet in the client. Maps are generated by ESRI ArcIMS, which connects to Oracle Spatial through
ArcSDE.

The Oracle database, including Oracle Spatial, is the foundation of the RRGS, and it stores both
spatial and nonspatial information, such as the risk information. A data plug is also added to the
system to synchronize the content of the database with that of other databases, such as regional
ones.

The reference geographic data stored in Oracle Spatial is essentially topographic data, at scales
ranging from 1:10,000 to 1:250,000. This data can be very detailed, and the data can be used to iden-
tify single geographic objects such as parts of a building, a road infrastructure, or a bridge. The
system manages more than 100 data layers.

The system runs on a cluster of Linux servers and uses Oracle Application Server as a Java con-
tainer for the Java implementation.

Use of Oracle Spatial in the RRGS
Oracle Spatial is used to store background information, such as maps and road networks, and spa-
tial information related to risk objects. All manipulation of spatial objects is done in Oracle Spatial,
as well as many simple risk-modeling operations that correspond to spatial operators, such as a buffer.

The main tables with SDO_GEOMETRY columns are the tables containing the risk locations and the
risk installations (a risk location can be a chemical plant that contains many installations, such as
reactors, tanks, and so on). The geometry of risk locations is almost always a polygon, corresponding
to the physical boundary of the plant or industrial premise. Risk installations, on the other hand,
are always points. Each location and each installation is associated with several other SDO_GEOMETRY
columns, which contain the risk and effect contours.

Risk contours for risk locations usually have specific shapes. The shape is computed by an external
module (for example, an explosion model), and it is loaded in Oracle through the web feature server.
The web feature server receives a GML containing the risk contour and parses it to create the structure
of INSERT statements for loading the spatial object (the risk contour) in the appropriate SDO_GEOMETRY
column. For linear transportation infrastructures, the risk contour is calculated by a buffer function.
Java code creates a SQL statement for Oracle that creates a buffer polygon in an SDO_GEOMETRY column.
Remaining risk installations are associated to circular risk contours.

Listing 15-5 shows the buffer generation using SDO_BUFFER, in this case applied to an object
(l_route) for a buffer of l_dist meters around the object. Notice that SDO_BUFFER returns an
SDO_GEOMETRY object, which in this case is the object of a densify function. With geometries in
a projected coordinate system, such as in this case, circular arcs can be densified into polygons.
The result is straight-line polygon geometry. The arc_tolerance parameter specifies the maximum
distance between the original geometry and its approximated straight-line representation, in this
case 1 meter. The RRGS uses this solution to increase rendering speed.

Listing 15-5. Example of Generating a Buffer and Densifying Its Geometry

l_buffer := sdo_geom.sdo_arc_densify

(sdo_geom.sdo_buffer(l_route, l_dim, l_dist), l_dim, 'arc_tolerance = 1');

CHAPTER 15 ■ CASE STUDIES642

8997ch15.qxd 9/28/07 10:17 AM Page 642

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Once the buffer is created, the geometry can be stored in the SDO_GEOMETRY containing the risk
contour. Listing 15-6 shows an example for updating the table rgs_transportroutes (major roads
and highways), inserting a risk contour polygon for the p_tre_id object through the function illus-
trated in Listing 15-5 for geometry column risk_contour_1 of table rgs_transportroutes.

Listing 15-6. Example of Inserting a Geometry

update rgs_transportroutes tre

set tre.risk_contour_1 = l_buffer

where tre.id = p_tre_id;

Notice that the tables containing risk location and risk installations have multiple SDO_GEOMETRY
columns to accommodate for risk contours and effect contours, as well as various risk and effect
levels. For instance, the risk location table contains seven different SDO_GEOMETRY columns. All spa-
tial columns are indexed.

To display spatial objects with ArcSDE, the system defines a series of views. This is necessary to
separate object types in tables (points, lines, polygons, and so on) into separate views that are ren-
dered separately. The same applies to multiple SDO_GEOMETRY columns. Different views are created
for each separate column and are rendered separately.

One of the main features of the RRGS is to identify all locations and installations that contribute to
the total risk of any given location. When you click a point on the map, the system detects all sources of
a certain risk or effect level, based on the risk and effect contours of locations and installations. This is
based on the SDO_RELATE operator. Listing 15-7 shows an example of this selection (in this case, a cursor
example). The query selects the IDs of installations (irg.id) from the table of risk installations
(rgs_installations), for which the risk contour (irg.risk_contour_1) contains the object b_geom.

Listing 15-7. Example of Selecting Risk Objects Causing a Certain Risk for a Point

cursor c_irg_rcr5(b_geom in mdsys.sdo_geometry) is

select irg.id id

from rgs_installations irg

where sdo_relate(irg.risk_countour_1, b_geom, 'mask=contains querytype=WINDOW')

= 'TRUE';

From Hazardous Substances to Risk Management
The RRGS system, which has been in operation since 2003, focuses on a specific type of risks related
to hazardous substances. However, public risk managers need to address a much larger portfolio of
situations that can cause serious consequences for people, material resources, and the environment.
These situations include, for instance, transportation incidents (air, land, and water), earthquakes,
epidemics, large fires in buildings or tunnels, floods, forest fires, and blackouts, among others. The
RRGS represents only one of the sources of information needed to identify, prevent, and manage
these risks.

The evolution of the RRGS is in the direction of supporting the definition of comprehensive
risk maps based on multiple risk sources that interoperate and provide information to assess all
types of risks. Figure 15-11 shows an example of a risk map that includes risks associated to haz-
ardous substances together with flooding risks (dashed area) and water freight routes (blue lines).
The combination of these sources of information provides risk managers with a comprehensive
view of the risks to which a certain area is exposed.

These maps shown in this case study are publicly available from the website of the Dutch risk
map (www.risikokaart.nl). Regional maps from most Dutch regions are now available online with
the same look and feel and information format.

CHAPTER 15 ■ CASE STUDIES 643

8997ch15.qxd 9/28/07 10:17 AM Page 643

www.it-ebooks.info

www.freepdf-books.com

http://www.risikokaart.nl
http://www.it-ebooks.info/

Figure 15-11. Risk map for the province of Zuid Holland. Image © Provincie Zuid Holland
(www.zuid-holland.nl).

USGS National Land Cover Visualization and
Analysis Tool

■Note The USGS National Land Cover Visualization and Analysis tool was developed by eSpatial.6 The authors
would like to thank eSpatial for granting permission to publish the material in this section.7

Land-cover data is a largely untapped information resource. With increasing population and the
challenging prospect of climate change, comprehensive information about the condition of our
land and how it is changing becomes more and more vital. Land cover, the pattern of natural vege-
tation, agriculture, and urban areas, is shaped by both natural processes and human influences.
Information about land cover is needed by managers of public and private lands, urban planners,
agricultural experts, and scientists for studying such issues as climate change or invasive species.

The U.S. National Land Cover Dataset 1992 (NLCD 1992) was derived from the early to mid-1990s
using LANDSAT8 Thematic Mapper satellite data. The National Land Cover Dataset 2001 (NLCD 2001)

CHAPTER 15 ■ CASE STUDIES644

6. See www.espatial.com/.

7. At the time of writing, the system is not yet available to the public. The launch is scheduled for the second
part of 2007.

8. Satellites managed by NASA that acquire imagery of the earth from space. The images are used in the areas of
agriculture, geology, forestry, regional planning, global change, and national security.

8997ch15.qxd 9/28/07 10:17 AM Page 644

www.it-ebooks.info

www.freepdf-books.com

http://www.zuid-holland.nl
http://www.espatial.com
http://www.zuid-holland.nl
http://www.it-ebooks.info/

is a second-generation land-cover database and maps land cover for 50 states with data captured
about 10 years after the first campaign.

Land-cover data is useful in many operational settings and for strategic decisions:

• Fire danger monitoring and forecasting: Based on land-cover data as well as other data
sources, the effects of fire can be consistently measured in terms of burn severity. This
measures the magnitude of ecological change caused by fire and provides a reliable way
to measure the effects and damage of a fire. The same land-cover data, combined with
fire risk factors, can be used to predict the spatial likelihood and effect of fires and thus
facilitate preparedness as well as emergency operations.

• Biodiversity conservation: Land cover is an essential indicator of the ability of a land to sus-
tain ecosystems. Combined with ecological information and ecosystem maps, land cover
provides the basic information for effective conservation measures, as well for optimal allo-
cation of land to potentially conflicting activities, such as nature conservation and urban
development.

• Land-use planning: In densely populated areas, land use is often the result of conflicting
claims, with land contended between transportation, urban areas, agriculture, nature, or
industrial areas. For policy makers, understanding the current situation as well as the
changes that occurred in the recent past is essential to designing meaningful land-use poli-
cies that balance regional with local needs as well as the needs of conflicting land claims.

• Climate change: Land-cover data is used to understand and analyze the stocks and fluxes of
carbon on the landscape (soils and biomass) to predict the impacts of future land manage-
ment decisions on the global carbon cycle. This is the basis for understanding the effectiveness
of mitigation measures to limit the impact of human activities on climate change, as well as to
predict the effectiveness of adaptation measures to climate change and extreme events.

• Flood and natural risk prevention: Land-cover data, combined with simulation tools, serves
to predict the risk and impact of events such as floods, hurricanes, or landslides. Information
derived from these simulations can improve preparedness as well as emergency management.

The USGS National Land Cover Visualization and Analysis Tool provides to both expert and
nonexpert users access to the USGS Land Cover data. The application incorporates the entire USGS
30m×30m-resolution National Land Cover Data repository, which includes nationwide data cover-
age for 1992 and 2001. A third dataset, the NLCD Change Product, shows how land cover has changed
during this time.

The interface of the tool allows users to easily navigate to areas of interest through the map or
by searching a gazetteer of areas of interest. Figure 15-12 shows the home page of the system, the
map navigation pane, and the main selections available to the user. Figure 15-13 shows the 2001
land-cover data for a small area around Richmond, Virginia.

Simple analysis functionality allows reports to be generated showing the aggregate areas of
each land cover type within the current map bounds or within a user-defined area. Figure 15-14
shows two sample reports for the data displayed in Figure 15-13. You can download the report
results in multiple formats: CSV, XLS, or PDF.

CHAPTER 15 ■ CASE STUDIES 645

8997ch15.qxd 9/28/07 10:17 AM Page 645

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 15-12. The USGS visualization and analysis tool: home page

Figure 15-13. The USGS visualization and analysis tool: details for an area around Richmond,Virginia,
for the 2001 land-cover data

CHAPTER 15 ■ CASE STUDIES646

8997ch15.qxd 9/28/07 10:17 AM Page 646

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 15-14. The USGS visualization and analysis tool: land-cover statistics for Richmond, Virginia—
pie chart (left) and histogram (right)

The Architecture of USGS Visualization and Analysis Tool
The functionality of the USGS Land Cover Visualization and Analysis Tool includes the following:

• Land-cover selection tool: This serves to select the 1992, 2001, or 1992–2001 change data
(raster format) and the overlay data, such as political boundaries, roads, and waterways (vec-
tor format).

• Filtering and legend tool: Land cover data consists of small colored cells (of 30×30 meters).
This pane displays the color code of each land-cover type and its definition, as well the pos-
sibility of hiding any land-cover type.

• Region of interest selector: This tool serves to select a region of interest for further analysis.
The selection can be based on a spatial feature (a state or county), on an area drawn on the
screen by the user, or on an external boundary uploaded from a file.

• A statistics tool: This tool computes the frequency of occurrences of land-cover cell values for
the region of interest selected and produces a pie chart or histogram of the data, which can
be exported in a file.

CHAPTER 15 ■ CASE STUDIES 647

8997ch15.qxd 9/28/07 10:17 AM Page 647

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 15-15 shows the architecture of the system. The application runs on Oracle Application
Server. It is written in Java and uses eSpatial’s API in addition to the Oracle Spatial API to convert
and reproject uploaded ESRI shapefiles9 and the Oracle Spatial Georaster API to allow statistics to
be gathered from a Java Georaster object.

Oracle Spatial stores about 70GB of georaster data in seamless coverage of the Unites States for
1992 and 2001. The system also includes the original LANDSAT images as georasters. All data is loaded
into Oracle and mosaiced into seamless coverage using SQL scripts.

The Spring Framework10 is used as the overall design model for the USGS Land Cover Visualiza-
tion and Analysis Tool. Spring implements the Model View Controller (MVC) architectural pattern in
which distinction is made between the client objects, such as browser pages, called views, server-
side servlets that supply these pages and are called controllers, and the back-end data model and
business logic that supports the views and controllers called the model.

The purpose of the MVC pattern is to allow developers to focus on a particular aspect of the
application’s function and to keep other nonrelated aspects out of the code. Views, for instance,
should not access a database; controllers should not contain model objects.11

Figure 15-15. USGS visualization and analysis tool: architecture

Oracle Spatial in USGS Visualization and Analysis Tool
Three primary map overlays are used in the application:

• Imagery map sheet

• Contains a map image derived from orthophoto (LANDSAT) or other imagery loaded
into Oracle as georaster data

• Is at the bottom of the map sheet stack

5. HTML

Filters

1. home.htm

Browser

DispatcherServlet

2.

4. ModelAndView

JSP

3.

Not Initialized

Initialized

Home Controller

Other Controllers

Oracle

Utility Classes

CHAPTER 15 ■ CASE STUDIES648

9. www.esri.com/library/whitepapers/pdfs/shapefile.pdf

10. www.springframework.org/

11. You can find a brief discussion of the MVC pattern at http://java.sun.com/blueprints/patterns/
MVC-detailed.html.

8997ch15.qxd 9/28/07 10:17 AM Page 648

www.it-ebooks.info

www.freepdf-books.com

http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.springframework.org
http://java.sun.com/blueprints/patterns
http://www.it-ebooks.info/

• Grid map sheet

• Contains a map image derived from Land Cover grid data in Oracle as georasters

• Overlays the imagery map grid

• Supports variable transparency

• Vector map sheet

• Contains a map image derived from Oracle Spatial data as polygons, lines, and points

• Overlays the two sheets below it

• Has background transparency set by default

The geographic data are stored in Oracle as SDO_GEOMETRY and SDO_GEORASTER data types. Original
ESRI shapefiles are loaded into Oracle Spatial using shp2sdo.

USGS uses a custom projection that was added to Oracle’s Spatial Reference Identifiers to sup-
port the project. The following SQL (Listing 15-8) is used to create the necessary SRID within Oracle
(see also Chapter 3). This projection is similar to the regular Albers Conical Equal Area projection
but based on a different datum (NAD83 rather than NAD27).

Listing 15-8. Creating the SRID in Oracle

delete from sdo_coord_ref_system where srid = 1000000;

INSERT INTO SDO_COORD_REF_SYSTEM

(

SRID, COORD_REF_SYS_NAME, COORD_REF_SYS_KIND,

COORD_SYS_ID, DATUM_ID, GEOG_CRS_DATUM_ID,

SOURCE_GEOG_SRID, PROJECTION_CONV_ID, CMPD_HORIZ_SRID,

CMPD_VERT_SRID, INFORMATION_SOURCE,

DATA_SOURCE, IS_LEGACY,

LEGACY_CODE,

LEGACY_WKTEXT,

LEGACY_CS_BOUNDS,

IS_VALID,

SUPPORTS_SDO_GEOMETRY

)

VALUES

(

1000000, 'USGS Albers Conical Equal Area NAD83', 'PROJECTED',

4400, NULL, 10076,

2000006 , NULL, NULL,

NULL, 'USGS',

NULL, 'TRUE',

NULL,

'PROJCS["Equal-Area Projection (United States)",

GEOGCS["NAD 83", DATUM ["NAD 83",

SPHEROID ["GRS 80",6378137,298.2572221010002]],

PRIMEM ["Greenwich",0], UNIT["Decimal degree",0.0174532925199433]],

PROJECTION ["Albers Conical Equal Area"],

PARAMETER ["Standard_Parallel_1",29.5],

PARAMETER ["Standard_Parallel_2",45.5], PARAMETER ["Latitude_of_Origin",23],

PARAMETER ["Central_Meridian",-96], UNIT ["Meter",1]]',

NULL,

'TRUE',

'TRUE'

);

CHAPTER 15 ■ CASE STUDIES 649

8997ch15.qxd 9/28/07 10:17 AM Page 649

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The Oracle Spatial Java API is used to reproject uploaded ESRI shapefiles, which originally store
the LANDSAT images and the derived land use data. The following code reprojects uploaded shape-
files to the custom USGS projection. The file upload uses Apache’s commons file upload library. Once
the shapefile is obtained, the procedure iterates through them, calling a method to project them.

Listing 15-9 and Listing 15-10 show two parts of the reprojection procedure. Listing 15-9 shows
a call to the translate function, described in Listing 15-10. In the first listing we use the translate
function and store the result into newgeom. This, together with the geometry key, is then stored in
customsGeomsMap for later use.

Listing 15-9. Call to the Translate Function

//get a geometry from a Map of geometries

// this is within a loop - geom is of type JGeometry

geom = (JGeometry)m.get("GEOM");

JGeometry newgeom = null;

if (geom != null) {

try {

//call the method to reproject

newgeom = tr.translate(toSRID, geom);

// this key is composed of a String and concatenated

// unique ID of the shape

key = "CUSTOM-" + fIndex;

//the key and transformed geometry are added to a

// java.util.Map for storage in the session

customGeomsMap.put(key, newgeom);

} catch (Exception e) {

logger.error("Here Controller Name: failed to translate geom");

}

Listing 15-10 shows the actual reprojection function. The first part of the listing is the connec-
tion to the database. Once connected, we use the SDO_CS.TRANSFORM, which transforms a geometry
representation using the coordinate system USGS SRID 1000000. This call is used inside a Java
statement. The while loop at the end of the listing executes the transformation of the geometries.

Listing 15-10. Reprojection Function

private STRUCT s = null;

private JGeometry g = null;

private OracleConnection oraCon = null;

private PreparedStatement ps = null;

private ResultSet rs = null;

//accept an incoming SRID and a JGeometry

public JGeometry translate (int toSRID, JGeometry geom) throws Exception {

if (oraCon == null) {

//open a DB connection first time through

InitialContext initial = new InitialContext();

Object o = initial.lookup(dataSourceName);

if (o==null) {

log.error("No datasource called "+dataSourceName+" found");

}

oraCon = (OracleConnection) ((DataSource) o).getConnection();

}

CHAPTER 15 ■ CASE STUDIES650

8997ch15.qxd 9/28/07 10:17 AM Page 650

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

try {

//call the transform to custom USGS SRID 1000000

ps = oraCon.prepareStatement(

"select SDO_CS.TRANSFORM(?,0.0005,1000000)

from DUAL");

//put the JGeometry into a STRUCT

s = JGeometry.store(geom, oraCon);

ps.setObject(1,s);

rs = ps.executeQuery();

while (rs.next()) {

//set the returned STRUCT back into a JGeometry

g = JGeometry.load((STRUCT)rs.getObject(1));

if (g != null) log.debug(

"TranslateGeom: translate : got transformed");

}

} catch (SQLException e) { log.debug("TranslateGeom: translate " + e); }

return g;

}

A cleanup of objects and connections happens last at the end of the code.
Listing 15-9 and Listing 15-10 show two of the steps of the actual procedure used to translate

the ESRI shape geometries. From the shapefile, a loop (not shown in the listing) gets a geometry
from the map of geometries. The translate function utilizes an SDO_CS.TRANSFORM function that per-
forms the actual translation. The result—the reprojected object—is stored in customGeomsMap for
later use.

Benefits of USGS Visualization and Analysis Tool
Several benefits are associated with the USGS Land Cover Visualization and Analysis Tool:

• It is a single nationwide seamless dataset containing land-cover and other mapping data,
something that until recently was available only to a restricted group of scientists and spe-
cialists.

• Data is available for any geographic area of the United States from any web browser without
the need for specialized GIS software. This dramatically increases accessibility.

• It makes it possible to analyze land cover in an historical perspective, looking not only at the
current situation but also at the past and the changes that occurred in between.

• It allows the analysis of selected areas by political, natural, or user-defined boundaries
(hand-drawn area or specific region, such as state or county).

• It calculates land-cover statistics within selected areas for further analysis and prints simple
reports.

The National Land Cover Dataset has to date been a largely untapped resource. It contains
a host of information useful to managers of public and private lands, urban planners, agricultural
experts, and scientists alike. Making it easily accessible over the Web and showing changes over
time opens the potential of this rich dataset to a wide audience.

CHAPTER 15 ■ CASE STUDIES 651

8997ch15.qxd 9/28/07 10:17 AM Page 651

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

U.S. Department of Defense MilitaryHOMEFRONT LBS

■Note The MilitaryHOMEFRONT LBS was developed by eSpatial.12 The authors would like to thank eSpatial for
granting permission to publish the material in this section. You can find additional information on eSpatial at
www.espatial.com/.

Organizations are increasingly providing customized, web-based applications to allow their personnel
access to location information relevant to their roles. The Office of the Under Secretary of Defense,
Personal & Readiness, Military Community & Family Policy, Program Support Group (MC&FP PSG)
is no exception. Troops are often required to relocate during their careers in the U.S. military. When
considering relocation, they will want to know the answer to a variety of practical questions regard-
ing the area where they relocate to, such as the following:

• Where is the installation located, and how do I get there?

• Where can I find a specific service such as a childcare center, barber, relocation office, and
so on?

• Where can my kids go to school?

• How far away is the nearest hospital?

• What is today’s weather like?

• What will the weather be like in winter?

• Are there nearby hotels for my family and friends to stay at if they come visit?

The MilitaryINSTALLATIONS web portal13 site is intended as a source of information that can
benefit the troops and their families. Information on services, base layout, access to services and
their locations, and proximity to schools, clinics, and other points of interest allow families to
become accustomed with their new home.

The location-based service (LBS) assists users to make more informed decisions regarding
services available on and near military facilities installations worldwide. The user interface, mod-
eled on the latest web mapping technologies, provides an intuitive interface for non-GIS users.
Service personnel and their families are able to locate military installations by means of menus or
interactively using a map to find details about the installation and the community surrounding it.
The application simplifies planning moves and trips to a new installation. For example, a family
relocating from Germany to a base in Oklahoma can search a specific installation to find on-base
and off-base services, including schools, ATMs, pharmacies, parks, and other municipal services.
Links are provided to additional information where available and directions to and from locations
can be provided. The LBS can also be used to assist service personnel when traveling or planning
travel to a military installation.

MilitaryINSTALLATIONS is part of the MilitaryHOMEFRONT14 web portal. They are the central,
trusted, and up-to-date sources for service members and their families to obtain information about
Department of Defense Quality of Life programs and services. The site is a service of the MC&FP
PSG and was first launched in August 2006.

CHAPTER 15 ■ CASE STUDIES652

12. See www.espatial.com.

13. www.militaryinstallations.dod.mil

14. www.militaryhomefront.dod.mil

8997ch15.qxd 9/28/07 10:17 AM Page 652

www.it-ebooks.info

www.freepdf-books.com

http://www.espatial.com
http://www.espatial.com
http://www.militaryinstallations.dod.mil
http://www.militaryhomefront.dod.mil
http://www.it-ebooks.info/

Figure 15-16 shows the home page of MilitaryINSTALLATIONS. Users can select a program or
service (such as schools or legal services), a branch or service agency (such as Navy or Air Force),
and a specific installation. You can also choose the installation by clicking in the map, which will
show the facilities in the state selected.

Figure 15-16. The MilitaryINSTALLATIONS home page (www.militaryinstallations.MC&FP PSG.mil)

The MilitaryINSTALLATIONS application is based on Oracle Spatial 10g and uses eSpatial’s
iSMART platform. Worldwide data for the system is provided using NAVTEQ’s Premium Streets and
Points of Interest (POI) datasets. This dataset has been augmented with additional application-specific
data concerning military installations, services, and military-specific points of interest.

The application utilizes iSMART’s web mapping software to provide a seamless user interface
for navigating the spatial and business data. Navigation is enhanced with significant use of Ajax for
a dynamic experience, including rich map navigation, mouseover pop-ups of information, and
quick loading of data. Oracle Spatial is used to provide geocoding and routing services based on the
NAVTEQ data. External data feeds are also incorporated, providing useful information such as local
weather conditions.

The system integrates the existing geo-spatial data of the MC&FP PSG infrastructure, which
stores address and service information for all of the U.S. military bases worldwide, with NAVTEQ
worldwide premium map and POI data. The data is stored in Oracle 10g, and all spatial query func-
tionality, routing, and geocoding is performed through the Oracle Spatial platform.

Figure 15-17 illustrates the results of a search for car services within a certain radius from an
installation. The resulting map shows the installation and the closest services found in its surround-
ing. The results page allows for an extension of the search to a larger area or to a different set of POIs.

CHAPTER 15 ■ CASE STUDIES 653

8997ch15.qxd 9/28/07 10:17 AM Page 653

www.it-ebooks.info

www.freepdf-books.com

http://www.militaryinstallations.MC&FPPSG.mil
http://www.it-ebooks.info/

Figure 15-17. The MilitaryINSTALLATIONS results page showing search results and nearby points of
interest.

The Architecture of MilitaryHOMEFRONT LBS
The MilitaryINSTALLATIONS system functionality includes the following:

• Installation and directory of services search. The search is based on location (such as coun-
try, state, or province), program or service (such as family or education centers), and branch
of service (such as Navy or National Guard).

• Detailed information on each search result, such as location overview (such as mission,
history, relocation assistance), weather conditions (from an external XML web services
feed), contact information (phone numbers and facilities list for the installation), and
other information.

• Proximity searches for locating other facilities and POI in the proximity of an installation
(ATMs, cultural venues, schools or police stations, recreation, and so on).

• Point-to-point driving directions to determine the driving route between two locations
(installations, POIs, or address) using custom route preferences such as type of road
(highways or local roads) or fastest/shortest route.

CHAPTER 15 ■ CASE STUDIES654

8997ch15.qxd 9/28/07 10:17 AM Page 654

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

MilitaryHOMEFRONT provides a diverse set of spatial and nonspatial datasets stored in an
Oracle 10g database. Oracle Spatial stores the maps, addresses, POIs, and POI attributes. In particu-
lar, the repository contains the following:

• Map data at various scales: The base data of the MilitaryINSTALLATIONS application is pro-
vided by NAVTEQ. After loading, the data is processed for symbolization and performance.
Data is split into separate layers to minimize query time and processing and to facilitate
symbolizing. The data provided by NAVTEQ is of much higher precision than can be easily
displayed at the application’s viewing levels, so filtering and simplification is performed. Very
large datasets (streams, lakes, roads, and so on) are simplified into multiple layers that are
then displayed at separate scale levels for maximum performance and clarity. Data selection
and filtering is applied for optimal display at all map scales. For example, only interstates
and major highways are displayed at high levels, while minor roads are rendered when zoomed
in further.

• POI data: The primary POI database is the existing MC&FP PSG database of installations and
facilities that is integrated into the application. This provides the services and installation
information searched through the main interface. The remainder of the POI data (gas sta-
tions, ATMs, restaurants, and so on) is a combination of the MC&FP PSG data and the NAVTEQ
POI dataset. Additional information (phone numbers, websites, pictures) stored in these datasets
is either displayed in-line with the results or as a secondary page linked in the results.

• Address data: These include the full address of a POI or of a certain location and their x,y
coordinates. Address data is stored primarily for routing and display purposes, with geocod-
ing both being preprocessed for the majority of the data. In cases where address data is not
available or was not previously geocoded, the user is given the option to modify the address,
which is then geocoded in real time using Oracle Spatial.

• Road network data: Road network data is supplied by NAVTEQ and includes all of the neces-
sary tables and data structures for use with the Oracle Spatial Route Server.

The cartographic representation of the data is provided in an intuitive and easy-to-use form.
Rendering performance is improved through the use of iSMART’s transactional spatial data cache.
Because of both the large amounts of spatial data being queried from the Oracle database and the
large number of users accessing the site, this caching of data allows for significantly improved ren-
der times and query speeds.

The application uses “smart style” style sheets, which vary styles, symbols, or icons and sizes
depending upon the preset zoom levels. The color selections try to convey the element type easily
to the user (for example, park polygons in green, military base polygons in gray, and so on). POIs are
displayed in their actual location on the map based on coordinates rather than showing the POI
locations along the street centre line. This provides the user the ability to discern which side of
the street the POI resides.

Figure 15-18 shows the architecture of the system. The application resides in the Oracle Appli-
cation Server and uses three main components: the spatial query and display, the geocoding, and
the routing. Oracle database is implemented in a cluster for maximum performance, scalability and
reliability.

CHAPTER 15 ■ CASE STUDIES 655

8997ch15.qxd 9/28/07 10:17 AM Page 655

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure 15-18. The MilitaryINSTALLATIONS architecture15

The use of an external OGC WMS16 Image service is currently being evaluated to provide additional
map data to the user. In the current implementation, this functionality is used to display raster imagery
behind the vector dataset. WMS consumption was also tested to overlay weather information on top of
the vector data, although this was abandoned in favor of the current separate page of weather informa-
tion for simplicity of display.

The architecture, combined with iSMART’s capabilities, allows for the MilitaryINSTALLATIONS
map data to also be served internally through both web map server and web feature server17

(read-only) services allowing other internal users the ability to consume the data in their own GIS
applications.

Public User

Caching Proxy

Oracle Application Server

Oracle RAC

Military INSTALLATIONS/Mobile MilitaryINSTALLATIONS

Map Display/Spatial Queries

eSpatial iSMART Oracle Route Server

Address Geocoding Point-to-Point Routing

Transactional
Spatial Data Cache

DB Server
(Oracle
Spatial)

DB Server
(Oracle
Spatial)

DB Server
(Oracle
Spatial)

DB Server
(Oracle
Spatial)

NAVTEQ Datasets (U.S. and World)
MC&FP PSG Military Installations and Services Data

iSMART Metadata

CHAPTER 15 ■ CASE STUDIES656

15. RAC stands for Real Application Cluster.

16. Web Map Service (WMS) is a standard defined by the Open Geospatial Consortium (www.opengeospatial.org)
that provides a standard interface for querying and accessing map layers from a mapping server. Clients and
servers that adhere to the standard can share data independent of their implementation.

17. A web feature server is a standard interface specified by the Open Geospatial Consortium (www.opengeospatial.org)
that allows interoperability of for geographical features across the Web. It uses the XML-based GML for data
exchange.

8997ch15.qxd 9/28/07 10:17 AM Page 656

www.it-ebooks.info

www.freepdf-books.com

http://www.opengeospatial.org
http://www.opengeospatial.org
http://www.it-ebooks.info/

Oracle Spatial in MilitaryHOMEFRONT
Oracle Spatial is used by MilitaryINSTALLATIONS to store and retrieve spatial information, to perform
proximity analysis, to geocode locations, and to provide routing to and from military installations,
services, and POIs.

The search for POIs in the proximity of an installation is based on an SDO_INSIDE query. In this
case, it is preferred to use the SDO_INSIDE query instead of the SDO_NN query because the query may
be applied for searches in fairly remote areas of the country/world, where the density of POI data
can be very small and the search may extend for a very large area. Using SDO_INSIDE instead of SDO_NN
improves performance in this case, because distances are calculated only for a subset of POIs.

Listing 15-11 shows the search of POIs close to a reference point with coordinates p_x and p_y.
The query returns POIs within p_distance from the reference point.

The query joins two tables: the POI table (poi) and the geocoding table (gc). The POI table con-
tains the information about a POI, such as name (poi_name), street name (street_name), or phone
number (phone_number). The geocoding table adds information such as region name (region_name),
postal code (postal_code), and municipality name (municipality_name).

The query creates a list of poi and gc records and includes a new column called distance_in_miles
from the reference point (p_x, p_y). This column contains the distance from each POI to the reference
point calculated with SDO_DISTANCE.

The first part of the where clause limits the selection to POI geometries (m.geometry) that fall
inside a buffer of p_distance miles from the reference point. The buffer is computed on the fly by
sdo_geom.sdo.buffer. The results are limited to POI of type p_poi_type.

Listing 15-11. Selecting POIs Close to a Facility

select

m.poi_id,

m.poi_name,

m.poi_st_number,

m.street_name,

g.municipality_name,

g.region_name,

g.postal_code,

m.phone_number,

m.link_id,

m.geometry.sdo_point.x,

m.geometry.sdo_point.y,

sdo_geom.sdo_distance(

m.geometry, sdo_geometry(2001, 8307,

sdo_point_type(<p_x>, <p_y>, NULL),

NULL, NULL), 0.5, 'unit = mile')

distance_in_miles

from

us.poi m,

us.gc g

where

sdo_inside(m.geometry, sdo_geom.sdo_buffer(

sdo_geometry(2001, 8307, sdo_point_type(<p_x>, <p_y>, NULL),

NULL, NULL), <p_distance>, 0.5, 'unit=mile')) = 'TRUE'

and

m.poi_type = <p_poi_type>

and

m.poi_id = g.poi_id

order by distance_in_miles

CHAPTER 15 ■ CASE STUDIES 657

8997ch15.qxd 9/28/07 10:17 AM Page 657

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The search of POIs can also be based on ZIP code instead of installation. The two following list-
ings illustrate the POI searches (from the MC&FP PSG data) based the ZIP code. The key parts of the
query are to obtain the ZIP code geometry used multiple times in the query and the search of
the full dataset using the ZIP code geometry. The examples in Listing 15-12 and Listing 15-13 are
part of a procedure that takes parameters such as the following:

• p_postal_code: A certain postal code

• p_stat_id: The ID of a certain state

• p_within: The distance from a postal code

Listing 15-12 serves to obtain the ZIP code geometry. The query scans the table zip_usa and
selects the shp_geometry objects for which the field shp_zip equals the parameter p_postal_code
and for which shp_state equals p_stat_id. The NLV statement allows also matches when p_stat_id
is null. The query selects only one element that is stored in zip_geometry for use in the next listing.

Listing 15-12. Obtaining Geometry of ZIP Code

select shp_geometry into zip_geom from zip_usa

where shp_zip = p_postal_code

and shp_state = NVL(p_stat_id, shp_state)

and rownum <= 1;

Once the geometry of the ZIP code is obtained, the contact table is searched using this geome-
try below a section of the full query, which is also part of a procedure.

The first part of the query creates a set containing four fields: x, y, location geometry (from the
table contact), and distance. Distance, set at -999 if sdo_point x is null, is the distance between
zip_geom (extracted by Listing 15-12) and the points in the location column in the contact table,
calculated with SDO_DISTANCE. The where clause, here a section of the full where clause, limits the
selection to records that are within p_within miles. If p_within is not given, the query defaults to
25 miles.

Listing 15-13. Selecting Geometries Close to the ZIP Geometry

Select

...

c.location.sdo_point.x x,

c.location.sdo_point.y y,

c.location,

decode(c.location.sdo_point.x,

null, -999,

sdo_geom.sdo_distance(zip_geom, c.location, 0.5,

'unit=mile')

) distance

from

contact c

where

<...>

and sdo_within_distance(c.location, zip_geom,

'distance=' || NVL(p_within, 25) || ' unit=mile') = 'TRUE') fcl2,

Geocoding is performed by querying the Oracle stored procedures through Java code. A set of
classes encapsulate this functionality. Listing 15-14 illustrates the use of SDO_GCDR.GEOCODE_ALL (see
Chapter 6). The prepared statement calls the SDO_GCDR.GEOCODE_ALL that uses four parameters, one
of them being an array of two parameters in SDO_KEYWORDARRAY. The parameters are shown next to the

CHAPTER 15 ■ CASE STUDIES658

8997ch15.qxd 9/28/07 10:17 AM Page 658

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

<prepare address for geocode> section. They are name (IDX_IN_SCHEMA), address lines (in this case
IDX_IN_ADDR1 and IDX_IN_ADDR2), country (IDX_IN_COUNTRY), and the match mode (IDX_IN_MODE).

Listing 15-14. Geocoding

private static final String QUERY_GEOCODE =

"SELECT SDO_GCDR.GEOCODE_ALL(?, SDO_keywordArray(?, ?), ?, ?)

FROM DUAL";private static final String MATCH_MODE = "RELAX_ALL";

private PreparedStatement buildGeocodeQuery(

USForm2Address address, String geocodeCountry)

throws SQLException {

StringBuffer addressLine1 = new StringBuffer(100);

StringBuffer addressLine2 = new StringBuffer(100);

<prepare address for geocoding>

PreparedStatement ps = connection.prepareStatement(QUERY_GEOCODE);

ps.setString(IDX_IN_SCHEMA, schemaName);

ps.setString(IDX_IN_ADDR1, addressLine1.toString());

ps.setString(IDX_IN_ADDR2, addressLine2.toString());

ps.setString(IDX_IN_COUNTRY, geocodeCountry);

ps.setString(IDX_IN_MODE, MATCH_MODE);

return ps;

}

The actual call is shown in Listing 15-15, which contains the loop that executes the query and
geocodes all the addresses. The variables address and geocodeCountry are the parameters to the
query.

Listing 15-15. Call to Geocoding

ps = buildGeocodeQuery(address, geocodeCountry);

rs = ps.executeQuery();

Object[] addressess = (Object[])array.getArray();

for (int i = 0; i < addressess.length; i++) {

STRUCT st = (STRUCT) addressess[i];

GeocoderAddress ga = GeocoderAddress.load(st);

<process the address>

}

Routing is performed using the Oracle Spatial Route Server (see Chapter 11). Requests are com-
posed into XML, sent using HttpClient, and then parsed out using SAX.18 As with geocoding, a set of
classes encapsulates this functionality.

Listing 15-16 illustrates the routing call. The first part of the code shows the preparation of the
XML for the routing, including the parameters necessary to compute a route and the preferences for
the routing. The second part of the code illustrates the HTTP request and the request sent to Oracle
Route Server. The result is parsed into RouteResponse, which is the usable route information.

CHAPTER 15 ■ CASE STUDIES 659

18. http://sax.sourceforge.net/

8997ch15.qxd 9/28/07 10:17 AM Page 659

www.it-ebooks.info

www.freepdf-books.com

http://sax.sourceforge.net
http://www.it-ebooks.info/

Listing 15-16. Routing Call to Oracle Spatial Route Server

public RouteResponse routeFromTo(StartLocation sl, EndLocation el) {

RouteRequest rr = new RouteRequest();

rr.setId("1");

rr.setDistanceUnit(distanceUnits);

rr.setTimeUnit(timeUnits);

rr.setReturnDrivingDirections(true);

rr.setReturnRouteGeometry(true);

rr.setRoutePreference(routePreference);

rr.setRoadPreference(roadPreference);

rr.setDetailedGeometry(detailedGeometry);

rr.setStartLocation(sl);

rr.setEndLocation (el);

return route(rr);

}

public RouteResponse route(RouteRequest routeRequest) {

String requestXML = routeRequest.buildXMLRequest();

HttpClient client = new HttpClient();

HttpMethod method = new PostMethod(routeserverUrl);

method.setQueryString(new NameValuePair[] {

new NameValuePair("xml_request", requestXML) });

<send html request>

InputSource is = new InputSource(method.getResponseBodyAsStream());

RouteResponse routeResponse = rrp.parseInputSource(this, is);

return routeResponse;

}

Mobile MilitaryINSTALLATIONS
MilitaryINSTALLATIONS offers also mobile access, enabling anyone with one of the supported
mobile devices (Windows Mobile, Blackberry, Treo) to use the mobile version of the website.19

Users with a mobile device can access any of the standard functionality of the application. For
example, a user could route from an airport to their destination on a military base using only
their mobile handset. They can locate POIs, such as banks, ATMs, restaurants, or museums, and
obtain vital information such as a phone number or the current weather conditions. This mobile
application serves as a “one-stop” service for all military personnel that are traveling and need
information about programs and services at the base level.

MilitaryINSTALLATIONS is designed to recognize the device being used to access the applica-
tion and provide the appropriate interface automatically. The majority of the functionality is
available on both the mobile and desktop versions, although there are some differences:

• The mobile application is simplified to reduce bandwidth and screen size requirements.

• Most of the interactive elements of the application (pop-ups, dynamic page refreshes, and
JavaScript form validation) are not possible on the mobile application because of the lack of
consistent JavaScript support on mobile devices.

• Some of the information displayed is filtered to focus on important information and avoid
displaying too much data on the smaller screens.

• Map navigation is simplified significantly because of the lack of JavaScript support.

CHAPTER 15 ■ CASE STUDIES660

19. http://militaryinstallations.MC&FPPSG.mil/mobile

8997ch15.qxd 9/28/07 10:17 AM Page 660

www.it-ebooks.info

www.freepdf-books.com

http://militaryinstallations.MC&FPPSG.mil/mobile
http://www.it-ebooks.info/

Figure 15-19 shows four sample screens of the mobile application. The top-left image shows the
home page and the service selection drop-down list. The top-right image shows the input screen for
a search, in this case a search by country, state/province, or ZIP code, which is also part of the home
page. The bottom-left image illustrates the results of the search, in this case the overview map. By
scrolling down it is possible to see the list POIs meeting the search criteria. The bottom-right image
shows a typical routing result, in this case the first five steps of the turn-by-turn directions.

Figure 15-19. Mobile home page for MilitaryHOMEFRONT (top left); location search (top right);
results of location search (bottom left); turn-by-turn instructions (bottom right)

CHAPTER 15 ■ CASE STUDIES 661

8997ch15.qxd 9/28/07 10:17 AM Page 661

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Benefits of MilitaryHOMEFRONT LBS
Thanks to the technology selected, MC&FP PSG was able to produce an intuitive and easy-to-use
website. The implementation of industry standards for data management and display made it pos-
sible to rapidly merge business and complex geospatial sets of information into a very user-friendly
application.

The MC&FP PSG now has a comprehensive geospatial database platform that can be used to
build multiple map-based applications that support the “supporting the troops and their families”
mission.

The framework was designed to allow other applications to easily integrate into the MilitaryIN-
STALLATIONS architecture, providing the user a seamless transition from one application to another.
As an example of this, the MilitaryHOMEFRONT has many instances where the driving directions,
routing, or map display provided by the MilitaryINSTALLATIONS application are integrated into
other MilitaryHOMEFRONT offerings.

By having the capability to add geospatial components to various operation applications,
MC&FP PSG has moved to the realm of a truly spatially enabled enterprise that will benefit the
entire community. By establishing this infrastructure now, MC&FP PSG can easily develop addi-
tional services and applications at no additional cost for data or software.

Summary
In this chapter, we described five case studies that demonstrate the use of Oracle Spatial in applica-
tions. The BusNet case illustrated how to use Oracle Spatial to improve the planning and management
of the bus schedules and routes for the city of London. The P-Info case study described a system to
provide mobile, location-enabled access to mission-critical information for police officers operat-
ing in the field. The Risk Repository for Hazardous Substances case study illustrated a system that
gives access to information on risk and possible effects of storing, processing, and transporting haz-
ardous substances. The USGS spatial data warehouse case described the use of Oracle Spatial to
search, visualize, and analyze land-cover data for the United States. The MilitaryHOMEFRONT LBS
case study illustrated how Oracle Spatial is used to locate and geocode information and how to pro-
vide street navigation to users.

Oracle Spatial is used to store and retrieve all spatial data used in the applications, and the
spatial analysis performed in these applications is based on the methods and tools described in this
book. The applications described in this chapter rely extensively on the scalability, security, and
reliability of the Oracle database—another reason for the selection of Oracle Spatial in all these
applications. Together, these case studies are meant to illustrate through real applications the vari-
ety of cases in which Oracle Spatial is used and to demonstrate the wide applicability of the Oracle
Spatial technology.

CHAPTER 15 ■ CASE STUDIES662

8997ch15.qxd 9/28/07 10:17 AM Page 662

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Tips, Common Mistakes, and Common
Errors

Now that you have studied many techniques for how to location-enable your application and
how to incorporate spatial analysis and visualization tools in your application, we think it is time for
a little advice.

First, we present some advice on best practices—in other words, we give some tips for location-
enabling your application. Next, we cover some of the common pitfalls that can trap unwary users as
they set out to location-enable their business application. Finally, we enumerate common errors that
you may encounter in location-enabling your application and the corrective actions to sort out these
errors.

Tips
In this section, we provide several tips (best practices) for data modeling, improving spatial query
performance, and managing large historical/temporal spatial databases. Note that we discuss only
those tips not covered in prior chapters in detail. For tips covered in earlier chapters, we refer you
directly to those chapters.

Data Modeling and Loading
We’ll first examine some things you should keep in mind while modeling and loading spatial data.

Always Validate Your Data
You should always validate your data before proceeding with further analysis. You can use the SDO_GEOM.
VALIDATE_* routines to perform this validation, as discussed in Chapter 5. Chapter 5 has routines to
debug/correct invalid geometries as well. You can also use the SDO_MIGRATE.TO_CURRENT function to cor-
rect the orientation in any invalid polygon geometries. The SDO_MIGRATE.TO_CURRENT function works only
for two-dimensional geometries in Oracle Database 11g Release 1 but is expected to work for three-
dimensional geometries too in subsequent releases.

If your application involves network modeling, as described in Chapter 10, you should validate
the network using the SDO_NET.VALIDATE_NETWORK function. See Chapter 10 for examples.

663

C H A P T E R 1 6

■ ■ ■

8997ch16.qxd 9/28/07 10:19 AM Page 663

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Always Store Two- and Three-Dimensional Points in SDO_POINT
To store a two- or three-dimensional point, you should always use the SDO_POINT attribute of the
SDO_GEOMETRY data type. You should set the SDO_ELEM_INFO and SDO_ORDINATES attributes to NULL.
This ensures less storage and faster access for such point data. Refer to Chapter 4 for more details
and examples.

Use TO_CURRENT to Correct Orientation in a Polygon
As described in Chapter 5, you can correct the orientation of a polygon using the SDO_MIGRATE.TO_
CURRENT function. For instance, you can run SDO_MIGRATE.TO_CURRENT on the polygon geometry in
Listing 16-1 that is oriented clockwise. (Oracle Spatial expects the ring of the polygon boundary to
be oriented counterclockwise.)

Listing 16-1. Correcting the Orientation of a Polygon Geometry Using TO_CURRENT

SQL> SELECT SDO_MIGRATE.TO_CURRENT

(

SDO_GEOMETRY

(

2003, NULL, NULL,

SDO_ELEM_INFO_ARRAY(1,1003,1),

SDO_ORDINATE_ARRAY

(

2,2, -- Vertices specified in clockwise order

3,3.5,

5,2,

2,2

)

),

SDO_DIM_ARRAY

(

SDO_DIM_ELEMENT('1', -180, 180, 0.0000005),

SDO_DIM_ELEMENT('2', -90, 90, 0.0000005)

)

) FROM DUAL;

SDO_MIGRATE.TO_CURRENT(MDSYS.SDO_GEOMETRY(2003,NULL,NULL,MDSYS.SD

O_ELEM_INFO_ARRAY

SDO_GEOMETRY

(

2003, NULL, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 1),

SDO_ORDINATE_ARRAY

(

2, 2, -- Vertices specified in counterclockwise order

5, 2,

3, 3.5,

2, 2

)

)

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS664

8997ch16.qxd 9/28/07 10:19 AM Page 664

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Use the SDO_UNION Function to Correct a Self-Crossing Polygon
In Figure 5-2(a) (in Chapter 5), we show a self-crossing polygon geometry. If you model this geome-
try as a single polygon and try to validate it as shown in Listing 5-34 in that chapter, Oracle throws
the ORA-13349 (“Polygon boundary crosses itself”) error. One simple mechanism to correct this poly-
gon geometry is to union (that is, run SDO_GEOM.SDO_UNION on) the geometry with itself. Listing 16-2
shows the code to correct the invalid geometry of Listing 5-34.

Listing 16-2. Correcting a Self-Crossing Polygon Geometry Using SDO_UNION

SQL> SELECT SDO_GEOM.SDO_UNION

(

SDO_GEOMETRY -- self-crossing 'polygon' geometry

(

2003, -- A polygon type geometry: invalid because edges cross

NULL, NULL,

SDO_ELEM_INFO_ARRAY(1,1003,1),

SDO_ORDINATE_ARRAY

(

2,2,

3,3.5,

2,5,

5,5,

3,3.5,

5,2,

2,2

)

),

SDO_GEOMETRY -- self-crossing 'polygon' geometry (repeated)

(

2003,

NULL, NULL,

SDO_ELEM_INFO_ARRAY(1,1003,1),

SDO_ORDINATE_ARRAY

(

2,2,

3,3.5,

2,5,

5,5,

3,3.5,

5,2,

2,2

)

),

0.0000005

) valid_gm FROM DUAL;

VALID_GM(SDO_GTYPE, SDO_SRID, SDO_POINT(X, Y, Z), SDO_ELEM_INFO,

SDO_ORDINATES)

--

SDO_GEOMETRY

(

2007, -- Corrected to a multipolygon rather than a single polygon

NULL, NULL,

SDO_ELEM_INFO_ARRAY -- Two elements, each specifying a separate polygon

(

1, 1003, 1, -- First Polygon Element starting at offset 1 in SDO_ORDINATES

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS 665

8997ch16.qxd 9/28/07 10:19 AM Page 665

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

9, 1003, 1 -- Second Polygon Element starting at offset 9 in SDO_ORDINATES

),

SDO_ORDINATE_ARRAY

(

3, 3.5, -- First vertex of first polygon element

2, 2, -- Second vertex

5, 2, -- Third vertex

3, 3.5, -- Final vertex of first polygon element (same as 1st vertex)

2, 5, -- First vertex of second polygon element

3, 3.5, -- Second vertex

5, 5, -- Third vertex

2, 5 -- Final vertex of second polygon element (same as 1st vertex)

)

)

Note that the preceding listing corrects the geometry to be a multipolygon with two polygon
elements. The polygon elements are disjoint (that is, the boundary does not cross). The resulting
multipolygon geometry is in valid Oracle Spatial format.

Always Store Only As Many Dimensions/Digits As Needed
Some third-party tools export spatial data as three-dimensional data. The first two dimensions con-
tain the longitude and latitude information, and the third dimension is always set to 0. This means
the SDO_ORDINATES attribute will contain three ordinates for each point or vertex instead of two. For
large geometries, this will translate into some wasted storage in the SDO_ORDINATES attribute of an
SDO_GEOMETRY, which could have potential implications for storage and subsequent query perform-
ance (because of a greater number of I/Os). You should clean up such data by removing every third
ordinate in the SDO_ORDINATES attribute (see Chapter 7 for details).

Likewise, third-party tools may also waste space by exporting too many digits for ordinate val-
ues in an SDO_GEOMETRY. For instance, if the data is in a projected coordinate system, an ordinate
value with six or more decimal digits may specify a very high precision. Applications seldom require
such high precision of data. By reducing the number of decimal digits (you can use the ROUND
function in Oracle for this purpose), you can reduce the storage for an SDO_GEOMETRY with potential
implications on the fetch performance (I/Os) of the geometry.

Performance of Spatial Operator Query
In most applications, selection based on spatial operators is much more expensive than selection
using relational operators such as ' > and '. The cost of spatial operators increases with the com-
plexity of spatial data.

Use Real Data for Performance Analysis
Given the complexity of spatial data, you should always run performance tests with realistic amounts
of data instead of synthetic/artificial data, which may not model the complexity of spatial data well.
Next, we focus on how to improve the performance of spatial operator queries.

A major portion of the time to answer a spatial operator query such as SDO_RELATE or SDO_NN
goes into fetching the data rows from the data table. Consider the query in Listing 16-3 for identify-
ing the nearest customers to a branch with id=1.

Listing 16-3. Nearest-Neighbor Query on the customers Table

SQL> SELECT COUNT(*)

FROM branches b, customers c

WHERE b.id=1 AND SDO_NN(c.location, b.location, 'SDO_NUM_RES=100')='TRUE';

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS666

8997ch16.qxd 9/28/07 10:19 AM Page 666

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

This query is processed by Oracle Spatial in the following sequence (see Figure 16-1).

Figure 16-1. Operator processing sequence in Oracle Spatial

1. The query (store) location is passed to the spatial index.

2. The spatial index returns ROWIDs of the customers table that are closest to the query (store)
location.

3. Oracle then fetches the rows corresponding to the ROWIDs returned by the spatial index.

The query returns the 100 nearest customers to the specified branch location. Steps 2 and 3
may access the row data (such as ID and location columns) corresponding to these 100 customers
in the customers table. These 100 rows may result in random disk I/Os, because there is no cluster-
ing of the customers table rows based on the “location” columns. The performance of the query may
suffer because of a high I/O cost. This might result in a high response time for queries. In the follow-
ing sections, we suggest two important tips for improving the performance.

Specify the LAYER_GTYPE Parameter
The first tip for improving query performance is to specify the LAYER_GTYPE=POINT parameter at the
time of index creation if the table contains just point data. This will completely avoid step 3 in query
processing in Figure 16-1. Instead, it will use the information in the spatial index to evaluate the
query. This will substantially speed up query performance. Listing 16-4 shows how you can specify
the LAYER_GTYPE parameter in the CREATE INDEX statement. Refer to Chapter 8 for more details on
the CREATE INDEX statement.

Listing 16-4. Specifying LAYER_GTYPE During Spatial Index Creation

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX PARAMETERS('LAYER_GTYPE=POINT');

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS 667

8997ch16.qxd 9/28/07 10:19 AM Page 667

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Reorganize the Table Data to Minimize I/O
In the previous example, the spatial data in the location column of the customers table has only
point geometries. In other tables, this may not be the case; the corresponding spatial column may
contain both point and nonpoint geometries. For such tables, you cannot employ the trick shown in
Listing 16-4 of specifying LAYER_GTYPE=POINT to improve spatial query performance. However, you
can still reduce I/O in step 3 of Figure 16-1 by an alternate mechanism: cluster the rows and avoid/
minimize random I/O. What you specifically need is a reclustering of the table rows based on prox-
imity of the geometry data in the location column. This means customer rows in the same city or
state, or any other geometric region, should be stored in the same physical block or adjacent blocks
if possible. This will ensure the rows that satisfy a spatial query (which is usually expensive com-
pared to nonspatial predicates) are retrieved with very few block accesses (random I/Os).

■Caution This tip is recommended only if spatial queries are the dominant part of the application workload and
are the main bottlenecks in performance and wait-time analysis shows this is because of high I/O cost.

Two features can achieve such clustering of rows in Oracle: table clusters and index-organized
tables (IOTs). Both features are not supported by Oracle Spatial. Clusters do not support the storage of
objects (such as SDO_GEOMETRY columns), and Oracle Spatial does not support spatial indexes on IOTs.

In this section, we describe how to achieve similar performance gains as in Oracle IOTs and
Oracle table clusters for mostly static spatial data. Some experiments using similar techniques indi-
cate record performance gains.1 The method involves a function called linear_key that takes as
input an SDO_GEOMETRY and an SDO_DIM_ARRAY as parameters and returns a RAW string. You will work
with the us_streets table in the following example.

First drop the index on the us_streets table, and then rename the us_streets to a new table
called us_streets_dup. You can then re-create the us_streets table as an empty table with the same
attributes as the us_streets_dup table, as shown in Listing 16-5. (Note that when you re-create the
us_streets table, you may have to do additional management such as issuing grants on the table,
and so on.) After you execute the SQL in Listing 16-5, you can observe that the us_streets table
becomes empty (because of the ROWNUM<=0 in the WHERE clause), and the data is transferred to the
us_streets_dup table.

Listing 16-5. Renaming and Re-creating the us_streets Table

SQL> DROP INDEX us_streets_sidx;

RENAME us_streets TO us_streets_dup;

-- Re-create the us_streets with the same fields as in us_streets_dup;

CREATE TABLE us_streets AS SELECT * FROM us_streets_dup WHERE ROWNUM<=0;

For each row in the us_streets_dup table, compute the value of the function linear_key (described
later in this section) using the location column for the row. Reinsert data from the us_streets_dup table
into the us_streets table by ordering the rows using the value of the linear_key function. This approach
is likely to store the rows in the us_streets table in the specified order. Listing 16-6 shows the SQL. Note
that we assume the metadata for the spatial layer <us_streets, location> is populated.

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS668

1. T.P.M. Tijssen, C.W. Quak, and P.J.M. van Oosterom. “Spatial DBMS testing with data from Cadastre and
TNO-NITG,” www.gdmc.nl/oosterom/kad6.pdf, GISt Report No. 7 Delft, ISSN 1569-0245, ISBN 90-77029-02-8,
March 2001.

8997ch16.qxd 9/28/07 10:19 AM Page 668

www.it-ebooks.info

www.freepdf-books.com

http://www.gdmc.nl/oosterom/kad6.pdf
http://www.it-ebooks.info/

Listing 16-6. Reinserting into the us_streets Table Based on the linear_key Order

SQL> INSERT INTO us_streets

SELECT * FROM us_streets_dup st

ORDER BY

linear_key

(

st.location,

(

SELECT diminfo FROM USER_SDO_GEOM_METADATA

WHERE table_name = 'US_STREETS' AND column_name='LOCATION'

)

);

You should be all set now. The preceding reorganization will ensure that the data in the repop-
ulated us_streets table is more or less spatially clustered. You can now re-create the spatial index
on the location column of the us_streets table. This reordering may improve the performance of
subsequent queries on the table, because they might minimize random block accesses.

An alternative approach is to materialize the linear_key function value for each row as an
additional column in the table and then partition the table using the values for this materialized
column. Note that to use partitioning, you will need to license the Partitioning option of Oracle.

You can code the linear_key function in a number of ways. Listing 16-7 is a simple implementation
in PL/SQL. Note that this example uses the MD.HHENCODE function, which encodes a two-dimensional
point (such as the CENTROID or POINTONSURFACE of a geometry) into a RAW string. This function is provided
by Oracle Spatial (in both Locator and Spatial options), and it uses the lower/upper bounds in each
dimension and an encoding level as additional parameters.

Listing 16-7. Using the linear_key Function to Order Geometry Rows Based on a “Spatial” Ordering

CREATE OR REPLACE FUNCTION linear_key

(

location SDO_GEOMETRY,

diminfo SDO_DIM_ARRAY

)

RETURN RAW DETERMINISTIC

IS

ctr SDO_GEOMETRY;

rval RAW(48);

lvl INTEGER;

BEGIN

-- Compute the centroid of the geometry

-- Alternately, you can use the 'faster' sdo_pointonsurface function

ctr := SDO_GEOM.SDO_CENTROID(location, diminfo);

lvl := 8; -- Specifies the encoding level for hhcode function

rval :=

MD.HHENCODE

(-- Specify value, lower and upper bounds, encoding level for each dimension

location.sdo_point.x, diminfo(1).sdo_lb, diminfo(1).sdo_ub, lvl,

location.sdo_point.y, diminfo(2).sdo_lb, diminfo(2).sdo_ub, lvl

);

RETURN rval;

END;

/

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS 669

8997ch16.qxd 9/28/07 10:19 AM Page 669

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Specify Appropriate Hints in a Query
In the case of a query specifying multiple tables, you should specify appropriate hints to ensure the
desired evaluation plan. Refer to Chapter 8 for details on how to use the ORDERED, INDEX, and NO_INDEX
hints to suggest an appropriate plan to the optimizer.

Performance of Other Spatial Processing Functions
Next, we discuss how to improve the performance of stored functions and geometry processing
functions such as SDO_AGGR_UNION (see Chapter 9 for details). Unlike the spatial operators, the geom-
etry processing functions do not use the spatial index.

Specify DETERMINISTIC for Stored Functions
Most queries on spatial data may involve a combination of spatial operators, geometry processing
functions, and user-defined stored PL/SQL functions. Here is a tip you should bear in mind when
coding such stored PL/SQL functions: if the return value of a PL/SQL function depends solely on
the input parameter values (that is, it returns the same value for the same set of parameter values
and the function does not depend on the state of the session variables and schema objects), then
you should declare the function as DETERMINISTIC. This will allow the optimizer to avoid redundant
function calls, and it may translate to a faster response time for queries. For example, in Listing 16-4
the linear_key function is declared as DETERMINISTIC.

If a DETERMINISTIC function is invoked multiple times with the same parameter values in a SQL
statement, Oracle evaluates the function only once (and reuses the result in other invocations).

If your stored function returns an object such as an SDO_GEOMETRY, Oracle may evaluate this
function multiple times. However, defining such a function as DETERMINISTIC will avoid such multi-
ple evaluations and will improve the performance of any SQL query that uses such stored functions.

Use a Divide-and-Conquer Approach for SDO_AGGR_UNION
In some applications, you may have to compute the aggregate union of several SDO_GEOMETRY objects.
For instance, you might want to compute the union of all the geometries in the us_counties table.
Listing 16-8 shows the SQL to compute the union using the SDO_AGGR_UNION function (see Chapter 9
for details).

Listing 16-8. Aggregate Union of All Geometries in the us_counties Table

SQL> SELECT SDO_AGGR_UNION(SDOAGGRTYPE(geom, 0.5)) union_geom

FROM us_counties ;

The SDO_AGGR_UNION function is evaluated as follows. It first starts with a null value for the result
(that is, union_geom). It then unions (uses the SDO_GEOM.SDO_UNION function) every geometry in the
us_counties table with union_geom in an iterative fashion.

The problem with this approach is that union_geom becomes larger and more complex with
every union operation. Computing the union operation (using the SDO_GEOM. SDO_UNION function)
with a complex geometry such as union_geom as one of the operands will be increasingly slow after
each iteration.

An alternate mechanism is to divide the set of geometries to be “unioned” into disjoint groups or
subsets, S1, . . ., Sn. You can group them in any manner you like. First compute the SDO_AGGR_UNION for
the geometries in each subset/group, and then compute the union of the results of all the groups.

The SQL in Listing 16-9 shows how to compute the union of all the counties in Massachusetts
by grouping them using the first letter of the county name. The county names in each group start
with the same letter.

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS670

8997ch16.qxd 9/28/07 10:19 AM Page 670

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 16-9. Computing the Aggregate Unions for Multiple Groups

SQL> SELECT SDO_AGGR_UNION(SDOAGGRTYPE(geom, 0.5)), SUBSTR(county,1,1)

FROM us_counties

WHERE state_abrv='MA'

GROUP BY (SUBSTR(county,1,1));

The SQL in Listing 16-9 groups all counties with the same starting letter using the SUBSTR function.
For each such group, the union of the county geometries is returned. An alternate grouping could
be based on the ROWNUM pseudo-column. For instance, if you want ten groups each, with approxi-
mately the same number of counties, you can use the SQL in Listing 16-10.

Listing 16-10. Computing the Aggregate Unions Grouped by the ROWNUM Pseudo-Column

SQL> SELECT SDO_AGGR_UNION(sdoaggrtype(geom, 0.5)) union_geom

FROM us_counties

WHERE state_abrv='MA'

GROUP BY MOD(ROWNUM,10);

This returns the union geometries for each group. You can aggregate these geometries to obtain
the aggregate union of all the counties. Listing 16-11 shows the corresponding SQL.

Listing 16-11. Computing the Aggregate Union of Aggregate Unions Grouped by the ROWNUM
Pseudo-Column

SQL> SELECT SDO_AGGR_UNION(SDOAGGRTYPE(union_geom, 0.5))

FROM

(

SELECT SDO_AGGR_UNION(SDOAGGRTYPE(geom, 0.5)) union_geom

FROM us_counties

WHERE state_abrv='MA'

GROUP BY MOD(ROWNUM,10)

);

Note that Listing 16-11 uses Listing 16-10 in the FROM clause. This means the results of the
SDO_AGGR_UNION in Listing 16-10 are pipelined to the outer-level SDO_AGGR_UNION in Listing 16-11. You
can repeat this pipelining any number of times. Listing 16-12 shows a pipelining of results between
three SDO_AGGR_UNION functions.

Listing 16-12. Computing the Aggregate Union in a Pipelined Fashion

SQL> SELECT SDO_AGGR_UNION(SDOAGGRTYPE(ugeom,0.5)) ugeom

FROM

(

SELECT SDO_AGGR_UNION(SDOAGGRTYPE(ugeom,0.5)) ugeom

FROM

(

SELECT SDO_AGGR_UNION(SDOAGGRTYPE(ugeom,0.5)) ugeom

FROM

(

SELECT SDO_AGGR_UNION(SDOAGGRTYPE(geom,0.5)) ugeom

FROM us_counties

GROUP BY MOD (ROWNUM, 1000)

)

GROUP BY MOD (ROWNUM, 100)

)

GROUP BY MOD (ROWNUM, 10)

);

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS 671

8997ch16.qxd 9/28/07 10:19 AM Page 671

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

How many such SDO_AGGR_UNION functions should you use in this pipelined execution? We rec-
ommend you use as many as necessary to ensure that the innermost SDO_AGGR_UNION function does
not have more than ten rows. (You can easily write a stored function to apply this guideline and
perform SDO_AGGR_UNION as in Listing 16-12.) With this approach, the response time is likely to be
minimized.

An analogous “divide-and-conquer” approach may help in improving the performance of the
SDO_AGGR_CONVEXHULL and SDO_AGGR_MBR aggregate functions.

Performance of Inserts, Deletes, and Updates
If a table has a spatial index on one or more of its columns, then inserts, deletes, and updates on
this table will take longer. This is because the associated spatial index(es) need to be kept up to date.
Here are two alternatives to improve performance.

Drop the Index Before Modifying a Large Number of Rows
If you are modifying (inserting, deleting, or updating the geometry columns of) more than 30 percent
of the total rows in a table, then it may be faster to drop the spatial indexes on columns of the table,
perform the modification (either insert, delete, or update), and then re-create the spatial index.2

Perform Inserts, Deletes, and Updates in Bulk
You can minimize the performance overheads of spatial indexes if you batch multiple inserts,
deletes, and/or update operations in the same transaction. If you expect to perform more than
1,000 such operations in a typical transaction,3 you can fine-tune the performance by specifying the
parameter SDO_DML_BATCH_SIZE=<numeric_value> in the CREATE INDEX parameters. By default, this
value is set to 1000 (optimal if the transaction has 1,000 inserts/deletes/updates). The SQL in
Listing 16-13 shows an example of setting SDO_DML_BATCH_SIZE to 5000.

Listing 16-13. Setting the SDO_DML_BATCH_SIZE Parameter

SQL> CREATE INDEX customers_sidx ON customers(location)

INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS('SDO_ML_BATCH_SIZE=5000');

The SDO_DML_BATCH_SIZE parameter should be in the range of 1 and 10,000. (You can inspect
this value for your index in the USER_SDO_INDEX_METADATA view.) It is advisable not to increase this
parameter to a value of more than 10,000, because this leads to a lot of memory consumption with
no discernible performance improvements.

If you have already created the spatial index, you can alter this parameter by manually chang-
ing it in the SDO_INDEX_METADATA_TABLE4 table in the MDSYS schema for a specific spatial index. Note
that you should not modify other parameters in this table. If you do, operations that use the spatial
index such as spatial operators may fail (see Chapter 8 for more information).

Next, you’ll learn about the best practices for scalability and manageability of spatial data in
tables with a large number of rows.

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS672

2. In the meantime (between dropping the index and re-creating it), be aware that you will not be able to use
spatial operators, which require a spatial index.

3. Note that this recommendation applies whenever “each” transaction has more than 1,000 insert, delete, or
update operations.

4. The USER_SDO_INDEX_METADATA and USER_SDO_INDEX_INFO dictionary views are based on this table.

8997ch16.qxd 9/28/07 10:19 AM Page 672

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Best Practices for Scalability and Manageability of Spatial
Indexes
Oracle recommends table partitioning, a licensed option, to scale with and easily manage large
tables (in other words, with tens of millions of rows or larger). In fact, table partitioning is the sug-
gested mechanism to scale to even ultra-large databases (on the order of Exa- [1018] bytes).5 You
can extend the benefits of such partitioning to tables with SDO_GEOMETRY columns, too. As you saw in
Chapter 8, partitioning can help in spatial query performance by pruning irrelevant partitions when
the partition key is specified. Oracle combines parallelism with partitioning to efficiently process
queries that access multiple partitions.

Creating a spatial index is much slower than creating a B-tree index—in some cases, by several
orders of magnitude. Table partitioning will help in faster creation and easy management of spatial
indexes. Specifically, we suggest using partitioning and local spatial indexes for managing large tables
with tens of millions of rows, and/or managing historical, temporal, or mobile data. In the following
sections, we illustrate the best practices for scalability and easy manageability of spatial indexes
using a specific application in which new data is added continuously.

Consider an application that collects and stores weather-pattern images for different regions of
the world. In such an application, you need to add data continuously on a per-day (or per-month, or
per-year) basis. And, after analyzing the access patterns, you may decide to store the data on a daily
basis for the current month, on a monthly basis for the prior months of the current year, and on a yearly
basis for prior years. Since the current month changes with time, the challenge is to effectively main-
tain this data organization and to ensure all associated spatial indexes are up to date.

Use Table Partitioning (and Local Spatial Indexes)
The solution for this problem is to use the Oracle table partitioning feature and create local spatial
indexes for each partition. Listing 16-14 shows an example.

Listing 16-14. Creating a Partitioned Table for Storing Temporal Weather-Pattern Data

SQL> CREATE TABLE weather_patterns

(

gid NUMBER,

geom SDO_GEOMETRY,

creation_date VARCHAR2(32)

)

PARTITION BY RANGE(CREATION_DATE)

(

PARTITION p1 VALUES LESS THAN ('2000-01-01') TABLESPACE tbs_3,

PARTITION p2 VALUES LESS THAN ('2001-01-01') TABLESPACE tbs_3,

PARTITION p3 VALUES LESS THAN ('2002-01-01') TABLESPACE tbs_3,

PARTITION p4 VALUES LESS THAN ('2003-01-01') TABLESPACE tbs_3,

PARTITION p5 VALUES LESS THAN ('2004-01-01') TABLESPACE tbs_3,

PARTITION jan VALUES LESS THAN ('2004-02-01'), -- Month of January, 2004

PARTITION feb VALUES LESS THAN ('2004-03-01'), -- Month of February, 2004

PARTITION current_month VALUES LESS THAN (MAXVALUE)

);

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS 673

5. See the following presentations for more information: “Oracle Database 10g: A VLDB Case Study” by Berik
Davies and Xavier Lopez (www.oracle.com/openworld/archive/sf2003/solutions_bi.html) and the keynote
speech titled “Journey to the Center of the Grid” given by Charles Rozwat at Oracle OpenWorld, San Francisco,
September 10, 2003 (www.oracle.com/oracleworld/online/sanfrancisco/2003/keynotes.html).

8997ch16.qxd 9/28/07 10:19 AM Page 673

www.it-ebooks.info

www.freepdf-books.com

http://www.oracle.com/openworld/archive/sf2003/solutions_bi.html
http://www.oracle.com/oracleworld/online/sanfrancisco/2003/keynotes.html
http://www.oracle.com/oracleworld/online/sanfrancisco/2003/keynotes.html
http://www.it-ebooks.info/

■Note Oracle 11g provides a new type of table partitioning called interval partitioning to simplify partition
management for partitioning on a date or a numeric attribute. You cannot yet create spatial indexes (or any domain
indexes for that matter) on such interval-partitioned tables.

The SQL in Listing 16-14 creates a partitioned table based on the creation_date column. The
first five partitions, p1 to p5, store the data for years before 2004. You specify that these partitions go
into the tablespace TBS_3. The next three partitions store the data for the first three months of 2004.
There is no tablespace specified. Hence, these partitions are stored in the default tablespace, USERS.
The last partition, current_month, stores the data for the current_month month, which, let’s say, is
March. You could go further and organize the data for March into days and associate partitions with
these, too. But this current organization is sufficient to illustrate the concepts.

You can create a local partitioned spatial index for this table. Listing 16-15 illustrates this. Note
the LOCAL keyword at the end of the statement. This tells Oracle to create “local” indexes—that is,
a separate index for each partition (but all managed by the same name, weather_patterns_sidx).

INSERT INTO USER_SDO_GEOM_METADATA VALUES

('WEATHER_PATTERNS', 'GEOM',

SDO_DIM_ARRAY(

SDO_DIM_ELEMENT('LONG', -180, 180, 0.5),

SDO_DIM_ELEMENT('LAT', -90, 90, 0.5)

),

8307

);

Listing 16-15. Creating a Local Partitioned Spatial Index

SQL> CREATE INDEX weather_patterns_sidx ON weather_patterns(geom)

INDEXTYPE IS MDSYS.SPATIAL_INDEX LOCAL;

This will create a separate spatial index for each partition of the table. The index information is
stored in the corresponding tablespace associated with the partition. For example, for the first five
partitions, the index is stored in tablespace TBS_3. You can also specify the parallel 4 clause after
the LOCAL keyword to indicate that the index creation should be run in parallel using four slave
processes.

Let’s say that, after creating the local indexes for partitions p1 to p3, the system runs out of space
in the TBS_3 tablespace. At that point, you need to add more space, drop the index, and re-create the
index using the SQL in Listing 16-15.

Create the Local Index As UNUSABLE for Better Manageability
An alternative option for creating local spatial indexes avoids such pitfalls and offers more flexibil-
ity. Listing 16-16 shows the alternative mechanism for creating partitioned indexes. First you create
the index as UNUSABLE. This will initialize the indexes for all partitions.

Listing 16-16. Creating a Local Partitioned Spatial Index As “Unusable”

SQL> CREATE INDEX weather_patterns_sidx ON weather_patterns(geom)

INDEXTYPE IS MDSYS.SPATIAL_INDEX LOCAL UNUSABLE;

Note that the SQL in Listing 16-16 creates only a “dummy” index in each partition (more or less
an instantaneous operation). After executing the SQL in Listing 16-16, Oracle marks all the partitions as
UNUSABLE. Any spatial operator query, an insert/delete/update on the table, or a specific partition
will raise an error that indicates the partition is UNUSABLE. You will need to rebuild the index on the
partitions before proceeding.

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS674

8997ch16.qxd 9/28/07 10:19 AM Page 674

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Rebuild the Spatial Index for Each Partition Separately
You can rebuild the index for each table partition separately (that is, independent of one another).
Listing 16-17 shows how to rebuild the local index for partition p1. Note that although we did not
specify any tablespace parameter here, the index will be built in the “tablespace” used with the table
partition in the prior CREATE INDEX statement. For partition p1, this tablespace is TBS_3. So, the index
is built and stored in tablespace TBS_3.

Listing 16-17. Rebuilding a Local Spatial Index

SQL> ALTER INDEX weather_patterns_sidx REBUILD PARTITION P1;

Likewise, you can rebuild the local indexes for each partition separately. By rebuilding these
indexes in multiple SQL*Plus sessions, you can achieve parallelism.

Rebuilding the local indexes separately gives you more control over partition index creation. If
one partition fails, the whole index is not marked as failed. This means you do not have to rebuild
the indexes for all partitions. Instead, you can rebuild the index only for the failed partition.

You can rebuild all UNUSABLE indexes (including the spatial index) for a partition in one attempt
using the ALTER TABLE ... REBUILD UNUSBALE INDEXES command. Listing 16-18 shows the correspon-
ding SQL. Note that this is an ALTER TABLE command instead of an ALTER INDEX command.

Listing 16-18. Rebuilding All UNUSABLE Indexes for a Table Partition

SQL> ALTER TABLE weather_patterns REBUIlD PARTITION P1 UNUSABLE LOCAL INDEXES;

Use EXCHANGE PARTITION to Work on FAILED Partitions
The rebuild of the spatial index as in Listing 16-18 may fail for a variety of reasons, including lack of
space in the specified tablespace for the partition or invalid geometries in the indexed column of
the table partition. In the former case, if you increase the size of the tablespace and reexecute (that
is, rebuild the index as in Listing 16-18), the index will rebuild. However, if the partition has invalid
geometries, then reexecuting Listing 16-18 will not help. Moreover, you may not be able to delete or
update the rows corresponding to the invalid geometries. Oracle may raise the “Partition marked as
FAILED/UNUSABLE” error for such operations.

To avoid such failures, you should always validate the spatial data before creating spatial
indexes. See Chapter 5 for details on how to validate spatial data.

If you end up with an “index failed” situation, how do you recover from it? One solution is to
use the EXCHANGE PARTITION clause of ALTER TABLE. You should first create a table, say tmp, with the
same structure as the weather_patterns table. Then create a spatial index on this empty table tmp
(after inserting the appropriate metadata in the USER_SDO_GEOM_METADATA view). Now you can execute
the SQL in Listing 16-19 to exchange data between table tmp and partition p1 of the weather_patterns
table. Note that the EXCLUDING INDEXES clause at the end ensures that the indexes are not exchanged
(only the data is exchanged).

Listing 16-19. Exchanging tmp Data with Partition p1 of weather_patternsWithout Indexes

SQL> ALTER TABLE weather_patterns EXCHANGE PARTITION current_month WITH

TABLE tmp EXCLUDING INDEXES;

If you examine the contents of the table tmp, you will see the rows that were earlier part of parti-
tion p1 in weather_patterns table, and vice versa. Since tmp is not a partitioned table, you can perform
regular DML (delete, update, and insert) operations on this table and correct the rows with invalid
geometries. (You may want to drop the spatial index if there are too many such rows.) After correcting
the rows, you can reexecute Listing 16-19 to put the corrected data in partition p1. You can then rebuild
the index on this partition as in Listing 16-17.

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS 675

8997ch16.qxd 9/28/07 10:19 AM Page 675

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Use EXCHANGE PARTITION with INDEXES for New Data
You may want to use the ALTER TABLE ... EXCHANGE PARTITION command for another purpose:
keeping spatial indexes up to date with new data.

For instance, say you add new data to the current_month partition every day. How do you keep
the data in the current_month partition up to date? One method is to add all new data to this parti-
tion directly. Inserting into partitions that have spatial indexes could be slow. Here are some tips to
improve performance:

• Add new data in large batches: This means each insert transaction should have more than
1,000 inserts. Spatial indexes incorporate efficient algorithms to bulk load a substantial
number of inserts (or deletes) within a single transaction.

• Create a temporary table (say tmp) that has the new data along with the data in the current_month
partition: Create a spatial index on this tmp table. You can exchange the contents of the tmp table
with the contents of the current_month partition in a split second. This will also exchange the
associated spatial indexes.

Listing 16-20 shows an example of the second tip in practice.

Listing 16-20. Adding New Data Using the EXCHANGE PARTITION Clause

SQL> CREATE TABLE tmp (gid number, geom sdo_geometry, date varcahr2(32));

SQL> INSERT INTO TABLE tmp VALUES (...); --- new data

-- Also include data from current_month partition

SQL> INSERT INTO TABLE tmp

SELECT * FROM weather_partitions PARTITION(current_month);

-- Exchange table tmp with "current_month" partition of weather_patterns.

SQL> ALTER TABLE weather_patterns

EXCHANGE PARTITION current_month WITH TABLE tmp INCLUDING INDEXES;

Note that Listing 16-20 uses the INCLUDING INDEXES clause. This will exchange the (already
created) indexes of partition p1 and table tmp almost instantaneously. The preceding tips can help
ensure that the current_month partition is always up to date.

Other Tips for Partition Maintenance
Next, we’ll show how to split a current_month partition as you enter a new month. At the end of the
year, you may also want to consolidate/merge all monthly partitions into a single yearly partition.

Splitting the current_month Partition

As you enter into the month of April, you will need to split the current_month partition into two
partitions: march and current_month (which holds the current month data). You can accomplish this
using the SPLIT PARTITION clause of ALTER TABLE, as shown in Listing 16-21.

Listing 16-21. Splitting the current_month Partition into march and current_month Partitions

SQL> ALTER TABLE weather_patterns

SPLIT PARTITION current_month AT ('2004-04-1') INTO

(

PARTITION march,

PARTITION current_month

);

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS676

8997ch16.qxd 9/28/07 10:19 AM Page 676

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The SQL in Listing 16-21 splits the current_month partition at April 1, 2004 (the key is '2004-04-01'),
into the march and current_month partitions. You will need to rebuild the indexes, as shown in
Listing 16-22, for each of these partitions to allow queries to succeed.

Listing 16-22. Rebuilding the Indexes for the “Split” Partitions

SQL> ALTER INDEX weather_patterns_sidx REBUILD PARTITION march;

SQL> ALTER INDEX weather_patterns_sidx REBUILD PARTITION current_month;

Merging Partitions
At the end of the year, you want to merge all the partitions into a single year partition. First,
Listing 16-23 shows how to merge the partitions jan and feb into a single partition.

Listing 16-23. Merging the Partitions for jan and feb into a Single Partition

SQL> ALTER TABLE weather_patterns

MERGE PARTITIONS jan, feb INTO PARTITION janfeb;

Note that the resulting partition is named janfeb. If you try to name it to jan in Listing 16-23, Oracle
throws an error. Instead, you should first name the merged partition as janfeb as in Listing 16-23 and
then later rename the janfeb partition to jan again as shown in Listing 16-24.

Listing 16-24. Renaming a Partition

SQL> ALTER INDEX weather_patterns_sidx RENAME PARTITION janfeb TO jan;

Likewise, using the SQL in Listings 16-23 and 16-24, you can merge partitions for other months
into the jan partition. You can then rename the jan partition to an appropriate name such as p2004
using the ALTER INDEX ... RENAME PARTITION command, as shown in Listing 16-25.

Listing 16-25. Renaming the Merged Monthly Partition As a Year Partition

SQL> ALTER INDEX weather_patterns_sidx RENAME PARTITION jan TO p2004;

Specify the Partition Key in the WHERE Clause
Specifying the partition key in the WHERE clause of a SELECT statement aids in pruning the number of
partitions searched. If the WHERE clause does not have a predicate on the partition key, all partitions
(and associated spatial indexes) are evaluated.

Specify the PARALLEL Clause to Ensure a Parallel Query on a Partitioned Index
To ensure queries on multiple partitions of a table are evaluated in parallel, you should do one of
the following: specify the PARALLEL clause in CREATE INDEX (see Listing 8-65 for the syntax), alter the
table by specifying a parallel degree (see Listing 8-66 for an example), or alter the index by specify-
ing a parallel degree.

To summarize, table partitioning can be an effective mechanism to ensure scalability and man-
ageability of spatial indexes on large tables of spatial data. The partitioning features come in handy
when you are managing temporal and historical spatial data.

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS 677

8997ch16.qxd 9/28/07 10:19 AM Page 677

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Common Mistakes
In the following sections, we look at some of the common pitfalls associated with location-enabling
an application. You should consult this list before you design your application.

Bounds, Longitude and Latitude, and Tolerance for Geodetic
Data
If the data in a layer is geodetic (that is, the SRID matches one of the values in the MDSYS.GEODETIC_SRIDS
table), then the corresponding DIMINFO attribute (of type SDO_DIM_ARRAY) should be set as follows:

• The first dimension in the SDO_DIM_ARRAY should correspond to the longitude dimension.
The lower and upper bounds (for this dimension) should always be set to values of –180 and
180. If other values are specified for the bounds, Oracle Spatial ignores them.

• The second dimension in SDO_DIM_ARRAY should correspond to the latitude dimension. The
lower and upper bounds should always be set to values of –90 and 90. If other values are
specified for the bounds, Oracle Spatial ignores them.

• The tolerance for the dimensions should always be specified in meters. The meter is the unit
of distance in all geodetic coordinate systems in Oracle.

If the tolerance is set incorrectly, Oracle Spatial may return unexpected results. A value of 0.5
(0.5 meters) is suitable for most applications.

NULL Values for SDO_GEOMETRY
Setting the individual fields of SDO_GEOMETRY to NULL does not constitute a NULL SDO_GEOMETRY object.
Instead, you should set the entire object to NULL. For example, you can set the location (SDO_GEOMETRY)
column to NULL as in Listing 16-26.

Listing 16-26. Setting the location Column in the customers Table to a NULLValue

SQL> UPDATE customers SET location = NULL;

Use GEOCODE or GEOCODE_ALL
You should not use the naive GEOCODE_AS_GEOMETRY function to convert addresses to SDO_GEOMETRY
data, if you suspect that the input address may be incorrect or misspelled. The GEOCODE_AS_GEOMETRY
may return incorrect SDO_GEOMETRY objects if the input address has errors. In such cases, you should
use the GEOCODE or GEOCODE_ALL functions to obtain corrected address(es) along with the quality of
the match(es). See Chapter 6 for more details.

Specify “INDEXTYPE is mdsys.spatial_index” in CREATE INDEX
To create a spatial index on the column of a table, you should always specify INDEXTYPE is mdsys.
spatial_index. See Listing 16-13 or 16-15, or see Chapter 8 for examples. If you do not specify this
clause in the CREATE INDEX statement, Oracle will raise the ORA-02327 (“Cannot create index on
expression with datatype ADT”) error.

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS678

8997ch16.qxd 9/28/07 10:19 AM Page 678

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Always Use Spatial Operators in the WHERE Clause
Never use spatial operators such as SDO_RELATE, SDO_FILTER, SDO_ANYINTERACT, SDO_WITHIN_DISTANCE,
and SDO_NN (see Chapter 8 for a full list) in the SELECT list of a SQL statement (in other words, do not
use them as in SELECT SDO_RELATE() FROM us_states). Instead, you should always specify the spa-
tial operators in the WHERE clause and evaluate them to TRUE (see examples in Chapter 8).

Use Spatial Functions When No Spatial Index Is Available
When you do not have a spatial index available, use spatial functions rather than spatial operators
(if you use spatial operators when there is no spatial index, Oracle raises an error, as mentioned in
Chapter 8). Listing 8-40 showed how to find the customers that are within competitors’ sales regions
using the SDO_RELATE operator. Instead of performing this analysis on all the customers, what if you
want to do it only for the customer names that are schools (that is, have %SCHOOL% in the name)? You
can add modify Listing 8-40 as in Listing 16-27.

Listing 16-27. Performing SDO_RELATE on a Subset of Customers

SQL> SELECT ct.id, ct.name

FROM competitors_sales_regions comp, customers ct

WHERE comp.id=1

AND SDO_RELATE(ct.location, comp.geom, 'MASK=ANYINTERACT ')='TRUE'

AND ct.name LIKE '%SCHOOL%'

ORDER BY ct.id;

However, if you know that the ct.name LIKE '%SCHOOL%' is more selective, you can push it to
the FROM clause in Listing 16-28.

Listing 16-28. Performing SDO_RELATE on a Subquery Returning a Subset of Customers

SQL> SELECT ct.id, ct.name

FROM competitors_sales_regions comp,

(SELECT c.name FROM customers c WHERE c.name LIKE '%SCHOOL') ct

WHERE comp.id=1

AND SDO_RELATE(ct.location, comp.geom, 'MASK=ANYINTERACT ')='TRUE'

ORDER BY ct.id;

Since ct.location in the result of the subquery no longer has a spatial index, the query returns
the ORA-13226 (“Interface not supported without spatial index”) error. In these cases, you can uti-
lize the SDO_GEOM.RELATE function as shown in Listing 16-29.

Listing 16-29. Performing SDO_GEOM.RELATE on a Subquery Returning a Subset of Customers

SQL> SELECT ct.id, ct.name

FROM competitors_sales_regions comp,

(SELECT c.name FROM customers c WHERE c.name LIKE '%SCHOOL') ct

WHERE comp.id=1

AND SDO_GEOM.RELATE(ct.location, 'ANYINTERACT', comp.geom, 0.5)='TRUE'

ORDER BY ct.id;

In this manner, all the relationship spatial operators can be easily replaced by the equivalent
spatial functions. What about an SDO_NN operator? The SDO_NN operator internally utilizes the
SDO_GEOM.SDO_DISTANCE function to order the neighbors. You can do the same: order the results of
a subquery based on distance to a query geometry and get only the nearest ones. Listing 16-30
shows an example of how to return the closest customer to a specific competitor region (comp.id=1)
that is also a school (note you can use the sdo_batch_size formulation, but this is another alternative).

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS 679

8997ch16.qxd 9/28/07 10:19 AM Page 679

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing 16-30. Computing the Nearest Neighbor on a Subquery Returning a Subset of Customers

SQL> SELECT ct.id, ct.name FROM (

SELECT ct.id, ct.name, SDO_GEOM.DISTANCE(comp.geom, ct.location, 0.5) dist

FROM competitors_sales_regions comp,

(SELECT c.name FROM customers c WHERE c.name LIKE '%SCHOOL') ct

WHERE comp.id=1

ORDER BY dist

)

WHERE rownum <= 1; – substitute 1 by k for k-nearest neighbors

You would use the spatial functions (as in Listings 16-29 and 16-30) instead of the spatial oper-
ators when operating on small subsets of geometries. Otherwise, you can specify the predicates as
part of a single query (as in Listing 16-26) and let the optimizer decide how to evaluate the various
predicates.

Do Not Move, Import, or Replicate MDRT Tables
The MDRT_<>$ tables (and the associated MDRS_<>$ sequences) are used in storing information for
spatial indexes. You should never operate on these tables as regular Oracle tables. This means the
following:

• You should not move the MDRT tables from one tablespace to another: If you do, the corre-
sponding spatial index becomes unusable, and all spatial operators on the indexed table fail.
The only way to recover from this situation is to drop and re-create the spatial index. To
avoid all these problems, make sure your DBA understands this restriction and does not
move the MDRT tables around to perform some optimizations. You can specify the tablespace
in which the MDRT table needs to be stored using the tablespace parameter during spatial
index creation. Refer to Chapter 8 for more details.

• You should not drop or alter the MDRT tables or the MDRS sequences: You can drop them,
however, if they are not associated with any spatial index (this should not happen under nor-
mal circumstances). You can identify all MDRT tables that are associated with the user’s spatial
indexes by inspecting the USER_SDO_INDEX_METADATA view:

SQL> SELECT sdo_index_name, sdo_index_table, sdo_rtree_seq_name

FROM USER_SDO_GEOM_METADATA;

• You should not export the MDRT tables explicitly: When you import a table, say customers,
that has a spatial index, the appropriate spatial index information is also exported. During
import, the spatial index (and the associated MDRT tables) will be re-created. You do not have
to export or import any of the MDRT tables (or the MDRS sequences).

• You should not replicate the MDRT tables to a replicated database: If you want to replicate
a user table, say customers, all you will have to replicate is that customers table. You will need
to explicitly create the spatial index on the replicated instance.

Network Metadata
If you intend to define a network over existing structures or manually create the network, you
should explicitly populate the USER_SDO_NETWORK_METADATA view. Refer to Chapter 10 for an example.
If, however, you use the CREATE_SDO_NETWORK function as described in Chapter 10 to create the net-
work, you do not need to populate the metadata.

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS680

8997ch16.qxd 9/28/07 10:19 AM Page 680

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Map Metadata
To create maps, you need to populate the USER_SDO_MAPS, USER_SDO_THEMES, and USER_SDO_STYLES
dictionary views. Note that some of the columns (for example, DEFINITION) in these views store infor-
mation using XML. You need to be careful in populating/updating these columns. See Chapter 12
for details.

Common Errors
In the following sections, we list some common errors that you may encounter while location-enabling
your application (starting with some of the frequently encountered errors). We also suggest the correc-
tive actions for each error. Note that this list is not exhaustive. For other errors not listed here, you
should refer to Oracle Spatial User’s Guide and Oracle Technical Support for assistance.

ORA-13226: Interface Not Supported Without a Spatial Index
This error happens when you are using a spatial operator that cannot be evaluated without the use
of the spatial index. This could happen if either there is no index on the column that you are using
or the optimizer does not choose the index-based evaluation. Listing 8-1 shows an example of this
error.

Action: If there is no spatial index on the columns in the spatial operator, create an index. Oth-
erwise, if the optimizer is not choosing the spatial index, then you should specify explicit hints such
as INDEX or ORDERED to ensure that the spatial index is used. Refer to Chapter 8 for more details.

ORA-13203: Failed to Read USER_SDO_GEOM_METADATA
View
This error occurs if the table you are trying to index does not have any metadata in the USER_SDO_
GEOM_METADATA view. See Listing 8-2 for an example.

Action: Insert a row corresponding to the spatial layer (table_name, column_name) in this view.
Listing 8-4 shows an example.

ORA-13365: Layer SRID Does Not Match Geometry SRID
This error implies that the SRID in a geometry column in a table does not match the SRID value in
the corresponding layer in the USER_SDO_GEOM_METADATA view. For instance, if the layer corresponds
to the location column in the customers table, you can inspect these values using the SQL in
Listing 16-31. Note that the SRID must be set to the same value in the location columns of all rows
in the customers table.

Listing 16-31. Determining the SRIDValue in the Location (Geometry) Columns of a Table

SQL> SELECT ct.location.sdo_srid FROM customers ct WHERE ROWNUM=1;

This gives the SRID stored in the location column of the customers table. You should compare it
to the SRID for the layer (in the USER_SDO_GEOM_METADATA view), as shown in Listing 16-32.

Listing 16-32. Determining the SRIDValue for a Spatial Layer (Specified by table_name, column_name)

SQL> SELECT srid FROM USER_SDO_GEOM_METADATA

WHERE table_name='CUSTOMERS' AND column_name='LOCATION';

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS 681

8997ch16.qxd 9/28/07 10:19 AM Page 681

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Action: Modify the SRIDs (in the geometries and the USER_SDO_GEOM_METADATA view) to be the
same value. This error occurs mostly during the creation or rebuilding of an index. You might have
to drop the index before retrying the create-index/rebuild-index operation (after changing the SRID
values).

ORA-13223: Duplicate Entry for <table_name, column_name>
in SDO_GEOM_METADATA
This error indicates that the insertion of a new row for a specified <table_name, column_name> pair
into the USER_SDO_GEOM_METADATA view failed. There is already a row that exists for the <table_name,
column_name> pair in this view.

Action: Delete the rows in USER_SDO_GEOM_METADATA for <table_name, column_name> before
inserting new values.

ORA-13249, ORA-02289: Cannot Drop Sequence/Table
This error occurs when you are trying to drop a spatial index. If the associated tables/sequences do
not exist, the DROP INDEX statement raises these errors (ORA-13249 and ORA-02289).

Action: Append FORCE to the DROP INDEX statement, as in the following example in which the
customers_sidx is dropped:

SQL> DROP INDEX customers_sidx FORCE;

ORA-13249: Multiple Entries in sdo_index_metadata Table
This error occurs when you are trying to create a spatial index and there is leftover metadata from
a failed DROP INDEX statement.

Action: You will have to explicitly clean up the metadata entries for the specified index in the
SDO_INDEX_METADATA_TABLE table in the MDSYS schema, as shown in the following example:

SQL> connect mdsys/<mdsys-password>

SQL> DELETE FROM SDO_INDEX_METADATA_TABLE

WHERE sdo_index_owner = 'SPATIAL' AND sdo_index_name='CUSTOMERS_SIDX';

ORA-13207: Incorrect Use of the <operator-name> Operator
This error operator > occurs when the specified operator is used incorrectly. In most cases, this will
happen when the SDO_RELATE, SDO_NN, or SDO_WITHIN_DISTANCE operator is used on a three- or four-
dimensional index (created by specifying SDO_INDX_DIMS in the parameter clause of the CREATE INDEX
statement; see Chapter 8 for details).

Action: You can use only the SDO_FILTER operator (and not others, such as SDO_RELATE) if the
SDO_INDX_DIMS parameter is set to a value greater than 2 (the default operator > value) during index
creation.

ORA-13000: Dimension Number Is Out of Range
This error occurs when you are operating with geometries that have the SDO_GTYPE value (in an
SDO_GEOMETRY object) to be less than 10. This might be from prior versions of Oracle Spatial where
the SDO_GTYPE contained only the type (T) information. Starting with Oracle 9i, the SDO_GTYPE in an
SDO_GEOMETRY is of the D00T, where D indicates the dimensionality and T is the type. Refer to Chapter 4
for more details.

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS682

8997ch16.qxd 9/28/07 10:19 AM Page 682

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Action: Modify your data to reflect this change. Alternatively, use the SDO_MIGRATE.TO_CURRENT
function to let Oracle Spatial make the change. This function also corrects the orientation of polygon
geometries.

ORA-00904: . . . Invalid Identifier
You may get this error when executing SQL of the following form:

SQL> SELECT geom..sdo_srid FROM competitors WHERE id=1;

ORA-00904: "GEOM"."SDO_SRID": invalid identifier

This is because of not specifying an alias for the table when referring to attributes of an object.
You can correct the SQL with a table alias as follows:

SQL> SELECT cmp.geom..sdo_srid FROM competitors cmp WHERE id=1;

ORA-00939: Too Many Arguments for Function
This error may occur while inserting an SDO_GEOMETRY with more than 1,000 ordinates in the
SDO_ORDINATES array. For instance, it is likely to be raised by the following SQL statement:

SQL> INSERT INTO sales_regions VALUES

(

1000,

SDO_GEOMETRY

(

2004, - A multipoint geometry

8307,

NULL,

SDO_ELEM_INFO_ARRAY(1, 1, 1100), -- this geometry has 1100 points

SDO_ORDINATE_ARRAY -- store the ordinates

(

1,1, 1,1, 1,1, 1,1, 1,1 , -- repeat this line 99 times

......

1,1, 1,1, 1,1, 1,1, 1,1

)

)

);

ERROR at line 5:

ORA-00939: too many arguments for function

Action: This is a SQL-level restriction. You can avoid this error by creating a PL/SQL variable
(called geom in the following code) that holds this geometry and then binding this variable to the
INSERT SQL statement:

SQL>

DECLARE

geom SDO_GEOMETRY; -- PL/SQL variable to store the geometry with >999 ordinates

BEGIN

-- construct the geometry here

geom :=

SDO_GEOMETRY

(

2004, 8307, NULL,

SDO_ELEM_INFO_ARRAY(1, 1, 1100),

SDO_ORDINATE_ARRAY

(

1,1, 1,1, 1,1, 1,1, 1,1 , -- repeat this line 99 times

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS 683

8997ch16.qxd 9/28/07 10:19 AM Page 683

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

--

1,1, 1,1, 1,1, 1,1, 1,1

)

);

-- store the geometry in the sales_regions table using dynamic SQL

EXECUTE IMMEDIATE

'INSERT INTO sales_regions VALUES (1000, :gm)' USING geom;

END;

/

PL/SQL procedure successfully completed.

ORA-13030: Invalid Dimensionality for the SDO_GEOMETRY, or
ORA-13364: Layer Dimensionality Does Not Match Geometry
Dimensions
One of these errors may occur in a query if the dimensionality of the spatial index (layer) is greater
than the dimensionality of the query window specified in a spatial operator. For instance, if you have
a two-dimensional query that is coded on the threed table, which has three-dimensional geometries
(and is indexed as three-dimensional), then these errors could occur.

SQL>

-- Create the threed table and a 3D index

CREATE TABLE threed (id NUMBER, geom SDO_GEOMETRY);

INSERT INTO threed VALUES (1,

SDO_GEOMETRY (3001, NULL, SDO_POINT_TYPE (1,1,1), NULL, NULL));

insert into user_sdo_geom_metadata values ('THREED', 'GEOM',

mdsys.sdo_dim_array (

mdsys.sdo_dim_element ('x', 1, 100, .0000005),

mdsys.sdo_dim_element ('y', 1, 100, .0000005),

mdsys.sdo_dim_element ('z', 1, 200, .0000005)), null);

CREATE INDEX threed_sidx ON threed(geom) INDEXTYPE IS MDSYS.SPATIAL_INDEX

PARAMETERS ('sdo_indx_dims=3');

-- Perform the query with 2D query window

SELECT b.id FROM threed b

WHERE SDO_FILTER

(

b.geom, -- 3-dimensional data (indexed as 3D, i.e., sdo_indx_dims=3)

SDO_GEOMETRY -- 2-dimensional query window

(

2003, NULL, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 3),

SDO_ORDINATE_ARRAY(1,1, 3,3)

)

)='TRUE';

ERROR at line 1:

ORA-13030: Invalid dimension for the SDO_GEOMETRY object

You can verify the dimensionality of the index by examining the attribute sdo_indx_dims in the
USER_SDO_INDEX_METADATA view. You can also determine the dimensionality of the query geometry by
inspecting the SDO_GTYPE attribute of the geometry.

Even if the spatial index dimensionality is not greater than the query dimensionality, the
ORA-13364 error may occur if all of the following are true:

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS684

8997ch16.qxd 9/28/07 10:19 AM Page 684

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• The table data has more than two dimensions.

• The spatial index on this table is two-dimensional.

• The query dimensionality is not the same as the data dimensionality.

Action: These errors can be resolved by changing the query geometry to match the dimension-
ality of the data. For instance, you can change the query window as follows:

SQL> SELECT b.id FROM threed

WHERE SDO_FILTER

(

geom, -- 3-dimensional data (indexed as 3-d, i.e., sdo_indx_dims=3)

SDO_GEOMETRY -- 2-dimensional query window

(

3003, NULL, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 3),

SDO_ORDINATE_ARRAY(1,1,1, 3,3, 3)

)

)='TRUE';

Summary
In this chapter, we provided several tips to model spatial data; to tune the performance of spatial
operators, functions, and updates; and to manage temporal or historical spatial data using table
partitioning. We also covered several common pitfalls and errors and described corrective actions
for these errors. This information should come in handy when you incorporate spatial analysis and
visualization into your business application.

With this chapter, we come to the end of the book. We hope the information in these chapters
helped you in location-enabling your application. In the following appendixes, we give a brief overview
of additional functionality components of Oracle Spatial such as GeoRaster and Linear Referencing,
which cater to specialized applications in GIS and CAD/CAM.

CHAPTER 16 ■ TIPS, COMMON MISTAKES, AND COMMON ERRORS 685

8997ch16.qxd 9/28/07 10:19 AM Page 685

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997ch16.qxd 9/28/07 10:19 AM Page 686

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Appendixes

P A R T 6

8997chAppA.qxt 10/2/07 4:35 PM Page 687

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997chAppA.qxt 10/2/07 4:35 PM Page 688

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Additional Spatial Analysis Functions

In Chapters 8 and 9 we described how to perform proximity analysis using the SDO_GEOMETRY data
in Oracle tables. We described a variety of functions and index-based operators to perform proximity-
based spatial analysis.

In this appendix, we describe more advanced functions to cater to specific business analysis.
We consider the business application that is discussed throughout this book. Say, for example, that
you want to start three new stores. Where are the best locations to start them? The advanced func-
tions we discuss in this appendix enable the following types of analyses to aid in site selection:

• Tiling-based analysis: One approach is to examine population. Population statistics can be
obtained using demographic datasets such as ZIP codes, census block groups, and so on.
You can tile the possible set of locations and identify the tiles that have the greatest popula-
tions. In general, tiling-based analysis groups data into areas called tiles and computes
aggregates for specified attributes (for example, income, age, spending patterns, and so on)
inside the tiles.

• Neighborhood analysis: Another approach is to identify a candidate set of locations (by some
other criterion, such as proximity to a highway). Then, you can choose among these candi-
date sets by estimating the population in the neighborhood of each location.

• Clustering analysis: Yet another approach to identify the best places to start new businesses
is to analyze the customer locations that are not covered by existing stores. You can arrange
the set of customer locations into groups, or clusters. The centers of these clusters may be
good choices for locating new businesses.

The SDO_SAM package in Oracle Spatial includes functions to facilitate the kinds of spatial analy-
ses just described. In this appendix, we give an overview of how to use these functions. You can find
a detailed discussion in Oracle Spatial User’s Guide.

Tiling-Based Analysis
First we cover how to identify regions/tiles that satisfy a business criterion. For the business appli-
cation discussed in this book, we describe how to divide the two-dimensional coordinate space in
which all locations are partitioned into small regions called tiles. We then describe functions to esti-
mate population statistics for each tile using demographic data stored in other tables.

TILED_BINS
Tiling is the process of dividing a two-dimensional space into smaller regions. Figure A-1 shows an
example. If the tiling level is specified as 1, then the range in each dimension is bisected once. In
Figure A-1, the x-dimension is bisected once and the y-dimension is bisected once. This produces

689

A P P E N D I X A

8997chAppA.qxt 10/2/07 4:35 PM Page 689

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

tiles at tiling level 1. The boundaries of these tiles are shown by a thick border. At level 2, each level-
1 tile is bisected once along the x- and y-dimensions, again providing a total of 16 equal-sized tiles.
This process is repeated until you obtain tiles of appropriate sizes (or at a specified tiling level).

Figure A-1. Tiling a two-dimensional space at level 1 by bisecting the range in x- and y-dimensions to
yield four tiles

How is tiling useful in business analysis? Tiling helps in dividing the entire two-dimensional
space (over which the businesses and potential sites are located) into smaller regions. You can then
analyze these regions and identify whether they are appropriate for the business task at hand.

The TILED_BINS function has the following syntax:

TILED_BINS

(

lower_bound_in_dimension_1 NUMBER,

upper_bound_in_dimension_1 NUMBER,

lower_bound_in_dimension_2 NUMBER,

upper_bound_in_dimension_2 NUMBER,

tiling_level NUMBER,

srid NUMBER DEFAULT NULL,

xdivs NUMBER DEFAULT NULL,

ydivs NUMBER DEFAULT NULL

)

RETURNS Table of SDO_REGION

where the SDO_REGION type has the following structure:

SQL> DESCRIBE SDO_REGION;

ID NUMBER

GEOMETRY SDO_GEOMETRY

If the tiling_level is set to 1, the function returns four tiles (one bisection of x- and y-dimensions,
causing four disjoint regions). As you increase the tiling level by 1, each tile is further subdivided into
four tiles. In general, for tiling level k, the function returns 4k tiles. Each tile is returned as an SDO_REGION
data type. This type includes the ID and the Geometry corresponding to the tile. The srid argument,
if specified, indicates the spatial reference (coordinate) system for the returned geometries. Listing A-1
shows an example of this function. Note that the return type is a table, which means you should use
the “table” casting operation as shown.

Listing A-1. Tiling a Two-Dimensional Space

SQL> SELECT * FROM TABLE

(SDO_SAM.TILED_BINS(-77.1027, -76.943996, 38.820813, 38.95911,1, 8307));

APPENDIX A ■ ADDITIONAL SPATIAL ANALYSIS FUNCTIONS690

8997chAppA.qxt 10/2/07 4:35 PM Page 690

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that the number of tiles is always a power of 4 if you specify the tiling_level parameter.
For the tiling_level parameter of k, the number of tiles is 4k. You can better control the number of
tiles if you specify a grid of n by m, where n and m specify the number of divisions in the x-axis and
the y-axis, respectively. This is possible by simply setting the tiling_level parameter to NULL, the
xdivs parameter to n, and the ydivs parameter to m. This will divide the (range in the) x-axis n times
and the (range in the) y-dimension m times, respectively. For example, if n=1, the range of values in
x-dimension is divided once, that is, into two halves. In general, for a division on n times of the x-axis
and m times of the y-axis, the total number of tiles returned will be (n+1)*(m+1). Listing A-2 shows
an example with two divisions along the x-axis and three divisions along the y-axis, returning a total
of 3*4=12 tiles.

Listing A-2. Tiling a Two-Dimensional Space by Specifying the Number of Divisions Along x- and y-axes

SQL> SELECT * FROM TABLE

(SDO_SAM.TILED_BINS(-77.1027, -76.943996, 38.820813, 38.95911, NULL, 8307, 2, 3));

TILED_AGGREGATES
The next function that we will cover is TILED_AGGREGATES. This function implicitly computes the tiles
using the dimension bounds for a specified table in USER_SDO_GEOM_METADATA. For each computed
tile, the function returns the aggregated estimate for a user-specified column such as population.
This estimate is derived from a specified demographic or theme table, and it uses a proportion of
overlap to calculate the aggregate value.

For instance, the table zip5_dc in Listing A-3 stores the ZIP code name, the ZIP code boundary
(as an SDO_GEOMETRY object), and the population for each ZIP code in the District of Columbia in the
United States. (Note that the population values in this table are for illustrative purposes only and
may not match current real-world values.)

Listing A-3. ZIP Code Table Used to Get Demographic Information

SQL> desc zip5_dc;

Name Null? Type

------------------------------- -------- ----------------------------

STATE_ABRV VARCHAR2(2)

FILE_NAME VARCHAR2(8)

AREA NUMBER

PERIMETER NUMBER

ZCTA VARCHAR2(5)

NAME VARCHAR2(90)

LSAD VARCHAR2(2)

LSAD_TRANS VARCHAR2(50)

GEOM SDO_GEOMETRY

POPULATION NUMBER

A variety of such theme tables store demographic information at different levels. The U.S. Census
blocks, block groups, tracts, counties, and states are some examples. Such demographic data can be
easily combined with application data to perform spatial analysis for business applications. For
instance, you can use the ZIP code regions in the zip5_dc table to derive population estimates for an
arbitrary tile or region (ref_geometry).

Only 20 percent of the ZIP code region from zip5_dc (demographic) table intersects, as shown
in Figure A-2. The aggregate for ref_geometry is 20 percent of the aggregate associated with the
ZIP code.

APPENDIX A ■ ADDITIONAL SPATIAL ANALYSIS FUNCTIONS 691

8997chAppA.qxt 10/2/07 4:35 PM Page 691

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure A-2. Estimating the aggregate for ref_geometry (tile or region)

What if you have multiple ZIP codes intersecting the tile (or region)? You can specify how to com-
bine the aggregate contributions from each of the intersecting ZIP codes. For instance, if 20 percent of
ZIP code A intersects with the tile, 30 percent of ZIP code B intersects with the tile, and these need to
be summed up, then the resulting population estimate (aggregate) for the tile is as follows:

sum(0.2*(population of zip code A), 0.3*(population of zip code B))

The TILED_AGGREGATES function computes these estimates using a specified theme (demo-
graphic) table. It has the following signature:

Tiled_Aggregates

(

theme_table VARCHAR2,

theme_geom_column VARCHAR2,

aggregate_type VARCHAR2,

aggregate_column VARCHAR2,

tiling_level NUMBER,

tiling_domain SDO_DIM_ARRAY DEFAULT NULL

)

RETURNS Table of MDSYS.SDO_REGAGGR

where the SDO_REGAGGR type has the following structure:

SQL> DESCRIBE SDO_REGAGGR;

Name Type

---------------------------- ----------------------------

REGION_ID VARCHAR2(24)

GEOMETRY SDO_GEOMETRY

AGGREGATE_VALUE NUMBER

This function returns a table of SDO_REGAGGR objects. REGION_ID corresponds to tile_id. GEOMETRY
corresponds to the geometry of the corresponding tile. AGGREGATE_VALUE contains the aggregate value
for the tile—for instance, the sum of the population or the number of customers.

The function takes the following arguments:

• theme_table and theme_geom_column specify the name of the theme table and the geometry
column. For instance, these arguments could be zip5_dc and geom (the geometric boundary
of the ZIP code).

• aggregate_type specifies how to combine multiple contributions from intersecting ZIP codes.
This could be one of the SQL aggregates SUM, COUNT, MIN, and MAX.

• aggregate_column specifies which demographic attribute needs to be estimated. In the exam-
ple application, this can be POPULATION.

• tiling_level specifies the tiling level to construct the tiles.

• bounds specifies the tiling domain for the tiles. If this argument is not specified, then the
tiling domain is set to the bounds for the spatial layer corresponding to <theme_table,
theme_geom_column> in the USER_SDO_GEOM_METADATA view.

APPENDIX A ■ ADDITIONAL SPATIAL ANALYSIS FUNCTIONS692

8997chAppA.qxt 10/2/07 4:35 PM Page 692

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Caution AVG and other aggregates are not supported. These aggregates need to be computed using the
SUM and COUNT aggregates. For instance, if the AVG income needs to be computed, then it can be computed as
sum(total_income_per_tile)/sum(total_population_per_tile). total_income_per_tile and
total_population_per_tile can be estimated with the TILED_AGGREGATES function using the total_income
and total_population columns of the ZIP code tables (these two columns need to be explicitly materialized).

Listing A-4 shows an example of the TILED_AGGREGATES function. Note that by selecting only
those tiles that have aggregate_value (population) greater than 30,000, you are identifying the most
populated tiles from the set of tiles.

Listing A-4. Searching for Regions (Tiles) That Have a Population Greater Than 30,000

SQL> SELECT REGION_ID, AGGREGATE_VALUE, GEOMETRY FROM TABLE

(

SDO_SAM.TILED_AGGREGATES

('ZIP5_DC', 'GEOM','SUM', 'POPULATION', 2)

) a

WHERE a.aggregate_value > 30000;

Note that the query returns tiles (regions) along with the population. In your site selection
analysis, you can make these tiles (regions) the starting points for further analysis. In general, you
can use the TILED_AGGREGATES function to determine candidate regions based on a selection crite-
rion (for example, a high population).

You can visualize these tiles using Oracle MapViewer. For instance, you can use the jview.jsp
file in the mapviewr/demo directory for this purpose. Specify select geom from ZIP5_DC as query1
and the SQL in Listing A-4 as query2.

Figure A-3 shows the ZIP codes in dark gray, and tile regions that have a population of more
than 30,000 are shown in lighter gray boxes. You can further refine this analysis by identifying
smaller tiles (that is, tiles at level 3 or 4). Additionally, you can superimpose locations of roads and
other businesses to aid in the site selection process.

Figure A-3. Displaying ZIP code boundaries and tiles that have population of more than 30,000

APPENDIX A ■ ADDITIONAL SPATIAL ANALYSIS FUNCTIONS 693

8997chAppA.qxt 10/2/07 4:35 PM Page 693

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Neighborhood Analysis
Instead of using tiles to compute estimates, can you compute the population for arbitrary sales
regions? This might be useful if you already chose a set of candidate sites through other selection
criteria. You can examine the population in the neighborhood of each such site (or location) by con-
structing a (quarter-mile) buffer around the location. The AGGREGATES_FOR_GEOMETRY function allows
you to compute the estimates for an arbitrary geometry.

AGGREGATES_FOR_GEOMETRY
This function computes the estimated aggregate value from a theme table for a specified region:
ref_geometry (as opposed to precomputed tiles in TILED_AGGREGATES). It uses the information in
theme_table to compute this estimate. This function has the following signature:

AGGREGATES_FOR_GEOMETRY

(

theme_table VARCHAR2,

theme_geom_column VARCHAR2,

aggregate_type VARCHAR2,

aggregate_column VARCHAR2,

ref_geometry SDO_GEOMETRY,

dist_spec VARCHAR2 DEFAULT NULL

)

RETURNS NUMBER

The function’s arguments are as follows:

• theme_table and theme_geom_column specify the name of the theme table and the geometry
column. For instance, these arguments could be zip5_dc and geom (the geometric boundary
of the ZIP code). The demographic information at a fine or coarse level is stored in these
tables.

• aggregate_type specifies how to combine multiple contributions from intersecting ZIP
codes. This could be one of the SQL aggregates SUM, COUNT, MIN, and MAX.

• aggregate_column specifies which demographic attribute needs to be estimated. In the
example application, this can be POPULATION.

• ref_geometry specifies the reference geometry for which the demographic information
needs to be computed.

• dist_spec specifies additional parameters for ref_geometry. This can be one of the following:

• NULL: In this case, the ref_geometry is compared with the geometries in theme_table.
As in Figure A-1, the aggregate for the ref_geometry is computed by taking the area of
intersection (of the theme geometries with the ref_geometry) into account.

• A string of the form distance= <val> unit=<distance_unit>: In this case, the ref_geometry
is expanded (buffered) by the specified distance and the aggregate is computed.

• A string of the form sdo_num_res=<N>: In this case, the nearest N geometries (from
theme_table) to the ref_geometry are considered. The aggregates of each neighbor
are equally weighted, because the neighbors may or may not intersect with the
ref_geometry. For instance, if N=2 and ZIP code A and ZIP code B are the neighbors of
the ref_geometry, then the aggregate for the ref_geometry is sum(population of A and

population B). The aggregate_type is sum and the aggregate_column is population in
this example.

APPENDIX A ■ ADDITIONAL SPATIAL ANALYSIS FUNCTIONS694

8997chAppA.qxt 10/2/07 4:35 PM Page 694

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Caution AVG and other aggregates are not supported. These aggregates need to be computed using SUM
and COUNT aggregates. For instance, if the AVG income needs to be computed, then it can be computed as
sum(total_income_per_ref_geometry)/sum(total_population_per_ref_geometry). total_income_
per_ref_geometry and total_population_per_ref_geometry can be estimated with the AGGREGATES_FOR_
GEOMETRY function using the total_income and total_population columns of the ZIP code tables (these two
columns need to be explicitly materialized: total_income=income*population.

Listing A-5 shows an example of the AGGREGATES_FOR_GEOMETRY function. In this example, you
are computing the population for sales region 1 (id=1) in the sales_regions table. Note that the
sales_regions table is a quarter-mile buffered region on an existing store location. Likewise, you
can perform the same population analysis on other regions that correspond to potential new store
locations.

Listing A-5. Estimating the Population in Sales Region 1 Using the Demographic Information in the
zip5_dc Table

SQL> SELECT SDO_SAM.AGGREGATES_FOR_GEOMETRY

('ZIP5_DC', 'GEOM', 'SUM', 'POPULATION', a.geom) population

FROM sales_regions a WHERE a.id=1;

AGGREGATES_FOR_LAYER
Instead of analyzing sales regions one by one, you may want to compute the population for all sales
regions in the sales_regions table. The AGGREGATES_FOR_LAYER function performs this operation.

This function computes the aggregates for a set of geometries in a specified ref_table (instead
of a specific geometry). This function has the following signature:

AGGREGATES_FOR_LAYER

(

theme_table VARCHAR2,

theme_geom_column VARCHAR2,

aggregate_type VARCHAR2,

aggregate_column VARCHAR2,

ref_table VARCHAR2,

ref_geom_col SDO_GEOMETRY,

dist_spec VARCHAR2

)

RETURNS Table of SDO_REGAGGR

where the SDO_REGAGGR type has the following structure:

SQL> DESCRIBE SDO_REGAGGR;

Name Type

----------------------------- ----------------------------

REGION_ID VARCHAR2(24)

GEOMETRY SDO_GEOMETRY

AGGREGATE_VALUE NUMBER

Note that the function arguments are mostly the same as in AGGREGATES_FOR_GEOMETRY. The only dif-
ference is that instead of taking in a single ref_geometry as in AGGREGATES_FOR_GEOMETRY, the AGGREGATES_
FOR_LAYER function takes a table of such geometries. These are specified using the ref_table and
ref_geom_col arguments. This function returns a table of SDO_REGAGGR objects, where each object con-
tains the aggregate computed using the ref_geometry in a row of the ref_table. The SDO_REGAGGR object

APPENDIX A ■ ADDITIONAL SPATIAL ANALYSIS FUNCTIONS 695

8997chAppA.qxt 10/2/07 4:35 PM Page 695

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

stores the ROWID in the region_id attribute, the ref_geometry in the geometry attribute, and the com-
puted aggregate in the aggregate_value attribute.

Listing A-6 shows how to obtain the population for all sales regions in the sales_regions table.

Listing A-6. Estimating the Population for All Rows in the sales_regions Table Using Demographic
Information in the zip5_dc Table

SQL> SELECT s.id, aggregate_value population FROM TABLE

(

SDO_SAM.AGGREGATES_FOR_LAYER

('ZIP5_DC', 'GEOM','SUM', 'POPULATION', 'SALES_REGIONS', 'GEOM')

) a, sales_regions s

WHERE s.rowid = a.region_id;

Note that the population attribute is not part of the sales_regions table. It is derived from the
demographic table. These functions allow you to easily incorporate external demographic informa-
tion into business analysis.

Clustering Analysis
Another approach for site selection is to examine where the potential customers are. If you want to
start three new stores to cater to these new customers, then you can group or cluster the customers
into three groups. In the following sections, you will look at how to perform clustering of customer
locations.

SPATIAL_CLUSTERS
This function computes the clusters for a set of geometries in a specified table. You can perform
additional analysis to identify the cluster center or for visualization using Oracle MapViewer. This
function has the following signature:

SPATIAL_CLUSTERS

(

geometry_table VARCHAR2,

geometry_column VARCHAR2,

max_clusters NUMBER

)

RETURNS Table of MDSYS.SDO_REGION

where the SDO_REGION type has the following structure:

SQL> DESCRIBE SDO_REGION;

Name Type

-------- ---------

ID NUMBER

GEOMETRY SDO_GEOMETRY

The arguments to this function are as follows:

• geom_table specifies the name of the table storing the geometries.

• geom_column specifies the name of the SDO_GEOMETRY column. This column needs to have
a spatial index. The geometries in this column are clustered and returned.

• max_clusters specifies the maximum number of clusters to be returned.

APPENDIX A ■ ADDITIONAL SPATIAL ANALYSIS FUNCTIONS696

8997chAppA.qxt 10/2/07 4:35 PM Page 696

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

This function computes the clusters based on the geometry columns of the specified geometry
table. It returns each cluster as a geometry in the SDO_REGION type. The ID value is set to a number
from 0 to max_clusters – 1. The function returns a table of such SDO_REGION objects. Listing A-7 shows
how to cluster the customer locations in the customers table.

Listing A-7. Finding Three Clusters for Customer Locations

SQL> SELECT ID, GEOMETRY FROM TABLE

(SDO_SAM.SPATIAL_CLUSTERS('CUSTOMERS', 'LOCATION', 3));

You can visualize the customer locations and the three clusters using Oracle MapViewer. Use
jview.jsp in the demo directory of MapViewer, and specify select location from customers in
query1 and the SQL in Listing A-6 for query2. Figure A-4 shows the customer locations (points with
an x) in dark gray and the clusters (rectangular regions) in lighter gray.

Once the clusters are identified, you can determine their centers using the SDO_GEOM.SDO_CENTROID
function. This will give candidate locations for starting new stores to cater to the three groups of
customers.

Figure A-4. Displaying the customer regions and three clusters for Listing A-6

Refining the Candidates for Site Selection
The spatial analyses functions (discussed in previous sections) enable users to identify regions (tiles
or clusters) that satisfy a specific business criterion. For instance, the business criterion could be
population>30000 in the tiling analysis. Once the candidate set of regions is identified, you can refine
the set further using visual or other analysis techniques. For instance, you can refine the candidate
set by visualizing these regions using Oracle MapViewer. As part of this visualization, you can over-
lay other appropriate data, such as roads and other business locations. Such combination of spatial
analysis functions with other techniques, including visual refinement, can serve as an efficient and
effective mechanism for site selection in business applications.

APPENDIX A ■ ADDITIONAL SPATIAL ANALYSIS FUNCTIONS 697

8997chAppA.qxt 10/2/07 4:35 PM Page 697

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Geometry Simplification for Speeding Up Analysis
Most site-location analysis involves analyzing demographic data associated with county, ZIP code,
tract, or block group regions. The boundaries of these entities are stored as complex shapes involv-
ing thousands of vertices. Spatial analysis using geometries with a large number of vertices tends to
be slow and may not be acceptable in an interactive system that requires fast responses. To alleviate
these performance issues, we can offer a simple solution: simplify each geometric shape in your
demographic dataset (also known as generalization in GIS parlance). Oracle Spatial provides two
functions for this purpose: the SIMPLIFY function in the SDO_UTIL package and the SIMPLIFY_GEOMETRY
function in the SDO_SAM package (the latter is a wrapper around the former and hides complex usage).
The SIMPLIFY_GEOMETRY function has two signatures: one with tolerance value (described in Chapter 3)
as a parameter and another with diminfo (from the USER_SDO_GEOM_METADATA) as a parameter. Both
signatures are described here:

FUNCTION simplify_geometry(geom mdsys.sdo_geometry,

dim mdsys.sdo_dim_array,

pct_area_change_limit number default 2)

RETURN mdsys.sdo_geometry;

FUNCTION simplify_geometry(geom mdsys.sdo_geometry,

tol number,

pct_area_change_limit number default 2)

RETURN mdsys.sdo_geometry;

The arguments to these functions are as follows:

• Geom.: This is the input SDO_GEOMETRY object that is to be simplified.

• Dim: This is the input SDO_DIM_ARRAY to use to obtain the tolerance value.

• Tolerance: This is the input tolerance value to be used to determine whether two vertices
and edges can be collapsed into one.

• Pct_area_change_limit: This is the percentage change in area at which the simplification
can stop.

As mentioned earlier, the SIMPLIFY_GEOMETRY function iteratively calls the SDO_UTIL.SIMPLIFY
function for the simplification of the input geometry. The simplification is applied until one of the
following criteria is met: the change in the area between the input geometry and the result geome-
try exceeds 2 percent, the number of iterations exceeds 20, or the number of vertices in the input
geometry falls to less than 20. Note that the last two criteria are not exposed as tunable parameters,
but only the pct_area_chng_limit is specified. In most cases, you can also skip this parameter and
allow the default value of 2 (2 percent area change). Listing A-8 counts the number of vertices in the
original geometry and the simplified geometry for the boundary of New Hampshire state. You can
observe that the default value of 2 percent area change reduces the number of vertices from 709 to
just 10 vertices. Such simplification to reduce the number of vertices comes in handy in many analysis
and visualization applications.

■Caution The generalization process in the simplify_geometry function simplifies line strings to have fewer
vertices whenever possible. The simplified geometry may not cover the entire area as the original geometry. This is
unlike the SDO_MBR and SDO_CONVEXHULL functions that guarantee that the area covered by the original geometry
is always covered in their result.

APPENDIX A ■ ADDITIONAL SPATIAL ANALYSIS FUNCTIONS698

8997chAppA.qxt 10/2/07 4:35 PM Page 698

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing A-8. Simplifying the Geometry for New Hampshire

SQL> SELECT sdo_util.getnumvertices(geom) orig_num_vertices,

sdo_util.getnumvertices(sdo_sam.simplify_geometry(geom, 0.5)) new_num_vertices

FROM states

WHERE state_abrv='NH';

ORIG_NUM_VERTICES NEW_NUM_VERTICES

----------------- ----------------

709 10

It is recommended that you simplify your demographic datasets using these functions before
proceeding with analysis functions described in this appendix. Doing so may speed up spatial analysis
functions such as SDO_RELATE and TILED_AGGREGATES. Note that the simplification may lead to changes
in results and can be applied only if the application can tolerate small deviations in analysis results.

Summary
Spatial analysis functions in Oracle estimate attribute values for a region or a neighborhood. In
addition, the functionality can cluster geometry objects into a specified number of clusters. These
analysis functions can be combined with the visualization capability in Oracle MapViewer to aid in
site selection applications. In warehouse applications, spatial analysis functions can be used to
materialize the influence of neighborhoods in warehouse data and to mine for spatial patterns in
the data.

APPENDIX A ■ ADDITIONAL SPATIAL ANALYSIS FUNCTIONS 699

8997chAppA.qxt 10/2/07 4:35 PM Page 699

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997chAppA.qxt 10/2/07 4:35 PM Page 700

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Linear Referencing

In all the chapters of this book, we use coordinates to locate spatial objects on the surface of the
earth. Coordinates locate objects in a two-dimensional space, such as longitude and latitude. As
you saw in Chapter 4, a large number of different coordinate systems can be used in this way. They
are all defined as spatial reference systems.

Spatial coordinates are not the only way to locate objects. Some objects are better identified by
their position along a linear feature: their location can be described by a measure value (such as
travel distance) with respect to some known point on the feature (such as its start point). This type
of location referencing using a measure value (instead of the latitude/longitude values) is called
a Linear Referencing System (LRS).

Let’s say that the delivery truck for your business breaks down on a particular segment of a high-
way. How do you report its location to other agencies? One method is to mention the actual geographic
coordinates, say –76.40804 degrees longitude and 45.79385 degrees latitude, obtained from a GPS
receiver. An alternate method that is more frequently used in transportation applications is by specify-
ing that the truck is “12 meters (measure) from Exit 5 (a reference point on the highway) going north on
the highway.” In short, this method specifies a reference point on a linear feature and the measure of
the location from the reference point. This approach of specifying linear measures is widely used in
transportation and utility (electric cables, gas pipelines, and so on) industries.

In this appendix, we will describe the functionality of the Linear Referencing component of
Oracle Spatial. This functionality, available in the SDO_LRS package, allows you to associate measures
with a linear feature stored in an SDO_GEOMETRY object. We will refer to such geometries as linear
referenced or LRS geometries. In addition, Oracle allows you to perform the following operations on
LRS geometries:

• Project a two-dimensional point onto a linear feature, and identify the corresponding meas-
ure along the linear feature. This functionality is useful to determine the closest milepost on
a highway when a car breaks down. For example, the popular OnStar positioning system
uses such an approach to convert the geographical coordinates of the car into the nearest
milepost on the highway and inform the appropriate road service.1

• Locate a point using the measure value, and identify the corresponding two-dimensional
coordinates. You can use this functionality to identify the coordinates of stop signs and other
objects that are specified using measures along a linear feature.

• Clip a linear feature by specified start and end measure values. This function allows you, for
example, to obtain specific sections of a road that will be closed to traffic.

701

A P P E N D I X B

■ ■ ■

1. The OnStar system, developed by General Motors Corporation, combines an onboard GPS and cellular phone
and allows a driver to be located and get assistance at the press of a button.

8997chAppB.qxd 9/28/07 10:20 AM Page 701

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

In the next section, we will describe concepts of linear referencing and how it is used in appli-
cations. Then, we will show you how to create LRS geometries and perform projection, location, or
clipping types of operations.

Concepts and Definitions
First we’ll describe some basic concepts using the geometry in Figure B-1. The figure shows a line
string from “Start” to “End.” Such line strings could typically represent highways, flight paths, gas
pipelines, electric cables, and so on.

Figure B-1. Linear feature with start (first) and end (last) points

Measure
The measure of a point along a geometric segment is the linear distance to the point measured from
the start point (for increasing values) or end point (for decreasing values) of the geometric segment.
In Figure B-1, the start point may be associated with a measure value of 0 (or any other value). Like-
wise, other points of the line string may be associated with measure values.

Linear Referenced Segments
A linear referenced segment is a linear geometry with measures. It is usually a line string but could
also be a multiline string or even the boundary of a polygon. For all the following examples, we con-
sider only the most common case of simple line strings. In Figure B-1, if you associate measure
information with the end points, the line string is a linear referenced, or LRS, geometry.

The measures may be increasing or decreasing along a linear feature, and they can start at any
value.

Direction
The direction of a geometric segment is indicated from the start point of the geometric segment to
the end point. The direction is determined by the order of the vertices (from start point to end point)
in the geometry definition.

Shape Points
Shape points are those points of the line string that are assigned measure information. The start and
end points of a line string must always have measure information. Intermediate points may or may
not have measures.

Points that do not have any set measure will be populated by linear interpolation between the
points with measures. Figure B-2 illustrates how missing measures are populated. We specified
measures of 0 and 100 only for the start and end points, respectively, and the measure for an inter-
mediate point is internally assigned as 25.

APPENDIX B ■ LINEAR REFERENCING702

8997chAppB.qxd 9/28/07 10:20 AM Page 702

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure B-2. Populating measures for intermediate points

Offset
The offset of a point along a geometric segment is the perpendicular distance between the point
and the geometric segment. Figure B-3 shows an example. Offsets are positive if the points are on
the left side along the segment direction and negative if they are on the right side. Points are on
a geometric segment if their offsets to the segment are zero.

Figure B-3. Offset of a point

Typical Application
Linear referencing is widely used in transportation networks (flight paths, highways, and so on) and
utility networks (gas pipelines, and so on). Linear referencing is most useful to position objects or
information such as accidents, traffic conditions, road conditions, and road equipment (traffic lights,
road signs, and so on) with reference to a linear feature. Figure B-4 illustrates this.

Figure B-4. Accidents, road signs, and road conditions modeled using a linear feature

APPENDIX B ■ LINEAR REFERENCING 703

8997chAppB.qxd 9/28/07 10:20 AM Page 703

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

An LRS application uses tables like the ones shown in Figure B-5: one table (roads) contains the
actual LRS geometries. The other tables (accidents, road signs, and pavement condition) contain
only references to the roads table together with their measure information.

Figure B-5. Tables in an LRS application

To reference locations along a line, the line must first be registered with measure information:
each point that describes the line has the usual x and y coordinates but also a measure that repre-
sents the distance from the start of the line.

For example, the linear referenced geometry in Figure B-6 is registered with measure informa-
tion (start measure = 0 and end measure = 100).

Figure B-6. A linear referenced segment with dynamic segmentation

Locations on this geometry can be described in terms of their measures on the geometry; for
example, location L1 is at measure 35, and location L2 is at measure 65. Use this technique to repre-
sent point events such as accidents or road signs.

Sections are represented by specifying a start and end measure. In Figure B-6, section S1 is rep-
resented as having a start measure of 35 and end measure of 65 on the geometry. Use this technique
to represent line events such as road works or road conditions.

You can now materialize locations and sections as new geometries using specific functions.
The ability to generate points or line segments dynamically from measure information is called
dynamic segmentation.

APPENDIX B ■ LINEAR REFERENCING704

8997chAppB.qxd 9/28/07 10:20 AM Page 704

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Note The measures on a line segment do not have to start at zero. For example, roads are typically modeled as
multiple road segments, whereby each segment is a stretch of road between intersections. The end measure of
one road segment is then usually carried on as the first measure of the next segment in sequence.

Measures do not have to represent distances: they can represent anything as long as all measures on a line seg-
ment are all increasing or decreasing. For example, they could represent the elapsed time on the route of a boat.
This then allows you to find out where the boat was at a certain date and time.

Creating Linear Referenced Geometries
The easiest way to populate measures in a linear feature is by using the CONVERT_TO_LRS_GEOM
function. This function takes as arguments an SDO_GEOMETRY object representing a linear feature and
two numbers representing the measure values to be associated with the first and last vertices of the
linear feature. The measure values for all intermediate vertices are linearly interpolated.

SQL> UPDATE road_segments SET geom =

SDO_LRS.CONVERT_TO_LRS_GEOM

(

geom,

0, -- start measure value

100 -- end measure value

);

You can also use the CONVERT_TO_LRS_LAYER function to convert a complete table. For example, here
is how to LRS-enable the us_interstates table. You first take a copy of the table as us_interstates_lrs,
together with its spatial metadata. Then you call the CONVERT_TO_LRS_LAYER function.

CREATE TABLE us_interstates_lrs AS

SELECT * FROM us_interstates;

INSERT INTO user_sdo_geom_metadata

SELECT 'US_INTERSTATES_LRS', column_name, diminfo, srid

FROM user_sdo_geom_metadata

WHERE table_name = 'US_INTERSTATES';

DECLARE

STATUS VARCHAR2(20);

BEGIN

STATUS := SDO_LRS.CONVERT_TO_LRS_LAYER ('US_INTERSTATES_LRS', 'GEOM');

END;

/

Alternately, you can explicitly construct LRS geometries as follows: linear referenced geome-
tries are stored in the SDO_GEOMETRY object just like regular lines. However, there are two exceptions:
first, the SDO_GTYPE of an LRS geometry has additional information to indicate the measure dimen-
sion, and second, each point in the LRS geometry uses three ordinates (instead of two in the regular
one): an x value, a y value, and an m value—the measure. First let’s look at the changes for SDO_GTYPE
in LRS geometries.

SDO_GTYPE in LRS Geometries
The geometry type attribute (SDO_GTYPE) described in Chapter 4 changes from D00T to DM0T. The sec-
ond digit, M, specifies the position of the measure dimension. For instance, if this attribute is set to
3302, it means the following:

APPENDIX B ■ LINEAR REFERENCING 705

8997chAppB.qxd 9/28/07 10:20 AM Page 705

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

3 = Each point in the geometry uses three ordinates (x, y, m).

3 = The measure is in the third ordinate.

0 = Not used.

2 = This is a simple line string.

The presence of the digit 3 in the second position is what tells Oracle Spatial that this is an LRS-
enabled line. A geometry with an SDO_GTYPE of 3002 is not an LRS-enabled line; it does contain three
coordinates for each point (x, y, and something else), but the “something else” has no specific
meaning to Oracle.

Constructing LRS Geometries
For example, the following SQL shows how to insert a (non-LRS) line segment into a database table:

INSERT INTO road_segments (id, geom) VALUES

(

65328,

SDO_GEOMETRY

(

2002, -- SDO_GTYPE for regular geometries is of type D00T (see chapter 4)

8307, null,

SDO_ELEM_INFO (1,2,1),

SDO_ORDINATES

(

x1,y1,

x2,y2,

x3,y3,

x4,y4,

x5,y5,

x6,y6,

x7,y7,

x8,y8,

x9,y9

)

)

);

The same line segment with measures on shape points is inserted as follows:

INSERT INTO road_segments (id, geom) VALUES

(

65328,

SDO_GEOMETRY

(

3302, -- SDO_GTYPE for LRS geometries is DM0T where M is the measure position

8307, null,

SDO_ELEM_INFO (1,2,1),

SDO_ORDINATES

(

x1,y1, 20, -- third number (in all following rows) is measure value

x2,y2, null,

x3,y3, null,

x4,y4, 50,

x5,y5, null,

x6,y6, null,

x7,y7, 100,

APPENDIX B ■ LINEAR REFERENCING706

8997chAppB.qxd 9/28/07 10:20 AM Page 706

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

x8,y8, null,

x9,y9, 160

)

);

Note that some shape points have no explicit measure set; the measures are passed as NULL.

Metadata
The spatial metadata for a linear referenced layer must describe three dimensions: the x, the y, and
the measure. For example, the SQL would look like the following:

INSERT INTO user_sdo_geom_metadata

(table_name, column_name, diminfo, srid)

VALUES

(

'ROAD_SEGMENTS',

'GEOM',

SDO_DIM_ARRAY

(

SDO_DIM_ELEMENT ('X', -180, 180, 1),

SDO_DIM_ELEMENT ('Y', -90, 90, 1),

SDO_DIM_ELEMENT ('M', 0, 1000, 1)

),

8307

);

Spatial Indexes and Spatial Operators on LRS Geometries
Note that in the preceding example, the USER_SDO_GEOM_METADATA view specified three dimensions
(in other words, three SDO_DIM_ELEMENTs in the DIMINFO attribute), one for the x, y, and m (measure)
dimensions for the spatial layer corresponding to <road_segments, geom.>. To create a spatial index
on the preceding spatial layer, use the same CREATE INDEX statement that you saw in Chapter 8. The
following code shows the SQL:

SQL> CREATE INDEX roads_seg_sidx ON road_segments(geom)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

You can then use the spatial operators such as SDO_NN, SDO_WITHIN_DISTANCE, or SDO_RELATE on
the geom column of the road_segments table. This column contains LRS geometries (that is, geome-
tries populated with measure values), but the operators use only the x and y dimensions of the LRS
geometries.

Dynamic Segmentation Operations
At the beginning of the appendix, you saw the principles of linear referencing, and we described
the main dynamic segmentation operations: clip, locate, and project. Let’s now examine how Oracle
performs those operations.

Clip a Segment
This is the main dynamic segmentation function. Given a start and end measure, it extracts the sec-
tion of a line between those two measures. Figure B-7 illustrates this process of extracting that part
of the line between measures M1 and M2.

APPENDIX B ■ LINEAR REFERENCING 707

8997chAppB.qxd 9/28/07 10:20 AM Page 707

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure B-7. Clipping a line segment

The following code shows how to use the CLIP_GEOM_SEGMENT function to perform this opera-
tion. This function takes an LRS geometry as the first argument and takes start and end measures
(to use in clipping) as the second and third arguments.

SQL> SELECT SDO_LRS.CLIP_GEOM_SEGMENT

(

geom,

10, -- measure value for the start of dynamic segment

55 -- measure value for the end of dynamic segment

) new_lrs_geom

FROM road_segments;

Examples of Uses
Here are some examples of use:

• Extract the section of a street that will be closed to traffic because of road repairs.

• Extract the route that a boat followed on a certain day. The line is the route followed by the
boat and measures represent time fixes. The start and end measures are the time stamp at
the start and end of the day.

Locate a Point
Locating a point is similar to clipping, except it extracts a single point from the line. Given a meas-
ure, it returns the point located on a line at that measure. It can also position the point away from
the line at a chosen offset. A positive offset locates the point on the left side of the line. A negative
offset is on the right side of the line. Notion of left (right) implies left (right) of the geometry as you
traverse from the start to the end of the geometry.

Figure B-8 shows how point P1 is located along a linear referenced segment from a measure
and offset.

Figure B-8. Locating a point on an LRS geometry

APPENDIX B ■ LINEAR REFERENCING708

8997chAppB.qxd 9/28/07 10:20 AM Page 708

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The following code shows how to use the LOCATE_PT function to perform this operation. This
function takes an LRS geometry as the first argument and a measure value as the second argument.

SQL> SELECT SDO_LRS.LOCATE_PT

(

geom,

55 -- measure value for the point to be located

) point_2d

FROM road_segments;

Examples of Uses
Here are some examples of use:

• Locate a stop sign along a street. The measure indicates how far down the street the sign is
located. The offset indicates how far on the left or right the sign is located.

• Find where a boat was on a certain date and time. The line is the route followed by the boat,
with measures that represent time fixes. The measure of the point to locate is the time stamp
to find.

Project a Point
This is the reverse of the locate operation: given a point and a line, it returns the measure of that
point on the line. The point does not have to be on the line: the projection of a point on a line seg-
ment is the point on the segment that is on the perpendicular from the point and the geometric
segment. Figure B-9 illustrates this.

Figure B-9. Projecting a point onto an LRS geometry

The following code shows how to use the PROJECT_PT function to perform this operation. This
function takes an LRS geometry as the first argument and a reference point (that is, the point to be
projected) as the third argument.

SQL> SELECT SDO_LRS.PROJECT_PT

(

geom,

SDO_GEOMETRY(2003, 8307, SDO_POINT(-76, 45, NULL), NULL, NULL) -- ref. point

) projected_pt

FROM road_segments;

The preceding SQL statement returns the point on the LRS geometry where the reference point
is projected. You can combine the preceding code with the GET_MEASURE function to obtain the
measure value for the projected point as follows:

APPENDIX B ■ LINEAR REFERENCING 709

8997chAppB.qxd 9/28/07 10:20 AM Page 709

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SQL> SELECT SDO_LRS.GET_MEASURE

(

SDO_LRS.PROJECT_PT

(

geom,

SDO_GEOMETRY(2003, 8307, SDO_POINT(-76, 45, NULL), NULL, NULL) -- ref point

) -- projected_pt

)

FROM road_segments;

Examples of Uses
Here are some examples of use:

• A car breaks down while traveling on a highway. The current location of the car (collected by
the onboard GPS) is sent to a service center. A “projection” query returns the position of the
car as a distance along the highway. The offset indicates the side of the road.

Intersecting LRS Segments with Standard Geometries
The SDO_GEOM.SDO_INTERSECTION() function you saw in Chapter 9 can be used to clip a line at the
boundaries of a polygon. You can use that function, for example, to clip the section of an interstate
at the border of a county.

The SDO_LRS.LRS_INTERSECTION() function behaves the same way, except it returns an LRS
geometry; in other words, it also returns the measures of the points at which the interstate crosses
the county boundary. You can then use other LRS functions to extract the exact location and meas-
ures of the points where the road intersects the county boundary.

The following example illustrates the process. It first computes the LRS intersection of I-25 and
county El Paso in Colorado. Then it returns the measures of the I-25 as it crosses the boundary of
the county.

SQL>

SELECT SDO_LRS.GEOM_SEGMENT_START_MEASURE (clip_geom),

SDO_LRS.GEOM_SEGMENT_END_MEASURE (clip_geom)

FROM (

SELECT SDO_LRS.LRS_INTERSECTION (i.geom, c.geom, 0.5) clip_geom

FROM us_interstates_lrs i, us_counties c

WHERE i.interstate ='I25'

AND c.county = 'El Paso'

AND c.state_abrv = 'CO'

);

Validation of LRS Segments
Oracle provides several functions to determine whether an LRS geometry or measure value for
a given segment is valid and whether the measure value is valid for a given segment using the
functions VALID_GEOM_SEGMENT, VALID_MEASURE, and VALID_LRS_PT. Alternately, you can directly
invoke VALIDATE_GEOMETRY_WITH_CONTEXT, described in Chapter 5, to validate an LRS geometry. The
latter function invokes the corresponding LRS-specific validation functions internally.

APPENDIX B ■ LINEAR REFERENCING710

8997chAppB.qxd 9/28/07 10:20 AM Page 710

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Dynamic Segmentation on 3D Geometries
The dynamic segmentation operations can also operate on three-dimensional lines, that is, on lines
with points defined by x, y, and z coordinates. They use the z values to compute measures, or in
other words, they consider the slope of the lines.

These operations are particularly useful for working with lines where slope is important, such
as water or gas pipes.

The 3D LRS operations are implemented using the same functions and procedures as listed
previously, except that the function names end with the _3D suffix. For example, function CLIP_GEOM_
SEGMENT_3D clips a line in 3D.

The lines must be defined as 3D geometries with measures: each point contains x, y, and z
coordinates followed by a measure. The SDO_GTYPE for such a geometry will be 4402, where the sec-
ond 4 indicates that the measure is in the last position.

Other Operations
There are a number of other operations on LRS geometries. These include concatenation, splitting,
and offsetting.

Concatenate
Given two lines with measures, this returns a single line with measures. The second line may be in
a different direction, and measures do not have to be continuous with those of the first line. The
resulting line has measures adjusted from the two input lines. Figure B-10 illustrates this process.

Figure B-10. Concatenating two LRS segments

The top of Figure B-10 shows two segments: ABC and DEF. The two segments are geometrically
connected; this is, point C and point F have the same coordinates. Both segments have ascending
measures, but the orientation of segment DEF is the opposite of that of segment ABC.

The bottom of the figure shows the result of concatenating the two segments. You now have
a single line. The measures have been harmonized; they are ascending according to the orientation
of the first segment (ABC). In addition, the orientation of the second segment (DEF) has been reversed
to match that of the first segment.

APPENDIX B ■ LINEAR REFERENCING 711

8997chAppB.qxd 9/28/07 10:20 AM Page 711

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Split
This splits a line into two lines at a chosen measure.

Offset
This is the same as the clip operation, but the resulting clipped line is shifted at a chosen offset (left
or right from the input line).

Summary
In this appendix, we described how to associate measures with a linear feature stored in an
SDO_GEOMETRY object. You can refer to locations on a linear feature using these measure values. This
type of referencing, called linear referencing, is popular in the transportation and utility industries.

The Linear Referencing component in Oracle provides a powerful set of functionality to store,
manage, and operate on linear referenced geometries. In this appendix, we presented a brief overview
of this functionality, including how to convert from standard two-dimensional coordinates/geome-
tries to linear referenced geometries, and vice versa.

APPENDIX B ■ LINEAR REFERENCING712

8997chAppB.qxd 9/28/07 10:20 AM Page 712

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Topology Data Model in Oracle

In the preceding chapters, we described how to store and perform analysis on SDO_GEOMETRY data in
an Oracle database. In most cases, these geometries represent different spatial features such as roads,
rivers, land parcels, city boundaries, property boundaries, and business locations. These features
can be stored as columns in one or more tables in Oracle. For instance, an application may store
land parcels and rivers that share edges as different features in different tables. Figure C-1 shows an
example of this. Figure C-2 shows an example of what happens if a shared edge e is updated.

Figure C-1. Spatial features of different types are stored in one or more tables as SDO_GEOMETRY objects.
Features can share boundaries.

713

A P P E N D I X C

■ ■ ■

8997chAppC.qxd 9/28/07 10:22 AM Page 713

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure C-2. Updating edge e as the river changes course. Geometries for Land Parcel 1, Land Parcel 2,
and River need to be updated in the land_parcels and rivers tables.

In this appendix, we describe an alternate model, the Topology Data Model, for effective man-
agement of shared geometry features.

Sharing Boundaries
How can you effectively share and manage boundaries between multiple features? You can accom-
plish this using Oracle’s Topology Data Model. The Topology Data Model stores the individual
features using three topological primitive elements: nodes, edges, and faces. These elements,
described next, are internally stored as SDO_GEOMETRY objects. Figure C-3 shows the topological ele-
ments that constitute the features of Figure C-1.

• Node: This is a point geometry that is shared by one or more features. A node can be an island
(that is, not connected to any other node), or it can be connected to one or more edges (nodes).
In Figure C-3, the topology has four nodes: n1, n2, n3, and n4.

• Edge: This is a line-string geometry that connects two nodes in a topology. Note that this line
string may contain multiple vertices that are not considered as individual nodes in the topol-
ogy. That means it may contain multiple line segments (connecting those vertices). For
instance, edge e3 in Figure C-3 is a line string consisting of two vertical lines and a horizontal
line. Likewise, edge e4 consists of two vertical lines and a horizontal line.

• Face: This is the polygonal area surrounded by a closed set (ring) of edges. The face is always
a single polygon containing just one outer ring and any number of inner rings. The topology
of Figure C-3 shows two faces: f1 and f2. Face f1 is the area bounded by edge e and e4 (con-
necting nodes n2 and n3). Face f2 is the area bounded by edges e and e3.

Note that the features in the corresponding feature tables are not stored as SDO_GEOMETRY objects.
Instead, they are stored as SDO_TOPO_GEOMETRY objects, which we will describe later in this appendix.
These objects specify a list of underlying topological elements to construct the feature. For instance,
the River feature in Figure C-3 is specified as a list of edges: e1, e, and e2 (note that in this high-level
model, the River feature is modeled as a line string, that is, a set of edges; a more detailed model can
store the River feature as a set of polygonal faces). The Land Parcel 1 feature is represented using the
face f1, and the Land Parcel 2 feature is represented using the face f2.

APPENDIX C ■ TOPOLOGY DATA MODEL IN ORACLE714

8997chAppC.qxd 9/28/07 10:22 AM Page 714

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure C-3. Representing features using the Topology Data Model. Each feature is represented using an
SDO_TOPO_GEOMETRY object consisting of underlying topological elements such as nodes, edges, and faces.

Benefits of the Topology Data Model
What are the advantages of representing spatial features using the Topology Data Model as opposed
to storing them using simple SDO_GEOMETRY data? The benefits include the following:

• No redundant storage of data: For instance, edge e in Figure C-3, which is shared among
multiple features, is stored just once. All features that include edge e just store (direct or
indirect) references to the edge via the SDO_TOPO_GEOMETRY.

• Data consistency: Updating a topological element implicitly defines updates to all features
that share the element. For instance, if edge e is modified (the associated geometry is
updated), the Land Parcel and River features that share edge e are implicitly updated. This
avoids possible data inconsistencies due to multiple updates at feature layers.

• Fast topological relationships: Since the topology is precomputed, the identification of all
features that satisfy a specified topological relationship with a query feature is easy and effi-
cient. The types of topological relationships that can be specified include TOUCH, ANYINTERACT,
OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT, CONTAINS, INSIDE, COVERS, COVEREDBY, and EQUALS.
We discussed these relationships in detail in Chapter 8. Note that topological relationships
are preserved even if the coordinate space is stretched or twisted. Distance relationships are
not topological relationships.

Because of these benefits, the Topology Data Model is widely used in GIS applications for land
management, where the primary focus is on data consistency, nonredundant storage, and topologi-
cal queries.

Storing a Topology Data Model in Oracle
Oracle Spatial allows users to share, update, and manage information between multiple feature lay-
ers using an associated topology. Figure C-4 shows the schematic for storing a topology constructed
from two feature layers, land_parcels and rivers. As shown in Figure C-3, the features are decomposed

APPENDIX C ■ TOPOLOGY DATA MODEL IN ORACLE 715

8997chAppC.qxd 9/28/07 10:22 AM Page 715

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

into the constituent topological primitive elements, such as nodes, edges, and faces. The node ele-
ments are stored in the <topology-name>_NODE$ table, simply referred to as the NODE$ table. Likewise,
the edge elements are stored in the corresponding EDGE$ table, and the face elements are stored in
the corresponding FACE$ table. The RELATION$ table stores as individual rows all the constituent
primitive elements for an SDO_TOPO_GEOMETRY in a feature layer. Oracle also refers to the SDO_TOPO_
GEOMETRY as a topology geometry. As shown in Figure C-4, each element of the topology geometry is
identified in the RELATION$ table by the ID of the feature layer (TG_LAYER_ID), the ID of that feature
(TG_ID), the type of the element (TOPO_TYPE), and the ID of the element (TOPO_ID).

Figure C-4. Associating a topology with two feature layers, land_parcels and rivers

The topology model consists of the following tables:

• NODE$ table: This table stores all the node elements in the topology. This table has the follow-
ing fields:

• NODE_ID: This is a unique ID for the node.

• EDGE_ID: This is the ID for the edge (if any) that has this node as a start_node or as an
end_node.

• FACE_ID: This is the ID for the face containing this node if the node is an island node.

• GEOMETRY: This is a point-type SDO_GEOMETRY to represent the location of the node.

• EDGE$ table: This table stores all the edge elements in the topology. Edges have a direction. As
a result, they have a start_node and an end_node. This table has the following fields:

• EDGE_ID: This is a unique ID for the edge.

• START_NODE_ID and END_NODE_ID: These are the IDs of the starting and ending nodes of
the edge.

• LEFT_FACE_ID and RIGHT_FACE_ID: These are the IDs of the left and right faces.

• NEXT_LEFT_EDGE_ID, PREV_LEFT_EDGE_ID: These are the IDs of the next and the previous
edges in the left face (face to the left side identified by LEFT_FACE_ID) of the current edge.

• NEXT_RIGHT_EDGE_ID, and PREV_RIGHT_EDGE_ID: These are the IDs of the next and the pre-
vious edges in the right face (face to right side identified by RIGHT_FACE_ID) of the current
edge.

• GEOMETRY: This is a line string–type SDO_GEOMETRY that represents the shape and location
of the edge. Note that for the edge, only the first and last vertices correspond to nodes in
the topology. All other vertices do not have a corresponding node.

APPENDIX C ■ TOPOLOGY DATA MODEL IN ORACLE716

8997chAppC.qxd 9/28/07 10:22 AM Page 716

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• FACE$ table: This table stores all the face elements in the topology. Faces can also store one
or more island nodes and island edges. These island nodes and island edges are not on the
boundary of the face but are inside the face. This table has the following fields:

• FACE_ID: This is a unique ID for the face.

• BOUNDARY_EDGE_ID: This is the ID of an edge on the boundary of the face. All other edges
can be traced from this edge (by following the next and previous edge pointers for this
edge).

• ISLAND_EDGE_LIST and ISLAND_NODE_LIST: These are lists of IDs for the island edges and
the island nodes.

• MBR_GEOMETRY: This is a minimum bounding rectangle that encloses the face. Note that
the geometry of the face is not explicitly stored here. The geometry is traced by con-
structing the boundary using the BOUNDARY_EDGE_ID.

• RELATION$ table: This table stores the topological primitive elements for each feature in an
associated feature table. Note that the feature objects are stored using the SDO_TOPO_GEOMETRY
object, which is also referred to as the topology geometry (TG) object. Spatial automatically
generates an ID for each such TG object, called TG_ID. Each feature layer is referenced using
a number called TG_LAYER_ID. This table has the following fields:

• TG_LAYER_ID: This is the ID of the feature layer.

• TG_ID: This is the ID of the feature object in the preceding feature layer.

• TOPO_ID: This is the ID of the topological element associated with the feature object.

• TOPO_TYPE: This is the type of the topological element: 1 for NODE, 2 for EDGE, and 3 for FACE.

The following are other attributes of the topology:

• For each feature object in a feature table that is associated with the topology, the RELATION$
table stores N rows if there are N associated topological elements. For instance, the Rivers
feature in Figure C-3 has four nodes and three edges, so it will have seven rows in the
RELATION$ table.

• The feature tables store the feature using the SDO_TOPO_GEOMETRY data type. Like the SDO_GEOMETRY
data type, SDO_TOPO_GEOMETRY also captures the shape and location of a feature. But unlike
SDO_GEOMETRY, SDO_TOPO_GEOMETRY does not store the coordinates explicitly. Instead, it stores
only references to topological elements from which the shape can be derived. This data type
has the following structure:

• TG_TYPE: The type of topology (that is, feature) geometry; 1 indicates a point or multipoint,
2 indicates a line or multiline, 3 indicates a polygon or multipolygon, and 4 indicates
a heterogeneous collection.

• TG_ID: A unique ID generated by Spatial for this feature.

• TG_LAYER_ID: A unique ID assigned by Spatial for this feature layer (which is stored as an
SDO_TOPO_GEOMETRY column in a database table). This ID is assigned when the layer is
associated with the topology.

• TOPOLOGY_ID: A unique ID of the current topology. This ID is assigned by Spatial when
the topology is created.

Figure C-5 shows the association between feature tables and topology tables. Given a feature
ID (TG_ID) along with the feature table (TG_LAYER_ID), you can identify the topological elements that
constitute this feature. The shape of this feature can be derived from these elements. The SDO_TOPO_
GEOMETRY has a method to return the shape as an SDO_GEOMETRY object.

APPENDIX C ■ TOPOLOGY DATA MODEL IN ORACLE 717

8997chAppC.qxd 9/28/07 10:22 AM Page 717

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure C-5. Association between feature tables and topology tables

Given this background on how topology is stored in Oracle, next we will cover how to create
a topology, associate feature tables with the topology, populate the tables, and query the topology.

Operating on a Topology in Oracle
Oracle Spatial provides the following functionality to operate on the Topology Data Model:

• Creating a new topology in the database. This includes creating new tables for storing topo-
logical primitive elements (nodes, edges, and faces) associated with a topology.

• Associating feature layers (tables) with a topology.

• Inserting new features into feature tables using the topological elements already in the
topology.

• Updating the underlying topological elements.

• Querying features for topological relationships.

• Other functions to drop a topology, drop the association of a feature table with a topology,
and so on.

Oracle Spatial provides both PL/SQL and Java APIs for the preceding operations. In this appen-
dix, we will discuss only the PL/SQL functions. The SDO_TOPO package includes these functions, each
of which we will describe in brief. For a detailed discussion, please consult Oracle Spatial User’s Guide.

Creating a Topology
The CREATE_TOPOLOGY procedure creates a new topology in the database. This function takes a name
for the topology, the tolerance to be used (see Chapter 3 for a discussion of tolerance), and the Spatial
Reference ID (SRID) for the topology data. Currently, all data in a topology have to be in the same
spatial reference (coordinate) system. The following SQL shows an example:

SQL> EXECUTE SDO_TOPO.CREATE_TOPOLOGY('CITY_DATA', 0.00000005, NULL);

This function creates the associated topology tables such as CITY_DATA_NODE$, CITY_DATA_EDGE$,
and CITY_DATA_FACE$. We will refer to these tables as NODE$, EDGE$, and FACE$ when there is no ambi-
guity. Since the SRID (the third parameter) is NULL, the spatial reference system will be the default
(Euclidean coordinate system in two-dimensional space).

APPENDIX C ■ TOPOLOGY DATA MODEL IN ORACLE718

8997chAppC.qxd 9/28/07 10:22 AM Page 718

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Populating a Topology
Note that the user has to populate the topology—that is, the related tables such as NODE$, EDGE$, and
FACE$. You can bulk load the data into these tables using Oracle utilities such as SQL*Loader, Import/
Export, and Data Pump. You can easily construct the topological element data for the example in
Figure C-1 and load the data into these tables. We leave this as an exercise for the reader.

Associating a Feature Layer with a Topology
Once the topology is populated (that is, the topological element information is filled in), you can
create a feature layer as follows:

SQL> CREATE TABLE land_parcels

(

parcel_name VARCHAR2(30) PRIMARY KEY,

feature SDO_TOPO_GEOMETRY

);

Another feature layer, streets, can store each street as a topology geometry.

SQL> CREATE TABLE streets

(

street_name VARCHAR2(30) PRIMARY KEY,

feature SDO_TOPO_GEOMETRY

);

You can then associate these feature layers with a topology using the ADD_TOPO_GEOMETRY_LAYER
function in the SDO_TOPO package. This function takes the topology name as the first argument, the
feature table name and the column name as the second and third arguments, and the type of the fea-
tures (whether they are points, lines, or polygons) as the fourth argument. The following SQL shows
how to add the land_parcels feature layer, which has just polygon data, to the city_data topology:

SQL>

BEGIN

-- Add the feature layer for land parcels

SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER

('CITY_DATA', -- name of the topology

'LAND_PARCELS', 'FEATURE', 'POLYGON' – names of the feature table, column, & type

);

);

-- Add the feature layer for the street network

SDO_TOPO.ADD_TOPO_GEOMETRY_LAYER

('CITY_DATA', -- name of the topology

'STREETS', 'FEATURE', 'POLYGON' -- names of the feature table, column, and type

);

END;

/

After adding all feature layers to a topology, you want set up indexes on the NODE$, FACE$, and
EDGE$ tables. Oracle will automatically do this when you execute the INITIALIZE_METADATA procedure,
as shown in the following SQL:

SQL> EXECUTE SDO_TOPO.INITIALIZE_METADATA('CITY_DATA');

APPENDIX C ■ TOPOLOGY DATA MODEL IN ORACLE 719

8997chAppC.qxd 9/28/07 10:22 AM Page 719

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Inserting, Updating, and Populating Feature Layers
Now, we’ll show how to insert features into the feature layers. The features are of type
SDO_TOPO_GEOMETRY, which has the following structure:

SQL> DESCRIBE sdo_topo_geometry;

Name Null? Type

--- -------- ----------------------------

TG_TYPE NUMBER

TG_ID NUMBER

TG_LAYER_ID NUMBER

TOPOLOGY_ID NUMBER

...method descriptions omitted

Among the attributes listed are the ID of the topology (TOPOLOGY_ID) and the ID of the feature
layer (TG_LAYER_ID). You can identify the TOPOLOGY_ID and the TG_LAYER_ID for a feature layer in
a specific topology by consulting the USER_SDO_TOPO_METADATA view. The following SQL returns the
TG_LAYER_ID for the LAND_PARCELS FEATURE layer in the CITY_DATA topology:

SQL> SELECT topology_id, tg_layer_id FROM USER_SDO_TOPO_METADATA

WHERE topology = 'CITY_DATA' and table_name='LAND_PARCELS'

and column_name='FEATURE';

But what value should you give to the TG_ID in the SDO_TOPO_GEOMETRY object? Instead of creat-
ing the SDO_TOPO_GEOMETRY by yourself, you should use one of several predefined constructor functions
that will then populate the TG_ID and other attributes for a new feature geometry. The following SQL
shows an example using one such constructor function for SDO_TOPO_GEOMETRY. This function uses
the IDs and types of topological primitive elements such as nodes, edges, and faces stored in the
NODE$, EDGE$, and FACE$ tables, respectively.

SQL> INSERT INTO land_parcels (parcel_name, feature) VALUES

(

'P1',

SDO_TOPO_GEOMETRY -- construct using topology elements(no explicit geometry)

(

'CITY_DATA', -- topology_name

3, -- topo_geometry_type for polygon (or multipolygon)

1, -- feature layer (TG_LAYER) ID representing 'Land Parcels',

SDO_TOPO_OBJECT_ARRAY -- Array of 2 topo objects (two faces)

(

SDO_TOPO_OBJECT -- Constructor for the object

(

3, -- element ID (i.e., FACE_ID) from the associated topology

3 -- element TYPE is 3 (i.e., a FACE)

),

SDO_TOPO_OBJECT -- Constructor for topo object

(

6, -- element ID (i.e., FACE_ID) from the associated topology

3 -- element type is 3 (i.e., a FACE)

)

)

)

);

The feature is a multipolygon composed of two faces, one with ID 3 and another with ID 6.
These two face elements that constitute the feature are specified using the SDO_TOPO_OBJECT_ARRAY
in the preceding SDO_TOPO_GEOMETRY constructor. This method will populate the RELATION$ table
appropriately and insert a row in the land_parcels table with the TG_ID and TG_LAYER_ID filled
appropriately (Spatial generated) in the SDO_TOPO_GEOMETRY column.

APPENDIX C ■ TOPOLOGY DATA MODEL IN ORACLE720

8997chAppC.qxd 9/28/07 10:22 AM Page 720

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Updating features in a feature table can be processed by invoking the constructor method to
generate the SDO_TOPO_GEOMETRY object.

Updating Topological Elements
As we mentioned earlier, the Topology Data Model is ideal for propagating updates on the underly-
ing topology elements to the feature layers. For instance, if you update the geometry of edge e (with
an EDGE_ID of 10, for instance) from g to g1, then this will be reflected in all features that contain
edge e.

Oracle Spatial provides a variety of functions such as ADD_NODE, ADD_EDGE, and SPLIT_EDGE in the
SDO_TOPO package to add, update, or delete topological primitive elements. Since topological primi-
tive elements (such as nodes, edges, and faces) are shared across multiple features, updates from
multiple applications are likely to conflict. Although Oracle implicitly obtains appropriate locks for
such concurrent updates, because of efficiency reasons, typical topology applications would like to
lock at a coarse granularity of a region of interest. To facilitate such coarse-grained updates, you can
use the TopoMap object. A TopoMap object is a subset of a specified topology defined by a region of
interest. The TopoMap object can be created and manipulated in PL/SQL using the SDO_TOPO_MAP
package (in Java, the equivalent API is the TopoMap class). To perform updates using the TopoMap
object, you need to perform following sequence of operations:

1. Initialize a TopoMap object.

2. Perform edits on the TopoMap object.

3. Finish the processing with the TopoMap object.

We’ll illustrate this operation sequence with a typical topology update operation; say you want
to add (and/or edit) a street called “Fifth Street” in Manhattan, New York, part of the CITY_DATA
topology. You can do this by initializing a TopoMap object, performing edits, and committing the
changes.

Initialization of TopoMap Object
Now say you want to call the TopoMap object “Manhattan Topology.” To create the TopoMap object
based on the CITY_DATA topology, you can use the following SQL:

SQL> EXEC SDO_TOPO_MAP.CREATE_TOPO_MAP('CITY_DATA', 'Manhattan Topology');

Next, you specify the extent of the TopoMap object and load it into the TopoMap cache by specify-
ing the minimum and maximum longitude/latitude values for New York City. Let’s say min_lat and
max_lat are the minimum and maximum latitude values and min_long and max_long are the mini-
mum and the maximum longitude values for the Manhattan region.

SQL> EXEC SDO_TOPO_MAP.LOAD_TOPO_MAP(

'Manhattan Topology',

min_long, min_lat, max_long, max_lat);

The LOAD_TOPO_MAP procedure not only loads the subset of the topology for the Manhattan region
into the TopoMap cache object; it also locks this region (and the associated edges, nodes, and faces
that intersect with the extent of the specified region) and reserves the region for updates exclusively
by the current application. This means any other application that needs to update topological ele-
ments in the same (Manhattan) region will be blocked until your application releases the locks (by
committing or rolling back the TopoMap changes).

APPENDIX C ■ TOPOLOGY DATA MODEL IN ORACLE 721

8997chAppC.qxd 9/28/07 10:22 AM Page 721

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Editing the TopoMap Object
Now that you have exclusive access to the topological elements in the Manhattan region, you want
to perform your edits on the topological elements in the loaded TopoMap object.

So, start by inserting the new segment for the Fifth Street in the Manhattan TopoMap object.
Since this is a street feature, you can add the feature to the streets table using the CREATE_FEATURE
function, as illustrated in the following SQL:

SQL> INSERT INTO STREETS (street_name, feature)

SELECT 'Fifth Street, Segment11',

SDO_TOPO_MAP.CREATE_FEATURE(

'Manhattan Topology',

'ROAD_NETWORK', -- Table where the feature is stored,

'FEATURE', -- Column in the table storing the feature

-- Next, specify the geometry for the Fifth street, segment 11

-- as line from x1,y1 to x2,y2

SDO_GEOMETRY(

2002, 8307, NULL,

SDO_ELEMENT_INFO_ARRAY(1,2,1),

SDO_ORDINATE_ARRAY(x1,y,1, x2,y,2)

)

) ;

Instead of updating the feature layers, you can directly manipulate the primitive topological
elements such as nodes, edges, and faces. The editing functions you can use have self-explanatory
names such as ADD_NODE, ADD_EDGE, REMOVE_NODE, and REMOVE_EDGE. (You can look up the full list of
such editing functions in the “Oracle Topology Data Model” manual.) The following code adds the
edge geometry gm between nodes 1 and 2:

SQL> EXEC SDO_TOPO_MAP.ADD_EDGE('Manhattan Topology', 1, 2, gm);

After performing your edits on the topological elements, you can validate the topology to make
sure your edits did not violate any topological constraints:

SQL> EXEC SDO_TOPO_MAP.VALIDATE('Manhattan Topology');

Finishing Up with the TopoMap Object
After performing your edits on the TopoMap object, you can commit the changes to the underlying
topology in the database, as shown in the following SQL:

SQL> EXEC SDO_TOPO_MAP.COMMIT_TOPO_MAP('Manhattan Topology');

This function will commit the changes and release all locks on the topological elements in the
underlying topology. Other applications can now load them into their TopoMap objects and update
them.

In some cases, you just want to discard your changes in the TopoMap object. The right way to do
this is to use the ROLLBACK_TOPO_MAP function, as shown in the following SQL. This will release asso-
ciated locks on the topological elements.

SQL> EXEC SDO_TOPO_MAP.ROLLBACK_TOPO_MAP('Manhattan Topology');

Finally, don’t forget to drop the TopoMap object using the drop_topo_map procedure. This will
release the memory associated with this “cache” object.

SQL> EXEC SDO_TOPO_MAP.DROP_TOPO_MAP('Manhattan Topology');

You can find more details on the SDO_TOPO_MAP PL/SQL API or the equivalent TopoMap Java API
in the Oracle documentation titled “Spatial Topology and Network Data Models.”

APPENDIX C ■ TOPOLOGY DATA MODEL IN ORACLE722

8997chAppC.qxd 9/28/07 10:22 AM Page 722

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Querying for Topological Relationships
Oracle Spatial provides a number of operators to query the features tables. These include the
SDO_FILTER and SDO_RELATE operators discussed in Chapter 8. The SDO_RELATE operator specifies the
desired topological relationship as a third parameter. If the desired relationship is ANYINTERACT
(that is, any type of interaction other than being disjoint; see Chapter 8 for more details), then the
SDO_ANYINTERACT operator can also be used. The following SQL shows an example of how to retrieve
all Land Parcel features (features from the land_parcels table) that interact with River features:

SQL> SELECT a.parcel_name FROM land_parcels a, rivers b

WHERE SDO_ANYINTERACT (a.feature, b.feature) = 'TRUE';

Note that both the first and second arguments are SDO_TOPO_GEOMETRY objects. In some cases,
the query window (the second argument to the SDO_ANYINTERACT operator in the preceding SQL)
need not be a feature geometry that is part of the topology. Instead, it can be a query window repre-
sented using an SDO_GEOMETRY object. To support such queries, all the operators also allow the second
(that is, the query) argument to be an SDO_GEOMETRY object. The following SQL shows an example of
how to retrieve all Land Parcel features (features from the land_parcels table) that interact with
a specified SDO_GEOMETRY query window:

SQL> SELECT a.parcel_name FROM land_parcels a

WHERE SDO_ANYINTERACT

(

a.feature,

SDO_GEOMETRY

(

2003,NULL, NULL,

SDO_ELEM_INFO_ARRAY(1,1003,3)

SDO_ORDINATE_ARRAY(14,20,15,22)

)

) = 'TRUE';

Both queries use the topological information to identify the features that satisfy the query
criterion. Since the topological information is precomputed and already stored persistently in the
database, such queries will be answered efficiently.

Hierarchical Feature Model
The Oracle Topology Data Model supports a hierarchical feature model constructed in a bottom-up
manner from the layers built on the topological primitive elements (nodes, edges, and faces). This
means if you consider the Land Parcel and River features as Level-0 features that are derived/
constructed from the topological primitive elements (nodes, edges, and faces), you can construct
Level-1 features using these Level-0 features. You can accomplish this by specifying Level-0 feature
IDs (TGIDs) in the SDO_TOPO_GEOMETRY constructors (for the Level-1 features). In general, Level-N fea-
tures can be derived from Level-(N – 1) features.

This hierarchical modeling of data is very useful in several applications. For instance, you can
model the U.S. Census Bureau data hierarchically as follows:

• The Census blocks are Level-0 features constructed using the faces in a topological
representation.

• The Census blockgroups are Level-1 features derived from the Census blocks.

• The Census tracts are Level-2 features derived from the blockgroups.

• The Census counties are Level-3 features derived from the tracts.

APPENDIX C ■ TOPOLOGY DATA MODEL IN ORACLE 723

8997chAppC.qxd 9/28/07 10:22 AM Page 723

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

This hierarchy can be extended to multiple levels until we have the United States as a Level-7
feature derived from a list of regions.

You can construct similar examples for other countries. For instance, you could use data from
the Ordnance Survey to construct such a hierarchy for Great Britain.

Summary
Oracle Spatial provides the Topology Data Model to store feature layers that share boundaries. This
topology model is very effective in maintaining data consistency, in reducing or eliminating storage
redundancy, and in identifying topological relationships. Updates to an underlying topology model
can be reflected in the feature layers without any explicit updates to the feature tables. Since topo-
logical relationships are precomputed, features interacting with a query feature can be answered very
efficiently. Distance queries such as nearest-neighbor queries, though, cannot be answered effi-
ciently using this model. Spatial also provides validation routines to detect inconsistencies in the
data. This functionality is widely used in land management and other GIS applications.

APPENDIX C ■ TOPOLOGY DATA MODEL IN ORACLE724

8997chAppC.qxd 9/28/07 10:22 AM Page 724

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Storing Raster Data in Oracle

Real-world spatial features can be represented in either a vector or raster model. In a vector
model, each spatial feature (a river, a road, a shop location, and so on) is represented as an object
with geometric features (the shape and location) and a set of attributes. In Chapter 4, we discussed
the SDO_GEOMETRY data type to store such vector spatial data. To represent the complexity of a city,
for instance, you may need myriad points, lines, and polygons. A raster model, on the other hand,
associates collections of pixels or cells to spatial entities by making a discrete approximation of
spatial features into grid cells. Each cell takes on a single value. You can consider a raster object as
a two-dimensional array or grid of regularly spaced cells. Some common examples of raster objects
include satellite images, aerial photos, and digital elevation models.

A road in a vector model corresponds to a line object described by road attributes (for example,
the road type, the road size, the pavement type, the last maintenance date, and so on). The same road
in a raster model would be a collection of grid cells sharing the same value specific to that road. Vector
and raster models are, in theory, equivalent: it is always possible to extract a vector model from a raster
one, and vice versa. In practice, they have different uses and varying abilities to represent real-world
spatial objects. Vector models are the most commonly used and are appropriate whenever you want
to identify and describe spatial objects with their relationships. With vectors, it is easy to find over-
laps between objects, create buffers around objects, calculate the distance between objects, and so
on. Although the same operations can also be performed on the basis of a raster model, the raster
model (and raster analysis) has the following differences:

• Raster data is typically used to model spatially continuous data such as elevations or envi-
ronmental data, for instance, to display a digital elevation of land or to model the diffusion
of a pollutant from a chemical spill. Currently, the bulk of raster data corresponds to satellite
images, aerial pictures, digital terrain/elevation models, grid data, and medical images. Most
of the rest is vector data.

• Raster analysis consists of spatial processing on a grid or a two-dimensional array/grid of
cells. Typically the analysis includes map/matrix algebra operations such as overlay, addition
and subtraction of multiple rasters, or neighborhood/clustering analysis functions on indi-
vidual rasters.

To illustrate the difference between the raster and vector models, let’s consider an example. In
Figure D-1, (a) shows a small section of an urban area as seen from an aircraft, whereas (b) and (c)
show the corresponding vector and raster representations (simplified here for convenience). As you
can see, both models are capable of representing the same picture. In a vector model, objects are easy
to identify and are modeled using points, lines, and other geometric shapes. In a raster model, the
spatial patterns are more visible, and the objects are models using different-colored cells or pixels.

725

A P P E N D I X D

■ ■ ■

8997chAppD.qxd 9/28/07 10:23 AM Page 725

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure D-1. (a) An aerial photograph of a small section of an urban area, (b) a vector representation,
and (c) a raster representation of the spatial objects in the picture shown in Figure D-1 (b)

In this book, we primarily focus on how to store, analyze, and visualize spatial data in the vec-
tor model. The SDO_GEOMETRY (see Chapter 4 for more information) provides an easy mechanism to
store spatial data in the vector format. The spatial indexes and geometry functions (see Chapters 8
and 9 for more information) provide an appropriate mechanism to search/analyze these vector data,
and Oracle MapViewer (see Chapter 11 for more information) enables visualization of vector
data. Typically in a business application, you will store the locations of businesses and customers as
vector data. However, as shown in Figure D-1, you may also want to store and visualize aerial photo-
graphs of your businesses and other entities in addition to the vector data.

In this appendix, we describe how to work with “raster” spatial data in Oracle. Specifically, we
examine the GeoRaster component in Oracle, which stores raster data using the SDO_GEORASTER data
type and provides preliminary analysis functions (such as generating pyramids and subsetting). We
then describe how to visualize the stored raster data using Oracle MapViewer. Note that GeoRaster
enables only the storage and visualization of raster data (and very basic analysis). Once you store
the raster data in Oracle, you can use a variety of third-party tools to perform more comprehensive
analysis operations, such as map algebra, that are typical on raster data.

The SDO_GEORASTER Data Type
Oracle Spatial provides the SDO_GEORASTER data type to store spatial data in raster format. Conceptually,
an SDO_GEORASTER object is an N-dimensional matrix of cells. The dimensions include a row dimen-
sion, a column dimension, and other optional dimensions. These optional dimensions can contain
a band dimension to represent multiband or hyperspectral images, and/or a temporal dimension.

For most raster data, such as an RGB image, there will be a row, a column, and a band (or color)
dimension. Each cell in an RGB image is addressed by (row, column, band) and specifies an inten-
sity value for the corresponding pixel (row, column) in the specified color/band, as shown in
Figure D-2.

APPENDIX D ■ STORING RASTER DATA IN ORACLE726

8997chAppD.qxd 9/28/07 10:23 AM Page 726

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure D-2. Bands in an RGB image

The cell values in a GeoRaster object are stored in a raster data table, which we will explain
later in this appendix. In addition to the raster information, SDO_GEORASTER could also capture infor-
mation about which region on the earth’s surface is represented by this raster object. This makes the
raster object georeferenced.

The SQL in Listing D-1 shows how to add an SDO_GEORASTER column to the branches table. The
idea is to store the aerial photograph for each branch (along with its location).

Listing D-1. Altering the branches Table to Add the georaster Column

ALTER TABLE branches ADD (georaster SDO_GEORASTER);

Next, we will explain the structure of the SDO_GEORASTER type, as shown in Listing D-2. Typically,
a GeoRaster object can be very large. In the following sections, we will describe how to specify dif-
ferent storage options. If you just want a general idea of how to store raster objects, you can skip to
the section “Populating SDO_GEORASTER Columns.”

Listing D-2. Structure of SDO_GEORASTER

SQL> DESC SDO_GEORASTER;

Name Null? Type

--- -------- ----------------------

RASTERTYPE NUMBER

SPATIALEXTENT MDSYS.SDO_GEOMETRY

RASTERDATATABLE VARCHAR2(32)

RASTERID NUMBER

METADATA SYS.XMLTYPE

APPENDIX D ■ STORING RASTER DATA IN ORACLE 727

8997chAppD.qxd 9/28/07 10:23 AM Page 727

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The following list describes each attribute’s purpose:

• RASTERTYPE: This specifies the type of the raster object. It is a number of the form
[d][b][t]01.

• [d] is the number of spatial dimensions. If the spatial dimensions include x,y,z in the
model space that correspond to row, column, depth in the cell-coordinate space, then
this number is set to 3. Currently only two spatial dimensions (x and y) are supported
(that is, d should be set to 2).

• [b] is either 0 or 1. It is 0 if the raster object has a single band, and it is 1 if the raster
object has more than one band.

• [t] specifies whether there is a temporal dimension. Currently it is set to 0 (not used).

• SPATIALEXTENT: This is an SDO_GEOMETRY object storing the minimum bounding rectangle
(MBR) of the raster object on the earth’s surface. This spatial extent is represented in a model
coordinate system to model the earth’s surface.

• RASTERDATATABLE: This is the name of the table that stores the cell information for the raster
object. The two-dimensional row-column matrix of cells is referred to as the cell coordinate
system.

• RASTERID: Combined with the RASTERDATATABLE, this is a unique identifier for the raster object.

• METADATA: This is an XML object that stores information regarding the raster object. For
instance, it stores information on how to convert from the model coordinate system (for
example, the spatial extent) to the cell coordinate system.

Storage for SDO_GEORASTER Data
Each SDO_GEORASTER object may be subdivided into multiple blocks, and the cell values in each
block are stored as a binary large object (BLOB) in the raster data table. Figure D-3 shows how
SDO_GEORASTER objects are internally stored using the raster data table. You could also have addi-
tional tables such as the Value-Attribute Table (VAT) to store a meaning/interpretation for each cell
value. For instance, the value of 1 for a cell value in the red band indicates a light red color, and
value of 3 indicates a dark red color.

Figure D-3. Storing SDO_GEORASTER objects in an Oracle table. Each SDO_GEORASTER object is internally
stored using the BLOBs in the raster data table.

APPENDIX D ■ STORING RASTER DATA IN ORACLE728

8997chAppD.qxd 9/28/07 10:23 AM Page 728

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Creating the Raster Data Table
The cell information for a raster object is stored in a raster data table associated with the GeoRaster
object. Next, we will cover the raster data table. The raster data table is a table of the SDO_RASTER data
type. This table splits a raster object into blocks and stores the two-dimensional matrix of cell
values (indexed by rows and columns) for each block as a RASTERBLOCK object. This table needs to
be created explicitly by the user. The table will be associated with a GeoRaster object using the
SDO_GEOR.INIT procedure, which we describe later in this appendix. Listing D-3 shows how to create
the raster data table.

Listing D-3. Creating the Raster Data Table

CREATE TABLE branches_rdt OF SDO_RASTER

(

PRIMARY KEY

(

RASTERID, PYRAMIDLEVEL, BANDBLOCKNUMBER,

ROWBLOCKNUMBER, COLUMNBLOCKNUMBER

)

)

LOB(RASTERBLOCK) STORE AS (NOCACHE NOLOGGING);

The RASTERID attribute corresponds to the unique identifier for the raster object. We will
explain other fields of the SDO_RASTER data type as we proceed in this section. The raster object is
divided into smaller pieces called blocks. The cell values in each block are stored in the RASTERBLOCK.

Blocking a Large Raster Object
A raster object could consist of a large number of cells. In such cases, a more scalable approach is to
divide the object into smaller pieces, called blocks, so that queries and updates can operate on blocks
instead of the entire object. The cell values in each block are stored together as a single RASTERBLOCK
(BLOB) object. Figure D-4 shows an example for a single-band raster object.

Figure D-4. Blocking to store a 16-by-16 raster object using 4-by-4 blocks

Note that each block is uniquely addressed by rowblocknumber and columnblocknumber (and
bandblocknumber, if it exists) fields.

APPENDIX D ■ STORING RASTER DATA IN ORACLE 729

8997chAppD.qxd 9/28/07 10:23 AM Page 729

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Interleaving of Bands in a Raster Object
What if you have multiple bands, as in Figure D-2? Let’s name the cell values (by the band number
for simplicity), as shown in Figure D-5. In what order do you store the cell values for each band?
This is specified by the interleaving of bands.

Figure D-5. An RGB image (three-band raster object)

You can store (cell values for) each band in sequence (that is, one after another). This interleav-
ing is referred to as Band Sequential (BSQ). Figure D-6 shows the storage of cell values for this
interleaving.

Figure D-6. BSQ interleaving for the RGB image in Figure D-5

Alternatively, you can alternate the rows (lines) of each band. This means you store the row
(that is, all four cells of the row) of band 0, then the row of band 1, and then the row of band 2. This
interleaving is called Band Interleaved by Line (BIL). Figure D-7 shows the BIL interleaved storage of
cell values for Figure D-5.

Figure D-7. BIL interleaving for the RGB image in Figure D-5

A third alternative is to store each cell of each band one after another. This interleaving is
called Band Interleaved by Pixel (BIP). Figure D-8 shows the BIP interleaved storage of cell values
for Figure D-5.

APPENDIX D ■ STORING RASTER DATA IN ORACLE730

8997chAppD.qxd 9/28/07 10:23 AM Page 730

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure D-8. Band Interleaved by Pixel interleaving for the RGB image in Figure D-5

Which of these interleaving options should you use? It depends on the application. For instance,
if the application expects to retrieve one band at a time, you would achieve optimal performance
with BSQ interleaving.

Metadata in SDO_GEORASTER Data
The last attribute of SDO_GEORASTER is an XMLType to store the metadata associated with a GeoRaster
object. This metadata can include information regarding the blocking, interleaving, and so on. The
metadata may also include parameters to convert from the model coordinate system to the cell
coordinate system of the GeoRaster object. We refer you to Oracle Spatial GeoRaster documentation
for a list of attributes that you can specify in the metadata field of SDO_GEORASTER.

Populating SDO_GEORASTER Columns
How do you populate the SDO_GEORASTER columns? As we described earlier, you create a column of
the SDO_GEORASTER type and a raster data table to contain the cell data for the raster objects. You may
also need to create a trigger on the table containing the SDO_GEORASTER column so that any updates,
inserts, or deletes to this column are internally propagated to the raster data table. Listing D-4
shows how to create this trigger.

Listing D-4. Creating a Trigger to Populate the Raster Data Table

SQL> call SDO_GEOR_UTL.createDMLTrigger('BRANCHES','GEORASTER');

Starting in Oracle Database 10g Release 2 (that is, version 10.2), you no longer need to create
this trigger. Instead, the trigger is implicitly created when you initialize a GeoRaster object. We’ll
illustrate how to initialize a GeoRaster object in the branches table. Listing D-5 shows the SQL involved.
Note that the SDO_GEOR.INIT function takes the raster data table name, branches_rdt, and returns
a SDO_GEORASTER object with the raster data table information populated.

Listing D-5. Initializing the georaster Column in the branches Table

SQL> UPDATE branches SET georaster = SDO_GEOR.INIT('BRANCHES_RDT') WHERE id=1;

Once you initialize the GeoRaster object, you can upload images from TIFF or other standard image
formats into (or out of) the GeoRaster object using the SDO_GEOR.IMPORTFROM (or the SDO_GEOR.EXPORTTO)
procedure. This procedure invokes internal adaptors to read from/write to different image formats such
as TIFF, GeoTIFF, JPEG, GIF, PNG, BMP, or an ESRI world file.

The SDO_GEOR.IMPORTFROM procedure takes a GeoRaster object, the blocksize parameters, the
type, and the location of the image file being uploaded into the GeoRaster object (along with some
additional parameters). The PL/SQL block in Listing D-6 shows an example of loading the r1.tif
image into the branches table for georaster id=1.

APPENDIX D ■ STORING RASTER DATA IN ORACLE 731

8997chAppD.qxd 9/28/07 10:23 AM Page 731

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing D-6. Populating the Georaster Column with a TIFF Image

DECLARE

g SDO_GEORASTER;

BEGIN

-- Select the georaster column

SELECT georaster INTO g FROM branches WHERE id = 1 FOR UPDATE;

-- Import into the georaster object

SDO_GEOR.IMPORTFROM

(

g, 'blocksize=(512,512)', 'TIFF', 'file',

'/usr/rasters/r1.tif' -- specify the name and location of the image file

);

-- update the column

UPDATE branches SET georaster = g WHERE id = 1;

COMMIT;

END;

/

■Note You can export/import only GeoTIFF, JPEG, GIF, BMP, and PNG files. For other formats, you should use
third-party GeoRaster ETL tools.

Before performing the preceding import procedure, you may want to ensure that the “spatial”
schema and the MDSYS schema both have “read” permission to read the specified file into the data-
base. You can grant this permission using the DBMS_JAVA.GRANT_PERMISSION procedure, as shown in
Listing D-7. The first parameter specifies the schema name, the second parameter specifies the
permission type, the third parameter specifies the file name, and the fourth parameter specifies
the permission action.

Listing D-7. Granting Permissions to Import Data into a GeoRaster Column

SQL> CONNECT system/manager -- Replace with password for system

-- Grant permission to user 'spatial'

SQL> CALL DBMS_JAVA.GRANT_PERMISSION('SPATIAL', 'SYS:java.io.FilePermission',

'/usr/rasters/r1.tif', 'read');

-- Grant permission to the MDSYS schema

SQL> CALL DBMS_JAVA.GRANT_PERMISSION('MDSYS', 'SYS:java.io.FilePermission',

'/usr/rasters/r1.tif', 'read');

SQL> connect spatial/spatial; -- connect back as spatial

Manipulating Raster Objects
Once raster objects are stored in the SDO_GEORASTER columns of a table, Oracle Spatial allows you to
perform a number of operations on each of these objects. These operations include the following:

• Generating pyramids, an operation that allows you to generate raster objects of different res-
olutions

• Subsetting, which involves clipping the GeoRaster by band or specified region

APPENDIX D ■ STORING RASTER DATA IN ORACLE732

8997chAppD.qxd 9/28/07 10:23 AM Page 732

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

• Georeferencing, which involves identifying a portion of an image by specifying the coordinates
in the model coordinate system

• Changing the interleaving or blocking for a raster object

• Copying a raster object to another

• Generating the spatial extent of an image or a subset returned

• Creating a mosaic of all the GeoRaster data in a column of type SDO_GEORASTER

Oracle Spatial also provides additional functionality for advanced processing and viewing and
loading GeoRaster objects. You can find a full reference for all the operations in the Oracle Spatial
GeoRaster Developer’s Guide. In the rest of this appendix, we present a synopsis for a subset of the
operations on GeoRaster objects.

Generating Pyramids
In some cases, the raster objects are too large and have a high resolution. How do you reduce the
size? You reduce the resolution by specifying a pyramid level. Figure D-9 shows an example of low-
resolution objects created at different pyramid levels from the original raw object.

Figure D-9. Generating raster objects at different resolutions. The higher the pyramid level, the lower
the resolution (and the smaller the storage requirement of the object).

APPENDIX D ■ STORING RASTER DATA IN ORACLE 733

8997chAppD.qxd 9/28/07 10:23 AM Page 733

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

You can generate pyramids for a raster object using the SDO_GEOR.GENERATEPYRAMID procedure.
The SQL in Listing D-8 shows an example for generating pyramids for four levels. Note that the sec-
ond parameter, 'rlevel=4', specifies the number of pyramid levels to generate. You can specify
other parameters such as 'resampling=NN' to use a specific algorithm such as nearest-neighbor to
create the pyramids.

Listing D-8. Generating Pyramids for a GeoRaster Object in the branches Table

DECLARE

geor sdo_georaster;

BEGIN

SELECT georaster INTO geor FROM branches WHERE id = 1 FOR UPDATE;

-- Generate four levels of pyramids

SDO_GEOR.GENERATEPYRAMID(geor, 'rlevel=4');

UPDATE branches SET georaster = geor WHERE id = 1;

COMMIT; -- commit and release the lock on the row

END;

/

Subsetting
Another important operation is subsetting. Here, you can clip the GeoRaster data by band and/or
regions. For instance, you can select only the raw data (pyramid level 0) corresponding to band 0 for
the specified window (in cell space), as shown in Listing D-9.

Listing D-9. Subsetting a GeoRaster Object

DECLARE

g SDO_GEORASTER;

b BLOB;

BEGIN

SELECT georaster INTO g FROM branches WHERE id = 1;

DBMS_LOB.CREATETEMPORARY(b, true);

SDO_GEOR.GETRASTERSUBSET

(

georaster => g,

pyramidlevel => 0,

window => sdo_number_array(0,0,699,899),

bandnumbers => '0',

rasterBlob => b

);

END;

/

The subset of blocks is returned as BLOB.

Georeferencing
Georeferencing associates real-world (referred to as model space) coordinates with a GeoRaster
object. For georeferenced raster objects, Oracle Spatial enables you to specify real-world coordi-
nates and convert them into cell coordinates in a GeoRaster object. Figure D-10 shows an example
of a GeoRaster object covering a region that contains a national park and a restaurant. The national
park will be represented by a subset of pixels in the cell coordinate system of the GeoRaster object.
The restaurant will be represented by a single pixel in the GeoRaster object.

APPENDIX D ■ STORING RASTER DATA IN ORACLE734

8997chAppD.qxd 9/28/07 10:23 AM Page 734

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure D-10. Georeferencing is the process of relating objects in model coordinate system (x,y space) to
the objects in cell coordinate system. Oracle supports such model-to-cell space transformations for
georeferenced raster objects.

So, if x,y are the real-world (model space) coordinates, then you can identify the row, col of
the GeoRaster object that corresponds to these coordinates using the following transformation,
called the affine transformation:

row = a + b * x + c * y

col = d + e * x + f * y

The parameters a, b, c, d, e, and f are transformation coefficients and are stored in the metadata
associated with the GeoRaster object. Note that determining the right values for these parameters is
part of georeferencing. Such georeferencing is not supported by Oracle. Instead, Oracle supports the
transformations between model space and cell space for georeferenced GeoRaster objects. Oracle
provides the SDO_GEOR.GEOREFERENCE function to associate this transformation (generating coeffi-
cients a, b, c, d, e, and f from input ESRI WorldFile coefficients A, B, C, D, E, and F) with a GeoRaster
object. Listing D-10 shows the example SQL.

Listing D-10. Georeferencing a GeoRaster Object

DECLARE

g SDO_GEORASTER;

b BLOB;

BEGIN

SELECT georaster INTO g FROM branches WHERE id = 1 FOR UPDATE;

SDO_GEOR.GEOREFERENCE

(

georaster => g,

srid => 8307,

modelcoordinatelocation => 0, -- 0 for center of the cell

APPENDIX D ■ STORING RASTER DATA IN ORACLE 735

8997chAppD.qxd 9/28/07 10:23 AM Page 735

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

xCoefficients => sdo_number_array(

30, 0, 410000.0), -- values for ESRI World File Coefficients ➥
A, B, and C

yCoefficients => sdo_number_array(

0, -30, 3759000.0) -- values for ESRI World File Coefficients ➥
D, E, and F

);

UPDATE branches SET georaster = g WHERE id = 1;

COMMIT; -- commit and release lock on the row

END;

/

In Oracle 10g, affine transformations as described previously were the only supported transfor-
mations supported for georeferencing. In Oracle 11g, a much more powerful, complex, and generic
functional-fitting transformation model is incorporated. You can use this model to specify transfor-
mations to a cell coordinate space (with row, col dimensions) from a two-dimensional (x,y) or
a three-dimensional (x,y,z) ground coordinate system. This model allows you to define the follow-
ing relationships to derive the row, col coordinates in cell coordinate space from the x,y,z ground
coordinates.

row = p(x,y,z) / q(x,y,z)

col = r(x,y,z) / s(x,y,z)

where p,q,r are polynomials on x,y,z of the form

This functional-fitting transformation model is quite generic: by setting the various parameters
(coefficients, powers) appropriately, it can support popular georeferencing transformations such as
affine transformations, direct linear transformations (DLT), and rational polynomial coefficients
(RPC). You can consult the Oracle Spatial GeoRaster Developer’s Guide for full details on this model.

Attaching Bitmap Masks
What if you want to mask a sensitive portion of an image from being displayed in visualization
applications? In GeoRaster, you can attach/detach such masks to the GeoRaster object: attaching
a mask will physically store the bitmap as part of the GeoRaster itself (as opposed to manipulating
the display in the renderer/visualizer application such as MapViewer). Given a GeoRaster object G
of M by N cells, you associate to it a bitmap GeoRaster object B of exactly M by N cells. The bitmap
object will be of just one band and will attach with each cell a value of 1 if you want to display the
corresponding cell from GeoRaster G or a value of 0 if the corresponding cell value from GeoRaster G
is not to be displayed. Once you define the bitmap GeoRaster B, you can attach it with GeoRaster G using
the PL/SQL procedure shown in Listing D-11.

Listing D-11. Attaching Bitmap GeoRaster B with GeoRaster G

BEGIN

SDO_GEOR.SETBITMAPMASK(

geoRaster => G, -- IN/OUT parameter: Input for which mask B is applied

layerNumber => 0, -- IN parameter: 0 means all layers,

-- >0 implies a specific layer

mask => B); -- IN parameter: bitmap GeoRaster

END;

/

APPENDIX D ■ STORING RASTER DATA IN ORACLE736

8997chAppD.qxd 9/28/07 10:23 AM Page 736

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Note that the example in Listing D-11 attaches the bitmap mask with all layers (bands) of the
GeoRaster by specifying the value of 0 for layerNumber in the SETBITMAPMASK procedure. However, if
you want to attach the bitmap GeoRaster with only a specific layer, say layer 2, then you specify that
value, 2, in the second, that is, the layerNumber parameter. In general, a bitmap mask is a special
1-bit-deep rectangular raster grid with each pixel having the value of 0 or 1. It is used to define an
irregularly shaped region inside another image.

After you create a GeoRaster object, you may want to inspect the bitmap masks attached to it.
You can use the GETBITMAPMASK function for this purpose. You can look up the details on this and
other bitmap-related procedures in the Oracle Spatial GeoRaster Developer’s Guide.

Registering NODATA Values
Let’s say you are modeling the vegetation for a region using appropriate values for the cells of
a GeoRaster object O. Let the number 1 to 100 denote different types of vegetation. What if you do
not have any data for certain cells? You can give those cells a special value, say 1000, and designate
this value as a NODATA value using the SDO_GEOR.ADDNODATA procedure. Note that the semantics of this
NODATA value are similar to that of the NULL in SQL (but the NODATA value can be application-defined,
and your applications can define multiple NODATA values). Listing D-12 shows the code to designate
a value of 1000 as a NODATA value in a GeoRaster object.

Listing D-12. Associating a NODATAValue of 1000 with GeoRaster G

BEGIN

SDO_GEOR.ADDNODATA(

geoRaster => G, -- IN/OUT parameter: Input GeoRaster

layerNumber => 0, -- IN parameter: 0 means all layers,

>0, -- implies a specific layer

nodata => 1000); -- IN parameter: value that is treated as a NODATA

END;

/

Note that the Listing D-12 associates the nodata value with all layers (bands) of the GeoRaster
by specifying the value of 0 for layerNumber in the previous procedure. However, if you want to asso-
ciate the nodata value with only a specific layer, say layer 2, then you specify that value, 2, in the second,
that is, the layerNumber parameter.

Instead of specifying a single value as a NODATA value, you can designate multiple ranges of val-
ues, say, 101–200, 301–330, as NODATA values. You can do this by specifying the third parameter in the
ADDNODATA procedure as a VARRAY of SDO_RANGE type (specifying a lower bound and an upper bound
for range; only lower bound is inclusive). Listing D-13 shows the corresponding PL/SQL code.

Listing D-13. Associating a Set of NODATAValue Ranges with GeoRaster G

BEGIN

SDO_GEOR.ADDNODATA(

geoRaster => G, -- IN/OUT parameter: Input GeoRaster

layerNumber => 0, -- IN parameter: 0 means all layers,

-- >0 implies a specific layer

nodata => SDO_RANGE_ARRAY(SDO_RANGE(101,200), SDO_RANGE(301,330)); END;

/

You can use the related getnodata and deletenodata procedures to retrieve and delete values
associated with a GeoRaster object.

APPENDIX D ■ STORING RASTER DATA IN ORACLE 737

8997chAppD.qxd 9/28/07 10:23 AM Page 737

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Using Compression in GeoRaster
As the number of GeoRaster objects and their sizes keep increasing, a useful feature that you want
to exploit is compression of the stored rasters. Oracle provides two types of native compression to
reduce storage space requirements for GeoRaster objects: JPEG (JPEG-B or JPEG-F) and DEFLATE.
With both types, each block is compressed individually as a distinct raster representation; when
a compressed GeoRaster object is decompressed, each block is decompressed individually.

There are no separate procedures for compressing and decompressing a GeoRaster object.
Instead, compression is implicitly performed when you specify the compression=<type> keyword in
the storage parameter of any of the following GeoRaster procedures: SDO_GEOR.changeFormatCopy,
SDO_GEOR.getRasterData, SDO_GEOR.getRasterSubset, SDO_GEOR.importFrom, SDO_GEOR.mosaic,
SDO_GEOR.scaleCopy, and SDO_GEOR.subset. Figure D-11 illustrates how these procedures use the
compression keyword. Regardless of whether the input is compressed, the procedures always return
the output in the user-specified compression format. Oracle allows you to specify one of the follow-
ing keywords for the compression parameter.

• JPEG-B: Applies JPEG-B compression

• JPEG-F: Applies JPEG-F compression

• DEFLATE: Uses DEFLATE compression

• NULL: Uses decompression

Notice that the NULL value is used to return decompressed object in the output (if the input
object is in a compressed format). If the compression parameter is not specified, then the output is
returned in the same format as the input.

Figure D-11. Using the compression parameter in a GeoRaster procedure

For instance, let’s say you want to store the imported image in Listing D-6 as a compressed
JPEG-B GeoRaster object. To accomplish this, you modify the code of Listing D-6 by specifying
compression=JPEG-B in the “storage” parameter of the importFrom procedure. Listing D-14 shows the
modified code. Oracle will then load the image into the GeoRaster format and compress each block
of the GeoRaster using JPEG-B compression. Later, when you retrieve a subset of the image using
getRasterSubset, you can specify the compression parameter to perform a different compression or
decompression (if compression=null).

Listing D-14. Specifying JPEG-B Compression When Populating the Georaster Column with a TIFF
Image

DECLARE

g SDO_GEORASTER;

BEGIN

-- Select the georaster column

SELECT georaster INTO g FROM branches WHERE id = 1 FOR UPDATE;

-- Import into the georaster object

SDO_GEOR.IMPORTFROM

Input
GeoRaster

or File

GeoRaster Procedure
<compression = type>

Output
GeoRaster (in

Specified
Compression)

APPENDIX D ■ STORING RASTER DATA IN ORACLE738

8997chAppD.qxd 9/28/07 10:23 AM Page 738

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

(

g,

'blocksize=(512,512), compression=JPEG-B',

-- Specify compression type of JPEG-B

'TIFF', 'file',

'/usr/rasters/r1.tif' -- specify the name and location of the image file

);

-- update the column

UPDATE branches SET georaster = g WHERE id = 1;

COMMIT; -- commit and release locks

END;

/

Visualizing Raster Data in Oracle MapViewer
Once you store raster data in Oracle, you can visualize the data using Oracle MapViewer version
10.1.21 (or the client-side GeoRasterViewer tool, which is not discussed in this appendix). To visual-
ize GeoRaster data, MapViewer uses the GeoRaster themes. Before you can use MapViewer with the
GeoRaster themes, you must perform the following actions with the GeoRaster data:

1. Georeference the GeoRaster data to establish a relationship between cell coordinates of the
GeoRaster data and the real-world ground coordinates (or some other local coordinates).
See Listing D-10 for an example.

2. Generate or define the spatial extent (footprint) associated with the raster data. You can do
this by using the GENERATESPATIALEXTENT function as shown in the SQL in Listing D-15.
(Observe that to refer to the spatialextent attribute of the georaster column of the branches
table, you need to specify an alias 'b' for the table.)

Listing D-15. Generating and Populating the Spatial Extent of the georaster Column

DECLARE

extent SDO_GEOMETRY;

BEGIN

SELECT SDO_GEOR.GENERATESPATIALEXTENT(a.georaster) INTO extent

FROM branches b WHERE b.id=1 FOR UPDATE;

UPDATE branches b SET b.georaster.spatialextent = extent WHERE b.id=1;

COMMIT;

END;

/

3. Insert a row into the USER_SDO_GEOM_METADATA view that specifies the name of the GeoRaster
table and the SPATIALEXTENT attribute of the GeoRaster column (that is, the column of type
SDO_GEORASTER). The SQL in Listing D-16 shows an example.

Listing D-16. Populating the Metadata for the Spatial Extent of the georaster Column

INSERT INTO USER_SDO_GEOM_METADATA VALUES

('branches',

'georaster.spatialextent',

SDO_DIM_ARRAY

APPENDIX D ■ STORING RASTER DATA IN ORACLE 739

1. This is not possible in MapViewer version 9.0.4.

8997chAppD.qxd 9/28/07 10:23 AM Page 739

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

(

SDO_DIM_ELEMENT('X', -180, 180, 0.5),

SDO_DIM_ELEMENT('Y', -90, 90, 5)

),

8307 -- SRID

);

4. Create a spatial index on the spatial extent of the GeoRaster table. The SQL in Listing D-17
shows an example.

Listing D-17. Creating an Index on the Spatial Extent of the georaster Column

CREATE INDEX geor_idx ON branches(georaster.spatialextent)

INDEXTYPE IS MDSYS.SPATIAL_INDEX;

5. Optionally, generate pyramid levels that represent the raster image or data at different sizes
and degrees of resolution. See Listing D-8 for an example.

To support the visualization of GeoRaster data, MapViewer defines a new type of theme called
the GEORASTER theme (see Listing D-18). This theme can have elements to specify the name of the
raster data table.

Listing D-18. Creating a Predefined Theme for the georaster Column in the branches Table

INSERT INTO user_sdo_themes VALUES

(

'BRANCHES_Images', -- Theme name

'Tiff Image', -- Description

'BRANCHES', -- Base table name

'GEORASTER', -- Column name storing georaster object in table

'<?xml version="1.0" standalone="yes"?>

<styling_rules theme_type="georaster" raster_table="BRANCHES_RDT"

raster_id="1" >

</styling_rules>' -- Theme style definition

);

You can use this predefined theme in the definition of a map. Alternatively, you can create
a dynamic theme using the JDBC_GEORASTER_QUERY element, as shown in Listing D-19.

Listing D-19. Creating a Dynamic Theme for GeoRaster Objects

<theme name="georaster_theme" >

<jdbc_georaster_query

georaster_table="branches"

georaster_column="georaster"

jdbc_srid="8307"

datasource="mvdemo"

asis="false"> SELECT georaster FROM branches WHERE id =1

</jdbc_georaster_query>

</theme>

COMMIT;

Once you incorporate either the predefined themes or the dynamic themes in a client request
for a map, you can view the raster data at different pyramid levels as you zoom in and out using
MapViewer. MapViewer automatically determines which pyramid level to use; you don’t have to do
anything special.

APPENDIX D ■ STORING RASTER DATA IN ORACLE740

8997chAppD.qxd 9/28/07 10:23 AM Page 740

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Summary
Oracle Spatial provides a data type and storage mechanism called SDO_GEORASTER for storing spatial
objects in a raster (image/grid) format. Oracle Spatial provides a number of adapters to import and
export data into this SDO_GEORASTER format from external image and raster formats. You can also uti-
lize third-party tools from companies such as PCI Geomatics and Safe Software for importing from
or exporting to tens of external raster formats. Once the object is in an SDO_GEORASTER column, you
can perform a variety of query and manipulation procedures such as subsetting, pyramid generation,
and bitmap masking. You can specify compression parameters to return the output of various
GeoRaster procedures in JPEG-B, JPEG-F, or DEFLATE compression formats. You can visualize the
raster data using Oracle MapViewer. In short, the Oracle GeoRaster component provides the efficient
storage, retrieval, query, and manipulation of a variety of raster data, including aerial photos, satel-
lite images, digital terrain/elevation models, and gridded data inside the Oracle database server.

APPENDIX D ■ STORING RASTER DATA IN ORACLE 741

8997chAppD.qxd 9/28/07 10:23 AM Page 741

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

8997chAppD.qxd 9/28/07 10:23 AM Page 742

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Three-Dimensional Modeling Using
Point Clouds and TINs in Oracle

Due to the recent advances in laser-scanning technologies, the acquisition of location and height
information using laser scanners and other such equipment has become quite popular. Many com-
panies utilize such laser-scanning techniques to create three-dimensional point datasets (the first
two dimensions, x,y, for location, and the third dimension, z, for height) in a variety of applications
including city modeling, bathymetry (ocean floor modeling), and three-dimensional object model-
ing. Since such point datasets are usually dense, they are referred to as point clouds. Figure E-1
shows the typical workflow for creating three-dimensional representations of objects using point
clouds in one such application:

1. The objects are first scanned using laser scanners, and a point cloud representation of the
object is created. This point cloud representation is a set of three-dimensional point values
with depth/height values for different x,y scan locations.

2. Using the points in the point cloud, a surface representation using triangles is generated.
Typically a specific type of triangulation, called Delaunay triangulation, is used. (You will
learn about it later in the chapter.)

3. The triangulated surface is further refined in successive steps to create a smooth three-
dimensional object representation in the appropriate format.

Figure E-1. Typical workflow in a three-dimensional modeling framework

Scan and Acquire
Point Cloud
(x,y,z values)

Surface Computation
Using Delaunay
Triangulation

Generalize
to Mesh Surface

Generalize
to NURBS

3DObject
Model

743

A P P E N D I X E

■ ■ ■

8997chAppE.qxd 9/28/07 10:24 AM Page 743

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

The first two steps of the workflow are employed not only in three-dimensional object model-
ing but also for obtaining representations of city landscapes. Oracle Spatial provides tools to aid in
the first two steps of such a modeling workflow. You can create, store, and query a large set of
points, or point clouds, using a new data type called SDO_PC (PC is short for point cloud). You can
also create a triangulated irregular network (TIN) for a given set of points and store the TIN per-
sistently (perform queries) in the database using the SDO_TIN data type. In this appendix, you will
learn about each of these data types in turn.

Storing Large Point Sets
In a three-dimensional modeling framework, the acquired three-dimensional datasets tend to be
relatively large, typically of the order of hundreds of thousands (or more) of points for each scan.
Storing such three-dimensional point data as a multipoint collection using the SDO_GEOMETRY type
may not be an ideal solution for two reasons: the number of ordinates in the SDO_GEOMETRY cannot
exceed the 1 million limit, and the entire set of points is stored as a single array, which means you
cannot search and access the point set piecemeal by area of interest. For such large point sets, you
can use a new data type in Oracle called SDO_PC.

The SDO_PC Data Type
Starting in Oracle Database 11g, you can use the SDO_PC type to model a point cloud object in Oracle
(we will use the terms point cloud and SDO_PC interchangeably from now on). Figure E-2 shows the
storage architecture for a point cloud using the SDO_PC type in Oracle. As shown in the figure, you
can have a table, say pc_tab, with a column of type SDO_PC. This column stores the metadata associ-
ated with the point cloud. The points of the point cloud are, however, divided into subsets and
stored as multiple rows (in the points BLOB column) of a separate table, say pc_blktab. We refer to
the table that stores the SDO_PC column as the base table and the table that stores the point cloud
blocks as the block table. Listing E-1 and Listing E-2 show the SQL for creating the base table named
pc_tab and a block table named pc_blktab. The block table is created using the columns in the table
MDSYS.SDO_PC_BLK_TABLE.

Figure E-2. Scalable storage framework for a point cloud in Oracle

Table Column:
SDO_PC

Points:
LOB

PC_BLK_EXTENT:
SDO_GEOMETRY

BlkidObjid

Block Table: TABLE of SDO_PC_BLK Type

pcblk_min_res,

Base Table

pcblk_max_res
...

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE744

8997chAppE.qxd 9/28/07 10:24 AM Page 744

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing E-1. Adding an SDO_PC Column to Store Point Cloud Data

SQL> CREATE TABLE pc_tab (pc SDO_PC);

Listing E-2. Creating pc_blktab As the Block Table for the Point Cloud Data

SQL> CREATE TABLE pc_blktab AS SELECT * FROM MDSYS.SDO_PC_BLK_TABLE;

Observe that you have to create the block table yourself as shown in Listing E-2. You can see
that we created a table pc_blktab to have the same fields as the table MDSYS.SDO_PC_BLK_TABLE. By
always creating the block table in this manner, you will not have to change your code even if Oracle
changes the attributes for the block table.

■Note You can create the block table directly by naming the columns and their types. But the block table should
at least have the same columns as the table MDSYS.SDO_PC_BLK_TABLE and can contain additional columns.

The advantages of this storage model for a point cloud (which includes storing the metadata of
the point cloud in the base table and storing the points as multiple blocks/rows in the block table)
include the following:

• No upper bound on the number of points in a point cloud object (because there is no limit
on the number of rows in a table).

• Efficient selection of a subset of the point cloud by specifying a query window or a block
(blk_id); the query accesses only relevant blocks for the specified query window or block.

• Efficient update of specific blocks of a point cloud (not in Oracle 11.1.0.6 but will be available
in subsequent releases of Oracle).

• Use of Oracle table partitioning features for the block table. You can create the block table as
an Oracle-partitioned table based on blk_id ranges. This will extend all the features of parti-
tioning such as manageability and parallel scans of partitions for point clouds.

• Use of secure LOB structure for the points column in the block tables. Since the creation and
management of the block table is in your hands, you can alter the points column to use
SecureFiles1 for LOB storage. This will extend the performance features of Oracle SecureFiles
to point clouds.

• Automatic cleanup of the block table when a point cloud object is deleted from the base table.

• Automatic cleanup of the block table when a base table is truncated.

Given this understanding of how a point cloud can be stored in an Oracle database using the
SDO_PC data type, you can now proceed to populate the base tables with point cloud objects. You can
look up all manipulation functions for a point cloud in the package SDO_PC_PKG.

Populating a Point Cloud
We’ll now illustrate how to populate an input set of points stored in a table or view, called INPTAB,
into a point cloud (SDO_PC column) in Oracle. First, Oracle stipulates INPTAB has the structure shown
in Listing E-3 (if it does not, you can create a view with those columns).

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE 745

1. Please refer to the Oracle Database SecureFiles and Large Objects Developer’s Guide to learn about this
feature.

8997chAppE.qxd 9/28/07 10:24 AM Page 745

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing E-3. Structure of the Table Storing Input Set of Points

SQL> DESC INPTAB;

Name Null? Type

--- -------- ----------------------------

RID VARCHAR2(40)

VAL_D1 NUMBER

VAL_D2 NUMBER

VAL_D3 NUMBER

The RID column in Listing E-3 is a unique identifier for a point. The VAL_D1, VAL_D2, and VAL_D3
represent the ordinates for a three-dimensional point. If the total number of dimensions is N, INPTAB
has to have columns of the form RID, VAL_D1, VAL_D2, . . . VAL_DN.

■Tip INPTAB does not have to be a physical table. It can be an external table interface where the data is stored
in a file. See the Oracle documentation for information about how to use external tables.

To populate a point cloud object in the pc_tab table, you need to perform the following opera-
tions. Listing E-5 later in the chapter shows the PL/SQL block for these operations.

1. Initialize a point cloud object using the SDO_PC_PKG.INIT function. Here you specify a variety
of parameters for the point cloud including the following:

• The name of the base table

• The column in which this SDO_PC object is being inserted

• The block table that stores the blocks of the SDO_PC object

• The maximum block capacity of each point cloud block

• The extent of the SDO_PC object specified as an SDO_GEOMETRY

• The tolerance associated with the SDO_PC object

• The total number of dimensions that are stored in the SDO_PC object

Note that the dimensionality of the extent specifies how many dimensions are to be used for
partitions (for example, if it is 2, that is, if the SDO_GTYPE in extent is 2003, then the first two
dimensions are used for partitioning the input point set). The total number of dimensions,
on the other hand, specifies the total number that is stored with each point. In other words,
this includes additional dimensions such as z values (or intensity values, and so on).

2. Insert the SDO_PC object in the pc_tab table.

3. Insert an input set of points from the INPTAB table into the initialized point cloud object
using the SDO_PC_PKG.CREATE_PC procedure. This procedure reads the points from the INPTAB
table, partitions them into subsets, and inserts each subset of points into a separate row in
the block table associated with the point cloud. You can optionally specify a third parameter
for a result table, RESTAB. If the result table is specified, Oracle populates it with the input set
of points, after augmenting each point with two additional attributes: ptn_id and point_id.
ptn_id refers to the block (blk_id) in whose points BLOB the point is stored. point_id is the
offset for the point in the points LOB. This means for INPTAB listed in Listing E-3, the result
table has to be created as shown in Listing E-4.

Listing E-4. Result Table for Three-Dimensional Point Data

SQL> CREATE TABLE restab (ptn_id NUMBER, point_id NUMBER,

rid VARCHAR2(24), val_d1 NUMBER, val_d2 NUMBER, val_d3 NUMBER);

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE746

8997chAppE.qxd 9/28/07 10:24 AM Page 746

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing E-5 shows the PL/SQL block for populating a point cloud using an input set of points.
This code performs all the operations mentioned earlier: initializing a point cloud object pc, insert-
ing into a table called pc_tab, and inserting an input point set from table inptab into the point cloud
object.

Listing E-5. Initializing, Inserting, and Populating a Point Cloud with an Input Set of Points

SQL> -- Initialize a PointCloud object and populate it using the points in INPTAB.

DECLARE

pc sdo_pc;

BEGIN

-- Initialize the point cloud object.

pc := SDO_PC_PKG.INIT(

'PC_TAB', -- Table that has the SDO_POINT_CLOUD column defined

'PC', -- Column name of the SDO_POINT_CLOUD object

'PC_BLKTAB', -- Table to store blocks of the point cloud

'blk_capacity=50', -- max # of points per block

SDO_GEOMETRY(2003, 8307, NULL,

-- Extent: 2 in 2003 in preceding line indicates that

-- ptn_dimensionality is 2. This means only the first 2 dimensions are

-- used in partitioning the input point set. The index on the block table

-- will also have a dimensionality of 2 in this case.

--

SDO_ELEM_INFO_ARRAY(1,1003,3),

SDO_ORDINATE_ARRAY(-180, -90, 180, 90)

),

0.5, -- Tolerance for point cloud

3, -- Total number of dimensions is 3; the third dimension is stored

-- but not used for partitioning

NULL -- This parameter is for enabling compression but always set to

-- NULL in Oracle 11gR1;

);

-- Insert the point cloud object into the "base" table.

INSERT INTO pctab (pc) VALUES (pc);

-- Create the blocks for the point cloud.

SDO_PC_PKG.CREATE_PC(

pc, -- Initialized PointCloud object

'INPTAB' -- Name of input table to ingest into the point cloud

'RESTAB' -- Name of output table that stores the points

-- (with addl. Columns ptn_id,pt_id));

END;

/

The code in Listing E-5 populates the blocks in the block table. You can verify that the number
of points in INPTAB matches the sum of the number of points in each block of the pc_blktab using
the SQL in Listings E-6 and E-7.

Listing E-6. Number of Points in INPTAB

SQL> SELECT count(*) FROM INPTAB;

Listing E-7. Verifying Number of Points in the Point Cloud (Associated Block Table)

SQL> SELECT sum(num_points) FROM pc_blktab;

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE 747

8997chAppE.qxd 9/28/07 10:24 AM Page 747

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

■Caution The sdo_pc_pkg.create_pc procedure is a DDL2 operation. If you want to roll back the operation of
inserting points into a point cloud object, you need to explicitly delete the point cloud object from the base table
(which will implicitly clean up the corresponding entries in the block table). When applicable, use truncate
instead of delete, because truncate will be faster.

Querying a Point Cloud
Once you have populated a point cloud, you can query it by specifying a query window using the
SDO_PC_PKG.CLIP_PC function. This function takes as input an SDO_PC object, an SDO_GEOMETRY as the
query window, and additional NULL parameters (see the documentation for details) to return a table
of MDSYS.SDO_PC_BLK_TABLE (that is, essentially a new block table), where the points completely inter-
sect the query window. You can store the returned rows as a table QRYRES, as shown in Listing E-8.

Listing E-8. Querying a Point Cloud Object

SQL> CREATE TABLE qryres AS SELECT * FROM MDSYS.SDO_PC_BLK_TABLE;

-- Query

DECLARE

inp sdo_pc;

BEGIN

SELECT pc INTO inp FROM pc_tab WHERE rownum=1;

INSERT INTO qryres

SELECT * FROM

TABLE(SDO_PC_PKG.CLIP_PC

(

inp, -- Input point cloud object

SDO_GEOMETRY(2003, 8307, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 3),

SDO_ORDINATE_ARRAY(-74.1, -73.9, 39.99999,40.00001)

), -- QUERY

NULL, NULL, NULL, NULL));

END;

/

Observe that the table QRYRES has the same columns as the table MDSYS.SDO_PC_BLK_TABLE. This
means the intersecting points are returned in the points BLOB column of the table. You have to
read the points into your application and unmarshal the BLOB to extract the point information
(the LOB format is published by Oracle). Alternately, you can convert the points in the BLOB to an
SDO_GEOMETRY object using the SDO_PC_PKG.TO_GEOMETRY function. This function takes as input the
input BLOB of points, the exact number of points in the BLOB, the total dimensionality of each point,
and an optional SRID to set in the result geometry. Listing E-9 shows an example.

Listing E-9. Get the Points in Each Block As a Multipoint Collection SDO_GEOMETRY

SQL> SELECT blk_id, SDO_PC_PKG.TO_GEOMETRY(

r.points, -- LOB containing the points

r.num_points, -- # of points in the LOB

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE748

2. DDL is short for Data Definition Language in database parlance. A DDL statement ends (commits) current
transaction (if any) in the session.

8997chAppE.qxd 9/28/07 10:24 AM Page 748

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

3, -- Total dimensionality of the points in the LOB

8307 -- SRID

) FROM qryres r;

What if you just wanted the IDs of the points returned in a query and stored in the RESQRY
table? You can simply use the SDO_PC_PKG.GET_PT_IDS function for this purpose. This function takes
an input points BLOB, the exact number of points in the LOB, and their total dimensionality. The
function returns an array of numbers where each pair of numbers indicates the <ptn_id, pt_id>
values for a point. Listing E-10 shows the SQL. You can take this information and join with the RESTAB
table to obtain all the attributes of all intersecting points for a given query window.

Listing E-10. Selecting the Point IDs in Each Block As an Array of <ptn_id, point_id> Pairs

SQL> SELECT SDO_PC_PKG.GET_PT_IDS(

r.points, -- LOB containing the points

r.num_points, -- # of points in the LOB

3 -- Total dimensionality of the points in the LOB

) FROM resqry r WHERE num_points >0;

Other Manipulation Functions for Point Clouds
If you intend to have your own way of dividing a point cloud into smaller pieces and storing those
pieces, you can still utilize the SDO_PC storage framework in Oracle. All you need to do is populate
the relevant columns such as blk_id, num_points, and blk_extent, as well as the points BLOB in the
block table. For this, you will have to contact Oracle for the published structure of the points BLOB.

Another common type of functionality associated with point clouds is the ability to generate
and query using coarser resolution of point clouds. Oracle does not provide any functionality for
generating a coarser resolution point cloud from a given point cloud. However, there are well-known
algorithms to do that. If you generate coarser resolution point clouds, you can store them in the same
block table as for the original point cloud. The pcblk_min_res and pcblk_max_res values for the coarser-
resolution point cloud have to be set to nonzero (0 is the default resolution for the original point cloud
blocks). Once you compute the coarser resolutions, you can still utilize Oracle’s CLIP_PC procedure to
perform a query not just on a query window but also a range on the resolution. The CLIP_PC takes as
its fourth and fifth arguments, qry_min_res (minimum resolution level) and qry_max_res (maximum
resolution level), to include in the query. Blocks that do not satisfy this resolution range are excluded
from the result of the CLIP_PC.

In Oracle Database 11g Release 1, Oracle does not provide additional functionality for updating
individual points or addition of new points to a point cloud. When adding or modifying existing points,
you will have to reconstruct the entire point cloud object by invoking the CREATE_PC procedure as in
Listing E-5. This functionality may be added to the SDO_PC_PKG package in later releases.

Storing Triangulated Irregular Networks
A triangulated irregular network (TIN) is a simple approximation of the surface formed from a set of
input points. Among the different methods for triangulation, the most popular is the Delaunay tri-
angulation. A Delaunay triangulation tries to ensure that within the scope, that is, the circumcircle,
of a triangle connecting three points there cannot be a fourth point from the input set. Consider the
points in Figure E-3 (a). Instead of connecting A, B, and C as a triangle, if A, B, and D were to form
a triangle, you could clearly observe that the circle circumscribing that triangle (called the circum-
circle) also includes the point C and hence is not a Delaunay triangulation. Figure E-3 (b) shows
a Delaunay triangulation for the given set of points.

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE 749

8997chAppE.qxd 9/28/07 10:24 AM Page 749

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Figure E-3. (a) Input set of points and (b) Delaunay TIN

The SDO_TIN Data Type
Starting Oracle 11g, you can use the various procedures in the SDO_TIN_PKG package to create and
query TINs3 in an Oracle database.4 The created TIN can be stored using the SDO_TIN type in Oracle
(we will use the terms TIN and SDO_TIN interchangeably from now on). Figure E-4 shows the stor-
age architecture for a TIN using the SDO_TIN type in Oracle. As shown in the figure, you can have
a table, say tin_tab, with a column of type SDO_TIN. This column stores the metadata associated
with the TIN. The points of the TIN are, however, divided into subsets and stored as multiple rows
(in the points BLOB column) of a separate table, say tin_blktab. We refer to the table that stores
the SDO_TIN column as the base table and the table that stores the TIN blocks as the block table.
Listing E-11 and Listing E-12 show the SQL for creating the base table named tin_tab and a block
table named tin_blktab. The block table is created using the columns in MDSYS.SDO_TIN_BLK_TABLE.
Observe that in addition to storing the points as a BLOB column, the blocks of a TIN (in the block
table) also store triangles information as a BLOB column.

Figure E-4. Scalable storage framework for a TIN in Oracle

Listing E-11. Adding an SDO_TIN Column to Store TIN Data

SQL> CREATE TABLE tin_tab (tin SDO_TIN);

Table Column:
SDO_TIN

Triangles:
LOBBlk_extent, Pts..Blkid

Block Table : TABLE of SDO_TIN_BLK

Tr_res
SDO_PC_BLK

Objid

Base Table

A

B

C

D

E

A

B

C

D

E

(a) (b)

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE750

3. The created TIN will be Delaunay if no constraints such as break lines or stop lines are specified.

4. The triangulation may not be Delaunay if additional constraints such as break lines, and so on, are specified
in the CREATE_TIN procedure. In Oracle 11g Release 1, these constraints are ignored.

8997chAppE.qxd 9/28/07 10:24 AM Page 750

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing E-12. Creating tin_blktab As the Block Table for the TIN Data

SQL> CREATE TABLE tin_blktab AS SELECT * FROM MDSYS.SDO_TIN_BLK_TABLE;

Observe that you have to create the block table yourself, as shown in Listing E-2. You can see
that we create a table tin_blktab to have the same fields as the table MDSYS.SDO_TIN_BLK_TABLE. By
always creating the block table in this manner, you will not have to change your code even if Oracle
changes the attributes for the block table.

■Note You can create the block table directly by naming the columns and their types. But the block table should
at least have the same columns as the table MDSYS.SDO_TIN_BLK_TABLE and can contain additional columns.

The advantages of this storage model for a TIN (which includes storing the metadata of the
TIN in the base table and storing the points as multiple blocks/rows in the block table) include
the following:

• No upper bound on the number of points and triangles in a TIN object (because there is no
limit on the number of rows in a table).

• Efficient selection of a subset of the TIN by specifying a query window or a block (blk_id).
The query accesses only relevant blocks for the specified query window or block.

• Efficient update of specific blocks of a TIN (not in Oracle 11.1.0.6 but will be available in sub-
sequent releases of Oracle).

• Use of Oracle table partitioning features for the block table. You can create the block table as
an Oracle-partitioned table based on blk_id ranges. This will extend all the features of parti-
tioning such as manageability and parallel scans of partitions for TINs.

• Use of secure LOB structure for the points column in the block tables. Since the creation and
management of the block table is in the your hands, you can alter the points column to use
SecureFiles for LOB storage.5 This will extend the performance features of Oracle SecureFiles
to TINs.

• Automatic cleanup of the block table when a TIN object is deleted from the base table.

• Automatic cleanup of the block table when a base table is truncated.

Given this understanding of how a TIN is created and stored inside an Oracle database using
the SDO_TIN data type, you can now proceed to populate the base tables with TIN objects. You can
look up all manipulation functions for a TIN in the package SDO_TIN_PKG.

Populating a TIN
We’ll now illustrate how to populate an input set of points stored in a table or view, called INPTAB,
into a TIN (SDO_TIN column) in Oracle. First, Oracle stipulates that INPTAB has the structure shown
in Listing E-13 (if it does not, you can create a view with those columns).

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE 751

5. Please refer to the Oracle Database SecureFiles and Large Objects Developer’s Guide to learn about this
feature.

8997chAppE.qxd 9/28/07 10:24 AM Page 751

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing E-13. Structure of the Table Storing Input Set of Points

SQL> DESC INPTAB;

Name Null? Type

--- -------- ----------------------------

RID VARCHAR2(40)

VAL_D1 NUMBER

VAL_D2 NUMBER

VAL_D3 NUMBER

The RID column is a unique identifier for a point. VAL_D1, VAL_D2, and VAL_D3 represent the ordi-
nates for a three-dimensional point. If the total number of dimensions is N, INPTAB has to have
columns of the form RID, VAL_D1,VAL_D2, . . . VAL_DN.

■Tip INPTAB does not have to be a physical table. It can be an external table interface where the data is stored
in a file. See the Oracle documentation for information on how to use external tables.

■Note In Oracle 11g Release 1, to create the TIN, you need to have distinct (val_d1,val_d2) pairs in the INPTAB.

To populate a TIN object in the tin_tab table, you need to perform the following operations.
Listing E-15 shows the PL/SQL block for these operations.

1. Initialize a TIN object using the SDO_TIN_PKG.INIT function. Here you specify a variety of
parameters for the TIN including the following:

• The name of the base table

• The column in which this SDO_TIN object is being inserted

• The block table that stores the blocks of the SDO_TIN object

• The maximum block capacity of each TIN block

• The extent of the SDO_TIN object specified as an SDO_GEOMETRY

• The tolerance associated with the SDO_TIN object

• The total number of dimensions that are stored in the SDO_TIN object

Note that the dimensionality of the extent specifies how many dimensions are to be used for
partitions (for example, if it is 2; that is, the SDO_GTYPE in extent is 2003, then the first two
dimensions are used for partitioning the input point set). The total number of dimensions,
on the other hand, specifies the total number that is stored with each point. In other words,
this includes additional dimensions such as z values (or intensity values, and so on).

2. Insert the SDO_TIN object in the tin_tab table.

3. Insert an input set of points from the INPTAB table into the initialized TIN object using the
SDO_TIN_PKG.CREATE_PC procedure. This procedure reads the points from the INPTAB table,
partitions them into subsets, and inserts each subset of points into a separate row in the
block table associated with the TIN. You can optionally specify a third parameter for a result
table, RESTAB. If the result table is specified, Oracle populates it with the input set of points
after augmenting each point with two additional attributes: ptn_id and point_id. The ptn_id
refers to the block (blk_id) in whose points BLOB the point is stored. The point_id is the
offset for the point in the points LOB. This means for the INPTAB listed in Listing E-13, the
result table has to be created as in Listing E-14.

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE752

8997chAppE.qxd 9/28/07 10:24 AM Page 752

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing E-14. Result Table for Three-Dimensional Point Data

SQL> CREATE TABLE restab (ptn_id NUMBER, point_id NUMBER,

rid VARCHAR2(24), val_d1 NUMBER, val_d2 NUMBER, val_d3 NUMBER);

Listing E-15 shows the PL/SQL block for populating a TIN using an input set of points. This
code performs all the operations mentioned earlier: initializing a TIN object tin, inserting it into
a table called tin_tab, and inserting an input point set from table inptab into the TIN object.

Listing E-15. Initializing, Inserting, and Populating a TIN with an Input Set of Points

SQL> -- Initialize a PointCloud object and populate it using the points in INPTAB.

DECLARE

tin SDO_TIN;

BEGIN

-- Initialize the TIN object.

tin := SDO_TIN_PKG.INIT(

'TIN_TAB', -- Table that has the SDO_TIN column defined

'TIN', -- Column name of the SDO_TIN object

'TIN_BLKTAB', -- Table to store blocks of the TIN

'blk_capacity=6000', -- max # of points per block

SDO_GEOMETRY(2003, 8307, NULL, -- Extent: 2 in 2003 indicates that

-- ptn_dimensionality is 2. This means only the first 2 dimensions are

-- used in partitioning the input point set. The index on the block table

-- will also have a dimensionality of 2 in this case.

--

SDO_ELEM_INFO_ARRAY(1,1003,3),

SDO_ORDINATE_ARRAY(-180, -90, 180, 90)

),

0.00000005, -- Tolerance for TIN

3, -- Total number of dimensions is 3; the third dimension is stored

-- but not used for partitioning

NULL -- This parameter is for enabling compression but always set to

-- NULL in Oracle 11gR1;

);

-- Insert the TIN object into the "base" table.

INSERT INTO tin_tab (tin) VALUES (tin);

-- Create the blocks for the TIN.

SDO_TIN_PKG.CREATE_TIN(

tin, -- Initialized TIN object

'INPTAB' -- Name of input table to ingest into the point cloud

'RESTAB' -- Name of output table that stores the points

-- (with addl. Columns ptn_id,pt_id));

END;

/

The code in Listing E-15 populates the blocks in the block table. You can verify that the number
of points in INPTAB match the sum of the number of points in each block in the tin_blktab using the
SQL shown in Listings E-16 and E-17.

Listing E-16. Number of Points in INPTAB

SQL> SELECT count(*) FROM INPTAB;

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE 753

8997chAppE.qxd 9/28/07 10:24 AM Page 753

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing E-17. Number of Points in Each Block of the Block Table

SQL> SELECT blk_id, num_points FROM tin_blktab;

■Caution The sdo_tin_pkg.create_tin procedure is a DDL operation. If you want to roll back the operation
of inserting points into a point cloud object, you need to explicitly delete the point cloud object from the base table
(which will implicitly clean up the corresponding entries in the block table). When applicable, use truncate instead
of delete, because truncate is faster.

Querying a TIN
Once you have populated a TIN, you can query it by specifying a query window using the SDO_TIN_
PKG.CLIP_TIN function. This function takes as input an SDO_TIN object, an SDO_GEOMETRY as a query
window, and additional NULL parameters (see the documentation for details) to return a table of
MDSYS.SDO_TIN_BLK_TABLE (that is, essentially a new block table), where the points completely inter-
sect the query window. You can store the returned rows as a table QRYRES, as shown in Listing E-18.

Listing E-18. Querying a TIN Object

SQL> CREATE TABLE qryres AS SELECT * FROM MDSYS.SDO_TIN_BLK_TABLE;

-- Query

DECLARE

inp SDO_TIN;

BEGIN

SELECT pc INTO inp FROM tin_tab WHERE rownum=1;

INSERT INTO qryres

SELECT * FROM

TABLE(SDO_TIN_PKG.CLIP_TIN

(

inp, -- Input TIN object

SDO_GEOMETRY(2003, 8307, NULL,

SDO_ELEM_INFO_ARRAY(1, 1003, 3),

SDO_ORDINATE_ARRAY(-74.1, -73.9, 39.99999,40.00001)

), -- QUERY

NULL, NULL));

END;

/

Observe that the table QRYRES has the same columns as the table MDSYS.SDO_TIN_BLK_TABLE.
This means the intersecting points and triangles are returned in the points BLOB and the triangles
BLOB columns of the table. You have to read the points and the triangles into your application and
unmarshall the BLOBs to extract the point and the triangle information (the LOB formats are published
by Oracle). Alternately, you can convert the points and triangles in the BLOBs to an SDO_GEOMETRY
object using the SDO_TIN_PKG.TO_GEOMETRY function. This function takes as input the input BLOB of
points, the exact number of points in the BLOB, the input BLOB of triangles, the number of triangles
in that BLOB, the index dimensionality (the dimensionality used for extent in the SDO_TIN_PKG.INIT),
the total dimensionality of each point, and an optional SRID to set in the result geometry. The func-
tion returns a collection of triangles as an SDO_GEOMETRY object. Listing E-19 shows an example.

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE754

8997chAppE.qxd 9/28/07 10:24 AM Page 754

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

Listing E-19. Get the Triangles in Each Block As a Collection SDO_GEOMETRY

SQL> SELECT blk_id, SDO_TIN_PKG.TO_GEOMETRY(

r.points, -- LOB containing the points

r.triangles, -- LOB containing the triangles

r.num_points, -- # of points in the LOB

r.num_triangles, -- # of triangles in the LOB

2, -- Index dimensionality: dim value in SDO_GTYPE

-- of extent in SDO_TIN_PKG.INIT

3, -- Total dimensionality of the points in the LOB

8307 -- SRID

) FROM qryres r;

What if you just wanted the IDs of the points returned in the query and stored in the RESQRY
table? Just as in the case of point clouds, you can simply use the SDO_PC_PKG.GET_PT_IDS function for
this purpose. This function returns an array of numbers where each pair of numbers indicates the
<ptn_id, pt_id> values for a point. You can take this information and join with the RESTAB table to
obtain all attributes of all intersecting points for a given query window.

Other Manipulation Functions for TINs
Instead of using the built-in CREATE_TIN procedure, you can create your own TIN and store it in the
base table and the block tables (that is, you can still utilize the SDO_TIN storage and query frame-
work in Oracle). All you need to do is populate the relevant columns such as blk_id, num_points,
blk_extent, and points and triangles BLOBs in the block table. For this, you will have to consult
the Oracle documentation for the published structures for the points and triangles BLOBs.

Another common type of functionality associated with TINs is the ability to generate and query
using coarser resolution of TINs. Oracle does not provide any functionality for generating a coarser reso-
lution TIN from a given TIN. However, there are well-known algorithms to do that. If you generate
coarser resolution TINs, you can store them in the same block table that is associated with the original
TIN. The tr_res value for the coarser-resolution TIN has to be set to nonzero (0 is the default resolu-
tion for the original TIN blocks). Once you compute the coarser resolutions, you can still utilize Oracle’s
CLIP_TIN procedure to perform a query not just on query window but also a range on the resolution.
The CLIP_TIN takes additional arguments, qry_min_res (minimum resolution level) and qry_max_res
(maximum resolution level), to include in the query. Blocks that do not satisfy this resolution range are
excluded from the result of the CLIP_TIN.

In Oracle 11g Release 1, Oracle does not provide additional functionality for updating individ-
ual points or adding new points to a TIN. When adding or modifying existing points, you will have
to reconstruct the entire TIN object by invoking the CREATE_TIN procedure as in Listing E-15. Likewise,
constraints such as break lines and stop lines are also not utilized in the constructed TIN. This func-
tionality may be added to the SDO_TIN_PKG package in later releases.

Summary
Oracle Spatial provides new data types for scalable storage of point clouds and triangulated irregular
networks. Each of these types is stored as multiple blocks in an associated block table. Oracle provides
default routines for populating the block table using an input set of points. However, these routines
can be overridden by user-defined point cloud partitioning or TIN creation routines.

Once the point cloud object or the TIN object is stored inside the Oracle storage framework,
you can utilize the query functionality using the CLIP_PC or CLIP_TIN functions. These functions retrieve
only relevant blocks for a query and hence provide a scalable platform for operating on these

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE 755

8997chAppE.qxd 9/28/07 10:24 AM Page 755

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

large objects. The queries can be combined with resolution parameters to support querying on
multiresolution point clouds and TINs. The results of the CLIP_PC/CLIP_TIN functions can then be
converted to SDO_GEOMETRY objects for display purposes in visualization tools such as MapViewer.
When combined with table partitioning, the scalability can further be enhanced with the automatic
use of parallel scanning on multiple partitions. In short, Oracle’s SDO_PC and SDO_TIN types provide
a scalable platform for storing large point sets and generating the first-level triangulated surfaces
required for a three-dimensional object-modeling or city-modeling applications.

APPENDIX E ■ THREE-DIMENSIONAL MODELING USING POINT CLOUDS AND TINS IN ORACLE756

8997chAppE.qxd 9/28/07 10:24 AM Page 756

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

A
A SDO_DIFFERENCE B value, 321
A SDO_INTERSECTION B value, 321
A SDO_UNION B value, 321
A SDO_XOR B value, 321
ABC line triplet, 87
ABC segment, 711
action argument, 550
ACTIVE CHAR(1) column, Node table, 352
ACTIVE column, Link table, 353
addCircleTool() method, 526
addDataSource() method, 547
addEventListener() method, 528
addJDBCTheme() method, 536, 538, 619
addJDBCTheme tag, 548–549
addLinearFeature() method, 543
addLink() method, 391
addMapCacheTheme() method, 546
ADDNODATA procedure, 737
addNode() method, 391
addPath() method, 374, 391
addPointFeature() method, 543, 618
addPolygonFeature() method, 543
addPredefinedTheme() method, 536
addPredefinedTheme tag, 548
addRectangleTool() method, 526
addRedlineTool() method, 526
address normalization, 152
addresses

correction of, 188–193
geocoding, 187–188
house numbers, 166, 170–171
input, parsing, 153–154
invalid, 171–174
searching for, 154
structured, 182–184

GEOCODE_ADDR function, 182–183
GEOCODE_ADDR_ALL function, 184

verification of, 188–193
<address_list> tag, 204
addr_lines parameter

GEOCODE function, 161
GEOCODE_ALL function, 176
GEOCODE_AS_GEOMETRY function,

159
addStyle() method, 540
addThemesFromBaseMap() method, 536
ADD_TOPO_GEOMETRY_LAYER function,

719
addWFSTheme() method, 539
addWMSMapTheme() method, 539

administration console, 449–452
editing configuration files, 449
maintaining data sources, 450
maintaining geometry caches, 451–452

administrative API, 568–573
definitions, 568–570

listing data sources, 568
listing maps, 569
listing styles, 570
listing themes, 569

MapViewer server, 570–573
caches, 572–573
data sources, 571–572
overview, 570
restarting, 573
security/access control, 570–571

overview, 568
advanced location analysis, 208
advanced parameters, 482–483
ADVANCED style, 463
advanced styles, 469–474, 483

combining, 474
versus multiple styling rules, 484
for statistical graphs, 473
for thematic mapping, 469–472

advertising, 6
affine transformation, 735
affineTransforms(...) method, 228
after_refresh event, 592, 598
after_refresh feature, on Theme-Based FOI, 529
aggregate functions, 306, 337–342

aggregate minimum bounding rectangle
(MBR) function, 337–338

SDO_AGGR_CENTROID, 342
SDO_AGGR_CONVEXHULL, 341–342
SDO_AGGR_UNION, 338–341

aggregate_column function, 692, 694
AGGREGATES_FOR_GEOMETRY function, 694–695
AGGREGATES_FOR_LAYER function, 695–696
aggregate_type function, 692, 694
AGGREGATE_VALUE object, 692
aggregation analyses, 306
Ajax, 505–506
Ajax-based JavaScript mapping client API, 442
Ajax JavaScript mapping library, 506
ALL catching level, 482
allow_comp_sub_elements parameter, 231
allPaths() method, 382
ALL_SDO_CACHED_MAPS view, 491
ALL_SDO_MAPS view, 486
ALL_SDO_STYLES view, 463

INDEX

757

8997chIDX.qxt 9/28/07 10:26 AM Page 757

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

ALL_SDO_THEMES view, 476
ALTER INDEX command, 675
ALTER INDEX REBUILD command, 122
ALTER_ INDEX REBUILD statement, 252
ALTER INDEX ... REBUILD statement, 294
ALTER INDEX REBUILD ONLINE command, 294
ALTER INDEX ... RENAME PARTITION

command, 677
ALTER INDEX statement, 294
ALTER statement, 186
ALTER TABLE command, 675
ALTER TABLE ... EXCHANGE PARTITION

command, 676
ALTER TABLE ... REBUILD UNUSBALE

INDEXES command, 675
analysis function, 371, 414
analysis, spatial, 689–699

clustering, 696–697
geometry simplification, 698–699
neighborhood, 694–696

AGGREGATES_FOR_GEOMETRY
function, 694–695

AGGREGATES_FOR_LAYER function, 695–696
refining candidates for site selection, 697
tiling-based, 689–693

TILED_AGGREGATES function, 691–693
TILED_BINS function, 689–691

analysis, three-dimensional. See three-
dimensional analysis

AnalysisInfo object, 386, 389
Ancillary SDO_NN_DISTANCE operator,

SDO_NN with, 264–267
antialiasing parameter, 553
ANYINTERACT interaction mask, 275
ANYINTERACT mask, 316, 318
anyInteract method, 318
ANYINTERACT operator, 272
ANYINTERACT relationship, 276
ANYINTERACT value, 315
anyInteract(J3D_Geometry A, double

tolerance) method, 229
app_data_with_loc.dmp file, 582
APPEND function, 146
application programming interfaces (APIs), 16, 440
application-specific data, 38–42

adding location to, 39–41
design considerations for, 42

Application-specific tables, 38
arc tolerance parameter, 308
arcs

boundaries (rings) connected by, 82
line strings connected by, 79–80

arc_tolerance=<value_number> parameter, 308
area functions, 326–330

accuracy of computations, 327
SDO_AREA, 327–328

AREA style, 463
area styles, 462–467
area(double tolerance) method, 229
attrnames attribute, 523

attrs attribute, 523
AUTH_NAME column, MDSYS.CS_SRS table, 66
AUTH_SRID column, MDSYS.CS_SRS table, 66
Auto Refresh box, 585
automatic geocoding, 193–196
automatic network definition, 355–357
AVG aggregate, 695
azimuthal projections, 65

B
B-tree index, 247
band dimension, 726
Band Interleaved by Line (BIL), 730
Band Interleaved by Pixel (BIP), 730
Band Sequential (BSQ), 730
bands, interleaving of in raster objects, 730–731
banking, 6
bar chart style, 473
base map, 507
basemap parameter, 553, 557, 575–576
batch geocoding, 204–205
batch routing, 432–434
bathymetry, 743
BBOX parameter, 576
before_refresh feature, on Theme-Based FOI,

529
before_zoom_level_change, on Map View, 528
BEGINDATA keyword, 118
bgcolor parameter, 553, 576
bgstyle parameter, <legend> element, 564
b.id=1 equality operator, 244
bidirected column, 368
BIDIRECTED column, Link table, 353
binary large object (BLOB), 124, 728
biochemical networks, 349
bitmap images, 465, 736
bitmap masks, 736–737
block tables, 744
blocking large raster objects, 729
blocks, 729
blocksize parameters, 731
boundaries, 272

connected by arcs, 82
connected by straight lines, 80–82
sharing between multiple features, 714

BOUNDARY_EDGE_ID field, FACE$ table, 717
bounding theme, 508
bounds, 678
bounds function, 692
<box> element, 555, 565, 590
branches table, 38, 193, 244, 610
Bucket advanced style, 470
buckets, 469
buffer(double bufferWidth) method, 228
buffering functions, 305, 307–310
bulk loading, 117
business data, geocoding, 186–196

address verification/correction, 188–193
automatic, 193–196
spatial columns, 186–187

■INDEX758

8997chIDX.qxt 9/28/07 10:26 AM Page 758

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

business names, 175–176
byte array, 225
ByteOrder.BIG_ENDIAN parameter, 233

C
cable networks, 349
cache_admin parameter, 200
cache_postcode parameter, 200
caches

clearing, 572–573
maintaining, 451–452

<cache_storage> element, 457
callServer() function, 599, 602
Cartesian system, 63
CDE arc triplet, 88
cell coordinate space, 736
cells, 725–726
Census blockgroups, 723
Census blocks, 723
Census counties, 723
Census tracts, 723
center and scale, 508
center and size, 508
<center> element, 554–555
center point, 157
central government, 6
centroid, 335, 342
CENTROID aggregate function, 342
CGMLToSDO Java class, 129
character large object (CLOB), 124
Check All button, 606
<checkbox> element, 614
checkedThemes[] variable, 614
circle polygons, 83–84
Circular arcs, 56
circumcircle, 749
city attribute, 42
city_buildings table, 327, 330, 333
city_data topology, 719, 721
CLASS BLOB,

USER_SDO_NETWORK_CONSTRAINTS
view, 406

CLASS_NAME,
USER_SDO_NETWORK_CONSTRAINTS
view, 406

Clear All button, 606
Clear link, 589
clear() method, 528
Clear Results link, 588
clip() method, 393
Clip operation, 701
CLIP_GEOM_SEGMENT function, 708
CLIP_GEOM_SEGMENT_3D function, 711
clipping segments, 707–708
clone() method, 228
closeDBF() method, 238
closeShapefile() method, 238
closestPoints method, 315
closestPoints(J3D_Geometry A, double

tolerance) method, 229

clustering analysis, 689, 696–697
CMPD_HORIZ_SRID parameter, 301
CMPD_VERT_SRID parameter, 301
col1 argument, 296
col2 argument, 296
colink, 347
collection bucket definition, 470
collection bucket style, 472
Collection style, 474
collections, 58, 91–95

creating, 94–95
heterogeneous, 94
multiline strings, 92–93
multipoint, 91–92
multipolygon, 94
three-dimensional, 112–114

Color Scheme advanced style, 470
COLOR style, 463, 526
color styles, 464
colsToSelect argument, 616
column_name argument, 133
COLUMN_NAME columns, 45
column_name field, 246
columns, spatial, 186–187
commit_interval argument, 133
communications, 6
competitors table, 38
complex geometries, 84
complex path, 348
composite solids, 57, 59

component validity, 140
connectedness, 140
shared-face but no-volume intersection, 140
three-dimensional, 110–112
validation of, 140–141

composite surfaces, 57, 59
contiguous area, 137
nonoverlapping but edge-sharing nature, 137
three-dimensional, 102–105
validation of, 137–138
validity of polygons, 137

compound elements, SDO_ELEM_INFO for,
86–87

compound geometries, 85
compound line strings, 84–85, 87–88
compound polygons, 57, 84–85, 88–89
compressing GeoRaster objects, 738–739
compression keyword, 738
compression=<type> keyword, 738
computeArc() method, 228
computeGeometry() method, 374, 393
concatenate() method, 393
concatenating, 711
configuration files, editing, 449
Configuration link, 449
configuring

Geocoding Server web service
database connection, 199
geocoding parameters, 199–200
logging, 198–199

■INDEX 759

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 759

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

MapViewer, 448–457
administration console, 449–452
parameters, 452–457

Routing Engine web service, 420–422
conic projections, 65
Connections drop-down list, 459
connectivity, verifying, 365–366
CONSTRAINT, USER_SDO_NETWORK_

CONSTRAINTS view, 406
constraints, 385–391, 405–411

parameterized, 408–411
REGISTER_CONSTRAINT mechanism, 407

CONTAINS interaction, 274
contains() method, 393
contiguous area, 57, 91
continuous value, 518
control variables, 469
converting spatial data, 124–129
CONVERT_TO_LRS_GEOM function, 705
CONVERT_TO_LRS_LAYER function, 705
convex, 333
coordinate system ID (SRID), 69
coordinate systems

choosing, 65–67
EPSG coordinate systems, 68–72

specifying preferred transformation path
between, 71–72

types of, 68–71
geodetic, 64
georeferenced local, 65
projected, 65

<coordinates> element, 554
coordinates, spatial, 154–156
correcting

addresses, 188–193
orientation of polygons with TO_CURRENT

function, 664
self-crossing polygons with SDO_UNION

function, 665–666
cost, 348, 382
COST* column, Path table, 353
cost_column column

Link table, 353
Node table, 352

COUNT() method, 213–214
Counties attribute, 43
country parameter

GEOCODE function, 161
GEOCODE_ALL function, 176
GEOCODE_AS_GEOMETRY function,

159
REVERSE_GEOCODE function, 185

count_shared_edges parameter, 329
COVEREDBY interaction, 274
COVEREDBY mask, 279
COVERS interaction, 274
Create Base Map option, 486
Create button, 414
Create Geometry Theme option, 476
CREATE INDEX parameter, 672

CREATE INDEX statement, 249, 252, 289,
291–293, 299, 667, 675, 677–678, 707

CREATE-INDEX statement, 294
Create Metadata icon, 459
CREATE SEQUENCE privilege, 120
CREATE TABLE privilege, 120
CREATE TABLE statement, 239
createCircle() creation method, 227
CREATE_FEATURE function, 722
createHTMLFOI() method, 524
createLinearLineString() creation method,

227
createLinearMultiLineString () creation

method, 227
createLinearPolygon() creation method, 227
createLink() method, 394
createLogicalNetwork() method, 394
CREATE_LOGICAL_NETWORK procedure,

355
createMarkerFOI() method, 524
createMultiPoint() creation method, 227
createNetworkTables() method, 394
createNode() method, 394
createNodeTable() method, 394
createPath() method, 394
createPoint() creation method, 227
CREATE_SDO_NETWORK() function, 403, 680
createSDONetwork() method, 394
createShape() method, 225
CREATE_TOPOLOGY procedure, 718
creation_date column, 674
CS_BOUNDS column, MDSYS.CS_SRS table, 66
CS_NAME column, MDSYS.CS_SRS table, 66
CSurfID form, 148
currentFOI variable, 594–595
current_month partition, 676
customer analysis, 243, 306
Customer Relationship Management

(CRM), 4
customer_grade attribute, 290
customers, 115
customers command-line argument, 122
Customers table, 5, 38, 120, 244, 668
customers.ctl file, 123
customers.dat file, 123
customers_sidx index, 122
customers.sql file, 123
cutoff_distance parameter, 434
Cytoscape, 349

D
data. See also spatial data

application-specific, 38–42
adding location to, 39–41
design considerations for, 42

geographic, 42–45
design considerations for, 43–45
obtaining, 42–43

Data Definition Language (DDL), 748
data layers, 11

■INDEX760

8997chIDX.qxt 9/28/07 10:26 AM Page 760

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

data models, topology, 713–724
advantages of, 715
creating topologies, 718
feature layers, 719–721
hierarchical feature model, 723–724
overview, 713–714
populating topologies, 719
querying for topological relationships, 723
sharing boundaries, 714
storing in Oracle Spatial, 715–718
updating topological elements, 721–722

data sources, 571–572
adding, 571
listing, 568–571
maintaining, 450
modifying, 572
removing, 572

data structures, 422–423, 498
data tables, 156, 157
database connections, Geocoding Server web

service, 199
databases, storing spatial data in, 11–14
datasource argument, 549
datasource parameter, 553, 556, 559, 575–576
dataSourceExists() method, 547
Datasources link, 450
DBFReaderJGeom class, 236, 238
DBMS_JAVA.GRANT_PERMISSION procedure,

732
DBMS_JAVA.SET_OUTPUT() procedure, 407
DBMS_OUTPUT package, 166
debugging

spatial data, 142–149
APPEND function, 146
EXTRACT function, 143–146
EXTRACT3D function, 147–148
GETNUMELEM function, 147
GETNUMVERTICES function, 147
GETVERTICES function, 147
REMOVE_DUPLICATE_VERTICES

function, 142
structures, 396–397

decomposition, recursive, 232
decorations, 515–516, 529, 545–546
DEF segment, 711
DEFAULT mode, 161, 162
defining

map caches, 491–502
creating, 493–502
data structures, 498
exporting definitions, 498
external data sources, 499–502
managing using MapViewer console,

491–493
purging contents, 498–499
refreshing contents, 498–499
USER_SDO_CACHED_MAPS view, 491

maps, 484–490
definitions, 489–490
managing using Map Builder, 486–489

Map Builder, 458–461
scale, 485
styles, 461–474
theme ordering, 484–485
themes, 474–484
USER_SDO_MAPS view, 486
zoom level, 485

networks
automatic, 355–357
manual, 357–359
multiple, 359–363

DEFLATE object, 738
degrees, 49
Delaunay triangulation, 743, 749
DELETE() method, 214
Delete Selected option, 415
deleteLink() method, 391
deleteMapLegend() method, 544
deletenodata procedure, 737
deleteNode() method, 391
deletePath() method, 391
deleteStyle() method, 540
deleteTheme() method, 535
deleting, in bulk, 672
densifyArcs() method, 228
depth, 382
DEREGISTER_CONSTRAINT() procedure,

407
DESCRIBE command, 398
DESCRIPTION, USER_SDO_NETWORK_

CONSTRAINTS view, 406
descriptor triplet, 75
DETERMINE value, 315
'DETERMINE' value, 316
deterministic function, 287, 670
DETERMINISTIC keyword, 216
device coordinates, 534
dictionary views, 45–49

DIMINFO attribute, 47–49
choosing tolerance values, 49
tolerance, 48–49

SRID attribute, 46–47
digits, storing, 666
Dim argument, 698
dimensions, storing, 666
diminfo argument, 133
DIMINFO attribute, 45–49, 134, 678
diminfo field, 246
direct linear transformations (DLT), 736
directed link, 347
directed networks, 368–369
directions, 702
DISJOINT relationship, 276
DISJOINT value, 315
disk_cache_path parameter, 454
displayFOIList() function, 593
displayInfoWindow() function, 594
displaying

lists of features, 592–594
maps, 511–513

■INDEX 761

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 761

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

displayMarkerSearchWindow() function, 601
displaySearchWindow() function, 594–595
dist value, 314
distance-based analysis, 301–303
distance function, 313
distance operations, 15
distance parameter, 308
distance_function_type parameter,

421
distance(J3D_Geometry A, double tolerance)

method, 229
distance_unit parameter, 431, 434
dist_spec function, 694
<div> section, 516, 589
DIVIDER CHAR(1) column, EDGE table,

423
DIVIDER column, 423
.dmp files, 43, 120–121
dnet_links table, 369
domain indexes, 281
doQuery() method, 542, 614, 619
doQueryInMapWindow() method, 542
Dot Density advanced style, 471
dot notation, 207
dragging, 516
drawing tools, handling events on, 529
driving_side parameter, 421, 426
DROP INDEX statement, 294, 682
DROP JAVA statement, 406
DROP_NETWORK procedure, 357, 363
dropping networks, 363
drop_topo_map procedure, 722
dynamic features, 507, 543, 561–563
dynamic JDBC themes, 522–523
dynamic segmentation operations,

707–712
3D geometries, 711
clipping segments, 707–708
concatenating, 711
intersecting LRS segments with standard

geometries, 710
locating points, 708–709
offsetting, 712
projecting points, 709–710
splitting, 712
validation of LRS segments, 710

dynamic SELECT statements, 456
dynamic themes, 507, 538–558, 560
DYNAMIC_STYLES parameter, 576

E
EAR file, 420
EDGE table, 422, 424, 427
EDGE$ table, 716
EDGE_ID field, 716
EdgeID form, 147
EDGE_ID NUMBER column, EDGE table, 422
EDGE_ID structure, 162
Edit button, 450
Edit Styling Rule dialog box, 480

editing
configuration files, 449
networks with Network Editor, 414–415

element triplets, 91
element-type, 75, 80, 89
Element-type descriptor triplet value, 75
element-type header triplet, 86
ElementArray array, 58
ElementExtractor class, 229–232

extracting single elements, 230
extraction levels, 231–232
iterating over elements, 230–231
recursive decomposition, 232

ElementExtractor object, 230
ElementExtractor.getElementByLabel()

method, 230
elements

creating, 459–460
with NetworkFactory class, 394
with PL/SQL API, 404

deleting, 404, 459–460
duplicating, 460
extracting, 230, 392
iterating over, 230–231
updating, 404, 459–460

ELEVATION parameter, 576
enableInfoTip() method, MVThemeBasedFOI

object, 521
enableInfoWindow() method,

MVThemeBasedFOI object, 521
enableInfoWindowForMouseOver() method,

MVThemeBasedFOI object, 521
enableThemes() method, 535, 614
end locations. See start/end locations
end node, 347
END_NODE_ID* column

Link table, 352
Path table, 353

END_NODE_ID column, EDGE table, 422
end_node_id columns, 366
END_NODE_ID field, EDGE$ table, 716
Enterprise Resource Planning (ERP), 4
entity-relationship (ER) diagram-based

modeling, 42
<entry> element, 564
Environmental Systems Research Institute

(ESRI), 115
EQUAL interaction, 274
equal range bucket definition, 470
equals() method, 228
ERRORMESSAGE attribute, 164–165
ERRORMESSAGE structure, 162
errors, 681–685

ORA-00904: .invalid identifier, 683
ORA-00939: too many arguments for

function, 683–684
ORA-13000: dimension number is out of

range, 682–683
ORA-13030: invalid dimensionality for

SDO_GEOMETRY, 684–685

■INDEX762

8997chIDX.qxt 9/28/07 10:26 AM Page 762

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

ORA-13203: failed to read
USER_SDO_GEOM_METADATA view,
681

ORA-13207: incorrect use of &openang, 682
ORA-13223: duplicate entry for <table_name,

column_name> in
SDO_GEOM_METADATA, 682

ORA-13226: interface not supported without
spatial index, 681

ORA-13249: multiple entries in
sdo_index_metadata table, 682

ORA-13249-ORA-02289: cannot drop
sequence, 682

ORA-13364: layer dimensionality does not
match geometry dimensions, 684–685

ORA-13365: layer SRID does not match
geometry SRID, 681–682

ESRI shapefiles, 235–240
European Petroleum Standards Group (EPSG)

coordinate systems, 68–72
specifying preferred transformation path

between, 71–72
types of, 68–71

European Petroleum Standards Group (EPSG)
data model, 46, 68

events, 528–529
EXACT match mode, 162, 174
EXCHANGE PARTITION clause, 675, 676
EXCLUDING INDEXES clause, 675
EXIT column, SIGN_POST table, 423
EXPDP utility, 121
EXPLAIN PLAN statement, 280
Export (EXP) utility, 121
exporting

map cache definitions, 498
map definitions, 490

extending
single elements, 230
VARRAYs, 214

EXTEND(k) method, 214
exterior, 272
external formats, loading spatial data from,

122–123
<external_map_source> element, 502
EXTRACT function, 143–146, 147
EXTRACT3D function, 147–148
extracting information from geometries in

PL/SQL, 217–219
extraction levels, 231–232
extractionLevel parameter, 231–232
EXTRUDE function, 129
extrusion() method, 229

F
FACE$ table, 716–717
FACE_ID field

FACE$ table, 717
NODE$ table, 716

FAILED partitions, 675
FAILED/UNUSABLE error, 675

'FALSE' value, 316
fastest routes, 359
feature layers

associating with topologies, 719
inserting, 720–721
populating, 720–721
updating, 720–721

Feature of Interest (FOI) server, 440, 442
feature styles, 477
FEATURE_COUNT parameter, 577
features of interest (FOIs), 519–523

accessing data, 523
adding, 523–524
dynamic JDBC themes, 522–523
handling events on, 529
highlighted themes, 522
overview, 519–522
templated themes, 522

file_prefix parameter, 453
fill colors setting, 464
finance, 6
finance networks, 349
findReachableNodes() method, 379
findReachingNodes() method, 379
FIRST() method, 213
firstElement parameter, 231
FOI server, 506
foiAfterRefreshEvent() function, 592
foiMouseClickEvent() function, 594
format parameter, 553–554, 576
FORMAT_GEO_ADDR procedure, 166, 170, 185
FR suffix, 157
FROM clause, 285, 297, 671, 679
FROM_EDGE_ID column, SIGN_POST table,

423
FROM_GML311GEOMETRY package, 127
FROM_GMLGEOMETRY package, 127
fromJGeometry() method, 232–233
fromuser and touser command-line argument,

120
fromuser argument, 120
FUNC_CLASS column, 422, 423
function-based spatial indexes, 244, 287–290
functions

debugging
APPEND function, 146
EXTRACT function, 143–146
EXTRACT3D function, 147–148
GETNUMELEM function, 147
GETNUMVERTICES function, 147
GETVERTICES function, 147
REMOVE_DUPLICATE_VERTICES

function, 142
spatial analysis, 689–699

clustering analysis, 696–697
neighborhood analysis, 694–696
tiling-based analysis, 689–693

validation, 132–133
fuzzy_leading_char_match parameter, 200
fuzzy_string_distance parameter, 200

■INDEX 763

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 763

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

G
GC_ prefix, 156
GC_AREA_xx table, 157
GC_COUNTRY_PROFILE table, 156, 197
GCDR_GEOMETRY function, 288–289
GC_INTERSECTION_xx table, 157
GC_PARSER_PROFILEAFS table, 154, 156, 159, 196
GC_PARSER_PROFILES table, 154, 157, 196
GC_POI_xx table, 157
GC_POSTAL_CODE_xx table, 157
GC_ROAD_SEGMENT_xx table, 157
GC_ROAD_xx table, 157
generateArea() method, 527
GENERATESPATIALEXTENT function, 739
<geocode> elements, 204
GEOCODE function, 161–176

examples, 166–176
business names, 175–176
EXACT match mode, 174
house numbers, 166–171
invalid addresses, 171–174

parameters, 161–162
addr_lines, 161
country, 161
match_mode, 162
username, 161

SDO_GEO_ADDR object, 162–166
ERRORMESSAGE attribute, 164–165
MATCHCODE attribute, 164
MATCHVECTOR attribute, 165–166

GEOCODE_ADDR function, 158, 182–183
GEOCODE_ADDR_ALL function, 158, 182, 184,

191
geocodeAddress() function, 598
geocodeAddressComplete() function, 599
GEOCODE_ALL function, 158, 161, 176–177,

182, 678
examples, 177–182
parameters, 176–177

GEOCODE_ALL procedure, 194
GEOCODE_AS_GEOMETRY function, 151, 163,

172, 176, 186–188, 678
examples, 160–161
parameters, 158–159
SDO_GEOMETRY object, 160

geocoder
architecture, 153–156

parsing input addresses, 153–154
searching for addresses, 154
spatial coordinates, 154–156

functions, 158–182
GEOCODE, 161–176
GEOCODE_ALL, 176–182
GEOCODE_AS_GEOMETRY, 158–161

overview, 151
purposes of, 151–153
reference data for, 156–157

geocodercfg.xml file, 198
geocoder_http_proxy_host parameter, 421
geocoder_http_proxy_port parameter, 421

geocoder_http_url parameter, 421
geocoder_match_mode parameter, 420
geocoder_schema_host parameter, 421
geocoder_schema_mode parameter, 421
geocoder_schema_password parameter, 421
geocoder_schema_port parameter, 421
geocoder_schema_sid parameter, 421
geocoder_schema_username parameter, 421
geocoder_type parameter, 420
geocoding, 5, 151

batch, 204–205
business data, 186–196

addresses, 187–188
automatic geocoding, 193–196
spatial columns, 186–187
verification/correction, 188–193

requests, 202–204
reverse, 184–186, 205–206
structured addresses, 182–184

Geocoding Server web service, 196–206, 418
architecture, 196–197
configuration, 198–200

database connection, 199
geocoding parameters, 199–200
logging, 198–199

installation, 198
XML queries/responses, 200–206

batch geocoding, 204–205
geocoding requests, 202–204
reverse geocoding, 205–206

geodetic coordinate systems, 46, 49, 64–65
geodetic geometries, 307
geodetic spatial reference system, 64
<geoFeature> element, 554, 561, 563
geographic data, 42–45

design considerations for, 43–45
obtaining, 42–43

Geographic Markup Language (GML), 124,
127–129, 232, 234–235

geographic start/end locations, 432
Geographic tables, 38
geographical data, 582
Geographical Information Systems (GIS), 4, 42
geographical path, 417
Geom argument, 698
geom column, 116
geom function, 694
geometric analyses, 333
geometric analysis functions, 306, 326–337

area functions, 326–330
accuracy of computations, 327
SDO_AREA, 327–328

length functions, 326–330
accuracy of computations, 327
SDO_LENGTH, 328–330

minimum bounding rectangle (MBR)
functions, 330–333

SDO_MAX_MBR_ORDINATE, 332–333
SDO_MBR, 331–332
SDO_MIN_MBR_ORDINATE, 332–333

■INDEX764

8997chIDX.qxt 9/28/07 10:26 AM Page 764

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_CENTROID, 335–336
SDO_CONVEXHULL, 333–335
SDO_POINTONSURFACE, 336–337
volume functions, 326–330

<geometricProperty> element, 554, 561, 563
geometries

3D, 711
intersecting LRS segments with standard, 710
in Java

inspecting, 225–226
modifying, 227
processing, 228

linear referenced
constructing, 706–707
metadata for, 707
SDO_GTYPE attribute, 705–706
spatial indexes, 707
spatial operators, 707

in PL/SQL
extracting information from, 217–219
modifying, 219–223

Geometry Caches link, 451
GEOMETRY column

EDGE table, 423
NODE table, 422

geometry combination functions, 306, 320–326
SDO_DIFFERENCE, 323–325
SDO_INTERSECTION, 321–322
SDO_UNION, 323
SDO_XOR, 325

GEOMETRY field, 716
geometry functions, 726
Geometry object, 326
Geometry models, 14
geometry parameter, 231, 308
geometry processing functions, 244, 305–343

aggregate functions, 337–342
aggregate minimum bounding rectangle

(MBR) function, 337–338
SDO_AGGR_CENTROID, 342
SDO_AGGR_CONVEXHULL, 341–342
SDO_AGGR_UNION, 338–341

buffering functions, 307–310
geometric analysis functions, 326–337

area functions, 326–330
length functions, 326–330
minimum bounding rectangle (MBR)

functions, 330–333
SDO_CENTROID, 335–336
SDO_CONVEXHULL, 333–335
SDO_POINTONSURFACE, 336–337
volume functions, 326–330

geometry combination functions, 320–326
SDO_DIFFERENCE, 323–325
SDO_INTERSECTION, 321–322
SDO_UNION, 323
SDO_XOR, 325

relationship analysis functions, 310–320
RELATE, 315–320
SDO_CLOSEST_POINTS, 313–315
SDO_DISTANCE, 310–313

geometry simplification, 698–699
geometry types, 133–141

collections of multiple elements, 141
composite solids, 140–141
composite surfaces, 137–138
line strings, 135
points, 134
polygons, 135–137
simple solids, 138–139

geometry1 argument, 311, 314
geometry2 argument, 311, 314
Geometry_A object, 321
Geometry_B object, 321
geometry_column column, 225
GeoRaster objects, compressing, 738–739
georeferenced local coordinate systems, 65
georeferencing, 736
GetCapabilities request, 573–575
GetFeatureInfo request, 576–578
getFOIData() method, 523
getGeneratedMapImage() parameter, 532
getGeneratedMapImageURL() parameter, 532
getGeometry() method, 238, 392, 393
getGeometryBytes(int nth) method, 238
getHeight() method, 527
getID() method

get methods on the Link object, 393
get methods on the Node object, 392

getInLinks() method, 392
getJavaPoint() method, 225
getJavaPoints() method, 225
getLabelPoint() method, 225
getLastPoint() method, 225
getLinkArray() method, 393
getLinkAt() method, 393
getLinkLevel() method, 393
GetMap request, 573, 575–576
getMapLegend() method, 544
getMapMBR() parameter, 532
getMapRequestString() parameter, 532
getMapResponseString() parameter, 532
getMapResponseThemeNames() parameter, 532
getMapScale() method, 552
getMapURL tag, 548, 550–551
getMaxMeasure() method, 238
getMaxX() method, 238
getMaxY() method, 238
getMaxZ() method, 238
getMBH() method, 229, 332
getMBR() method, 225
GET_MEASURE function, 709
getMinMeasure() method, 238
getMinX() method, 238
getMinY() method, 238
getMinZ() method, 238
getName() method, 392, 393
getNextCost() method, AnalysisInfo object, 386
getNextDepth() method, AnalysisInfo object, 386
getNextLink() method, AnalysisInfo object, 386
getNextNode() method, AnalysisInfo object,

386

■INDEX 765

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 765

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

getnodata procedure, 737
getNodeAt() method, 393
getNoOfLinks() method, 393
GETNUMELEM function, 147
getNumGeoFeatures() method, 543
get_num_points function, 217
getNumPoints() method, 225
GETNUMVERTICES function, 147
getObject() method, 224
getOrdinatesArray() method, 225, 227
getOutLinks() method, 392
getParam tag, 548
getPathLinkVec() method, 386
getPathNodeVec() method, 386
getPermanentStyles() method, 547
get_point() function, 220
getPoint() method, 225
getPredefinedThemes() method, 547
getRadius() method, 527
getRasterSubset procedure, 738
getRecord() method, 238
getRequestCenter() method, 552
getShpDims() method, 238
getShpFileType() method, 238
getSRID() method, 225
getStartNode() method

AnalysisInfo object, 386
get methods on the Link object, 393

getStatus() method, 527
getTargetLevel() method, 409
getThemeNames() method, 537
getThemePosition() method, 537
getTspNodeOrder() method, 377
getType() method, 225
getUserPoint() method, 618
GETVERTICES function, 147
getWidth() method, 527
GET_WKB method, 124
getXMLHttpRequest() function, 602
GIF_STREAM format, 552
GIF_URL format, 552
global index, 291
Global Positioning System (GPS), 3, 49
<global_map_config> element, 455, 456
<gml> tag, 125
<gml:coordinates> tag, 125
GML_GEOMETRY package, 127
Go to Mark button, 606
ground coordinates, 510, 736
groundheights argument, 130
GROUP BY clause, 342
gtype attribute, 523

H
hasCircularArcs() method, 226
hash mark (#), 119
hasThemes() method, 537
Header triplet, 87
height attribute, 523
height parameter, 553, 576

heterogeneous collections, 58, 91, 94
heterogeneous types, 96
HIERARCHY_LEVEL column, Node table,

352
highlighted themes, 522
highway_cost_multiplier parameter, 421
hit rate, 192
holes, 57
home pages, Java (JSP) application,

604
homogeneous collection, 58
homogenous types, 96
horizontal coordinate systems

(CMPD_HORIZ_SRID), 69
house numbers

street addresses with, 170–171
street addresses without, 166–170

HTML pages, 589–590
HTTP requests, 503

I
id argument, 549
id attribute, 523, 551
identification, 540–543
identify() method, 541, 614, 616, 619
identify operation, 510
identify tag, 548, 551
image coordinates, 510
 tag, 550
IMPDP utility, 121
Import/Export utilities, 120–121
Import (IMP) utility, 121
Import utility, 120
importBaseMap tag, 548
importFrom procedure, 738
importing map definitions, 490
INCLUDING INDEXES clause, 676
index-organized tables (IOTs), 668
indexed operators, 287
indexes, spatial, 707

concepts, 247–249
creating, 247
creating on network tables, 363–364
function-based, 287–290
inserting metadata, 246–247
online index rebuilds, 294–295
overview, 243–245
parallel indexing, 293–294
parameters, 249–253

LAYER_GTYPE, 251
SDO_DML_BATCH_SIZE, 251–252
SDO_INDX_DIMS, 251
SDO_LEVEL, 252–253
TABLESPACE, 250
USER_SDO_INDEX_METADATA view,

252
WORK_TABLESPACE, 250

partitioned, 290–293
rebuilding for each partition separately, 675
size requirements for, 252–253

■INDEX766

8997chIDX.qxt 9/28/07 10:26 AM Page 766

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

spatial joins, 295–298
three-dimensional analysis, 298–303

distance-based, 301–303
relationship, 300–301

using spatial functions when not available,
679–680

<index_name> statement, 281
INDEXTYPE is mdsys.spatial_index, 678
INDEXTYPE IS MDSYS.SPATIAL_INDEX clause,

245
INFO_FORMAT parameter, 576
information, spatial. See spatial data
information windows, 594–595
init() method, 527
init tag, 548, 549
INITIALIZE_METADATA procedure, 719
initializing

Java (JSP) application, 611–612
JavaScript application, 590–592
VARRAYs, 213

inner ring, 57
inner table, 285, 287
INNER_OUTER scan, 231
input addresses, parsing, 153–154
<input type="image"> tag, 550
INSERT statements, 39, 226–227, 239
insertFeatures method, 237
INSERT_GEOM_METADATA procedure, 363
inserting

feature layers, 720–721
performing in bulk, 672
spatial data into SDO_GEOMETRY column,

116–117
insertLink() method, 393
INSIDE interaction, 274
INSIDE mask, 279
INSIDE relationship, 277
INSIDE+COVEREDBY mask, 279
inspecting geometries in Java, 225–226
installing

example applications in MapViewer, 446–448
Geocoding Server web service, 198
PL/SQL API, 566–567
Routing Engine web service, 420–422

interactions in SDO_RELATE operator, 273–278
interior, 272
interpolation, 155
interpretation, 75
Interpretation descriptor triplet value, 75
interpretation header triplet, 86
intersection geometry, 322
interstates, 328
Interstates attribute, 43
invalid addresses, 171–174
<ip_monitor> element, 456
is() method, 225
isActive() method, 392, 393
isCircle() method, 226
isGeodeticMBR() method, 226
island nodes, 717

ISLAND_EDGE_LIST field, 717
ISLAND_NODE_LIST field, 717
isLRSGeometry() method, 226
isMultiPoint() method, 226
isochrones, 375
isOrientedPoint() method, 226
isPoint() method, 226
isReachable() method, 379
isRectangle() method, 226
isSatisfied() method, 386
iterating over elements, 230–231

J
J2EE archive (EAR) format, 443
J3D_Geometry class, 229, 307, 313, 315, 318,

326, 328, 330
janfeb partition, 677
Java, 503–505

SDO_GEOMETRY objects, 223–240
ElementExtractor class, 229–232
ESRI shapefiles, 235–240
J3D_Geometry class, 229
JGeometry class, 223
standard notations, 232–235

Java 2 Platform Standard Edition Software
Development Kit, 443

Java API, 370–395
constraints, 385–391
NetworkFactory class, 394–395
NetworkManager class, 370–383

discovering reachability, 379–380
finding all nodes within some distance,

375–376
finding nearest neighbors, 374–375
finding shortest path between two nodes,

371–374
loading networks, 371
MCST, 380–381
multiple path searches, 382–383
traveling salesperson problem,

377–379
updating networks, 371

structures, 391–393
Link class, 392–393
Network class, 391–392
Node class, 392–393
Path class, 393

SystemConstraint class, 384–385
Java archive (JAR), 370
java command, 399
Java (JSP) application, 603–622

adding data to maps, 606–614
creating home page, 604
identifying objects, 608, 616–618
initializing, 611–612
panning, 606–613
positioning on street addresses, 607–616
recentering, 606–613
searching for nearest neighbors, 610–622
searching “within distance”, 609–620

■INDEX 767

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 767

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

setting marks, 605–609, 618–619
starting, 603–604
zooming, 606, 612–613

java.awt.geom.Point2D object, 618
JavaScript, 505–506
JavaScript API, 510–552

creating overview maps, 516–517
decorations, 515–516, 545–546
discovering information, 547
displaying maps, 511–513
dynamic features, 543
events, 528–529
FOIs, 519–523

accessing data, 523
adding, 523–524
dynamic JDBC themes, 522–523
highlighted themes, 522
overview, 519–522
templated themes, 522

identification, 540–543
JSP tags, 547–552

combining with Java API, 552
getMapURL tag, 550–551
identify tag, 551
init tag, 549
run tag, 550
setting up maps, 549

legends, 543–545
map caches, 546
map requests, 530–533

creating MapViewer object, 530
extracting information from response,

532–533
sending to MapViewer server, 532
setting up, 531–532

panning, 514–515, 533–535
queries, 540–543
selectors

clearing shapes, 528
extracting captured shapes, 527
using shapes, 528

styles, 524–525, 540
themes, 535–539

dynamic, 538
WFS, 539
WMS, 539

tools
activating, 527
creating, 526

zooming, 514–518, 533–535
JavaScript application, 584–603

adding data to maps, 585
creating HTML pages, 589–590
creating information windows, 594–595
creating JavaScript code, 590
displaying list of features, 592–594
identifying application features, 586
initializing, 590–592
positioning on street addresses, 588–601
searching around street addresses, 601–602

searching “within radius”, 587–588, 595–598
starting, 584–585
XMLHTTPRequest mechanism,

602–603
JavaScript client library, 506
JavaScript source (JS) file, 511
JDBC_GEORASTER_QUERY element, 740
jdbc_host parameter, 455, 559
jdbc_mode parameter, 559
jdbc_password parameter, 455, 559
jdbc_port parameter, 455, 559
<jdbc_query> element, 558
jdbc_sid parameter, 455, 559
jdbc_srid parameter, 559
jdbc_user parameter, 455, 559
JGeometry class, 332

geometries
creating, 226–227
inspecting, 225–226
modifying, 227
processing, 228
reading/writing data, 223–225

JGeometry() constructor, 227
JGeometry object, 313
JGeometry.store() method, 226, 229
joins, spatial, 295–298
JPEG object, 738
JPEG_STREAM format, 552
JPEG_URL format, 552
JSP tags, 547–552

combining with Java API, 552
getMapURL tag, 550–551
identify tag, 551
init tag, 549
run tag, 550
setting up maps, 549

jview.jsp file, 693

L
label parameter, 561, 563
label_always_on parameter, 561
label_column parameter, 559
labeling, 462–463, 478
label_style parameter, 559
land_parcels feature layer, 719
land_parcels table, 720
language parameter, 421, 431
large-scale maps, 485
LAST() method, 213–214
latitude, 678
LATITUDE coordinate, 162
law enforcement, 6
layer control, 510
<layer> element, 575
Layer Function entry, 480
LAYER_GTYPE parameter, 251
LAYER_GTYPE=POINT parameter, 667
layerNumber parameter, 737
layers, 474
LAYERS parameter, 576

■INDEX768

8997chIDX.qxt 9/28/07 10:26 AM Page 768

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

layers, spatial, 246–247
LEFT_FACE_ID field, 716
<legend> element, 564
LEGEND_REQUEST parameter, 576
legends, 543–545, 563–564
length functions, 326–330

accuracy of computations, 327
SDO_LENGTH, 328–330

LENGTH NUMBER column, 422
length(int count_shared_edges, double

tolerance) method, 229
Level 0 = MULTICOMP_TOSIMPLE class,

231
Level 1 = INNER_OUTER class, 231
Level 2 = LOWER_LEVEL class, 231
life parameter, 454
LIMIT() method, 213
line constructors, 217
line events, 704
line function, 217
line geometry, 298
line strings, 56

compound, 87–88
connected by arcs, 79–80
connected by straight lines, 78–79
multi-, 92–93
three-dimensional, 98–99
validation of, 135

LINE style, 463, 526
line styles, 462–466
linear referenced segments, 702, 710
Linear Referencing System (LRS), 701–712

concepts, 702–705
applications, 703–704
directions, 702
linear referenced segments, 702
measure values, 702
offsets, 703
shape points, 702

dynamic segmentation operations,
707–712

3D geometries, 711
clipping segments, 707–708
concatenating, 711
intersecting LRS segments with standard

geometries, 710
locating points, 708–709
offsetting, 712
projecting points, 709–710
splitting, 712
validation of LRS segments, 710

linear referenced geometries, 705–707
constructing, 706–707
metadata for, 707
SDO_GTYPE attribute, 705–706
spatial indexes, 707
spatial operators, 707

overview, 701–702
linearizeArc() method, 228
linear_key function, 668–669

lines, 11
adding points to, 221–222
extracting points from, 218–219
removing points from, 219–221

Link class, 370, 392–393, 397
Link object, 372
link table, 351, 355–356
link tables, 351, 352–353
LINK_COST_COLUMN,

USER_SDO_NETWORK_METADATA
view, 354

LINK_DIRECTION,
USER_SDO_NETWORK_METADATA
view, 354

LINK_GEOM_COLUMN,
USER_SDO_NETWORK_METADATA
view, 354

LINK_ID* column, Link table, 352
LINK_ID column, Path Link table, 354
link_level column, 386, 389
LINK_LEVEL column, Link table, 353
LinkLevelConstraint class, 387, 408
LINK_NAME column, Link table, 353
LINK_TABLE_NAME, USER_SDO_

NETWORK_METADATA view, 354
LINK_TYPE column, Link table, 353
listAllDynamicStyles() method, 540
listing

data sources, 568–571
maps, 569
styles, 570
themes, 569

load() method, 224, 226
load_db_parser_profiles parameter, 200
loading

definitions for MapViewer, 583
ESRI shapefiles, 236–239
geographical data, 445–582
map cache definitions, 445
maps, 445
networks, 371
sample data, 444
spatial data, 117

from external formats, 122–123
from text files using SQL*Loader utility,

117–120
styles, 445
themes, 445

loadjava tool, 406, 567
loadMainMap() function, 590
LOAD_TOPO_MAP procedure, 721
Local coordinate systems, 46, 49, 69
local government, 6
local indexes, 291, 674
LOCAL keyword, 291, 674
local or nongeoreferenced, 65
local partitioned indexes

creating on partitioned tables,
291–292

querying using, 292–293

■INDEX 769

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 769

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

Locate operation, 701
locateFOI() function, 594
LOCATE_PT function, 709
locating points, 708–709
location

adding information to tables, 38–45
application-specific data, 38–42
geographic data, 42–45

adding to application-specific data, 39–41
location-based systems, 7
location column, 39, 193, 668
location-enabled application tables, 582
location-enabled applications

data, 445
use of maps in, 437–440

location-enabling, 37–51
adding location information to tables, 38–45

application-specific data, 38–42
geographic data, 42–45

metadata, 45–49
dictionary views, 45–49
populating, 49–51

location-enabling application data, 582
location mark, 609
location parameter, REVERSE_GEOCODE

function, 185
locations, 704
log_filename parameter, 421
<logging> element, 198, 452–453, 457
logging with Geocoding Server web service,

198–199
logical implementation of SDO_GEOMETRY,

58–59
logical network, 347
logical path, 417
log_level attribute, 199, 453
log_level parameter, 421
logo parameter, 456
<log_output> elements, 453
log_thread_name attribute, 198, 453
log_thread_name parameter, 421
log_time attribute, 199, 453
log_time parameter, 421
long_ids parameter, 421
longitude, 678
LONGITUDE coordinate, 162
lower-left corner vertex, 82
LOWER_LEVEL scan, 231
LRS_GEOM_COLUMN,

USER_SDO_NETWORK_METADATA
view, 355

LRS_TABLE_NAME,
USER_SDO_NETWORK_METADATA
view, 355

M
make_equal parameter, 426
makeLegend tag, 548
Manage Map Caches link, 491
manual network definition, 357–359

many-to-one relationship, 59
Map Builder

defining maps, 458–461
managing maps, 486–489
styles, 463–467

area styles, 467
color styles, 464
line styles, 466
marker styles, 465–466

themes, 476–484
advanced parameters, 482–483
advanced styles, 483–484
feature styles, 477
labeling, 478
multiple styling rules, 481
query conditions, 478
templated, 481
using complex SQL, 481–482

Map Builder tool, 440
Map Cache server, 442, 506
map caches, 546

defining, 491–502
creating, 493–502
data structures, 498
exporting definitions, 498
external data sources, 499–502
managing using MapViewer console,

491–493
purging contents, 498–499
refreshing contents, 498–499
USER_SDO_CACHED_MAPS view, 491

map definitions, 440, 582
map metadata, 681
map-rendering engine, 440, 505
map requests

format/size, 508
geographical area covered, 508
JavaScript API, 530–533

creating MapViewer object, 530
extracting information from response,

532–533
sending to MapViewer server, 532
setting up, 531–532

what should appear, 507–508
XML API, 553–555

map styles, 582
map_admin_role security role, 571
<map_cache_server> element, 456–457
<map_data_source> element, 454–455
<map_image> element, 566
MAP_MAJOR_ROADS table, 481
<MapperConfig> element, 583
<map_request> element, 553
<map_response> element, 566
maps, 457. See also map requests

defining, 484–490
definitions, 489–490
managing using Map Builder, 486–489
Map Builder, 458–461
scale, 485

■INDEX770

8997chIDX.qxt 9/28/07 10:26 AM Page 770

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

styles, 461–474
theme ordering, 484–485
themes, 474–484
USER_SDO_MAPS view, 486
zoom level, 485

interacting with, 509–510
loading, 445
use in location-enabled applications, 437–440

mapview.display() method, 513
MapViewer, 437–502, 503

APIs, 503–507
Ajax, 505–506
Java, 503–505
JavaScript, 505–506
JSPs, 503–505
PL/SQL, 503–505
selecting, 506–507
XML, 503–505

configuring, 448–457
administration console, 449–452
parameters, 452–457

defining data sources, 446
defining map caches, 491–502

cache data structures, 498
creating, 493–502
exporting definitions, 498
external data sources, 499–502
managing using MapViewer console,

491–493
purging and refreshing contents, 498–499
USER_SDO_CACHED_MAPS view, 491

defining maps, 484–490
Map Builder, 458–461
styles, 461–474
themes, 474–484

installing example applications, 446–448
loading, 444–445
location-enabling application data, 445
managing map caches using, 491–493
maps use in location-enabled applications,

437–440
Oracle Maps, 442–443
overview, 440–443
styles, 461–474

advanced, 469–474
area, 462
labeling, 462–463
line, 462
point, 462
text, 462–463, 468
USER_SDO_STYLES view, 463

visualizing raster data in, 739–740
Mapviewer class, 567
MapViewer object, 530, 552, 611
MapViewer server, 570–573

caches, 572–573
data sources, 571–572
overview, 570
restarting, 573
security/access control, 570–571

MAPVIEWER_NATIVE mode, 487
mapviewr/demo directory, 693
mapview.setHomeMap, 515
Mark option, 609
MARKER style, 463
marker styles, 465–466
markerStyle argument, 618
marks, 605–609, 618–619
marquee zoom, 509, 517
mask argument, 315
mask value, 316
masks

bitmap, 736–737
multiple, in SDO_RELATE operator, 278–279

<match> elements, 204
MATCHCODE attribute, 164, 165
match_code column, 193
MATCHCODE structure, 162
matching mode parameter, 154
MATCH_MODE parameter, 161
match_mode parameter

GEOCODE function, 162
GEOCODE_ALL function, 177

MATCHVECTOR attribute, 165–166
MATCHVECTOR string, 165, 169, 172
max-corner, 100
Max Scale value, 488
max_cache_size parameter, 454
max_clusters argument, 696
max_connections parameter, 455
MaxCost class, 384
MaxDepth class, 384
max_disk_cache_size parameter, 454
MaxDistance class, 384
maximum search depth, 380
MaxMBR class, 384
max_resolution = parameter, 260
max_resolution parameter, 260
max_scale parameter, 509
max_speed_limit parameter, 421
max_v_no parameter, 426
MBR_GEOMETRY field, FACE$ table, 717
mcst() method, 381
mcstLinkArray() method, 381
MD.HHENCODE function, 669
MDOT prefix, 294
MDRT prefix, 248–249, 294
MDRT tables, 680
MDRT_<>$ tables, 680
MDSYS schema, 672, 732
MDSYS.CS_SRS table, 46, 66–67
MDSYS.SDO_DATUMS table, 64
MDSYS.SDO_DIST_UNITS table, 314
MDSYS.SDO_ELLIPSOIDS table, 64
MDSYS.SDO_PROJECTIONS table, 65
measure values, 702
media, 6
memory objects, 399–400
merging partitions, 677
metabolic pathways, 349

■INDEX 771

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 771

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

metadata, 45–49
caches, clearing, 572–573
dictionary views, 45–49

DIMINFO attribute, 47–49
SRID attribute, 46–47

inserting for spatial layers prior to indexing,
246–247

populating, 49–51
in SDO_GEORASTER data type, 731

METADATA attribute, 728
meters, 49
migrating from prior versions of Oracle Spatial,

122
min-corner, 100
Min Scale value, 488
minimum bounding rectangle (MBR) functions,

330–333
aggregate, 337–338
SDO_MAX_MBR_ORDINATE, 332–333
SDO_MBR, 331–332
SDO_MIN_MBR_ORDINATE, 332–333

minimum bounding volume (MBV), 300
minimum cost path, 348
minimum cost spanning trees (MCST), 348,

380–381
min_resolution = <a> parameter, 260
min_resolution parameter, 260
min_scale parameter, 509
modifying

data sources, 572
geometries in Java, 227
geometries in PL/SQL, 219–223

adding points to lines, 221–222
removing points from lines, 219–221

rows, 672
Montgomery, 196
mouse_click event, 528–529, 594, 598
mouse_double_click, 528
mouse_out feature, 529
mouse_over feature, 529
mouse_right_click feature, 528, 529
moveThemeDown() method, 536
moveThemeUp() method, 536
MULTICOMP_TOSIMPLE scan, 231
MultiID form, 148
multiline strings, 92–93
multiple masks, in SDO_RELATE operator,

278–279
multiple path searches, 382–383
multiple styling rules, 481, 484
multipoint collections, 91–92
multipolygon collections, 94
MUNICIPALITY administrative area, 157
MustAvoidLinks class, 384
MustAvoidNodes class, 384
MVBarChartStyle object, 525
MVBucketStyle object, 524
MVCircleTool class, 525
mvclient.jar file, 530, 567
MVFOI object, 523

MVMapView object, 513, 518, 590
MVPieChartStyle object, 525
MVRectangleTool class, 525
MVRedlineTool class, 525
MVSdoGeometry object, 522
MVStyleColor object, 525
MVStyleMarker object, 525
MVThemeBasedFOI constructor, 519
MVThemeBasedFOI object, 520, 521, 523
MVTHEMES parameter, 576
MVXMLStyle object, 525
myNet network, 396

N
name attribute, 523
name parameter, 455
NAME VARCHAR(128) column, 423
named notation, 355
nearest-neighbor, 15
nearestNeighbors() method, 374
neighborhood analysis, 689, 694–696

AGGREGATES_FOR_GEOMETRY function,
694–695

AGGREGATES_FOR_LAYER function,
695–696

nested loop, 295
net_pipes view, 361
NET_ROUTE_SF view, 424
NET_SF network, 415
network, 347
Network class, 370, 391–392, 397

extracting network elements, 392
finding information about network,

392
maintaining network, 391–392

network constraints, 348, 383
network data, analysis of, 8
Network Data Model, 417, 424
network distances, 346
Network Editor, 412–416

example data, 415–416
network analysis, 414
network editing, 414–415
starting, 412–413

network metadata, 680
network modeling, 345–416

concepts, 347–350
biochemical networks, 349
finance networks, 349
Oracle network data model, 349–350
overview, 347–348
project networks, 349
road networks, 348
train networks, 348–349
utility networks, 349

creating spatial indexes on tables, 363–364
defining, 355–369

automatic, 355–357
manual, 357–359
multiple, 359–363

■INDEX772

8997chIDX.qxt 9/28/07 10:26 AM Page 772

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

dropping, 363
examples, 366–369

DNET, 368–369
UNET, 366–367

getting information about, 364–365
Java API, 370–395

constraints, 385–391
NetworkFactory class, 394–395
NetworkManager class, 370–383
structures, 391–393
SystemConstraint class, 384–385

Network Editor, 412–416
analysis, 414
editing, 414–415
example data, 415–416
starting, 412–413

PL/SQL API, 397–411
analyzing networks, 400–403
constraints, 405–411
creating networks, 403–404
elements, 404
memory objects, 399–400
overview, 397–398

structures, debugging, 396–397
tables, 351–355

link, 352–353
node, 352
path, 353
path link, 354
USER_SDO_NETWORK_METADATA view,

354–355
verifying connectivity, 365–366

Network object, 371, 381, 391
network/routing analysis, 37, 50–51
NETWORK,

USER_SDO_NETWORK_METADATA
view, 354

NETWORK_CATEGORY,
USER_SDO_NETWORK_METADATA
view, 354

NetworkConstraint class, 410
NetworkFactory class, 370, 394–395, 397
NETWORK_ID,

USER_SDO_NETWORK_METADATA
view, 354

NetworkManager class, 370–383, 391, 393, 397,
414

discovering reachability, 379–380
finding all nodes within some distance,

375–376
finding nearest neighbors, 374–375
finding shortest path between two nodes,

371–374
loading networks, 371
MCST, 380–381
multiple path searches, 382–383
traveling salesperson problem, 377–379
updating networks, 371

NetworkManager.writeNetwork() method, 374
networks, 348–349

biochemical, 349
creating with NetworkFactory class, 394
creating with PL/SQL API, 403–404
defining

automatic, 355–357
manual, 357–359
multiple, 359–363

dropping, 363
finance, 349
finding information with Network class,

392
loading, 371
maintaining with Network class, 391–392
project, 349
road, 348
train, 348–349
updating, 371
utility, 349

NetworkTraceConstraint class, 389, 406, 408
NETWORK_TYPE,

USER_SDO_NETWORK_METADATA
view, 354

new_shape_point event, 529
nextElement() method, 230, 232
NEXT_LEFT_EDGE_ID field, 716
NEXT(n) method, 214
NEXT_RIGHT_EDGE_ID field, 716
No Spatial Filter check box, 480
noconnect option, 459
NODATA values, 737
Node class, 370, 392–393, 397
node table, 351, 355–356, 422, 424, 427
NODE$ table, 716
node tables, 351, 352
NODE_COST_COLUMN,

USER_SDO_NETWORK_METADATA
view, 354

NODE_GEOM_COLUMN,
USER_SDO_NETWORK_METADATA
view, 354

NODE_ID* column, Node table, 352
NODE_ID column, NODE table, 422
NODE_ID field, NODE$ table, 716
node_id view, 361
nodeIds parameter, 379
NODE_NAME column, Node table, 352
nodes

finding all paths between two, 382–383
finding all shortest paths from, 383
finding all within some distance, 375–376
finding shortest path between two, 371–374,

400–402
NODE_TABLE_NAME, USER_SDO_NETWORK_

METADATA view, 354
NODE_TYPE column, Node table, 352
NONE catching level, 482
nonpoint data, loading, 119–120
nonpoint geometries, 668
NO_OF_HIERARCHY_LEVELS, USER_SDO_

NETWORK_METADATA view, 354

■INDEX 773

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 773

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

NO_OF_PARTITIONS, USER_SDO_NETWORK_
METADATA view, 354

NORMAL catching level, 482
normalization, 42
note parameter, 456
NULL geometry, 160
NULL object, 218
NULL value, 362, 738
NULL values, for SDO_GEOMETRY object, 678
number of mappers request, 572
number_of_mappers parameter, 455
numeric tag, 265
numFields() method, 238
NUM_INCOMING_BOUNDARY_EDGES

column, 427
NUM_NODES column, 427
NUM_NON_BOUNDARY_EDGES column, 427
NUM_OUTGOING_BOUNDARY_EDGES

column, 427
numRecords() method, 238

O
odd vertex, 80
Offset descriptor triplet value, 75
offset header triplet, 86
offsetting, 703, 712
ojdbc14.jar file, 412
ON interaction, 274
on_drag, 529
one_time value, 518
on_finish, 529
online index rebuilds, 294–295
ONLINE keyword, 295
onload action, 513
on_start, 529
opacity, 464
Open Geospatial Consortium (OGC), 14, 59–60,

232, 503
operators, spatial, 707

evaluation of, 255–256
with other predicates on same table, 282–287
overview, 243–244
SDO_FILTER, 269–272
SDO_NN, 261–267

with Ancillary SDO_NN_DISTANCE
operator, 264–267

SDO_BATCH_SIZE tuning parameter,
263–264

SDO_NUM_RES tuning parameter, 264
SDO_RELATE, 272–280

interactions in, 273–278
multiple masks in, 278–279
tuning parameter, 279–280

SDO_WITHIN_DISTANCE, 256–261
semantics of, 254–255
syntax of, 253–254

ORA-00904: . . . Invalid Identifier (error
message), 683

ORA-00939: too many arguments for function
(error message), 683–684

ORA-13000: dimension number is out of range
(error message), 682–683

ORA-13030: invalid dimensionality for
SDO_GEOMETRY (error message),
684–685

ORA-13203: failed to read
USER_SDO_GEOM_METADATA view
(error message), 681

ORA-13207: Incorrect Use of the <operator-
name> Operator (error message), 682

ORA-13223: duplicate entry for <table_name,
column_name> in SDO_GEOM_
METADATA (error message), 682

ORA-13226: interface not supported without
spatial index (error message), 681

ORA-13249: multiple entries in
sdo_index_metadata table (error
message), 682

ORA-13249-ORA-02289: cannot drop
sequence(error message), 682

ORA-13364: layer dimensionality does not
match geometry dimensions (error
message), 684–685

ORA-13365: layer SRID does not match
geometry SRID (error message),
681–682

Oracle Containers for Java (OC4J) software, 583
Oracle databases, transporting spatial data

between, 120–122
Import/Export utilities, 120–121
migrating from prior versions of Oracle

Spatial, 122
transportable tablespaces, 121–122

Oracle Import/Export (.dmp) files, 115
Oracle Import tool, 424, 445
Oracle Maps, 442–443
Oracle Maps JavaScript API, 510
Oracle MapViewer, 726
Oracle network data model, 349–350, 360
Oracle Spatial

advantages of using, 15–18
migrating from prior versions, 122

Oracle Spatial GeoRaster documentation,
731

$ORACLE_HOME/md/doc/sdoapi.zip package,
223

oracle.lbs.mapclient.MapViewer class, 530
oraclemaps.js file, 590
oracle.spatial.network package, 370
oracle.spatial.util package, 223, 235–236
oracle.sql.STRUCT object, 224
ORDERED hint, 285
outer ring, 57
outer table, 287
ovcontainer.getContainerDiv() argument,

516
OVERLAPBDYDISJOINT function, 278
OVERLAPBDYINTERSECT function, 278
OVERLAPBDYINTERSECT relationship, 277
overview maps, 516–517

■INDEX774

8997chIDX.qxt 9/28/07 10:26 AM Page 774

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

P
Pan buttons, 606
pan() method, 534, 613
panning, 509–515, 533–535, 606, 612–613
PARALLEL clause, 677
parallel degree, 293
parallel indexing, 244, 293–294
parallel queries, 677
parallel_degree parameter, 293
parameter tables, 156–157
parameterized constraints, 408–411
parameters

advanced, 482–483
function

GEOCODE function, 161–162
GEOCODE_ALL function, 176–177
GEOCODE_AS_GEOMETRY function,

158–159
REVERSE_GEOCODE function, 185

geocoding, 199–200
MapViewer configuration, 452–457

<global_map_config> element, 455–456
<logging> element, 452–453
<map_cache_server> element, 456–457
<map_data_source> element, 454–455
<save_images_at> element, 453–454
security, 456
<spatial_data_cache> element, 454

spatial index, 249–253
LAYER_GTYPE, 251
SDO_DML_BATCH_SIZE, 251–252
SDO_INDX_DIMS, 251
SDO_LEVEL, 252–253
TABLESPACE, 250
USER_SDO_INDEX_METADATA view, 252
WORK_TABLESPACE, 250

tuning
SDO_BATCH_SIZE, 263–264
SDO_NUM_RES, 264
for SDO_RELATE operator, 279–280

PARAMETERS clause, 249, 252, 294
parameter_string parameter, 309
params argument, 311, 314
params parameter, 308
PARENT_LINK_ID NUMBER column, Link

table, 353
PARENT_NODE_ID column, Node table, 352
partition keys, specifying in WHERE clause, 677
PARTITION table, 427
partition tables, 351
partition_cache_size_limit parameter, 421
partitioned indexing, 244
partitioned spatial indexes, 290–293
partitioned tables. See tables, partitioned
PARTITION_ID column, 422, 427
partitioning, 425–427
PARTITION_ROUTER procedure, 426
partitions, 418, 677
PARTITION_TABLE_NAME, 355
partition_table_name parameter, 421

Path class, 370, 393, 397
path link tables, 351, 353, 354, 356, 361
Path object, 372
path parameter, 453
path tables, 351, 353, 356, 361
PATH_GEOM_COLUMN,

USER_SDO_NETWORK_METADATA
view, 355

PATH_ID column, Path Link table, 354
PATH_ID* column, Path table, 353
PATH_LINK_TABLE_NAME,

USER_SDO_NETWORK_METADATA
view, 355

PATH_NAME column, Path table, 353
PATH_TABLE_NAME,

USER_SDO_NETWORK_METADATA
view, 355

PATH_TYPE column, Path table, 353
Pct_area_change_limit argument, 698
PERCENT structure, 162
performance analysis, 666–667
persistent copy, 349
pie chart style, 473
pixels, 508, 725
PL/SQL, 503–505
PL/SQL API, 397–411, 566–568

analyzing networks, 400–403
finding shortest path between two nodes,

400–402
traveling salesperson problem, 402–403

constraints, 405–411
parameterized constraint, 408–411
REGISTER_CONSTRAINT mechanism,

407
creating networks, 403–404
elements, 404
example, 567–568
installing, 566–567
memory objects, 399–400
overview, 397–398

PL/SQL language, SDO_GEOMETRY objects,
209–223

creating, 215–217
extracting information from, 217–219
modifying, 219–223
reading/writing data in, 215
VARRAYs, 211–215

PLACENAME attribute, 183
PNG_STREAM format, 552
PNG_URL format, 552
point clouds, 743, 744–749

advantages of, 745
coarser resolution of, 749
populating, 745–748
querying, 748–749
SDO_PC data type, 744–745

point constructors, 215–216
<Point> element, 554, 562
point events, 704
point geometries, 339, 668

■INDEX 775

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 775

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

PointID form, 147
points, 11, 56, 76–77

adding to lines, 221–222
counting number of, 217
extracting from lines, 218–219
loading point data, 117–118
locating, 708–709
projecting, 709–710
removing from lines, 221
removing points from lines, 219
shape, 702
styles, 462
three-dimensional, 97–98
validation of, 134

points of interest (POIs), 13, 157
polygons, 11, 55, 57, 75

circle, 83–84
co-planarity of rings, 136
compound, 88–89
correcting orientation of with TO_CURRENT

function, 664
correcting self-crossing with SDO_UNION

function, 665–666
inner-outer disjointedness, 136
linestring, 136
nonoverlapping rings, 136
proper orientation, 136
rectangle, 82–83
rings connected by arcs, 82
rings connected by straight lines, 80–82
single contiguous area, 136
three-dimensional, 99–102
validation of, 135–137
validity of rings, 135
with void, 89–91

polynomials, 736
populating

feature layers, 720–721
metadata, 49–51
network tables, 363
point clouds, 745–748
SDO_GEORASTER columns, 731–732
TINs, 751–754
topologies, 719

population attribute, 696
port, 199
position parameter, <legend> element, 564
postal_code attribute, 42
pregeocoded start/end locations, 431–432
pre_geocoded_locations = "true" attribute, 431
preserve_join_order argument, 296
PREV_LEFT_EDGE_ID field, 716
PREV_RIGHT_EDGE_ID field, 716
primary filter, 255
PRIOR(n) method, 214
products table, 38
project networks, 349
Project operation, 701
projected coordinate systems, 46, 49, 65

projected spatial reference system, 65
projectFromLTP() method, 228
projecting points, 709–710
PROJECT_PT function, 709
projectToLTP(double smax, double flat)

method, 228
prompt value, 518
property management, 6
proximity analysis, 243
pt1 value, 314
pt2 value, 314
p_tab_name parameter, 426
Purge Cached Metadata button, 450
purging map cache contents, 498–499
pyramids, 732, 733–734

Q
queries, 540–543

XML, 200–206
batch geocoding, 204–205
geocoding requests, 202–204
reverse geocoding, 205–206

Query Condition box, 481
QUERY REWRITE privilege, 289
queryAtPoint() method, 541
query_geom argument, 257, 261
query_geometry argument, 254, 270, 272–273
querying

point clouds, 748–749
TINs, 754–755
for topological relationships, 723
using local partitioned indexes, 292–293

QUERY_LAYERS parameter, 577
queryNN() method, 541, 621
QUERY_REWRITE_INTEGRITY parameter, 289
queryStyle argument, 619
QUERY_TYPE parameter, 577
queryWithinArea() method, 541
queryWithinRadius() method, 541, 619, 621
queryWithinRectangle() method, 540
question mark (?), 164

R
R-tree index, 247
RADIUS parameter, 561, 577
RAMP column, SIGN_POST table, 423
Raster analysis, 725
raster data, 725–741

GeoRaster objects, compressing, 738–739
raster objects, 732–737

attaching bitmap masks, 736–737
blocking large, 729
generating pyramids, 733–734
georeferencing, 736
interleaving of bands in, 730–731
registering NODATA values, 737
subsetting, 734

SDO_GEORASTER columns, populating,
731–732

■INDEX776

8997chIDX.qxt 9/28/07 10:26 AM Page 776

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_GEORASTER data type, 726–731
metadata in, 731
storing, 728–731

visualizing in Oracle MapViewer, 739–740
raster data table, 727
raster model, 725
raster objects. See raster data
RASTERBLOCK object, 729
RASTERDATATABLE attribute, 728
RASTERID attribute, 729
RASTERTYPE attribute, 728
RATIO mode, 487
rational polynomial coefficients (RPC), 736
RAW string, 668–669
reachable nodes, 348
readNetwork() method, 371, 391
READSIZE parameter, 119
real estate, 6
real-time location, 7
rebuilds, online index, 294–295
recentering, 509–510, 528, 547, 606, 612–613,

618
rectangle constructors, 216
rectangle function, 216
rectangle polygons, 82–83
rectangular box, 508
rectangular geographical area, 380
rectangular (marquee) zooming, 517–518
recursive decomposition, 232
recycle_interval parameter, 454
reDraw() method, 524
reference point, 709
ref_geometry attribute, 696
ref_geometry function, 694
refresh() method, MVThemeBasedFOI object,

521
refreshInfoPanel() function, 592
refreshing map cache contents, 498–499
REGION administrative area, 157
region_id attribute, 696
REGISTER_CONSTRAINT(), 407
regulatory pathways, 349
RELATE function, 310, 315–320
RELATION$ table, 716–717, 720
relationship analysis, 300–301
relationship analysis functions, 305, 310–320

RELATE, 315–320
SDO_CLOSEST_POINTS, 313–315
SDO_DISTANCE, 310–313

RELAX_ALL match mode, 162
RELAX_BASE_NAME match mode, 162, 174
RELAX_BUILTUP_AREA match mode, 162
RELAX_HOUSE_NUMBER match mode, 162
RELAX_POI_NAME match mode, 162
RELAX_POSTAL_CODE match mode, 162
RELAX_STREET_TYPE match mode, 162
removeAllDynamicStyles() method, 539
removeAllLinearFeatures() method, 543
removeAllPointFeatures() method, 543

removeAllPolygonFeatures() method, 543
REMOVE_DUPLICATE_VERTICES function,

142, 145
removeLink() method, 393
remove_point function, 219
removing data sources, 572
rendering parameter, 456
render_style parameter, 559, 561, 563
report_stats parameter, 454
'resampling=NN' parameter, 734
Reset button, 606
responses, XML, 200–206

batch geocoding, 204–205
geocoding requests, 202–204
reverse geocoding, 205–206

restarting MapViewer server, 573
result_table argument, 133
result_to_be_validated argument, 130
return_detailed_geometry parameter, 431
return_driving_directions parameter, 431
return_route_edge_ids parameter, 431
return_route_geometry parameter, 431
return_segment_edge_ids parameter, 431
return_segment_geometry parameter, 431
reverse geocoding, 205–206

REVERSE_GEOCODE function, 184–186
examples, 185–186
parameters, 185
SDO_GEO_ADDR object, 185

REVERSE_GEOCODE function, 184–185
RIGHT_FACE_ID field, EDGE$ table, 716
RingID form, 148
rings (boundaries), 80–82
'rlevel=4' parameter, 734
road networks, 348
road_preference parameter, 431, 434
roads table, 704
ROLLBACK_TOPO_MAP function, 722
route_preference parameter, 431, 434
routeserver_schema_connection_cache_max_

limit parameter, 420
routeserver_schema_connection_cache_min_

limit parameter, 420
routeserver_schema_jdbc_connect_string

parameter, 420
routeserver_schema_password parameter, 420
routeserver_schema_username parameter, 420
routing

batch, 432–434
options, 431
requests, 430–431

Routing Engine, 418
Routing Engine web service

architecture, 418–420
configuring, 420–422
data structures, 422–423
example, 424
installing, 420–422
overview, 417

■INDEX 777

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 777

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

partitioning, 425–427
XML, 427–434

batch routing, 432–434
geographic start/end locations, 432
pregeocoded start/end locations, 431–432
routing options, 431
routing requests, 430–431

<routing_request> element, 431
ROWID root, 249
ROWNUM pseudo-column, 671
run() method, 532, 533, 612
run tag, 548, 550

S
s argument, 123
sales region analysis, 243, 306
sales_intersection_zones table, 321
sales_region_coverage table, 323
sales_regions data, 118
sales_regions table, 117
sample applications, 581–622

Java (JSP), 603–622
adding data to maps, 606–614
creating home page, 604
identifying objects, 608, 616–618
initializing, 611–612
panning, 612–613
positioning on street addresses, 607,

614–616
recentering, 606, 612–613
searching for nearest neighbors, 610,

621–622
searching “within distance”, 609, 619–620
setting location marks, 605
setting marks, 609, 618–619
starting, 603–604
zooming, 612–613

JavaScript, 584–603
adding data to maps, 585
creating HTML pages, 589–590
creating information windows, 594–595
creating JavaScript code, 590
displaying list of features, 592–594
identifying application features, 586
initializing, 590–592
positioning on street addresses, 588–589,

598–601
searching around street addresses,

601–602
searching “within radius”, 587–588,

595–598
starting, 584–585
XMLHTTPRequest mechanism, 602–603

overview, 581–582
setting up, 582–583

loading definitions for MapViewer, 583
loading geographical data, 582
location-enabling application data, 582

SampleApplication.css file, 589
SampleApplication.html file, 589

SampleApplication.js file, 589
SampleShapefileToJGeomFeature class, 235
<save_images_at> element, 453–454
scale, 485
scale-dependent content, 485
scale-dependent symbology, 485
ScaleBarDef object, 546
<script> tag, 511
SDO_ADDR_ARRAY object, 176, 177
SDO_AGGR_CENTROID function, 342
SDO_AGGR_CONVEXHULL function, 338,

341–342, 672
SDO_AGGR_MBR function, 338, 672
SDOAGGRTYPE argument, 338
SDO_AGGR_UNION function, 338–341,

670–672
SDO_ANYINTERACT operator, 269, 300, 723
sdoapi.jar file, 412
SDO_AREA function, 327–328
SDO_BATCH_SIZE operator, 265
SDO_BATCH_SIZE parameter, 263–264, 267,

301
SDO_BUFFER function, 305, 307
SDO_CENTROID function, 335–336
SDO_CLOSEST_POINTS function, 313–315
SDO_CONCAT_LINES function, 149
SDO_CONTAINS operator, 269
SDO_CONVEXHULL function, 333–335, 698
SDO_COORD_REF_SYS table, 68, 71
SDO_COORD_REF_SYSTEM function, 72
SDO_COORD_REF_SYSTEM table, 47
SDO_COORD_SYS tables, 70
SDO_COVEREDBY operator, 269
SDO_COVERS operator, 269
SDO_CREATE_xxx_TABLE procedures, 359
SDO_CS.TRANSFORM function, 72
SDO_DIFFERENCE function, 323–325
SDO_DIM_ARRAY element, 338
SDO_DIM_ARRAY parameter, 668, 678
SDO_DIM_ARRAY variable-length array, 47, 50
SDO_DIM_ELEMENT type, 47
SDO_DIMNAME field, 47
SDO_DISTANCE function, 310–313
SDO_DML_BATCH_SIZE parameter, 251–252,

672
SDO_DML_BATCH_SIZE=<numeric_value>

parameter, 672
SDO_ELEM_INFO array, 60, 75
SDO_ELEM_INFO attribute, 60, 74, 75, 77–78,

80–81, 83, 86–87, 92, 103, 664
SDO_ELEM_INFO field, 73, 119
SDO_ELEM_INFO structure, 94
SDO_ELEM_INFO triplet, 85
SDO_ELEM_INFO VARRAY structures, 211
SDO_ELEM_INFO_ARRAY component, 118
SDO_ELEM_INFO_ARRAY function, 143, 146
SDO_ELEM_INFO_ARRAY type, 75, 77
SDO_EQUAL operator, 269
SDO_ETYPE package, 133
SdoExport.java package, 223

■INDEX778

8997chIDX.qxt 9/28/07 10:26 AM Page 778

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SdoExport.java program, 232
SDO_FILTER operator, 256, 261, 269–272, 279,

292, 300, 682, 723
SDO_GCDR.GEOCODE() function, 202
sdo_gcdr.geocode_as_geometry function, 40,

287
SDO_GEO_ADDR function, 153
SDO_GEO_ADDR object, 162–166, 176,

183–185, 614
ERRORMESSAGE attribute, 164–165
MATCHCODE attribute, 164
MATCHVECTOR attribute, 165–166

SDO_GEO_ADDR objects, 176
SDO_GEO_ADDR structure, 163, 191, 197, 202
SDO_GEOM function, 116
SDO_GEOM package, 133, 307, 313
SDO_GEOMETRY, 124–126
SDO_GEOMETRY columns, 41, 116–117, 151,

243, 245, 287, 289, 363
SDO_GEOMETRY constructor, 116
SDO_GEOMETRY data types, 55–114, 207–240,

726–731
3-D examples, 95–114

collections, 112–114
composite solids, 110–112
composite surfaces, 102–105
line strings, 98–99
points, 97–98
polygons, 99–102
simple solids, 105–110

complex 2-D examples, 84–95
collections, 91–95
compound line strings, 87–88
compound polygons, 88–89
constructing, 85
polygons with void, 89–91
SDO_ELEM_INFO for compound

elements, 86–87
SDO_ELEM_INFO for voided polygon

elements, 87
manipulating in Java, 223–240

ElementExtractor class, 229–232
ESRI shapefiles, 235–240
J3D_Geometry class, 229
JGeometry class, 223
standard notations, 232–235

manipulating in PL/SQL language,
209–223

creating, 215–217
extracting information, 217–219
modifying, 219–223
reading/writing data, 215
VARRAYs, 211–215

metadata in, 731
overview, 207–209
SDO_ELEM_INFO attribute, 75
SDO_GTYPE attribute, 61–63
SDO_ORDINATES attribute, 74
SDO_POINT attribute, 72–73
SDO_SRID attribute, 63–72

simple 2-D examples, 76–84
circle polygon, 83–84
line strings, 78–80
point, 76–77
polygons, 80–82
rectangle polygon, 82–83

spatial geometries, 56–60
collections, 58
line strings, 56
logical implementation, 58–59
points, 56
polygons, 57
solids, 57
spatial data in OGC, 59–60
spatial data in SQL/MM, 59–60
surfaces, 57

storing, 728–731
raster data tables, 729
raster objects, 729–731

SDO_GEOMETRY function, 289, 670
SDO_GEOMETRY object, 41, 72–73, 77, 97, 124,

142, 147, 158, 160, 191, 310–311,
326–327, 331, 678, 701, 705, 723

SDO_GEOMETRY parameter, 668
SDO_GEOMETRY type, 39, 45, 95, 744
SDO_GEOM.RELATE function, 278, 317–318,

679
SDO_GEOM.SDO_BUFFER() function, 268, 597
SDO_GEOM.SDO_CENTROID function, 697
SDO_GEOM.SDO_DISTANCE function, 259,

312, 679
SDO_GEOM.SDO_INTERSECTION() function,

710
SDO_GEOM.VALIDATE_* routines, 663
SDO_GEOR.ADDNODATA procedure, 737
SDO_GEORASTER columns, populating,

731–732
SDO_GEORASTER data type, 726
SDO_GEORASTER object, 731
SDO_GEOR.GENERATEPYRAMID procedure,

734
SDO_GEOR.GEOREFERENCE function, 735
SDO_GEOR.IMPORTFROM object, 731
SDO_GEOR.INIT function, 729, 731
SDO_GTYPE attribute, 60–63, 83, 106, 113, 684,

705–706
SDO_GTYPE field, SDO_GEOMETRY object, 73
SDO_GTYPE object, 705
SDO_GTYPE package, 133
sdo_gtype value, 41, 682
SdoImport.java package, 223
SdoImport.java program, 232
SDO_INDEX_METADATA_TABLE table, 672,

682
SDO_INDX_DIMS parameter, 251, 682
SDO_INSIDE operator, 269
SDO_INTERSECTION function, 321–322, 325
SDO_JOIN operator, 296–297
SDO_JOIN query, 297
SDO_JOIN table function, 295

■INDEX 779

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 779

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

SDO_KEYWORDARRAY array, 159, 182
sdo_keywordarray object, 40
SDO_KEYWORDARRAY object constructor, 187
SDO_LB field, 47
SDO_LB value, 47
SDO_LENGTH function, 328–330
sdo_length function, 329
SDO_LEVEL parameter, 252–253
SDO_LRS package, 701
SDO_LRS.LRS_INTERSECTION() function, 710
SDO_MAX_MBR_ORDINATE function,

332–333, 338
SDO_MBR function, 331–332, 698
SDO_MIGRATE function, 120
SDO_MIGRATE.TO_CURRENT function, 663,

683
SDO_MIN_MBR_ORDINATE function, 332–333,

338
SDO_MVCLIENT package, 566
sdo_mvclient.zoomIn() method, 568
sdo_mvclient.zoomOut() method, 568
sdondme.jar file, 412
SDO_NET package, 355, 364
SDO_NET.GET_IN_LINKS() function, 366
SDO_NET.GET_INVALID_LINKS() function,

366
SDO_NET.GET_INVALID_PATHS() function,

366
SDO_NET.GET_ISOLATED_NODES() function,

366
SDO_NET.GET_NODE_DEGREE() function,

366
SDO_NET.GET_NODE_IN_DEGREE() function,

366
SDO_NET.GET_NODE_OUT_DEGREE()

function, 366
SDO_NET.GET_NO_OF_LINKS() function, 366
SDO_NET.GET_NO_OF_NODES() function,

366
SDO_NET.GET_OUT_LINKS() function, 366
SDO_NET_MEM package, 349, 397–399
SDO_NET_MEM.LINK object, 404
SDO_NET_MEM.NETWORK.ADD_LINK

procedure, 404
SDO_NET_MEM.NETWORK.ADD_NODE

procedure, 404
SDO_NET_MEM.NETWORK.ADD_PATH

procedure, 404
SDO_NET_MEM.NETWORK.DELETE_NODE

procedure, 404
SDO_NET_MEM.NETWORK_MANAGER.

CREATE_LOGICAL_NETWORK()
function, 403

SDO_NET_MEM.NETWORK.SHORTEST_PATH
() method, 400

SDO_NET_MEM.NODE object, 404
SDO_NET_MEM.PATH.GET_LINK_IDS()

function, 402
SDO_NET.VALIDATE_NETWORK function, 663
sdonm.jar file, 370, 412

SDO_NN operator, 256, 261–267, 269, 279, 282,
285, 289, 292, 301, 345, 621, 679, 682

with Ancillary SDO_NN_DISTANCE operator,
264–267

with other predicates on same table, 287
SDO_BATCH_SIZE tuning parameter,

263–264
SDO_NUM_RES tuning parameter, 264

SDO_NN spatial operator, 184, 374, 666
SDO_NN_DISTANCE operator, 265
SDO_NN_DISTANCE(1) operator, 265
SDO_NUMBER_ARRAY type, 402
sdo_num_res argument, 267
SDO_NUM_RES operator, 265
SDO_NUM_RES parameter, 267, 301
SDO_NUM_RES tuning parameter, 264
SDO_NUM_RES=5 parameter, 264, 282, 292
SDO_NUM_RES=<N> parameter, 264
SDO_ON operator, 269
SDO_ORDINATE element, 220, 222
SDO_ORDINATE_ARRAY component, 118
SDO_ORDINATE_ARRAY field, 119
SDO_ORDINATE_ARRAY type, 74, 77, 116
SDO_ORDINATE_ARRAY5 function, 145
SDO_ORDINATES array, 60, 76, 89, 93–94, 99,

683
SDO_ORDINATES attribute, 60, 74, 77, 81, 83,

103, 116, 216, 664, 666
SDO_ORDINATES field, 73, 119
SDO_ORDINATES values, 85
SDO_ORDINATES VARRAY structures, 211
SDO_ORDINATES_ARRAY array, 101
SDO_OVERLAPS operator, 269
SDO_PC data type, 744–745
SDO_PC_PKG.CLIP_PC function, 748
SDO_PC_PKG.CREATE_PC procedure, 746, 748
SDO_PC_PKG.GET_PT_IDS function, 749, 755
SDO_PC_PKG.INIT function, 746
SDO_PC_PKG.TO_GEOMETRY function, 748
sdo_point attribute, 41, 60
SDO_POINT attribute, 72–73, 664
SDO_POINT field, 73
SDO_POINTONSURFACE function, 336–337
SDO_POINT_TYPE type, 72
SDO_POLYGONTOLINE function, 149
SdoPrint.java package, 223
SDO_RANGE type, 737
SDO_RASTER data type, 729
SDO_REGAGGR object, 692
SDO_REGAGGR objects, 695
SDO_REGAGGR type, 692, 695
SDO_REGION type, 690, 697
SDO_RELATE function, 699
SDO_RELATE operator, 256, 261, 269, 271,

272–280, 292, 297, 315, 318, 679, 682,
723

interactions in, 273–278
multiple masks in, 278–279
tuning parameter for on nongeodetic data

tables, 279–280

■INDEX780

8997chIDX.qxt 9/28/07 10:26 AM Page 780

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

SDO_RELATE query, 324
SDO_RELATE spatial operator query, 666
SDO_REVERSE_LINESTRING function, 149
SDO_ROUTER_PARTITION.PARTITION_

ROUTER() procedure, 426
SDO_ROWIDSET operator, 296
SDO_SAM package, 689, 698
SDO_SRID attribute, 60, 63–72, 311

coordinate systems
choosing, 65–67
EPSG, 68–72
geodetic, 64
georeferenced local, 65
projected, 65

SDO_SRID component, 118
SDO_SRID field, 73
sdo_srid=epsg_srid format, 578
SDO_TABLESPACE parameter, 252
SDO_TFM_CHAIN procedure call, 71
SDO_TIN data type, 750–751
SDO_TIN_PKG.CLIP_TIN function, 754
SDO_TIN_PKG.CREATE_PC procedure, 752
SDO_TIN_PKG.CREATE_TIN procedure, 754
SDO_TIN_PKG.INIT function, 752
SDO_TIN_PKG.TO_GEOMETRY function, 754
SDO_TOLERANCE field, 47
SDO_TOPO package, 718
SDO_TOPO_GEOMETRY constructor, 720
SDO_TOPO_GEOMETRY field, 717
SDO_TOPO_GEOMETRY objects, 714, 720, 723
SDO_TOPO_MAP, 722
SDO_TOPO_OBJECT_ARRAY constructor, 720
SDO_TOUCH operator, 269
SDO_UB field, 47
SDO_UB value, 47
SDO_UNION function, 323, 325, 340, 665–666
SDO_UTIL function, 116
SDO_UTIL package, 124–125, 129, 142, 147, 149,

698
SDO_UTIL.APPEND function, 94, 146
sdo_util.arc_densify function, 84
SDO_UTIL.EXTRUDE function, 131
SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS

procedure, 121
SDO_UTIL.SIMPLIFY function, 698
SDO_UTIL.TO_GMLGEOMETRY function,

124
SDO_UTIL.TO_WKTGEOMETRY function,

124
sdoutl.jar file, 412
sdoutl.zip package, 223
SDO_VOLUME function, 330
SDO_WITHIN_DISTANCE operator, 208, 244,

254–261, 269, 276, 279, 282, 292, 297,
302, 312, 345, 375, 619, 682

SDO_XOR function, 325
Search Around link, 587, 589
“Search from Location Mark” area, 609
SEARCH RESULTS theme, 609
searchAround() function, 595, 602

searching
for addresses, 154
around street addresses, 601–602
for nearest neighbors, 610, 621–622
“within distance”, 609, 619–620
“within radius”, 587–588, 595–598

second line string, 93
secondary filter, 255
sections, 704
security, MapViewer, 456
segments

clipping, 707–708
linear referenced, 702, 710

SELECT ... FOR UPDATE statements, 371
SELECT st atement, 223, 285, 456, 522, 677
selected_customers theme, 528
selectors

clearing shapes, 528
extracting captured shapes, 527
using shapes, 528

sensor-based systems, 7
SEQ_NO column, Path Link table, 354
SET AUTOTRACE ON statement, 280
SET SERVEROUTPUT command, 407
set-theory operation, 320
setAllThemesEnabled() method, 536, 614
setAntiAliasing() parameter, 531
setAutoRefresh() method, 521
setBackgroundColor() parameter, 531
setBaseMapName() parameter, 531
SETBITMAPMASK procedure, 737
setBoundingTheme() method, 521
setBoundingThemes() parameter, 531
setBox() parameter, 531
setCenter() parameter, 531
setCenterAndScale() parameter, 531
setCenterAndSize() parameter, 531
setDataSourceName() parameter, 531
setDeviceSize() parameter, 531
setFilteringGeom() method, 522
setFullExtent() parameter, 531
setHeight() method, 524
setHighlightOnly() method, 522
setHTMLElement() method, 524
setInfoTip() method, 524
setInfoWindow() method, 524
setLabelAlwaysOn() method, 536
setMapFootNote() method, 545
setMapFootNoteStyleName() method, 545
setMapLegend() method, 544–545
setMapPiecesRendered() method, 546
setMapRequestSRID() parameter, 531
setMapTitle() method, 545
setMapTitleStyleName() method, 545
setMaxDepth() method, 384
SET_MAX_MEMORY_SIZE function, 399
setMaxVisibleZoomLevel() method, 521
setMaxWholeImageLevel() method, 521
setMinClickableZoomLevel() method, 521
setMinVisibleZoomLevel() method, 521

■INDEX 781

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 781

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

setObject() method, 226
setParam tag, 548
setQueryWindowMultiplier()method, 522
setScale() parameter, 531
setServiceURL method, 530
setSize() parameter, 531
setSnapToCachedZoomLevel() method, 546
setSRID method, 233
setState() method, 391
setTargetLevel() method, 409
setThemeBindingParameters() method,

536
setThemeEnabled() method, 536
setThemeRenderLabels() method, 536
setThemeScale() method, 536
setThemeTransparency () method, 536
setting up

map requests, 531–532
sample applications, 582–583

SETTLEMENT administrative area, 157
setTopFlag() method, 524
setUseCachedBaseMap() method, 546
setVisible() method, 521, 524
setWidth() method, 524
shape points, 702
shapefile, 236
ShapefileFeatureJGeom class, 236
ShapefileReaderJGeom class, 236, 238
shapes, 527–528
shortest routes, 359
SHORTEST_PATH() function, 401
shortestPath() method, 371, 373, 384, 393
shortestPathDijkstra() method, 373, 391
shortestPaths() method, 382
Show All link, 588
Show Search Results link, 588
showAllVisibleFOIs() function, 593
showFOIDetails() function, 594–595
showSelectedFOIs() function, 593
.shp extension, 236
SHP2SDO utility, 122–123
shp_cities.dbf file, 236
shp_cities.shp file, 236
shp_cities.shx file, 236
shrinking VARRAYs, 214–215
SIDE structure, 162
SIGN_POST table, 422–423
SIMPLE* column, 353
simple element, 84
simple path, 348
simple solids, 57, 59, 96

three-dimensional, 105–110
validation of, 138–139

SimpleViewerTags.jsp page, 547
simplify(double threshold) method, 228
SIMPLIFY_GEOMETRY function, 698
site selection, refining candidates for, 697
size parameter, 554, 564
small-scale maps, 485
SolidID form, 148

solids, 57
composite, 110–112, 140–141
simple, 105–110, 138–139

SORT_AREA_SIZE parameter, 253
sort_by_distance parameter, 434
sort_by_distance="true" parameter, 434
spanning tree, 348, 380
spatial aggregate functions, 337
spatial analysis. See analysis, spatial
Spatial analysis, 37
spatial columns, 186–187
spatial coordinates, 154–156
spatial data, 115–149

analyzing, 7–15
converting, 129

between SDO_GEOMETRY and GML,
124–129

between SDO_GEOMETRY and
WKT/WKB formats, 124

debugging, 142–149
APPEND function, 146
EXTRACT function, 143–146
EXTRACT3D function, 147–148
GETNUMELEM function, 147
GETNUMVERTICES function, 147
GETVERTICES function, 147
REMOVE_DUPLICATE_VERTICES

function, 142
extruding two-dimensional geometry to

three dimensions, 129–132
inserting into SDO_GEOMETRY column, 116–117
loading

from external formats, 122–123
from text files using SQL*Loader utility,

117–120
management of, 3–18

business applications, 5–6
Oracle Spatial, 15–18
overview, 3–5

in OGC, 59–60
sources of, 7
in SQL/MM, 59–60
storage of, 8
storing in databases, 11–14
transporting between Oracle databases, 120–122

Import/Export utilities, 120–121
migrating from prior versions of Oracle

Spatial, 122
transportable tablespaces, 121–122

validating, 132–141
functions, 132–133
geometry types, 133–141

visualizing, 50–51
spatial distances, 346
spatial functions, 305
spatial geometries, 56–60

collections, 58
line strings, 56
logical implementation of SDO_GEOMETRY,

58–59

■INDEX782

8997chIDX.qxt 9/28/07 10:26 AM Page 782

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

points, 56
polygons, 57
solids, 57
spatial data

in OGC, 59–60
in SQL/MM, 59–60

surfaces, 57
spatial indexes. See indexes, spatial
spatial information. See spatial data
spatial joins, 244, 295–298
spatial layer, 45
spatial network, 347
spatial operator queries, 666–670

LAYER_GTYPE parameter, 667
performance analysis, 666–667
reorganizing table data, 668–669
specifying appropriate hints in, 670

spatial operators, 244, 679, 707
spatial processing functions, 670–672
spatial proximity, 63
Spatial query, 37
Spatial Reference ID (SRID), 718
spatial reference systems (SRS), 578,

701
spatial schema, 37, 115, 120
SPATIAL_CLUSTERS function, 696–697
spatial_column attribute, 551
spatial_column parameter, 559
<spatial_data_cache> element, 454
SPATIALEXTENT attribute, 728, 739
spatial_index, 247
spatially clustered, 669
spatial_operator syntax, 257
SpatialViewer.jsp file, 540
SPEED_LIMIT column, EDGE table, 423
split() method, 393
SPLIT PARTITION clause, 676
splitting, 712
SQL

creating map caches, 495–497
managing themes using, 481–482

SQL/MM, 14, 59–60, 275
SQL SELECT statements, 456
SQL*Loader control, 122
SQL*Loader utility, 117–120

nonpoint data, 119–120
point data, 117–118

SQL_QUERY theme, 538
srid argument, 690
SRID attribute, 45, 46–47, 551
SRID column, 66, 681
srid field, 246
SRS parameter, 576
<srs_mapping> element, 578
srsName parameter, <Point> element, 562
standard adapters, 499
start/end locations, 431–432
start node, 347
starting index, 75
startMarqueeZoom() function, 518

START_NODE_ID* column
Link table, 352
Path table, 353

START_NODE_ID column, EDGE table, 422
start_node_id columns, 366
START_NODE_ID field, EDGE$ table, 716
States attribute, 43
static methods, 408
static spatial data, 668
statistical graphs, advanced styles for, 473
ST_Contains relationship, 275
ST_Crosses relationship, 275
ST_Disjoint relationship, 275
ST_Equals relationship, 275
ST_Geometry objects, 275
ST_Geometry type, 59, 254
ST_Intersects relationship, 275
storage parameter, 738
store() method, 224, 226–227
storing

digits, 666
dimensions, 666
SDO_GEORASTER data type, 728–731
spatial data in databases, 11–14
Topology Data Models in Oracle Spatial,

715–718
ST_Overlaps relationship, 275
straight lines, 56

boundaries (rings) connected by,
80–82

line strings connected by, 78–79
street addresses

with house numbers, 170–171
positioning on, 598–601
searching around, 601–602
without house numbers, 166–170

street_name component, 40
street_number component, 40
Streets attribute, 43
streets layer, 719
stroke colors setting, 464
structured addresses, 182–184
structures, 391–393

debugging, 396–397
getting information about, 364–365
Link class, 392–393
Network class, 391–392
Node class, 392–393
Path class, 393
validating, 362–363

ST_Touches relationship, 275
ST_Within relationship, 275
style attribute, 551
style parameter, <entry> element, 564
styleExists() method, 547
StyleModel interfaces, 540
styles, 457–458, 524–525, 540

advanced, 469–474, 483
combining, 474
versus multiple styling rules, 484

■INDEX 783

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 783

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

for statistical graphs, 473
for thematic mapping, 469–472

area, 462
creating, 463
deleting, 463
feature, 477
line, 462
listing, 570
loading, 445
managing using Map Builder, 463–467

area styles, 467
color styles, 464
line styles, 466
marker styles, 465–466

point, 462
text, 462–463, 468
updating, 463
USER_SDO_STYLES view, 463

STYLES parameter, 576
styling rules, editing, 480
Styling Rules section, 479
SUBNETWORK column, 427
subsetting, 732
SUBSTR function, 671
suppliers table, 38
surfaces, 57, 102–105
symbology, 461, 485
SystemConstraint class, 384–385
SystemConstraint object, 384

T
table attribute, 551
table clusters, 668
table data, reorganizing, 668–669
table partitioning, 673–674
table1 argument, 296
table1_partition argument, 296
table2 argument, 296
table2_partition argument, 296
table_geom argument, 257, 261
table_geometry argument, 254, 270,

272–273
table_name argument, 133
table_name column, 193
<table_name, column_name> pair, 682
TABLE_NAME columns, 45
table_name field, 246
tables, 351–355. See also parameter tables

adding location information to, 38–45
application-specific data, 38–42
geographic data, 42–45

creating spatial indexes on, 363–364
creating with NetworkFactory class, 394
link, 352–353
metadata for, 45–49
node, 352
partitioned, 291–292
path, 353
path link, 354
populating, 363

raster data, 729
USER_SDO_NETWORK_METADATA view,

354–355
TABLESPACE parameter, 250, 680
tablespaces, transportable, 121–122
TABLESPACE=TBS_3 instance, 250
tag argument, 254, 261
targetLevel parameter, 388
TBS_3 tablespace, 250
telecommunications, 6
templated themes, 481–522
Test Connection button, 459
text files, loading spatial data from, 117–120

nonpoint data, 119–120
point data, 117–118

text parameter, <entry> element, 564
TEXT style, 463
text styles, 462–463, 468
text_style parameter, <geoFeature> element, 561, 563
TG_ID field, 717
TG_LAYER_ID field, 717
TG_TYPE field, 717
thematic mapping, advanced styles for, 469–472
<theme> element, 556, 558, 566
theme ordering, 484–485
theme_geom_column function, 692, 694
themes, 457–458, 507, 535–539

adding to base maps in XML API, 555–556
constructing maps from in XML API, 557–558
dynamic, 538
listing, 569
listing order, 487
loading, 445
managing using Map Builder, 476–484

advanced parameters, 482–483
advanced styles, 483–484
feature styles, 477
labeling, 478
multiple styling rules, 481
query conditions, 478
templated themes, 481
using complex SQL, 481–482

USER_SDO_THEMES view, 476
WFS, 539
WMS, 539

theme_table function, 692, 694
three-dimensional analysis, 298–303

distance-based, 301–303
relationship, 300–301

three-dimensional geometry, 129–132
three-dimensional modeling, 743–756

overview, 743–744
point clouds, 744–749

populating, 745–748
querying, 748–749
SDO_PC data type, 744–745

triangulated irregular networks (TINs), 749–755
populating, 751–754
querying, 754–755
SDO_TIN data type, 750–751

■INDEX784

8997chIDX.qxt 9/28/07 10:26 AM Page 784

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

three-dimensional points, 664
TILED_AGGREGATES function, 691–693, 699
TILED_BINS function, 689–691
tiling, 689
tiling-based analysis, 689–693

TILED_AGGREGATES function, 691–693
TILED_BINS function, 689–691

tiling_level function, 692
TIME parameter, 576
time_unit parameter, 431, 434
title parameter, 456, 553
TO_CURRENT function, 664
TO_EDGE_ID column, SIGN_POST table,

423
toggleMarqueeZoom() function, 518
toggleTheme() function, 520
to_GMLGeometry() method, 234
TO_GMLGEOMETRY311 function, 125
toJGeometry() method, 233
tolerance, 48–49, 678
tolerance argument, 130, 133, 307, 311, 314, 326,

698
tools

activating, 527
creating, 526

topheights argument, 130
TOPO_ID field, RELATION$ table, 717
Topology Data Models, 713–724

advantages of, 715
creating topologies, 718
feature layers

associating with topologies, 719
inserting, 720–721
populating, 720–721
updating, 720–721

hierarchical feature model, 723–724
overview, 713–714
populating topologies, 719
querying for topological relationships, 723
sharing boundaries, 714
storing in Oracle Spatial, 715–718
updating topological elements, 721–722

topology geometry, 716
<topology-name>_NODE$ table, 716
TOPOLOGY_ID feature layer, 720
TOPOLOGY_ID field, 717
TopoMap object, 721–722
TOPO_TYPE field, RELATION$ table, 717
toString() method, 396
TOUCH interaction, 274
touser argument, 120
TOWARD column, SIGN_POST table, 423
traction zone, 375
train networks, 348–349
TRANSPARENT parameter, 576
transportable tablespaces, 121–122
transporting spatial data between Oracle

databases, 120–122
trans_ts.dmp file, 121
traveling salesperson problem (TSP), 377

triangulated irregular networks (TINs), 749–755
coarser resolution of, 755
populating, 751–754
querying, 754–755
SDO_TIN data type, 750–751

TRIM(k) method, 214
TSP_PATH() function, 402
tspPath() method, 377
tuning parameters. See parameters, tuning
two-dimensional geometry, 129–132
two-dimensional points, 664

U
undirected link, 347
undirected logical network (UNET), 394
undirected networks, 362, 366–367
undirected test network (UNET), 381
UNET network, 399
unet_links table, 386
union_geom table, 670
UNIT parameter, 577
'UNIT=MILE' parameter, 266
UNITS parameter, 301, 309
units_params argument, 326
unit=<value_string> parameter, 308
UNUSABLE, creating local indexes as, 674
Update Map button, 606
UPDATE statement, 226–227
updateGeometry() method, 524
updating

feature layers, 720–721
map definitions in SQL, 489–490
networks, 371
performing in bulk, 672
topological elements, 721–722

upper-right corner vertex, 82
url parameter, 453, 566
US suffix, 157
us_counties table, 670
US_COUNTIES theme, 540
userAction variable, 550
username parameter

GEOCODE function, 161
GEOCODE_ALL function, 176
GEOCODE_AS_GEOMETRY function,

159
REVERSE_GEOCODE function, 185

USER_SDO_CACHED_MAPS view, 491–492,
495, 498, 501

USER_SDO_GEOM_METADATA dictionary
view, 45

USER_SDO_GEOM_METADATA parameter,
236–237

USER_SDO_GEOM_METADATA table, 47
USER_SDO_GEOM_METADATA updatable

view, 45
USER_SDO_GEOM_METADATA view, 48–49,

120, 132, 246, 249, 254, 277, 288, 298,
337–338, 681–682, 707, 739

USER_SDO_INDEX_INFO view, 249

■INDEX 785

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 785

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

USER_SDO_INDEX_METADATA view, 249, 252,
680, 684

USER_SDO_MAPS, USER_SDO_THEMES
dictionary view, 681

USER_SDO_MAPS view, 486, 489
USER_SDO_NETWORK_CONSTRAINTS view,

406–407, 410
USER_SDO_NETWORK_METADATA view,

354–355, 364, 415, 424, 680
USER_SDO_STYLES table, 524
USER_SDO_STYLES view, 463, 489, 681
USER_SDO_THEMES view, 476, 489
us_interstates table, 705
us_interstates_lrs table, 705
US_ROADS network, 357, 364
US_ROADS spatial network, 357
US_ROADS_LINK$ network table, 356
US_ROADS_NODE$ network table, 356
US_ROADS_PATH$ network table, 356
US_ROADS_PLINK$ network table, 356
us_states table, 44
<us_streets, location> spatial layer, 668
us_streets table, 357, 668
us_streets_dup table, 668
utilities, 6
utility networks, 349
UTL_HTTP package, 566
utlxplan script, 280

V
validate() method, 230
validate(double tolerance) method, 229
VALIDATE_GEOMETRY_WITH_CONTEXT

function, 132–133, 134, 142, 710
VALIDATE_LAYER_WITH_CONTEXT function,

132, 133, 141
VALIDATE_NETWORK function, 362
VALIDATE_xxxx_SCHEMA functions, 363
validating

data, 663
linear referenced segments, 710
network structures, 362–363
spatial data, 132–141

functions, 132–133
geometry types, 133–141

VALID_GEOM_SEGMENT function, 710
VALID_LRS_PT function, 710
VALID_MEASURE function, 710
Value-Attribute Table (VAT), 728
VARCHAR2 data type, 40
VARCHAR2 string, 132
variable color scheme style, 471
Variable Marker advanced style, 470
variable marker style, 471
variable pie chart style, 473
varying arrays (VARRAYs), 211–215

declaring, 213
extending, 214
finding capacity of, 213
getting value of specific entries, 213

initializing, 213
ranging over all values in, 213–214
shrinking, 214–215

vector drawings, 465
vector model, 725
vector spatial data, 8
verifying

addresses, 188–193
network connectivity, 365–366

vertical coordinate systems
(CMPD_VERT_SRID), 69

vertices, 56, 58
visualization analysis, 208
visualizing

raster data in Oracle MapViewer, 739–740
spatial data, 50–51

voided polygons, 84, 85, 87
voids, 57
volatile copy, 349
volume functions, 326–330
volume method, 330
volume(double tolerance) method, 229

W
weather_patterns table, 675
web-examples.zip file, 583
Web Map Service (OGC WMS) interface,

573–578
GetCapabilities request, 573–575
GetFeatureInfo request, 576–578
GetMap request, 575–576
spatial reference systems (SRS) mapping, 578

web map services, creating map caches on,
499–502

Web Map Services (WMS), 499–500, 503
web service, 417
web.xml file, 420, 422
well-known binary (WKB), 60, 124, 232, 233–234
well-known text (WKT), 60, 124, 232–233
WFS themes, 539
WHERE clause, 208, 253–254, 263, 265, 297, 342

specifying partition key in, 677
using spatial operators in, 679

width attribute, 523
width parameter, 553, 576
Wireless data services, 6
withinCost() method, 375
WKT/WKB formats, 124
WKTEXT column, 46, 66
WKTEXT field, 66, 70
WMS themes, 539
WORK_TABLESPACE parameter, 250
WORK_TABLESPACE=TBS_3 parameter, 250
writeNetwork() method, 371, 394

X
X attribute, 207, 523, 551
X parameter, 577
xdivs parameter, 691
<xfm> element, 566

■INDEX786

8997chIDX.qxt 9/28/07 10:26 AM Page 786

www.it-ebooks.info

www.freepdf-books.com

http://www.it-ebooks.info/

XML, 427–434, 503–505
batch routing, 432–434
geographic start/end locations, 432
pregeocoded start/end locations, 431–432
routing options, 431
routing requests, 430–431

XML API, 552–566
adding themes to base maps, 555–556
constructing maps from themes, 557–558
dynamic features, 561–563
dynamic themes, 558–560
legends, 563–564
overview, 552
simple map requests, 553–555
using multiple data sources, 556
XML map response, 565–566

XML Mode button, 496
XML queries/responses, 200–206

batch geocoding, 204–205
geocoding requests, 202–204
reverse geocoding, 205–206

XMLFOREST function, 126
XMLHTTPRequest mechanism, 602–603

XMLHttpRequest object, 602
xmlparserv2.jar file, 412
Xms option, 412
Xmx option, 399, 412

Y
Y attribute, 207, 523, 551
Y parameter, 577
ydivs parameter, 691

Z
Z attribute, 207
zip5_dc function, 694
zip5_dc table, 691
zoom in, 509, 547
Zoom In button, 414, 606
zoom levels, 496–497
zoom out, 509, 547
Zoom Out button, 414, 606
zoomIn() method, 534, 612
zooming, 485, 509, 514–515, 533–535, 606,

612–613
zoom_level_change, 528

■INDEX 787

Find it faster at http://superindex.apress.com
/

8997chIDX.qxt 9/28/07 10:26 AM Page 787

www.it-ebooks.info

www.freepdf-books.com

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://www.it-ebooks.info/

	Pro Oracle Spatial for Oracle Database 11g
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	What Does This Book Cover?
	Who Should Read This Book?
	Copyrights and Disclaimer

	Setting Up
	Downloads
	Setting Up Oracle Spatial and MapViewer
	The Example Data
	app_data.dmp
	app_data_with_loc.dmp
	citybldgs.dmp
	map_large.dmp
	map_detailed.dmp
	gc.dmp
	net.dmp
	styles.dmp
	zip.dmp

	Spatial Information Management
	Using Spatial Information in Various Industries
	Sources of Spatial Data
	Managing and Analyzing Spatial Data
	Storing Spatial Data in a Database
	Spatial Analysis

	Benefits of Oracle Spatial
	Summary
	References

	Overview of Oracle Spatial
	Technology and Architecture Overview
	Getting Started with Oracle Spatial
	Data Model: Storing Spatial Data
	Location-Enabling
	Query and Analysis
	The Geometry Engine
	The Index Engine

	Visualizing Spatial Data
	Advanced Spatial Engine

	Oracle Spatial Technology Products
	Locator
	Spatial Option

	What to Expect in an Oracle Spatial Install
	Installing Oracle Spatial in the Database
	Upgrades
	Understanding a Spatial Install
	Checking the Version of a Spatial Install

	Summary

	Location-Enabling Your Applications
	Adding Location Information to Tables
	Application-Specific Data
	Adding Location to Application-Specific Data
	Design Considerations for Application-Specific Data

	Geographic Data
	Obtaining the Geographic Data
	Design Considerations for Geographic Data

	Metadata for Spatial Tables
	Dictionary View for Spatial Metadata
	SRID Attribute
	DIMINFO Attribute

	Populating Spatial Metadata for Your Application
	Additional Information for Visualization and Network Analysis

	Summary

	The SDO_GEOMETRY Data Type
	Types of Spatial Geometries in Oracle
	Points
	Line Strings
	Polygons and Surfaces
	Solids
	Collections
	Logical Implementation of SDO_GEOMETRY
	Spatial Data in SQL/MM and OGC

	SDO_GEOMETRY Type, Attributes, and Values
	SDO_GTYPE Attribute
	SDO_SRID Attribute
	Geodetic Coordinate Systems
	Projected Coordinate Systems
	Georeferenced, Local Coordinate Systems
	Choosing an Appropriate Coordinate System
	The EPSG Coordinate System Model for Two-Dimensional and Three-Dimensional Data in Oracle Spatial

	SDO_POINT Attribute
	SDO_ELEM_INFO and SDO_ORDINATES Attributes
	SDO_ORDINATES Attribute
	SDO_ELEM_INFO Attribute

	Simple Two-Dimensional Geometry Examples
	Point
	Line String: Connected by Straight Lines
	Line String: Connected by Arcs
	Polygon: Ring (Boundary) Connected by Straight Lines
	Polygon: Ring (Boundary) Connected by Arcs
	Rectangle Polygon
	Circle Polygon

	Complex Two-Dimensional Geometry Examples
	Constructing Complex Geometries
	SDO_ELEM_INFO for Compound Elements
	SDO_ELEM_INFO for Voided Polygon Element
	Compound Line String Example
	Compound Polygon Example
	Polygon with a Void
	Collections
	Multipoint Collection Example
	Multiline String
	Multipolygon and Heterogenous Collections
	Creating Collections: The Easy Way

	Three-Dimensional Examples
	Three-Dimensional Points, Lines, and Polygons
	Three-Dimensional Point
	Three-Dimensional Line String
	Three-Dimensional Polygon

	Composite Surfaces
	Simple Solid
	Composite Solid
	Collections

	Summary

	Loading, Transporting, and Validating Spatial Data
	Inserting Data into an SDO_GEOMETRY Column
	Loading and Converting Spatial Data
	Loading from Text Files Using SQL*Loader
	Loading Point Data
	Loading Nonpoint Data

	Transporting Spatial Data Between Oracle Databases
	Import/Export Utilities
	Transportable Tablespaces
	Migrating from Prior Versions of Oracle Spatial

	Loading from External Formats
	Converting Between SDO_GEOMETRY and WKT/WKB
	Converting SDO_GEOMETRY Data in GML
	Converting to GML
	Converting GML to SDO_GEOMETRY

	Extruding a Two-Dimensional Geometry to Three Dimensions
	Validating Spatial Data
	Validation Functions
	VALIDATE_GEOMETRY_WITH_CONTEXT
	VALIDATE_LAYER_WITH_CONTEXT

	Validation Criteria
	Point
	Line String
	Polygons
	Composite Surfaces
	Simple Solid

	Composite Solids
	Collections

	Debugging Spatial Data
	REMOVE_DUPLICATE_VERTICES
	EXTRACT
	APPEND
	GETNUMELEM, GETNUMVERTICES, and GETVERTICES
	EXTRACT3D
	Miscellaneous Functions

	Summary

	Geocoding
	What Is Geocoding?
	Architecture of the Oracle Geocoder
	Parsing the Input Address
	Searching for the Address
	Computing the Spatial Coordinates

	Setting Up the Reference Data for the Geocoder
	Parameter Tables
	GC_COUNTRY_PROFILE
	GC_PARSER_PROFILEAFS
	GC_PARSER_PROFILES

	Data Tables
	GC_AREA_xx
	GC_POSTAL_CODE_xx
	GC_POI_xx
	GC_ROAD_xx
	GC_ROAD_SEGMENT_xx
	GC_INTERSECTION_xx

	Using Geocoder Functions
	GEOCODE_AS_GEOMETRY
	Function Parameters
	Function Result: SDO_GEOMETRY
	Examples

	GEOCODE
	Function Parameters
	Function Result: SDO_GEO_ADDR
	Examples

	GEOCODE_ALL
	Function Parameters
	Function Result: SDO_ADDR_ARRAY
	Examples

	Geocoding Using Structured Addresses
	GEOCODE_ADDR
	Using the SDO_GEO_ADDR Object

	GEOCODE_ADDR_ALL

	Reverse Geocoding
	REVERSE_GEOCODE
	Function Parameters
	Function Result: SDO_GEO_ADDR
	Examples

	Geocoding Business Data
	Adding the Spatial Column
	Geocoding the Addresses: The “Naive” Approach
	Address Verification and Correction
	Further Refinements

	Automatic Geocoding

	The Geocoding Server
	Architecture
	Installation and Configuration
	Logging
	Database Connection
	Geocoding Parameters

	Using the Geocoder: XML Queries and Responses
	Geocoding Requests
	Batch Geocoding
	Reverse Geocoding

	Summary

	Manipulating SDO_GEOMETRY in Application Programs
	Manipulating Geometries Using PL/SQL
	VARRAY Manipulation Primer
	Declaring and Initializing VARRAY Variables
	Getting the Value of a Specific Entry
	Finding the Capacity of a VARRAY
	Ranging Over All Values in a VARRAY
	Extending a VARRAY
	Shrinking a VARRAY

	Reading and Writing SDO_GEOMETRY Objects
	Creating New Geometries
	Point Constructor
	Rectangle Constructor
	Line Constructor

	Extracting Information from Geometries
	Counting the Number of Points in a Geometry
	Extracting a Point from a Line

	Modifying Existing Geometries
	Removing a Point from a Line
	Adding a Point to a Line

	Manipulating Geometries in Java
	Using the JGeometry Class
	Reading and Writing Geometries
	Inspecting Geometries
	Creating Geometries
	Modifying Existing Geometries
	Processing Geometries

	Using 3D Geometries: the J3D_Geometry Class
	Extracting Elements from 3D Geometries: the ElementExtractor Class
	Extracting a Single Element
	Iterating Over Elements
	Extraction Levels
	Recursive Decomposition

	Using Standard Notations: WKT, WKB, GML
	Reading and Writing WKT
	Reading and Writing WKB
	Reading and Writing GML

	Using ESRI Shapefiles
	A Short Note on Shapefiles
	Loading a Shapefile in Your Program
	Building Your Own Loader

	Summary

	Spatial Indexes and Operators
	Spatial Indexes
	Inserting Metadata for a Spatial Layer Prior to Indexing
	Creating a Spatial Index
	Spatial Indexing Concepts

	Spatial Index Parameters
	Unknown
	USER_SDO_INDEX_METADATA View
	Spatial Index Size Requirements

	Spatial Operators
	Syntax of Spatial Operators
	Semantics of Spatial Operators
	Evaluation of Spatial Operators

	A Closer Look at Spatial Operators
	SDO_WITHIN_DISTANCE Operator
	SDO_NN Operator
	SDO_BATCH_SIZE Tuning Parameter
	SDO_NUM_RES Tuning Parameter
	SDO_NN with the Ancillary SDO_NN_DISTANCE Operator

	Operators for Spatial Interactions (Relationships)
	SDO_FILTER Operator
	SDO_RELATE Operator

	Hints for Spatial Operators
	Spatial Operator with Other Predicates on the Same Table

	Advanced Spatial Index Features
	Function-Based Spatial Indexes
	Local Partitioned Spatial Indexes
	Creating Local Indexes on Partitioned Tables
	Querying Using Local Partitioned Indexes

	Parallel Indexing
	Online Index Rebuilds
	Spatial Joins
	Three-Dimensional Analysis
	Relationship Analysis
	Distance-Based Analysis

	Summary

	Geometry Processing Functions
	Buffering Functions
	Relationship Analysis Functions
	SDO_DISTANCE
	SDO_CLOSEST_POINTS
	RELATE
	When to Use the RELATE Function

	Geometry Combination Functions
	SDO_INTERSECTION
	SDO_UNION
	SDO_DIFFERENCE
	SDO_XOR

	Geometric Analysis Functions
	Area, Length, and Volume Functions
	Accuracy of Area and Length Computations for Geodetic Data
	SDO_AREA
	SDO_LENGTH
	SDO_VOLUME

	MBR Functions
	SDO_MBR
	SDO_MIN_MBR_ORDINATE and SDO_MAX_MBR_ORDINATE

	Miscellaneous Geometric Analysis Functions
	SDO_CONVEXHULL
	SDO_CENTROID
	SDO_POINTONSURFACE

	Aggregate Functions
	Aggregate MBR Function
	Other Aggregate Functions
	SDO_AGGR_UNION
	SDO_AGGR_CONVEXHULL
	SDO_AGGR_CENTROID

	Summary

	Network Modeling
	General Network Modeling Concepts
	Examples of Networks
	Road Networks
	Train Networks
	Utility Networks
	Biochemical Networks
	Finance Networks
	Project Networks

	Oracle Network Data Model

	Data Structures: The Network Tables
	Node Table
	Link Table
	Path Table
	Path Link Table
	Network Metadata

	Defining Networks
	“Automatic” Network Definition
	“Manual” Network Definition
	Defining Multiple Networks on the Same Tables
	Defining a Network Over Existing Structures
	Validating Network Structures
	Populating Network Tables

	Dropping a Network
	Creating Spatial Indexes on Network Tables
	Getting Information About a Network
	Verifying Network Connectivity
	Example Network
	UNET: A Simple Undirected Network
	DNET: A Simple Directed Network

	Analyzing and Managing Networks Using the Java API
	Analyzing Networks: The NetworkManager Class
	Loading a Network
	Updating a Network
	Finding the Shortest Path Between Two Nodes
	Finding the Nearest Neighbors
	Finding All Nodes Within Some Distance
	Traveling Salesperson Problem
	Discovering Reachability
	Minimum Cost Spanning Tree
	Multiple Path Searches

	Limiting the Search Space: The SystemConstraint Class
	Advanced Analysis: Network Constraints
	Network Structures: The Network, Node, Link, and Path Classes
	Network Class
	Node and Link Classes
	Path Class

	Creating Networks: The NetworkFactory Class
	Creating Networks
	Creating Network Elements
	Creating Network Tables
	Network Creation Example

	Debugging Network Structures
	Analyzing Networks Using the PL/SQL API
	Using a Memory Object
	Analyzing Networks
	Finding the Shortest Path Between Two Nodes
	Traveling Salesperson Problem

	Creating and Updating Networks
	Creating Networks
	Creating Network Elements
	Updating and Deleting Network Elements
	Network Creation Example

	Using Network Constraints
	The REGISTER_CONSTRAINT Mechanism
	Using a Constraint
	A Parameterized Constraint

	The Network Editor
	Starting the Editor
	Connecting to the Database
	Loading a Network from the Database

	Using the Loaded Network
	Network Analysis
	Network Editing

	Example Data: The Streets of San Francisco

	Summary

	The Routing Engine
	Architecture
	Installation and Configuration
	Data Structures
	Example Data: The Streets of San Francisco
	Partitioning
	Using the Router: XML Queries and Responses
	Routing Requests
	Routing Options
	Pregeocoded Start and End Locations
	Geographic Start and End Locations
	Batch Routing

	Summary

	Defining Maps Using MapViewer
	Why Use Maps in Location-Enabled Applications?
	Overview of MapViewer and Oracle Maps
	Oracle MapViewer
	Oracle Maps

	Getting Started
	Load the Sample Data
	Location-Enable the Application Data
	Load the Geographical Data
	Load Maps, Themes, Style, and Map Cache Definitions for MapViewer
	Define a Data Source
	Install Example Applications

	Configuring MapViewer
	Using the Administration Console
	Editing the Configuration File
	Maintaining Data Sources
	Maintaining Geometry Caches

	Configuration Parameters
	Logging
	Map Image Lifetime
	Geometry Caching
	Permanent Data Sources
	Global Map Options
	Security
	Map Cache Server

	Defining Maps
	Using Map Builder
	Using Styles
	Point Styles
	Line Styles
	Area Styles
	Text Styles and Labeling
	Defining Styles: The USER_SDO_STYLES View
	Managing Styles Using Map Builder
	Text Styles
	Advanced Styles

	Using Themes
	Defining Themes: The USER_SDO_THEMES View
	Managing Themes Using Map Builder

	Using Maps
	Theme Ordering
	Map Scale and Zoom Level
	USER_SDO_MAPS View
	Managing Maps Using Map Builder
	Viewing and Updating Map Definitions in SQL
	Exporting and Importing Map Definitions

	Defining Map Caches
	The USER_SDO_CACHED_MAPS View
	Managing Caches Using the MapViewer Console
	Creating a New Map Cache
	Creating Map Caches Using SQL
	Cache Data Structures
	Exporting Cache Definitions
	Purging and Refreshing Cache Contents
	Using External Data Sources
	Using the Standard Adapters
	Creating a Map Cache on a Web Map Service
	Creating a Map Cache on a MapViewer Service

	Summary

	Using Maps in Your Applications
	Overview of MapViewer’s APIs
	XML, Java, JSPs, and PL/SQL
	JavaScript and Ajax: Oracle Maps
	Choosing an API

	Anatomy of a Map Request
	What: The Information That Should Appear on the Map
	Where: The Geographical Area to Be Covered by the Map
	How: The Format and Size of the Resulting Map

	Interacting with Maps
	Controlling the Level of Detail: Zoom In and Zoom Out
	Controlling the Area Shown on the Map: Pan and Recenter
	Selecting Features: Identify
	Choosing the Information to Appear on the Map: Layer Control

	Oracle Maps: The JavaScript API
	Displaying a Map
	Interacting with Maps: Zooming and Panning
	Adding Map Decorations
	Adding Generic Decorations
	Creating an Overview Map
	Rectangular (Marquee) Zooming
	Adding Dynamic Information: Theme-Based FOIs
	Templated Themes
	Highlighted Themes
	Dynamic JDBC Themes
	Accessing FOI Data

	Adding Individual FOIs
	Controlling Styles
	Capturing User Input: Tools and Selectors
	Create the Tool
	Activate the Tool
	Extract the Captured Shape
	Use the Shape
	Clear the Shape

	Responding to Events
	Events on the Map View
	Events on Theme-Based FOI
	Events on Individual FOIs
	Events on Drawing Tools
	Events on Map Decorations

	Using the Java API
	Map Requests
	Create a MapViewer Object
	Set Up the Map Request
	Send the Request to the MapViewer Server
	Extract Information from the Map Response

	Zooming and Panning
	Theme Control
	Dynamic Themes
	WMS and WFS Themes

	Style Control
	Identification and Queries
	Dynamic Features
	Legends
	Map Decorations
	Using the Map Cache
	Discovering Data Sources, Maps, Themes
	Using JSP Tags
	Initialization and Setup: The init Tag
	Setting Up the Map
	Interacting with the Map: The run Tag
	Displaying the Map: The getMapURL Tag
	Getting Feature Details: The identify Tag
	Combining MapViewer JSP Tags and the Java API

	Using the XML API
	Simple Map Requests
	Adding Themes to a Base Map
	Using Multiple Data Sources
	Constructing a Map from Themes
	Dynamic Themes
	Dynamic Features
	Legends
	The XML Map Response

	Using the PL/SQL API
	Installing the API
	A Simple Example

	Using the Administrative API
	Browsing Map Definitions
	Listing Data Sources
	Listing Maps
	Listing Themes
	Listing Styles

	Managing the MapViewer Server
	Security and Access Control
	Managing Data Sources
	Managing Caches

	Restarting MapViewer

	Web Map Service (OGC WMS) Interface
	The GetCapabilities Request
	The GetMap Request
	The GetFeatureInfo Request
	Spatial Reference Systems (SRS) Mapping

	Summary

	Sample Applications
	Data Preparation and Setup
	Loading the Geographical Data
	Location-Enabling the Application Data
	Loading Map, Theme, Style, and Map Cache Definitions for MapViewer

	Applications Setup
	The JavaScript Application
	Application Walk-Through
	Starting the Application
	Adding Application Data to the Map
	Identifying an Application Feature
	Searching “Within Radius”
	Positioning on a Street Address

	Under the Hood
	Creating the HTML Page
	Creating the JavaScript Code
	Initializing the Application
	Displaying the List of Features Currently on the Map
	Creating the Information Window
	Searching “Within Radius”
	Positioning on a Street Address
	Searching Around the Street Address
	Using the XMLHTTPRequest Mechanism

	The Java (JSP) Application
	Application Walk-Through
	Starting the Application
	Creating Application Home Page
	Setting the Location Mark
	Zooming, Panning, and Recentering
	Adding Application Data to the Map
	Positioning on a Street Address
	Selecting and Identifying a Branch, Customer, or Competitor
	Searching “Within Distance”
	Setting a Mark on the Map
	Searching for Nearest Neighbors

	Under the Hood
	Initializing the Application: The “Reset” Action
	Zooming, Panning, and Recentering
	Adding Application Data to the Map
	Positioning on a Street Address
	Identifying a Branch, Customer, or Competitor
	Setting a Mark on the Map
	Searching “Within Distance”
	Searching for Nearest Neighbors

	Summary

	Case Studies
	Overview of the Case Studies
	Spatial Information for Managing the London Bus Network
	BusNet
	Spatial Data and Oracle Spatial in BusNet
	User Interface for Spatial Data in BusNet
	BusNet Conclusions

	P-Info: A Mobile Application for Police Forces
	P-Info Functionality
	P-Info Architecture
	Use of Oracle Spatial in P-Info
	Measurable Added Value of P-Info

	Risk Repository for Hazardous Substances
	RRGS Technology
	Use of Oracle Spatial in the RRGS
	From Hazardous Substances to Risk Management

	USGS National Land Cover Visualization and Analysis Tool
	The Architecture of USGS Visualization and Analysis Tool
	Oracle Spatial in USGS Visualization and Analysis Tool
	Benefits of USGS Visualization and Analysis Tool

	U.S. Department of Defense MilitaryHOMEFRONT LBS
	The Architecture of MilitaryHOMEFRONT LBS
	Oracle Spatial in MilitaryHOMEFRONT
	Mobile MilitaryINSTALLATIONS
	Benefits of MilitaryHOMEFRONT LBS

	Summary

	Tips, Common Mistakes, and Common Errors
	Tips
	Data Modeling and Loading
	Always Validate Your Data
	Always Store Twoand Three-Dimensional Points in SDO_POINT
	Use TO_CURRENT to Correct Orientation in a Polygon
	Use the SDO_UNION Function to Correct a Self-Crossing Polygon
	Always Store Only As Many Dimensions/Digits As Needed

	Performance of Spatial Operator Query
	Use Real Data for Performance Analysis
	Specify the LAYER_GTYPE Parameter
	Reorganize the Table Data to Minimize I/O
	Specify Appropriate Hints in a Query

	Performance of Other Spatial Processing Functions
	Specify DETERMINISTIC for Stored Functions
	Use a Divide-and-Conquer Approach for SDO_AGGR_UNION

	Performance of Inserts, Deletes, and Updates
	Drop the Index Before Modifying a Large Number of Rows
	Perform Inserts, Deletes, and Updates in Bulk

	Best Practices for Scalability and Manageability of Spatial Indexes
	Use Table Partitioning (and Local Spatial Indexes)
	Create the Local Index As UNUSABLE for Better Manageability
	Rebuild the Spatial Index for Each Partition Separately
	Use EXCHANGE PARTITION to Work on FAILED Partitions
	Use EXCHANGE PARTITION with INDEXES for New Data
	Other Tips for Partition Maintenance
	Merging Partitions
	Specify the Partition Key in the WHERE Clause
	Specify the PARALLEL Clause to Ensure a Parallel Query on a Partitioned Index

	Common Mistakes
	Bounds, Longitude and Latitude, and Tolerance for Geodetic Data
	NULL Values for SDO_GEOMETRY
	Use GEOCODE or GEOCODE_ALL
	Specify “INDEXTYPE is mdsys.spatial_index” in CREATE INDEX
	Always Use Spatial Operators in the WHERE Clause
	Use Spatial Functions When No Spatial Index Is Available
	Do Not Move, Import, or Replicate MDRT Tables
	Network Metadata
	Map Metadata

	Common Errors
	ORA-13226: Interface Not Supported Without a Spatial Index
	ORA-13203: Failed to Read USER_SDO_GEOM_METADATA View
	ORA-13365: Layer SRID Does Not Match Geometry SRID
	ORA-13223: Duplicate Entry for <table_name, column_name> in SDO_GEOM_METADATA
	ORA-13249, ORA-02289: Cannot Drop Sequence/Table
	ORA-13249: Multiple Entries in sdo_index_metadata Table
	ORA-13207: Incorrect Use of the <operator-name> Operator
	ORA-13000: Dimension Number Is Out of Range
	ORA-00904: . . . Invalid Identifier
	ORA-00939: Too Many Arguments for Function
	ORA-13030: Invalid Dimensionality for the SDO_GEOMETRY, or ORA-13364: Layer Dimensionality Does Not Match Geometry Dimensions

	Summary

	Additional Spatial Analysis Functions
	Tiling-Based Analysis
	TILED_BINS
	TILED_AGGREGATES

	Neighborhood Analysis
	AGGREGATES_FOR_GEOMETRY
	AGGREGATES_FOR_LAYER

	Clustering Analysis
	SPATIAL_CLUSTERS

	Refining the Candidates for Site Selection
	Geometry Simplification for Speeding Up Analysis
	Summary

	Linear Referencing
	Concepts and Definitions
	Measure
	Linear Referenced Segments
	Direction
	Shape Points
	Offset
	Typical Application

	Creating Linear Referenced Geometries
	SDO_GTYPE in LRS Geometries
	Constructing LRS Geometries
	Metadata
	Spatial Indexes and Spatial Operators on LRS Geometries

	Dynamic Segmentation Operations
	Clip a Segment
	Examples of Uses

	Locate a Point
	Examples of Uses

	Project a Point
	Examples of Uses

	Intersecting LRS Segments with Standard Geometries
	Validation of LRS Segments
	Dynamic Segmentation on 3D Geometries
	Other Operations
	Concatenate
	Split
	Offset

	Summary

	Topology Data Model in Oracle
	Sharing Boundaries
	Benefits of the Topology Data Model
	Storing a Topology Data Model in Oracle
	Operating on a Topology in Oracle
	Creating a Topology
	Populating a Topology
	Associating a Feature Layer with a Topology
	Inserting, Updating, and Populating Feature Layers
	Updating Topological Elements
	Initialization of TopoMap Object
	Editing the TopoMap Object
	Finishing Up with the TopoMap Object

	Querying for Topological Relationships

	Hierarchical Feature Model
	Summary

	Storing Raster Data in Oracle
	The SDO_GEORASTER Data Type
	Storage for SDO_GEORASTER Data
	Creating the Raster Data Table
	Blocking a Large Raster Object
	Interleaving of Bands in a Raster Object

	Metadata in SDO_GEORASTER Data

	Populating SDO_GEORASTER Columns
	Manipulating Raster Objects
	Generating Pyramids
	Subsetting
	Georeferencing
	Attaching Bitmap Masks
	Registering NODATA Values

	Using Compression in GeoRaster
	Visualizing Raster Data in Oracle MapViewer
	Summary

	Three-Dimensional Modeling Using Point Clouds and TINs in Oracle
	Storing Large Point Sets
	The SDO_PC Data Type
	Populating a Point Cloud
	Querying a Point Cloud
	Other Manipulation Functions for Point Clouds

	Storing Triangulated Irregular Networks
	The SDO_TIN Data Type
	Populating a TIN
	Querying a TIN
	Other Manipulation Functions for TINs

	Summary

	INDEX

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004d0061006c006c006f007900270073002000670065006e006500720061006c002000730065007400740069006e0067007300200066006f00720020006f007000740069006d0061006c0020007000720069006e00740069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [684.000 864.000]
>> setpagedevice

