Beginning Spatial
with SQL Server 2008

HEBE
Alastair Aitchison

Apress’

Beginning Spatial with SQL Server 2008
Copyright © 2009 by Alastair Aitchison

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN 13 (pbk): 978 1 4302 1829 6
ISBN 13 (electronic): 978 1 4302 1830 2
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick

Technical Reviewer: Evan Terry

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann,
Ben Renow Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston

Copy Editor: Bill McManus

Associate Production Director: Kari Brooks Copony

Production Editor: Katie Stence

Compositor: Susan Glinert

Proofreader: April Eddy

Indexer: Julie Grady

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1 800 SPRINGER, fax 201 348 4505, e mail orders ny@springer sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510 549 5930, fax 510 549 5939, e mail info@apress.com, or visit http://
WWW.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales eBook Licensing web page at http://www.apress.com/info/bul sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Contents at a Glance

About the AUTNOr e XXi
About the Technical Reviewer i e e Xxiii
ACKNOWIBdgMENTSo XXV
INErOdUCTION e XXVii

PART 1 =mm Working with Spatial Data

BCHAPTER 1 Defining Spatial Information..................... 3
ECHAPTER 2 Implementing Spatial Data in SQL Server 2008 33
BCHAPTER3 Working with Spatial Data in the .NET Framework 55
PART 2 mmm Adding Spatial Data

BCHAPTER 4 Creating Spatial Data Objects 77
BCHAPTER 5 Marking Out Geometries Using Virtual Earth 115
ECHAPTER 6 Importing Spatial Datal 137
BCHAPTER 7 GEOCOAING ...ttt e 157

PART 3 mmm Presenting Spatial Data

BCHAPTER 8 Syndicating SpatialDatal 181
ECHAPTER 9 Presenting Spatial Data Using Web Mapping Services......... 207
BCHAPTER 10 Visualizing Query Results in Management Studio 249

PART 4 =mm Analyzing Spatial Data

BCHAPTER 11 Examining Properties of Spatial Objects 261
BCHAPTER 12 Modifying Spatial Objectsccoiiiiiiiin.. 315
BCHAPTER 13 Testing Spatial Relationships 345

PART 5 =mm Ensuring Spatial Performance

BCHAPTER 14 Indexingc.oiniiiiii i 379

Contents

About the AUTNOr e XXi
About the Technical Reviewer i e e e Xxiii
ACKNOWIBdgMENTS XXV
INErOdUCTION e XXVii

PART 1 =mm Working with Spatial Data

BCHAPTER 1 Defining Spatial Information 3
What Is Spatial Data? ...t 3
Usesof Spatial Datac.coiiiiiiii i 3
Representing FeaturesontheEarth 4

POINtS . ..o 4
LineStrings. oo e 5
POIYgONS .. e 7
Choosing the Right Geometry ...t 8
Combining Geometries in a Geometry Collection 8
Understanding Interiors, Exteriors, and Boundaries.............. 9
Positioninga Geometry ... 10
Describing Positions Using a Coordinate System 11
Geographic Coordinate System. ...l 11
Projected Coordinate System i, 13
Applying Coordinate SystemstotheEarth 14
Datum ... 14
PrimeMeridian 18
Unit of Measurement ...t 19
ProjeCtioN. . ..o e 19
Using Spatial Reference Systems 24
Spatial Reference Identifiers ... 25

vii

viii

CONTENTS

BCHAPTER 2

Spatial References in SQL Server2008ccoooiut.. 25
Expressing Spatial References in the Well Known Text Format ... 26
Contrasting a Geographic and a Projected Spatial Reference. 27

Comparing Spatial Reference Systems 28
WGBS 84 . e e 29
National Grid of Great Britain................................ 29

SUMMANY .. e e e e 31

Implementing Spatial Data in SQL Server 2008 33

Understanding Datatypesc.ooeiiiiii i 33

Comparing Spatial Datatypesccciiiiiiii L 34

The geography Datatype ...t 35
Coordinate System ... 35
Unit of Measurement ... 35
Spatial Reference ID. ... 37
Size Limitations. ... 37
Ring Orientation it 38

The geometry Datatypeccooiiiiriiii e 40
Coordinate System o i M
Unit of Measurement ...t M
Spatial Reference ID. ... 42
Ring Orientationot 44

Choosing the Right Spatial Datatype 44
CONSIStENCY . ..ot e 45
ACCUIACY ...ttt e e e e e 45
The End(s) of theWorld 46
Presentation ...t e 48
Performance ...t e 49
Standards Compliance.ccciiiii it 50

How Spatial Datals Storedcccoiiiiiiiiiiiia, 50

Converting Between Datatypescooiiiiiiiia. 51

Spatially Enabling Your Tablesc.ccciiiiiieiinnn.... 52
CreatingaNew Table...............ooiiiiiiiii s, 52
Addingto an Existing Table.................ccoiiiiiat, 53
Enforcinga CommonSRID, 53

SUMMANY .. i e e e 54

CONTENTS
BCHAPTER 3 Working with Spatial Data in the .NET Framework 55
What Is the .NET Framework? ...t 55
How .NETISHosted ... 56
Why Use .NET for Spatial Functionality? 58
Applying Principles of Object Orientation 60
Data Abstraction............ccooiiiiiii e 60
Encapsulation (Data Hiding)., 61
INheritance. e 62
Polymorphismo e 64
Instantiating Spatial Objects, 64
Using Static Methods ... 64
Applying a Static Method of the Appropriate Datatype. 65
Invoking Spatial Instance Methods 66
T SQL Function Syntax. ... 66
.NET CLR Instance Method Syntax........................... 67
Chaining Multiple Method Calls....................ccooattt. 67
Accessor and Mutator Methodsl 68
Accessing Properties ... e 68
SYMEAX ..o e 68
Read Only and Read Write Properties........................ 69
Combining T SQL and .NET CLRMethods 69
Using Open Geospatial Consortium Methods 70
Handling Exceptionsinthe CLR o, 70
SUMMANY .. e e e 73
PART 2 mmm Adding Spatial Data
BCHAPTER 4 Creating Spatial Data Objects 77
Choosing an Appropriate Static Method 77
Creating Geometries from Well Known Text 79
Creating a Pointfrom WKTt 80
Creating a LineString from WKTcooiit. 82
Creating a Polygon fromWKTt 83
Creating a MultiPoint from WKToiit. 85
Creating a MultiLineString from WKT......................... 86
Creating a MultiPolygon from WKT........................... 86
Creating a Geometry Collection from WKT..................... 87
Creating Any Kind of Geometry from WKT..................... 87

Representing an Existing Geometry ASWKT 89

X CONTENTS

BCHAPTER 5

BCHAPTER 6

Creating Geometries from Well Known Binary 91
Creatinga PointfromWKB ...t . 93
Creating a LineString fromWKBt lL. 96
Creating a Polygon fromWKB.............ccooiiiiiina ... 97
Creating a Multielement Geometry from WKB................. 100
Creating Any Type of Geometry fromWKB 102
Representing an Existing Geometry ASWKB.................. 102

Creating Geometries from Geography Markup Language 103
Structure of a GML Document.l 104
Declaring the GML Namespace.ccoeviievinennn... 104
Methods to Instantiate Geometry Objects fromGML 106
Creatinga PointfromGML ccoiitt 106
Creating a LineStringfrom GML 108
Creating a Polygon fromGMLoiitt. 109
Creating a MultiPointfrom GML 109
Creating a MultiLineString fromGML. 110
Creating a MultiPolygon from GML.......................... 110
Creating a Geometry Collection fromGML.................... 111
Representing an Existing Geometry ASGML 112

SUMMANY .. e e e e 113

Marking Out Geometries Using Virtual Earth 115

Creating the Web Application, 116
CreatingaNewWeb Site. ...t 116
AddingaBasicMap ... 117
Extending the Map Functionality............................ 121
Adding Controls to HTMLPage.htm.......................... 128

Using the Web Application ...t 130

Creating a Geometry from the WKT Qutput 132

SUMMANY .. e i e e e 134

Importing SpatialData 137

SourcesofSpatialDatacoiiiiiii i 137

Importing Tabular Spatial Data 138
Importingthe TextFile. ...t 140
Adding the geography Columnccoieiiinn..s. 142

Populating the Spatial Column 142

CONTENTS
Importing Data from Keyhole Markup Language 144
Comparing KMLtOGML. ..o e 144
Transforming KMLto GML. ...t 146
Importing Data from ESRI Shapefile Format 148
Obtaining Sample ShapefileData........................... 149
Importing Shapefile Data with Shape2SQL 150
Using Third Party Conversion ToOIScccvvevievninenn.. 154
Commercial TOOIS. ..o vv et e i e 154
FreeToolSo e 154
SUMMANY .. e e e e i e 155
BCHAPTER7 Geocodingccooiiiiiiiiiiiiieaeaa, 157
What Is Geocoding?c.coiiiiriii e i 157
MapPoint Web Service ... 158
Accessing the MapPoint Web Service from SQL Server. 159
Signing Up for the MapPoint Web Service.................... 160
Creating the .NET Assemblyc.ccviiiiiiiiiiiinninnnn.. 160
Creatinga New Project ..ot 161
Configuring the Project. ...l 162
Adding the Geocoding Function 165
Compiling the Assembly 170
Configuring the Databaseccoiiiiiiiiiiin.... 171
Enabling CLRSupport. 171
Setting Security Permissions. oo ool 17
Importing the Assembly ... 172
Creatingthe Function, 173
Using the Geocode Functionccoiiiiiiiiiiiine.. 174
SUMMANY .. i e e e e e 177
PART 3 mmm Presenting Spatial Data
BCHAPTER 8 Syndicating SpatialData 181
Why Syndicate Spatial Information? 181
Syndication Formats i 182
The GeoRSS Formatt it 184
GeoRSS Spatial Encodings.coviiiiii i 185

Relating Spatial Information with the GeoRSS <where> Tag 186

Xi

Xii

CONTENTS

BCHAPTER 9

Attaching Spatial InfformationtoaFeed 187
Creatinga GeoRSSFeed ...t 188
Creatingthe Sample Dataccoiiintt, 189
Servingthe GeoORSS Feedo 195
Testingthe FeedHandler L. 198
Consuming the GeoRSS Feed, 199
Using the Google MapsWeb Site 199
Using Embedded Google Mapsc.covvivvinnn... 200
Using Microsoft Virtual Earth. 203
Using Yahoo! Maps. ..o 205
SUMMANY .. e e e e i e 206

Presenting Spatial Data Using

Web Mapping Services 207
The Applicationo e e 207
Process OVEIVIBWceiieiiiii it ie e ieens 208
Obtainingthe Source Data ..., 211
Creating a New Web Site Projectcciiiii... 212
Creatingthe HTMLPageccoiiiiiiiiiiiiininnnns. 212

Referencingthe APl ... 213
Including the JavaScript.............cco i 214
Specifying the Map Container.............................. 214
Reviewingthe HTMLPage.............ciiiiiiiin.t. 215
Creating the Static JavaScript ... 215
Declaring the Map Object 216
Loading the Google Maps APlccoviiiiien.... 216
Setting Callbacks to Load and Unload the Map................ 217
CreatingtheMap ... 217
Configuringthe Map. ... e 218
Adding Interactivity.ccoiiii i 219
Creatingan AJAX Object ...t 220
RequestingData..............cciiii i 221
Clearingthe Map. ... i 222
Updating the Status Windowoiitt 222
Disposingofthe Map ..ot 223
Reviewing the JavaScript.o 224

Creating the Stored Procedurecooiiiiiiiiien... 228

CONTENTS
Creatingthe Web Handler 231
Creating a Connection to SQL Server........................ 232
Calling the Stored Procedure.ccovvievinnenn... 232
Constructing the Geometry Elements........................ 233
Adding a ShapetotheMap..................oiiiiiiat. 237
Attaching Descriptive Informationtothe Map................. 237
Customizing the Appearance of Map Elements................ 238
Reviewing the NETHandler 239
Viewingthe Page ..., 244
Further Applications ... 245
SUMMANY .. e i e e e 247
ECHAPTER 10 Visualizing Query Results in Management Studio 249
SQL Server Management Studiol 249
Visualizing Spatial Resultsccoiiiiiiiiii it 249
Choosing Visualization Optionscccoviiiiiiiiinnn.. 251
Supported Projectionsoiiiii i e 252
Equirectangular. ... i 252
Mercatoro e 253
RObINSON ... e 254
BONNe.o 255
SUMMANY .. e e e e e 257
PART 4 =mm Analyzing Spatial Data
ECHAPTER 11 Examining Properties of Spatial Objects 261
Returning the Name of a Geometry Type 262
Supported Datatypes ... 262
USagB . ..ttt e e 262
EXample. ... e 263
Returning the Number of Dimensions Occupied by a Geometry 263
Supported Datatypes ... 263
USagB. .. et e 263

xiii

Xiv CONTENTS

Testing Whether a Geometry Is of a Particular Type 264
Supported Datatypes ... 265
USA0B .. ettt e 265
EXample. ... 266
Comparing the Results of STDimension(), STGeometryType(),

and InstanceOf(). ... 266

Testing Whether a Geometry IsSimple 269
Supported Datatypes ... 269
USA0B .. ettt 269
EXample. ... e 270

Testing Whether a Geometry IsClosed 271
Supported Datatypes ... 272
USA0B .. et e aa 272
EXample. ... e 272

Testing Whether a LineStringIsaRing 273
Supported Datatypes ... 274
USa0B . .ttt e e 274
EXample. ..o 274

Counting the Number of Points ina Geometry 275
Supported Datatypes ... 275
USA0B .. ettt 275
EXample. ... e 276

Testing Whether a Geometry ISEmpty il 276
Supported Datatypes ... 277
USA0B .. ettt e 277
EXample. ... 277

Returning Cartesian Coordinate Values 278
Supported Datatypes ... 278
USA0B .. ittt 278
EXample. ... 278

Returning Geographic Coordinate Values 279
Supported Datatypes ... 279
USA0B .. ettt 279
EXample. ... 279

Returning Extended Coordinate Values 280
Supported Datatypes ... 280
USA0B .. ettt e 280

CONTENTS

Returning a Specific Point froma Geometry 281
Supported Datatypes ... 282
USA0B .. ettt e 282
EXample. ... 282

Finding the Start and End Points of a Geometry 283
Supported Datatypes ... 283
USA0B .. ettt e 283
EXample. ... 283

Finding the Centroid of a geometry Polygon 284
Supported Datatypes ... 285
USA0B .. ettt e 285
EXample. ... e 286

Finding the Center of a geography Instance 286
Supported Datatypes ... 287
USA0B .. et 287
EXample. ... 287

Returning an Arbitrary Point from a Geometry 288
Supported Datatypescooiiiiiii i 289
USA0B .. ettt 289
EXample. ... 289

Measuring the Length ofa Geometryot L. 289
Supported Datatypes 290
USA0B .. ettt e 290
EXample. ... 291

Calculating the Area Contained by a Geometry 291
Supported Datatypes ... 292
USA0B .. ettt 292
EXample. ... 292

Setting or Retrieving the SRID of a Geometry 293
Supported Datatypescciiiiiii i 293
USA0B .. ettt e 293
EXample. ... 293

Isolating the Exterior Ring of a Geometry Polygon 295
Supported Datatypes ... 295
USA0B .. ettt 295
EXample. ... 295

Counting the Interior Rings of a Geometry 296
Supported Datatypes ... 297
USA0B .. ettt e 297

Xv

Xvi CONTENTS

BCHAPTER 12

Isolating an Interior Ring fromaPolygon 298
Supported Datatypes 298
USagB . ..ttt e 298
EXample. ... 298

Counting the Rings in a geography Polygon 299
Supported Datatypes 300
USagB . .. ittt e e 300
EXample. ... 300

Isolating a Ring from a geography Polygon 301
Supported Datatypesccviiiiii i 301
USagB . . it e 301
EXample. ... e 301

Identifying the Boundary of a Geometry 302
Supported Datatypesccooiiiii i 304
USa0B . .. ettt e e 304
EXample. ... 304

Calculating the Bounding Box of a Geometry 305
Supported Datatypes 306
USagEB . .ttt e e 306
EXample. ... 306

Calculating the Envelope of a geography Object 307
Supported Datatypesccoiiiiii i 307
USagB . .ttt e 307
EXample. ... 308

Counting the Elements in a Geometry Collection 308
Supported Datatypes 309
USagB . .ttt e 309
EXample. ... 309

Retrieving an Individual Geometry from a Geometry Collection 310
Supported Datatypes 311
USagB . .ttt e e 311
EXample. ... 311

QUMM .. e e e e 312

Modifying Spatial Objects 315

Ensuring That an ObjectIsValidccoiit. 315
Supported Datatypesociiiiiii i 316
USagB. . et e 316

CONTENTS
Validatinga Geometrycc i 318
Supported Datatypes ... 318
USagB . ..ttt e 318
EXample. ... 318
Combining Spatial Objectsccoiiiiiiii 319
Supported Datatypes ..o 321
USagB . . et e 322
EXample. ... e 322
Defining the Intersection of Two Geometries 323
Supported Datatypesccoiiiiii i 325
USagB . . ettt e 325
EXample. ... e 325
Identifying the Difference Between Two Geometries 327
Supported Datatypest 327
USagB . .. ettt e 328
EXample. ... 328
Calculating the Symmetric Difference Between Two Geometries 330
Supported Datatypes 330
USa0EB . .ttt e e 331
EXample. ... 331
Simplifyinga Geometry 332
Supported Datatypesocviiiiii i 332
USagEB . .ttt e e 332
EXample. ... 334
Creating a Buffer Around an ObjectL. 334
Supported Datatypes 335
USagE . .ttt e 336
EXample. ... 336
Creating a Simpler Buffer o, 338
Supported Datatypes 338
USag . .ttt e 338
EXample. ... 339
Creating the Convex Hull of a Geometry 340
Supported Datatypesccciiiiiii i 341
USagB . .ttt e e 342
EXample. ... 342

SUMMANY .. e i e e e 343

Xvii

Xviii CONTENTS

BCHAPTER 13 Testing Spatial Relationships 345
Testing the Equality of Two Geometries 345
Supported Datatypes 345
USagB . . ittt e 346
EXample. ... e 346
Calculating the Distance Between Geometries 348
Supported Datatypes 348
USagE . . ettt e e 348
EXample. ... e 349
Testing Whether Two Geometries Intersect 355
Supported Datatypesccoiiii i 356
USa0B . .. ittt e 356
EXample. ... 356
Performing a Quick Test of Intersection Between Two Geometries ... 358
Supported Datatypesocviiiiii i 359
USagB . .ttt e e 359
EXample. ... 359
Testing Whether Two Geometries Are Disjoint 361
Supported Datatypesccoiiiiiii i 361
USagEB . ..ttt e e 362
EXample. ... 362
Finding Out Whether One Geometry Crosses Another 362
Supported Datatypesccoiiiiii i 363
USagEB . .ttt e 364
EXample. ... 364
Finding Out Whether Two Geometries Touch 365
Supported Datatypes 366
USa0B . .ttt e e 366
EXample. ... 366
Testing Whether One Geometry Overlaps Another 368
Supported Datatypesccoiiiiii i 368
USagE . .ttt e e 368
EXample. ... 368
Testing Whether a Geometry Is Contained Within
Another GEOmetrycoiiiiii i 370
Supported Datatypes 370
USagE . .ttt e e 370

CONTENTS
Testing Whether a Geometry Contains Another Geometry 371
Supported Datatypesccoiiiiii i 372
USagB . .. e et e e 372
EXample. ... 372
Testing Custom Relationships Between Geometries 373
Supported Datatypes 373
USagB . .. ettt e 373
EXample. ... e 375
QUMM .. e e e e e 376
PART 5 =mm Ensuring Spatial Performance
BCHAPTER 14 Indexing ...t 379
What Does a Spatial Index Do?coiiiiiiiii it 379
How Do Spatial IndexesWork? ..., 380
Building an Index fromthe Gridol 387
CoveringRUIE ... 387
Deepest CellRule.coovneiie e 388
Cells Per ObjectRule..........c.oeviiiiiiii it 389
Applying a Grid to the geography Datatype 389
Creating a Spatial Index Using T SQLt 390
Creating a geometry Index............ccoviiii ... 391
Creating a geography Index.............ccoviiiiiriinnin... 393
Creating a Spatial Index in SQL Server Management Studio 393
Designing Queries to Use a Spatial Index 395
Providing a Hint to a Spatial Index 397
OptimizinganIndexcociiiiiiiiii it 398
Grid Resolution . ..o 398
Bounding BOXccoviii e 400
Cells Per Object. ..o e i i 400
QUMM . e i e e i e 401

Xix

Introduction

The use of spatial data in information systems is hardly a new technology. Dedicated geographic
information systems (GISs), such as ARC/INFO from ESRI, have been commercially available
since the early 1980s. While the technological capabilities of these systems have evolved signif-
icantly over the past 25 years, their adoption has remained relatively confined within a small,
specialized group of developers. One reason for this is that, because of the complex nature of
spatial data, GIS systems themselves are typically complex, and require dedicated, specially
trained operators. Furthermore, these systems are frequently stand-alone systems and do not
integrate spatial data with central corporate data systems.

More recently, database management system providers, including Oracle, IBM (DB2),
MySQL, and the PostgreSQL Global Development Group, have all released spatially enabled
relational database management systems (RDBMSs). Although this has widened the adoption
of spatial techniques, the spatial functionality is typically provided using an optional add-in
component that requires specific product knowledge that general developers typically do not
have yet. Knowledge of spatial data has therefore still largely remained limited to specialist
technical fields.

With the introduction of spatial support in SQL Server 2008, Microsoft has taken a number
of steps to reduce the number of barriers that, until now, have prevented mainstream developers
from using spatial data:

* Spatial datatypes are included as a core component of the SQL Server 2008 database, and
work “out of the box,” requiring no additional components to be installed or configured.

» Spatial operations are integrated into the existing functionality of the SQL Server Database
Engine, allowing developers to continue working within a familiar development envi-
ronment using existing tools such as SQL Server Management Studio.

» Existing SQL Server databases can be easily enriched by adding spatial data fields to their
existing structure there is no need to migrate data onto a new platform.

e The new geometry spatial datatype conforms to accepted industry-wide standards set by
the Open Geospatial Consortium (OGC).

 Spatial support is included in all versions of SQL Server 2008, including the freely available
SQL Server Express Edition. As a result, even small-scale, hobbyist, and amateur program-
mers can start using spatial data.

In this book, I give you an introduction to working with spatial data in SQL Server 2008 that
will enable you to start using these new features to add exciting and value-adding capabilities
to your database applications.

Xxvii

XXviii

INTRODUCTION

Who This Book Is For

This book is aimed at developers who are being introduced to spatial data for the first time
through SQL Server 2008. No previous knowledge of working with spatial data is assumed, and
all topics are explained from the ground up. My intention is to explain how to use the new spatial
datatypes to add additional reporting and analysis capability to your existing datasets, by
demonstrating a range of practical usage examples.

How This Book Is Structured

The chapters in this book are divided into five parts. Each part introduces topics that are related to
a particular aspect of spatial data, and the topics are listed in the order in which, as anewcomer
to spatial data, you are likely to encounter them.

Part 1 (Chapters 1 3) introduces the fundamental concepts involved when working with
any spatial data. It first covers the theoretical issues of models of the earth, coordinate references,
and geodetic datums, and then describes the specific practical implementation of spatial data
in SQL Server 2008. It presents a side-by-side comparison of the two new spatial datatypes,
geography and geometry, and examples to demonstrate how they can be used with reference to
the .NET CLR.

Part 2 spans four chapters, each of which introduces a different method to insert spatial
data into a SQL Server 2008 database. Chapter 4 explains how to use the various formats that
are natively supported by SQL Server (WKT, WKB, and GML), and Chapter 6 describes tools and
methods that you can use to import other commonly used formats such as KML and ESRI shape-
files. Part 2 includes two chapters that each cover an example of extending SQL Server functionality
by using an external service. Chapter 5 explains how Virtual Earth can be used as a drawing
canvas to define new spatial data, and Chapter 7 describes how to create a custom .NET
assembly to access the MapPoint Find service to provide geocoding functionality in SQL
Server.

Part 3 (Chapters 8 10) describes various methods of visually presenting spatial data. SQL
Server 2008 has only very limited built-in spatial visualization capability, so in this part I describe
how to present and visualize syndicated spatial data using the GeoRSS format, and how to
build interactive front-end spatial applications using the Virtual Earth and Google Maps
controls. I also describe the Spatial Results tab, which allows you to quickly examine the results
of a query from within SQL Server Management Studio.

Part 4 (Chapters 11 13) introduces the range of spatial methods that can be used to query
properties and relationships between spatial objects. Every method is covered in outline form,
including an explanation of its purpose, a description of the context in which it can be used,
and a simple code example to demonstrate its use in a real-life situation. Additionally, there are
many diagrams used to illustrate the results of the most commonly used methods.

Part 5, composed of Chapter 14, covers issues related to the performance of spatial data-
bases, with a focus on the important topic of spatial indices.

INTRODUCTION

Prerequisites

In order to follow the code examples listed in this book, you should have a fully installed and
configured instance of SQL Server 2008. All of the examples presented in this book work with
any edition of SQL Server 2008, from the Enterprise Edition right down to the freely available
Express Edition.

Although spatial data is supported by the SQL Server core Database Engine, this alone does
not provide all the capabilities generally required for an end-to-end spatial application. For
example, SQL Server has only limited capability to import common formats of existing spatial
data, and has only a basic method of displaying spatial data. In order to show you how to inte-
grate SQL Server into an end-to-end spatial application, some chapters use additional software
or services. These include Shape2SQL (used in Chapter 6); Microsoft MapPoint Web Service,
Microsoft Visual Basic Express Edition, and Microsoft Visual C# Express Edition (used in Chapter 7);
and Virtual Earth and Google Maps (both used in Chapters 8 and 9). All of the additional software
used in this book is freely available, and details of how to obtain the software are included in the
relevant chapters.

Downloading the Code

This book contains numerous code examples to demonstrate the methods used in each chapter.
You can download the code in a zip archive from the Source Code/Download area of the Apress
web site (http://www.apress.com).

Contacting the Author

If you have any questions or comments, you can e-mail the author directly at
alastair@beginningspatial.com. Alternatively, check out http://www.beginningspatial.com
for additional information and resources related to this book.

XXix

PART 1

Working with
Spatial Data

This part of the book introduces the fundamental principles that you need to know to use
spatial data effectively in SQL Server 2008. The chapters in this part explain what spatial
data is and how to define it, how SQL Server treats different kinds of spatial data using the
geometry and geography datatypes, and the ways in which those spatial datatypes are
implemented using the Microsoft .NET Framework CLR.

CHAPTER 1

Defining Spatial Information

Spatia] data analysis is a complex subject area, taking elements from a range of academic
disciplines, including geophysics, mathematics, astronomy, and cartography. Although you do
not need to understand these subjects in great depth to start using the new spatial features of
SQL Server 2008, itis important to have a basic understanding of the theoretical concepts involved
so that you use spatial data appropriately and effectively in your applications.

In this chapter you will learn how different spatial reference systems identify positions in
space, and how these systems can be used to define spatial objects representing features on the
earth. These concepts are fundamental to the creation of consistent, accurate spatial data, and
will be used throughout the practical applications discussed in later chapters of this book.

What Is Spatial Data?

Spatial data describes the position, shape, and orientation of objects in space.

In this book, as in most common applications, we are particularly concerned with describing
the position and shape of objects on the earth. This is known as geospatial data. Geospatial
data can describe the properties of many different sorts of “objects” on the earth. These objects
might be tangible, physical things, such as an office building or a mountain, or abstract features,
such as the imaginary line marking the political boundary between countries.

Uses of Spatial Data

Spatial data provides information that can be used in a wide range of different areas. Some
potential applications are as follows:

* Analyzing regional, national, or international sales trends
¢ Deciding where to place a new store based on proximity to customers and competitors
* Navigating to a destination using a Global Positioning System (GPS) device

¢ Allowing customers to track the delivery of a parcel

CHAPTER 1 | DEFINING SPATIAL INFORMATION

* Monitoring the routes of vehicles in a logistics network
* Optimizing distribution networks to provide the most efficient coverage of an area
* Reporting geographic-based information on a map rather than in a tabular or chart format

* Providing location-based services, such as providing a list of nearby amenities for any
given address

* Assessing the impact of environmental changes, such as identifying houses at risk of
flooding caused by rising sea levels

All of these examples rely on the ability of spatial data to describe the position and shape
of objects on the earth in a structured, consistent way.

Representing Features on the Earth

In real life, objects on the earth often have complex, irregular shapes. It would be very hard, if
not impossible, for any item of spatial data to define the exact shape of these features. Instead,
spatial data represents these objects by using simple, geometrical shapes that approximate
their actual shape and position. These shapes are called geometries.

SQL Server 2008 supports three main types of geometry that can be used to represent
spatial information: Points, LineStrings, and Polygons. In this section I describe the properties
of each of the three types in turn, and then I show how you can use them to represent various
features on the earth.

Points

A Pointis the most fundamental type of geometry, and is used to define a singular position in
space. A Point object is zero-dimensional, meaning that it does not have length or area. Figure 1-1
illustrates a representation of a Point geometry.

Figure 1-1. A Point geometry

When using geospatial data to define features on the earth, a Point geometry is used to
represent an exact location, which could be a street address or the location of a bank, volcano,
or city, for instance. Figure 1-2 illustrates several Point geometries used to represent the loca-
tions of major cities in Australia.

CHAPTER 1 | DEFINING SPATIAL INFORMATION

Figure 1-2. A series of Point geometries representing cities in Australia

LineStrings

Having defined a series of two or more points in space, we then can draw straight lines connecting
each point to the next point in the series, to define a LineString. LineStrings comprise a series
of two or more distinct points and the line segments that connect them. LineStrings are one-
dimensional spatial objects they have a specified length, but do not contain any area.
LineStrings may be described as having the following additional characteristics:

* A simple LineString is one in which the path drawn between the points of the LineString
does not cross itself.

* A closed LineString is one that starts and ends at the same point.

¢ ALineString thatis both simple and closed isknown as a ring. Even though a ring appears to
represent the perimeter of a closed shape, it does not include the area enclosed within
the shape it only defines the points that lie on the line itself.

Different examples of LineString geometries are illustrated in Figure 1-3.

CHAPTER 1 | DEFINING SPATIAL INFORMATION

SR

Figure 1-3. Examples of LineString geometries (from left to right): a simple LineString; a simple,
closed LineString (a ring); a nonsimple LineString; a nonsimple, closed LineString

In geospatial data, LineStrings are commonly used to represent features such as roads,
rivers, delivery routes, or contours of the earth. Figure 1-4 shows numerous LineStrings used to
represent major rivers in France.

Figure 1-4. A series of LineString geometries representing major rivers in France

CHAPTER 1 | DEFINING SPATIAL INFORMATION

BNote Some geograph ¢ nformaton systems (G Ss) make a d st nct on between a LineString and a Line.
Accord ng to the Open Geospata Consortum (OGC) S mp e Features for SQL Spec f cat on (a standard on
wh ch the spata features of SQL Server 2008 are arge y based), a L ne connects exacty two po nts, whereas a
L neStr ng may connect any number of ponts. Sncea Lnes can be represented as L neStr ngs, of these two
types, SQL Server 2008 ony mp ements the L neStr ng geometry.

Polygons

A Polygon geometry is defined by a boundary of connected points that forms a closed LineString,
called the exterior ring. In contrast to a simple, closed LineString geometry, which only defines
those points lying on the ring itself, a Polygon geometry also contains all the points that lie in
the interior area enclosed within the exterior ring.

Every Polygon must have exactly one external ring that defines the overall perimeter of the
shape, and may also contain one or more internal rings. Internal rings define areas of space
that are contained within the external ring but notincluded in the Polygon definition. They can
therefore be thought of as “holes” that have been cut out of the main geometry.

Since Polygons are constructed from a series of one or more rings, which are simple, closed
LineStrings, all Polygons themselves are deemed to be simple, closed geometries. Polygons are
two-dimensional geometries they have an associated length and area. The length of a Polygon is
measured as the sum of the distances around the perimeter of all the rings of that Polygon
(exterior and interior), while the area is calculated as the space contained within the exterior
ring, excluding the area contained within any interior rings. Some examples of Polygon geom-
etries are illustrated in Figure 1-5.

Figure 1-5. Examples of Polygon geometries (from left to right): a Polygon; a Polygon with an
interior ring

Polygons are frequently used in spatial data to represent geographic areas such as islands
or lakes, political jurisdictions, or large structures. Figure 1-6 illustrates Polygon geometries
that represent the 48 contiguous states of the mainland United States.

CHAPTER 1 | DEFINING SPATIAL INFORMATION

Figure 1-6. A series of Polygon geometries representing states of the United States

Choosing the Right Geometry

There is no “correct” type of geometry to use to represent any given object on the earth. The
choice of which geometry to use will depend on how you plan to use the data. If you are going
to analyze the geographic spread of your customer base, you could define Polygon geometries
that represent the shape of each of your customers’ houses, but it would be a lot easier to consider
each customer’s address as a single Point. In contrast, when conducting a detailed analysis of
a small-scale area for land-planning purposes, you may want to represent all buildings, roads,
and even walls as Polygons that have both length and area, to ensure that the spatial data repre-
sents their actual shape as closely as possible.

Combining Geometries in a Geometry Collection

Sometimes, what could be considered a single object on the earth may be represented using a
combination of several geometry objects. For instance, the Great Wall of China is not a single
continuous wall, but rather it is made up of numerous separate sections of wall. As such, the
overall shape of the wall may be best represented as a collection of LineStrings. Similarly, a
single country spread over several islands, such as Japan, may be represented by a collection of
Polygons, each one representing the shape of an individual island. When you define a single
object that contains several individual geometries in this way, it is called a Geometry Collection.
A Geometry Collection may contain any number of any type of geometries. In the specific case
in which a Geometry Collection contains only multiple elements of the same type of geometry,
itis referred to as a MultiPoint, MultiLineString, or MultiPolygon geometry.

CHAPTER 1 | DEFINING SPATIAL INFORMATION

DEFINING AUGUSTA NATIONAL GOLF COURSE

n order to demonstrate the d fferent ways nwh ch spata data can descr be the same object on the earth et
me show you a practca examp e Suppose we want to store an tem of spata data descr b ng the course at
Augusta Natona Gof Cub (n Augusta Georga) home of the annua US Masters ournament

f we were stor ng nformat on for a tour st database of nterestngpacestovst nGeorga twoud probaby
suff ce to descr be the ent re go f course us ng a Po nt geometry h s Po nt cou d descr be the approx mate
ocat on of the course and wou d be perfecty suff ¢ ent to perform spata ca cu at ons such as fnd ng the
d stance to the c osest a rport or dent fy ng nearby p aces to stay

Atemnatvey we coud choose to represent the course as a geometry co ecton conta n ng many e ements
that descr be the nd v dua features of the course much more accuratey we cou d represent the greens and
the fa rways of each ho e as separate Po ygons use Po nt objects to represent each tee and use L neStr ng
objects to show the opt mum dr ve off the tee h s sort of representat on wou d be more su tab e for use by a
go fer who s actua y p ay ng the course access ng spata datavaa mob e GPS system to p an the r next shot

Both of these a ternat ve representat ons are equa y va d—the cho ce s mp y depends on the
app cat on of the data

Understanding Interiors, Exteriors, and Boundaries

Every geometry shape divides space into three areas relative to that geometry: the interior,
exterior, and boundary. In the field of topological mathematics, these terms have very specific
definitions, but you can think of them simply as follows:

* The interior of a geometry consists of all the points that lie in the space occupied by
the geometry.

* The exterior consists of all the points that lie in the space not occupied by the geometry.

¢ Theboundary of a geometry consists of the points that lie on the “edge” of the geometry.
In SQL Server, every geometry is considered to be topologically closed; that is, any points
that lie on the boundary of a geometry are contained within the interior of the geometry.

Every geometry specifies one or more points in their interior and exterior, although only
certain types of geometry contain points in their boundaries. The classification of these different
areas of space for each type of geometry follows:

Point and MultiPoint geometries: Represent singular locations, where the interior consists of
the individual point(s) defined by that object. However, they do not have a defined boundary.

LineString and MultiLineString geometries: Have an interior consisting of all the points
that lie on the straight line segments drawn between the defined series of points. Nonclosed
LineStrings and MultiLineStrings have a boundary consisting of the points at the start and
end of the LineString. However, closed LineStrings those that start and end at the same
point do not have a boundary.

Polygon and MultiPolygon geometries: Have an interior consisting of all the points contained
within the exterior ring, excluding those contained within any interior ring. The boundary
of these types of geometry consists of the closed LineString that forms the exterior ring
itself, together with any interior rings defined by that Polygon.

10

CHAPTER 1 | DEFINING SPATIAL INFORMATION

The distinction between these classifications of space becomes very important when
expressing the relationship between different spatial objects, since these relationships are
generally based on comparing where particular points lie with respect to the interior, exterior,
or boundary of the two geometries in question. For instance, two geometries intersect each
other if they share at least one pointin common. However, they are only deemed to touch each
other if the points that they share lie only on the boundaries of each geometry. This concept is
discussed in more detail in Chapter 13.

Positioning a Geometry

After we choose an appropriate geometry (Point, LineString, or Polygon) to represent a given
object, we then need to position it in the right place on the earth. We do this by relating each
point in the geometry definition to the relevant real-world position it represents. For example,
if we want to use a Polygon geometry to represent the US Department of Defense Pentagon
building, we need to specify that the five points that define the boundary of the Polygon geom-
etry relate to the location of the five corners of the building. So, how do we do this?

You are probably familiar with the terms longitude and latitude, and have seen them used
to describe positions on the earth. If this is the case, you may be thinking that we can simply
express the latitude and longitude coordinates of the relevant position on the earth for each
point in the geometry. Unfortunately, it's not quite that simple.

What many people don’t realize is that any particular point on the ground does not have a
unique latitude or longitude associated with it. There are in fact many systems of latitude and
longitude, and the coordinates of a given point on the earth will differ depending on which
system is used. Furthermore, latitude and longitude coordinates are not the only way of expressing
positions there are other types of coordinates that define the location of an object without
using latitude and longitude at all. In order to understand how to specify the position of your
geometry on the earth, you first need to understand how different spatial reference systems work.

COMPARING RASTER TO VECTOR DATA

here are two ma n ways of mode ng spata nformaton usng a vector mode or us ng a raster mode
Vector data d scussed n ths chapter descr bes d screte spata objects by def n ng the coord nates of
geometr es that approx mate the shape of those features Vector spata nformaton s best su ted to represent
d screte tems of spata data such asthe ocat on of nd v dua customers or warehouses or the path of roads
n contrast raster data represents spata nformaton usng a matrx of ce s hese ce s are arranged
nto a grd that s overa d onto the surface of the earth he va ue of eachce n the matr x represents a prop-
erty of the under y ng area covered by that grd ce One examp e of raster spata data saera or sate te
magery nwh chcase the matrx grd s the set of p xe s that forms the mage and the va ue of any nd v dua
ce sthe coor of the assoc ated pxe However raster data can a so be used to descr be any other spata
nformaton t spartcuary su ted to data that can take a cont nuous range of va ues such as when dep ctng
the eve s of ranfa across an area of and or the depth of an area of water
A the spata features n SQL Server 2008 (and therefore d scussed n th s book) are based on a vector
mode of spata data here scurrentyno bu t- n support for raster data n SQL Server However n Chapter 9
w show you how to over ay vector shape nformat on wth raster magery of the earth by comb n ng spata
data from SQL Server w th the M crosoft V rtua Earth and Goog e Maps web serv ces

CHAPTER 1 | DEFINING SPATIAL INFORMATION

Describing Positions Using a Coordinate System

The purpose of a spatial reference system is to unambiguously identify and describe any point in
space. This ability is essential to enable spatial data to define the positions of points that make up
the various kinds of geometry used to represent features on the earth. To describe the positions
of points in space, every spatial reference system is based on an underlying coordinate system. A
coordinate reference is a conventional and widely accepted way of describing the position of a
point from a given origin, in a given dimension. A set of n coordinates, such as (1, 2, 3, .. ., n), can
therefore be used to describe the position of a point from an origin in n-dimensional space.

There are many different types of coordinate systems; when you use geospatial data in
SQL Server 2008, you are most likely to use a spatial reference system based on either a
geographic or projected coordinate system.

BNote A set of coord nate va ues s ca ed a coord nate fuple.

Geographic Coordinate System

In a geographic coordinate system, any position on the earth’s surface can be defined using
two coordinates:

The latitude coordinate of a point measures the angle between the plane of the equator
and a line drawn perpendicular to the surface of the earth at that point. (This is the defini-
tion of geodetic latitude. An alternative measure, geocentric latitude, is defined as the angle
between the plane of the equator and a line drawn from a point on the earth’s surface to
the center of the earth.)

The longitude coordinate measures the angle in the equatorial plane between a line drawn
from the center of the earth to the point and a line drawn from the center of the earth to
the prime meridian. The prime meridian is an imaginary line drawn on the earth’s surface
between the North Pole and the South Pole (so technically it is an arcrather than aline),
chosen to be the line from which angles of longitude are measured.

These concepts are illustrated in Figure 1-7.

ECaution Snce apont of greater ongtude es further east, and a po nt of greater attude es further
north, t sacommon m stake for peop e to th nk of attude and ong tude as measured on the earth’s surface
tse f, butth s s not the case— at tude and ong tude are ang es measured from the p ane of the equator and
pr me mer d an at the center of the earth.

Coordinates oflatitude and longitude are both angles, and are usually measured in degrees. In
this case, longitude values measured from the prime meridian range from 180°to +180°, and
latitude values measured from the equator range from 90° (at the South Pole) to +90° (at the
North Pole).

1

12

CHAPTER 1 | DEFINING SPATIAL INFORMATION

(

—— —

Figure 1-7. Describing a position on the earth using a geographic coordinate system

Longitudes to the east of the prime meridian are normally stated as positive values, or suffixed
with the letter E. Longitudes to the west of the prime meridian are expressed as negative values,
or using the suffix W. Likewise, latitudes north of the equator are expressed as positive values, or
using the suffix N, whereas latitudes south of the equator are expressed as negative values, or
using the suffix S.

There are several accepted notation methods for expressing values of latitude and longitude:

The most commonly used method is the degrees, minutes, seconds (DMS) system, also
known as sexagesimal notation. In this system, each degree is divided into 60 minutes.
Each minute is further subdivided into 60 seconds. A value of 51 degrees, 15 minutes, and
32 seconds is normally written as 51°15'32".

CHAPTER 1 | DEFINING SPATIAL INFORMATION 13

The system most commonly used by GPS receivers is to display whole degrees, and then
minutes, and decimal fractions of minutes. This same coordinate value would therefore be
written as 51:15.53333333.

Decimal degree notation specifies coordinates using degrees and decimal fractions of
degrees, so the same coordinate value expressed using this system would be written as
51.25888889.

CONVERTING TO DECIMAL DEGREE NOTATION

When express ng geograph ¢ coord nate va ues of attude and ong tude for use n SQL Server 2008 you shou d use
dec ma degree notaton he advantage of th s format s that each coord nate can be expressed asasnge
f oat ng-po nt number o convert DMS coord nates nto dec ma degrees you can use the fo owngrue

Degrees + (M nutes / 60) + (Seconds / 3600) = Dec ma Degrees

For examp e the US Centra nte gence Agency s on ne ed t on of The World Factbook (https://
www.cia.gov/library/publications/the-world-factbook/geos/uk.html)g ves the geographc
coord nates for London as fo ows

5130N 010W

When expressed n dec ma degree notaton ths s

51 5 (Lat tude) —0 166667 (Long tude)

When convert ng a coord nate va ue from DMS to dec ma degree notaton you shou d state the accuracy of
the resutwth up to 15 sgnfcant f gures because th s s the prec s on w th wh ch the converted coord nate
vauew be stored n SQL Server

Projected Coordinate System

In contrast to the geographic coordinate system, which defines positions on a three-dimensional,
round model of the earth, a projected coordinate system describes the position of points on the
earth’s surface as they lie on a flat, two-dimensional plane. A simple way of thinking about this
is to consider a projected coordinate system as describing positions on a map rather than positions
on a globe.

If we consider all of the points on the earth’s surface to lie on a flat plane, we can define
positions on that plane using familiar Cartesian coordinates of x and y, which represent the
distance of a point from an origin along the x axis and y axis, respectively. In a projected coor-
dinate system, these coordinate values are sometimes referred to as easting (the x coordinate)
and northing (the y coordinate), as shown in Figure 1-8.

14

CHAPTER 1 | DEFINING SPATIAL INFORMATION

Figure 1-8. Describing position on the earth using a projected coordinate system

Since a projected coordinate system describes the position of an object by calculating the
distance from an origin along a flat plane representing the earth’s surface, northing and easting
coordinate values are measured and expressed using a linear unit of measure, such as meters
or feet.

Applying Coordinate Systems to the Earth

So far, we have defined two different coordinate systems that can be used to define points in
theoretical space: the geographic coordinate system, which uses angular coordinates of latitude
and longitude, and the projected coordinate system, which uses x and y Cartesian coordinates.
However, a set of coordinates from either of these systems does not, on its own, uniquely iden-
tify a position on the earth. We need to know additional information, such as where to measure
those coordinates from, in what units, and what shape to use to model the earth. For this, we
need to examine the other elements of a spatial reference system the datum, prime meridian,
and unit of measurement.

Datum

A datum contains information about the size and shape of the earth. Specifically, it contains
the details of a reference ellipsoid, and a reference frame. We use this information to create a
geodetic model of the earth, onto which we can apply our coordinate system.

The actual shape of the earth is very complex. On the surface, we can see that there are
irregular topological features such as mountains and valleys. But even if we were to remove
these features and consider the mean sea level around the planet, the earth is still not a regular

CHAPTER 1 | DEFINING SPATIAL INFORMATION

shape. In fact, it is so unique that geophysicists have a specific word solely used to describe the
shape of the earth the geoid.

When using spatial data to describe the position of geometries on the earth’s surface, ideally,
we would like to use coordinates that refer to positions relative to the geoid itself. However,
there is no way that we can accurately model the complicated, irregular shape of the geoid, so
instead we base our spatial system on an approximation of the geoid. This approximation is
called a reference ellipsoid.

ENote Geodesy s the sc ence of study ng and measur ng the shape of the earth. A geodetic mode s there-
fore a mode of the shape of the earth.

Reference Ellipsoid

Despite its name, a reference ellipsoid normally describes an oblate spheroid, which is the three-
dimensional shape obtained when you rotate an ellipse about its shorter axis. When used in
spatial data modeling, spheroid models of the earth are always oblate they are wider than
they are high, and resemble a squashed sphere. This is a fairly good approximation of the shape
of the geoid, which bulges around the equator.

The important feature of a spheroid is that, unlike the geoid, it is a regular shape that can
be exactly mathematically described by two parameters the length of the semimajor axis (which
represents the radius of the earth at the equator), and the length of the semiminor axis (the radius
of the earth at the poles). This is illustrated in Figure 1-9.

ENote Aspherod s asphere that has been “f attened” none axs. Ane psod s a sphere that has been
fattened ntwo axes—that s, the rad us of the shape s dfferent n the x, y, and z axes. Snce e psod mode s of
the wor d are not s gn f cant y more accurate than sphero d mode s at descr b ng the shape of the geo d, refer-
ence e psods are rarey based on true e pso ds, but rather on a s mp er sphero d mode .

An alternative method of stating the properties of an ellipsoid is to give the length of the
semimajor axis and the flattening ratio of the ellipsoid. The flattening ratio, f, is used to describe
how much an ellipsoid has been “squashed,” and is calculated as

f=(@ bla
where a equals the length of the semimajor axis, and b equals the length of the semiminor axis.
In most ellipsoid models of the earth, the semiminor axis is only marginally smaller than
the semimajor axis, which means that the value of the flattening ratio is also small typically
around 0.003. For the sake of convenience, many systems, including SQL Server 2008, use the
inverse-flattening ratio of an ellipsoid instead. This is stated as 1/f, and calculated as follows:

1/f=al (a b)

15

16 CHAPTER 1 | DEFINING SPATIAL INFORMATION

Semiminor (Polar) Axis

Semimajor (Equatorial) Axis

-

Figure 1-9. Properties of a reference ellipsoid

The inverse-flattening ratio of an ellipsoid model typically has a value of approximately 300.
There is not a single reference ellipsoid that best represents every part of the whole geoid. Some
ellipsoids, such as the WGS 84 ellipsoid used by satellite GPS systems, provide a reasonable
approximation of the overall shape of the geoid. Other ellipsoids approximate the shape of the
geoid very accurately over certain regions of the world, but are much less accurate in other
areas. These ellipsoids are normally only applied for use in specific countries, such as the Airy
1830 ellipsoid commonly used in Britain. Figure 1-10 provides an (exaggerated) illustration of
how different ellipsoid models vary in accuracy over different parts of the geoid.

CHAPTER 1 | DEFINING SPATIAL INFORMATION

Geoid
- - - Ellipsoid of Best Global Accuracy

— - — Ellipsoid of Best Regional Accuracy

Figure 1-10. Comparison of cross-sections of different ellipsoid models of the geoid

Itis important to realize that specifying a different reference ellipsoid to approximate the
geoid affects the accuracy of how well a set of coordinates that defines a geometry on that ellipsoid
reflects the actual position and shape of the feature on the earth that the geometry represents.
When choosing an ellipsoid to define spatial data, we must therefore be careful to use one that
is suitable for the purpose of the data in question.

SQL Server 2008 recognizes a number of different reference ellipsoids that are designed to
best approximate the geoid at different parts of the earth. Table 1-1 lists the properties of some
commonly used reference ellipsoids that can be used.

17

18 CHAPTER 1

| DEFINING SPATIAL INFORMATION

Table 1-1. Properties of Some Commonly Used Reference Ellipsoids

Ellipsoid Name Semimajor Semiminor Inverse Usage
Axis (m) Axis (m) Flattening
Airy (1830) 6,377,563.396 6,356,256.909 299.3249646 Great Britain

Bessel (1841)

Clarke (1880)
NAD 27
NAD 83
WGS 84

6,377,397.155

6,378,249.145
6,378,206.4
6,378,137
6,378,137

6,356,078.963

6,356,514.87
6,356,583.8
6,356,752.3
6,356,752.314

299.1528128

293.465

294.9786982
298.2570249
298.2572236

Czechoslovakia,
Japan, South Korea

Africa
North America
North America

Global

Reference Frame

Remember that we are going to use our coordinate system to define positions on the reference
ellipsoid as a way of approximating positions on the earth itself. Having established our ellip-
soid model, we need some way to position that model so that it lines up with the right points
on the earth’s surface. We do this by creating a frame of reference points.

Reference points are places (normally on the earth’s surface) that are assigned known
coordinates in the coordinate system relative to the ellipsoid being used. By establishing a set
of points of known coordinates, we can use these points to “fix” the reference ellipsoid in the
right position. Once the ellipsoid is set in place based on these known points, we can apply our
chosen coordinate system to obtain the coordinates of any other points on the earth, based on
the ellipsoid model. Reference points are sometimes assigned to places on the earth itself; the
North American Datum of 1927 (NAD 27) uses the Clarke (1866) reference ellipsoid, primarily
fixed in place at Meades Ranch in Kansas. Reference points may also be assigned to the positions
of satellites orbiting the earth, which is how the WGS 84 datum used by GPS systems is realized.

When packaged together, the properties of the reference ellipsoid and the frame of terres-
trial reference points form a datum. The most common datum in global use is the World Geodetic
System of 1984, commonly referred to as WGS 84. This is the datum used by MapPoint and
Google Earth, as well as in handheld GPS systems.

Prime Meridian

As defined earlier in this chapter, the geographic coordinate of longitude is the angle in the
equatorial plane between the line drawn from the center of the earth to a point and the line
drawn from the center of the earth to the prime meridian. Our spatial reference therefore needs to
include a definition of what line we are using for the prime meridian the axis from which we
measure our angle of longitude.

A common misconception is to think that there is a single prime meridian based on some
inherent fundamental property of the earth, but this is not the case. The prime meridian of any
spatial reference system is arbitrarily chosen simply to provide a line of zero longitude from
which all other coordinates oflongitude can be calculated. One commonly used prime meridian
is the meridian passing through Greenwich, London, but there are many others. If we were to

CHAPTER 1 | DEFINING SPATIAL INFORMATION

use a different prime meridian, the value of the longitude coordinate of all the points in our
system would change.

Unit of Measurement

Geographic coordinates of latitude and longitude are generally measured in degrees, but may also
be measured in radians, or other angular units of measure. Every spatial reference system must
explicitly state the name of the unit in which geographic coordinates are measured, together with
the conversion factor from the specified unit to one radian. For instance, a spatial reference system
that uses coordinates measured in degrees would include the value of 7/180 (approximately
0.017453293), since this equals the value of one degree when measured in radians.

When using a projected coordinate system, the individual coordinate values represent a
linear distance along the earth’s surface to a point. They are measured in a linear unit of measure,
such as the meter, foot, mile, or yard. Any spatial reference system based on a projected coor-
dinate system must therefore also state the linear unit of measure in which coordinate values
are stated.

Projection

Remember that a projected coordinate system defines positions on the earth as they lie on a
flat, two-dimensional plane, such as a map. We see two-dimensional projections of geospatial
dataonanalmostdailybasis instreet maps, in road atlases, or on our computer screens. Given
their familiarity, and the apparent simplicity of working on a flat surface rather than a curved
one, you would be forgiven for thinking that defining a point on the earth using a projected
coordinate system is somehow simpler than doing so using a geographic coordinate system.
The difficulty associated with a projected coordinate system is that, of course, the world isn’ta
flat, two-dimensional plane. In order to be able to represent it as such, we have to use a map
projection.

Projection is the process of creating a two-dimensional representation of a three-dimensional
model of the earth. Map projections can be constructed either by using purely geometric methods
(such as the techniques used by ancient cartographers) or by using mathematical algorithms.
However, whatever method is used, it is not possible to project any three-dimensional object
onto a two-dimensional plane without distorting the resulting image in some way. Distortions
introduced as a result of the projection process may affect the area, shape, distance, or direction
represented by different elements of the map.

By altering the projection method, cartographers can reduce the effect of these distortions
for certain features, but in doing so the accuracy of other features must be compromised
there is no single ideal map projection that best represents all features of the earth. Over the
course of time, many projections have been developed that balance these distortions in different
ways to create maps suitable for different purposes. For instance, when designing a map used
by sailors navigating through the Arctic regions, a projection may be used that maximizes the
accuracy of the direction and distance of objects at the poles of the earth, but sacrifices accuracy of
the shape of countries along the equator.

The full details of how to construct a map projection are outside the scope of this book.
However, the following sections introduce some common map projections and examine their
key features.

19

CHAPTER 1 | DEFINING SPATIAL INFORMATION

Hammer-Aitoff Projection

The Hammer-Aitoff map projection is an equal-area map projection that displays the world on
an ellipse. An equal-area map projection is one that maintains the relative area of objects; that
is, if you were to measure the area of any particular region on the map, it would accurately
represent the area of the corresponding real-world region. However, in order to do this, the
shapes of features are distorted. This is illustrated in Figure 1-11.

Figure 1-11. The Hammer-Aitoff map projection

Mercator Projection

The Mercator map projection is an example of a conformal map projection. A conformal map
projection is any projection that preserves the local shape of objects on the resulting map.

The Mercator projection was first developed in 1569 by the Flemish cartographer Gerardus
Mercator, and has been widely used ever since. It is used particularly in nautical navigation
because, when using any map produced using the Mercator projection, the route taken by a
ship following a constant bearing will be depicted as a straight line on the map.

The Mercator projection accurately portrays all points that lie on the equator. However, as
you move further away from the equator, the distortion of features, particularly the represen-
tation of their area, becomes increasingly severe. One criticism of using this projection is that,
due to the geographical distribution of countries in the world, many developed countries are
depicted with far greater area than equivalent sized developing countries. For instance, examine
Figure 1-12 to see how the relative sizes of North America (actual area 19 million sq km) and
Africa (actual area 30 million sq km) are depicted at approximately the same size.

Despite this criticism, the Mercator projection is still commonly used by many applica-
tions, including the Google Maps web site (http://maps.google.com/).

21

| DEFINING SPATIAL INFORMATION

CHAPTER 1

||||||||||||||||||| - |_.|-‘||||_.|||_.|.‘.|— e T

‘ N RPN

Figure 1-12. The Mercator map projection

CHAPTER 1 | DEFINING SPATIAL INFORMATION

Equirectangular Projection

The equirectangular projection is one of the first map projections ever to be invented, being
credited to Marinus of Tyre in about 100 AD. It is also one of the simplest map projections,
because the map projects equally spaced degrees of longitude on the x axis, and equally spaced
degrees of latitude on the y axis.

This projection is of limited use in spatial data analysis since it represents neither the accurate
shape nor area of features on the map, although it is still widely recognized and used for such
purposes as portraying NASA satellite imagery of the world (http://visibleearth.nasa.gov/).
Figure 1-13 illustrates a map of the world created using the equirectangular projection method.

T T r T T T T T
v - P

T

L
l
I
I
|

Figure 1-13. The equirectangular map projection

Universal Transverse Mercator Projection

The Universal Transverse Mercator (UTM) projection is not a single projection, but rather a
grid composed of many projections laid side by side. The UTM grid is created by dividing the
globe into 60 slices, called “zones,” with each zone being 6° wide and extending nearly the
entire distance between the North Pole and South Pole (the grid does not extend fully to the
polar regions, but ranges from a latitude of 80°S to 84°N). Each numbered zone is further subdi-
vided by the equator into north and south zones. Any UTM zone may be referenced using a
number from 1 to 60, together with a suffix of N or S to denote whether it is north or south of
the equator. Figure 1-14 illustrates the grid of UTM zones overlaid on a map of the world, high-
lighting UTM Zone 15N.

Within each UTM zone, features on the earth are projected using a transverse Mercator
projection. The transverse Mercator projection is produced using the same method as the
Mercator projection, but rotated by 90°. This means that, instead of portraying features that lie
along the equator with no distortion, the transverse Mercator projection represents features
that lie along a central north-south meridian with no distortion. Since each UTM zone is rela-
tively narrow, any feature on the earth lies quite close to the central meridian of the UTM zone
in which it is contained, and distortion within each zone is very small.

CHAPTER 1 | DEFINING SPATIAL INFORMATION

UTM Zone 15N

1 10 20 50 60
|
- U —
~. 4 M”
.é -+ “/ 144
®]
P) \ s B
‘ 9 N <y 5
11 ¥ 14
-) L.r“"
3|1 A
o »)
n 1T '
- r‘.' ”"Tr

Figure 1-14. UTM zones of the world

The UTM projection is universal insofar as it defines a system that can be applied consis-
tently across the entire globe. However, since each zone within the UTM grid is based on its
own unique projection, the UTM map projection can only be used to accurately represent
features that lie within a single specified zone.

Projection Parameters

In addition to the method of projection used, there are a number of additional parameters that
affect the appearance of any projected map. These parameters are listed in Table 1-2.

Table 1-2. Map Projection Parameters

Parameter

Description

Azimuth

Central meridian

False easting

False northing

Latitude of center
Latitude of origin
Latitude of point

Longitude of center

The angle at which the center line of the projection lies, relative to north

The line of longitude used as the origin from which x coordinates
are measured

A value added to x coordinates so that stated coordinate values remain
positive over the extent of the map

A value added to y coordinates so that stated coordinate values remain
positive over the extent of the map

The latitude of the point at the center of the map projection
The latitude used as the origin from which y coordinates are measured
The latitude of a specific point on which the map projection is based

The longitude of the point at the center of the map projection

23

24

CHAPTER 1 | DEFINING SPATIAL INFORMATION

Table 1-2. Map Projection Parameters (Continued)

Parameter Description

Longitude of point The longitude of a specific point on which the map projection is based
Scale factor A scaling factor used to reduce the effect of distortion in a map projection
Standard parallel A line of latitude along which features on the map have no distortion

Using Spatial Reference Systems

We have examined several components that make up any spatial reference system a system
that allows us to define positions on the earth’s surface, which we can use to construct geometries
representing features on the earth. Table 1-3 gives an overview of each component.

Table 1-3. Components of a Spatial Reference System

Component Function

Coordinate system Specifies a mathematical framework for determining the position of
items relative to an origin.

Datum States a model of the earth onto which we can apply the coordinate
system. Consists of a reference ellipsoid (a three dimensional mathe
matical shape that approximates the shape of the earth) and a reference
frame (a set of points that enables us to position the reference ellipsoid
to line up with the right points on the earth).

Prime meridian Defines the axis from which coordinates of longitude are measured.

Projection? Details the parameters required to create a two dimensional image of
the earth’s surface (i.e., a map), so that positions can be defined using
projected coordinates.

Unit of measurement Provides the appropriate unit in which coordinate values are expressed.

2 projection parameters are only defined for spatial reference systems based on projected coordinate systems.
] p y p 2z proj 2z

Through a combination of all these elements, you can use a spatial reference system to
uniquely identify any point on the earth.

ENote n order to be ab e to descr be pos t ons on the earth us ng a projected coord nate system, a spata
reference system must f rst spec fy a three-d mens ona, geodet ¢ mode of the wor d (as wou d be used by a
geograph ¢ coord nate system), and then additionally state the parameters deta ng how the two-d mens ona
projected map mage shou d be created from that mode . For th s reason, spat a reference systems based on
projected coord nate systems must contana the same e ements as those based on geograph ¢ coord nate
systems, together w th the add t ona parameters requ red for the project on.

CHAPTER 1 | DEFINING SPATIAL INFORMATION 25

Spatial Reference ldentifiers

Every time we state the latitude and longitude, or x and y coordinates, that describe the posi-
tion of a point in a geometry, we must also state the associated spatial reference system in which
those coordinates were obtained. Without the extra information contained in the spatial refer-
ence system, a coordinate tuple is just an abstract set of numbers in a mathematical system.
The spatial reference takes the abstract coordinates from a geographic or projected system and
puts them in a context so that they can be used to identify a real position on the earth’s surface.

However, it would be quite cumbersome to have to write out the full details of the datum,
the prime meridian, and the unit of measurement (and any applicable projection) each time
we wrote down a set of coordinates. Fortunately, various authorities allocate easily memorable,
unique integer reference numbers that represent all of the necessary parameters of a spatial
reference system. These reference numbers are called spatial reference identifiers (SRIDs).

One authority that allocates SRIDs is the European Petroleum Survey Group (EPSG), and
its reference identification system is implemented in SQL Server 2008. Whenever you use any
of the spatial functions in SQL Server that involve stating the coordinates of a position, you
must always supply the relevant EPSG SRID as a parameter.

ITip Youcanvew the deta sofa spata reference systems adm n stered by the EPSG reg stry at the
fo ow ng web ste: http://www.epsg-registry.org.

Spatial References in SQL Server 2008

SQL Server 2008 stores the details of all supported geodetic spatial reference systems in a special
system table called sys.spatial reference systems.Every row in this table corresponds to a
unique spatial reference system that you can use to define spatial data in SQL Server 2008.

In order to see the list of supported geodetic spatial reference systems, execute the following
code in a SQL Server Management Studio query window:

SELECT
*

FROM
sys.spatial reference systems

Table 1-4 lists and describes each column of the sys.spatial reference systems table
shown in the results.

26

CHAPTER 1 | DEFINING SPATIAL INFORMATION

Table 1-4. Columns of the sys.spatial reference systems Table

CGolumn Name

Description

spatia reference id

authority name

authorized spatia reference id

we known text

unit of measure

unit conversion factor

The integer identifier used within SQL Server 2008 to
refer to this system

The name of the authority that defines this reference

The identifier allocated by the authority to refer to
this system

The parameters of the spatial reference system, expressed
in well known text format

A text description of the unit used to express linear
measurements in this system, such as distance and
length

A scale factor for converting from meters into the unit
of measurement

The sys.spatial reference systems table only includes those spatial reference systems
based on geographic coordinates supported by SQL Server. In addition to the spatial reference
systems listed in this table, you can also define data using any projected spatial reference system,

as you will see in the next chapter.

ENote Currenty, the ony author ty used to def ne spata references n SQL Server 2008 s the EPSG, and
a nterna SR Ds are based on the EPSG number ng system. As a resu t, the va ue of the nterna spatial
reference id forany system s the same as the authorized spatial reference id.

Expressing Spatial References in the Well-Known Text Format

Within the sys.spatial reference systems table, SQL Server stores the relevant details of each
spatial reference using the Well-Known Text (WKT) format, which is an industry-standard format
for expressing spatial information defined by the OGC. The WKT description of the spatial
reference is stored as a text string in the well known text column.

To illustrate how spatial references are represented in WKT format, let’s examine the
properties of the EPSG:4326 spatial reference, by running the following query:

SELECT

well known text
FROM

sys.spatial reference systems
WHERE

authority name = 'EPSG'

AND

authorized spatial reference id = 4326

CHAPTER 1 | DEFINING SPATIAL INFORMATION

The following is the result (with line breaks and indents added to make the result easier
to read):

GEOGCS[
"WGS 84",
DATUM[
"World Geodetic System 1984",
ELLIPSOID[
"WGS 84",
6378137,
298.257223563
]

1,
PRIMEM["Greenwich", 0],

UNIT["Degree", 0.0174532925199433]
]

Let’s examine this result, to identify each of the component elements of a spatial reference
system:

Coordinate system: The first line of a WKT spatial reference is a keyword to tell us what sort
of coordinate system is used. In this case, GEOGCS tells us that EPSG:4326 uses a geographic
coordinate reference system. If a spatial reference system is based on projected coordinates,
then the WKT representation would instead begin with PROJCS. Immediately following the
declaration of the type of coordinate system is the name of this spatial reference. In this
case, we are describing the "WGS 84" spatial reference.

Datum: The values following the DATUM keyword provide the parameters of the datum. The
first parameter gives us the name of the datum used. In this case, it is the "World Geodetic
System 1984" datum. Then follow the parameters of the reference ellipsoid. In this spatial
reference, we are using the "WGS 84" ellipsoid, with a semimajor axis of 6,378,137 m and an
inverse-flattening ratio of 298.257223563.

Prime meridian: The PRIMEM value tells us that this system defines Greenwich as the prime
meridian, where longitude is 0.

Unit of measurement. The spatial reference specifies that the units of angular measure-
ment are expressed as "Degree”. The value of 0.0174532925199433 is a conversion factor
required to convert to the appropriate units. This represents the value of x/180, required
to convert angular measurements from radians into degrees.

Contrasting a Geographic and a Projected Spatial Reference

Let’s compare the result in the preceding section to the WKT representation of a spatial refer-
ence system based on a projected coordinate system. The following example shows the WKT
representation of the UTM Zone 10N reference, a projected spatial reference system used in
North America. The SRID for this system is EPSG:26910.

27

28 CHAPTER 1 | DEFINING SPATIAL INFORMATION

PROJICS[
"NAD 1983 UTM Zone 10N",
GEOGCS[
"GCS North American 1983",
DATUM[
"D North American 1983",
SPHEROID|[
"GRS 1980",
6378137,
298.257222101
]

1,
PRIMEM["Greenwich",0],

UNIT["Degree", 0.0174532925199433]
1,
PROJECTION["Transverse Mercator"],
PARAMETER["False Easting", 500000.0],
PARAMETER["False Northing", 0.0],
PARAMETER["Central Meridian", -123.0],
PARAMETER["Scale Factor", 0.9996],
PARAMETER["Latitude of Origin", 0.0],
UNIT["Meter", 1.0]

Notice that the spatial reference for a projected coordinate system contains a complete set
of parameters for a geographic coordinate system, embedded within brackets following the
GEOGCS keyword. The reason is that a projected system must first define the three-dimensional,
geodetic model of the earth, and then specify several additional parameters that are required
to project that model onto a plane.

Comparing Spatial Reference Systems

By now, you should have a good appreciation of the fact that a given point on the earth may be
represented using many different sets of coordinates, each one corresponding to a particular
spatial reference system. (Conversely, the same set of coordinate values can refer to different
places on the earth depending on the spatial reference system from which the coordinates were
obtained.) Whenever we define an item of spatial data in SQL Server to represent an object on
the earth, three bits of information are required:

* The type of geometry used to represent the object (e.g., Point, LineString, Polygon)

* The coordinates of each of the points that define that geometry, expressed in decimal
degree notation (e.g., 37.215, 57.5)

e The unique identifier of the spatial reference system from which those coordinates were
obtained (e.g., 4326)

CHAPTER 1 | DEFINING SPATIAL INFORMATION

To demonstrate this in practical terms, let’s compare how a particular feature on the earth
Loch Ness, in Scotland canbe expressed in different spatial reference systems. For this example,
we will use a geographic coordinate system based on the WGS 84 datum, and a projected coor-
dinate system based on the National Grid of Great Britain.

WGS 84

WGS 84 is the most commonly used geodetic spatial reference system and is used by GPS systems.
It is based on the WGS 84 ellipsoid, which gives a reasonable approximation over the whole
surface of the geoid. It is referenced by the EPSG reference 4326. In the WGS 84 system, Loch
Ness can be represented by a Point object positioned at the following coordinates:

* Geometry: Point
e Latitude/longitude coordinates: (57.3, 4.5)

¢ SRID: 4326

National Grid of Great Britain

Many countries have defined their own grid systems for referencing coordinates of positions
that lie exclusively within that country. Great Britain, Ireland, New Zealand, Malaysia, Singapore,
the Netherlands, and Sweden all have defined national grid systems that are commonly used
to express coordinates for local positioning within those countries.

The National Grid of Great Britain uses a projected coordinate system based on the transverse
Mercator projection. The transverse Mercator projection is similar to the Mercator projection,
but instead of accurately portraying features lying on the equator of the earth, it has been rotated
so that the map accurately portrays features lying along a given meridian a line running north-
south between the poles of the earth. This makes the transverse Mercator projection more suit-
able for mapping tall, thin countries such as Great Britain. The datum is the Ordnance Survey of
Great Britain 1936 (OSGB 36), using the Airy 1830 ellipsoid, which is the ellipsoid that provides the
best fit for the geoid over this region. The “true” origin on which the projection is based has a
latitude of 49° north and longitude 2° west. However, coordinates in the grid system are actu-
ally stated from a “false” origin situated 400 km west and 100 km north of the true origin. Using
the false origin as the point from which coordinates are measured ensures that coordinate
values for any point in Great Britain are always positive. The SRID of this system is EPSG:27700.

The grid system is constructed by overlaying a series of 100 km by 100 km squares, starting
from the false origin, that cover the land surface of Great Britain. Each of these squares is given
atwo-letter identifier. To refer to any point in the system, you state the identifier of the square
that the point lies in, together with the easting and northing coordinates of the point measured
in meters from the bottom-left corner of the square. Alternatively, easting and northing coor-
dinates can be expressed in absolute meters east and north from the false origin. As such, Loch
Ness could be represented in this system as follows:

e Geometry: LineString
* Easting/northing coordinates: (238172, 808732), (261620, 839938)

¢ SRID: 27700

29

30

CHAPTER 1 | DEFINING SPATIAL INFORMATION

The comparison between the coordinate values obtained from the National Grid of Great
Britain and WGS 84 is illustrated in Figure 1-15.

---- WGS84 (EPSG: 4326)
—— National Grid of Great Britain (EPSG: 27700)

1300

1200
-81-7° -6} 5° -4p -3° e
60"‘ "'"T‘T"I"I—'Ia__-_ I~

1100

59°r~_4__

1000

900

%

--
|
1
T

- \ 4+ -
I

1
= =

;
1
-
i
|
I - = = o - =t
Ho—t m‘; 1 100
1
50°= - -1~ "--‘-Qé._.x_-L_____;__.l.__l-—-'-—6
0 100 200 300 400 500 600 700

Figure 1-15. Comparing representations of Loch Ness in two different spatial reference systems

Note these are only two examples this same feature could be described by many other
sets of coordinates in different spatial reference systems.

CHAPTER 1 | DEFINING SPATIAL INFORMATION

Summary

After reading this chapter, you should understand how spatial data can be used to describe the
properties of features on the earth:

Spatial data creates representations of features on the earth by defining regular shapes
that approximate the shape and position of those features. The three basic types of shape
that can be used in SQL Server 2008 are Points, LineStrings, and Polygons. When used in
geospatial data, these shapes are called geometries.

Each of these geometries can be defined by specifying the coordinate values of a series
of points that make up the overall geometry.

To define the coordinates of the position of a point on the earth, we use a spatial refer-
ence system.

A spatial reference system consists of a coordinate system (which describes a position
using either projected or geographic coordinates), a datum (which describes a model
representing the shape of the earth), the prime meridian (which defines the origin from
which units are measured), and the unit of measurement. When using projected coordi-
nates to describe a point, the spatial reference system also defines the properties of the
projection used.

A geographic coordinate system defines the position of objects using angular coordinates
called latitude and longitude, which are measured from the equator and the prime
meridian, respectively.

A projected coordinate system defines the position of objects using Cartesian coordinates,
which measure the x and y distance of a point from an origin. These are also referred to
as easting and northing coordinates.

Whenever you state a set of coordinates representing a point, it is essential that you also
give details of the associated spatial reference system. The spatial reference system defines
the additional information that allows us to apply the coordinate reference to identify a
point on the earth.

For convenience, spatial reference systems may be specified by a single integer identifier
known as a spatial reference identifier (SRID).

Details of all the geodetic spatial reference systems supported by SQL Server 2008 are
contained within a system table called sys.spatial reference systems.

31

CHAPTER 2

Implementing Spatial Data
in SQL Server 2008

I n the last chapter, I introduced you to the theory behind spatial reference systems, and explained
how different types of systems describe features on the earth. In this chapter, you’ll learn how
to apply these systems to store spatial information using the new spatial datatypes in SQL
Server 2008.

Understanding Datatypes

Every variable, parameter, and column in a SQL Server table is defined as being of a particular
datatype. This tells SQL Server what sort of data values will be stored in this field, and how they
can be used. Some commonly used datatypes are listed and described in Table 2-1.

Table 2-1. Some Common SQL Server Datatypes

Datatype Usage

char Fixed length character string

datetime Date and time value, accurate to 3.33ms

f oat Floating point numeric data

int Integer number between 23 (2,147,483,648) and 23 1 (2,147,483,647)
money Monetary or currency data

nvarchar Variable length, Unicode character string

SQL Server 2008 introduces two new datatypes specifically intended to hold spatial data:
geography and geometry (see Table 2-2).

Table 2-2. Spatial Datatypes Introduced in SQL Server 2008

Datatype Usage
geography Geodetic vector spatial data

geometry Planar vector spatial data

34

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

Although both datatypes can be used to store spatial data, they are distinct from each other
and are used in different ways. Whenever you define an item of spatial data in SQL Server 2008,
you must also choose whether to store that information using the geometry datatype or the

geography datatype.

BNote The word geometry has two d fferent mean ngs n th s book. To avo d confus on, use geometry
(wth no spec a text formatt ng) to refer to a Po nt, L neStr ng, or Po ygon that s used to represent a feature
on the earth, and use geometry to refer to the geometry datatype. Th s convent on w be used throughout
the rest of the book.

Comparing Spatial Datatypes
There are several similarities between the two spatial datatypes:

e They can both represent spatial information using a range of geometries Points,
LineStrings, and Polygons.

* Internally, both datatypes store spatial data as a stream of binary data in the same format.

* When working with items of data from either type, you must use object-orientated methods
based on the .NET Framework (discussed in more detail in the next chapter).

e Theyboth implement many of the same standard spatial methods to analyze and perform
calculations on data of that type.

However, there are also a number of important differences between the two spatial datatypes,
as outlined in Table 2-3. You must choose the appropriate datatype to reflect how you plan to
use spatial data in your database.

Table 2-3. Comparison of the geometry and geography Datatypes

Property geometry Datatype geography Datatype
Shape of the earth Flat Round

Coordinate system Projected (or natural planar) Geographic
Coordinate values Cartesian (x and y) Latitude and longitude
Unit of measurement Same as coordinate values Defined in

sys.spatia reference systems

Spatial reference Not enforced Enforced

identifier

Default SRID 0 4326 (WGS 84)

Size limitations None No object may occupy more than

one hemisphere

Ring orientation Not significant Significant

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008 35

The significance of these differences will be clearer after you read about the features of the
two datatypes in more detail.

The geography Datatype

The most important feature of the geography datatype is that it stores geodetic spatial data,
which takes account of the curved shape of the earth. When you perform operations on spatial
data using the geography datatype, SQL Server uses angular computations to work out the result.
These computations are calculated based on the ellipsoid model of the earth defined by the
spatial reference system of the data in question. For example, if you were to define a line that
connects two points on the earth’s surface in the geography datatype, the line would curve to
follow the surface of the reference ellipsoid. Every line drawn between two points in the geography
datatype (whether that line is a segment of a LineString geometry, or an edge of a Polygon ring)
is actually a great elliptic arc that s, the line on the surface of the earth formed by the plane
containing both points and the center of the reference ellipsoid. This is illustrated in Figure 2-1.

Figure 2-1. Calculations on the geography datatype account for curvature of the earth.

lCaution Do not be m s ed by the name of the geography datatype. L ke the geometry datatype, t too
stores geometry shapes represent ng features on the earth.

Coordinate System

The geography datatype is based on a three-dimensional, round model of the world, so you
must use a geographic coordinate system to specify the positions of each of the points that
define a geometry in this datatype. Remember that, when using a geographic coordinate
system, the coordinates of these points are expressed using angles of latitude and longitude.

Unit of Measurement

Since the geography datatype defines points using angular measurements of latitude and longi-
tude, the coordinate values are usually measured in degrees. These angular coordinates are

36

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

useful for expressing the location of points, but are not that helpful for expressing the distance
between points or the area enclosed within a set of points. For example, using the spatial refer-
ence system EPSG:4326, we can state the location of Paris, France as a point at 48.87°N, 2.33°E.
Using the same system, the location of Berlin, Germany could be described as 52.52°N, 13.4°E.
However, if you wanted to know the distance between Paris and Berlin, it would not be very
helpful for me to say that they are 11.65° apart, stating the answer in degrees. You would probably
find it much more useful to know that the distance between them is 880 km, or 546 miles.

To account for this, when you perform calculations on any items of spatial data using the
geography datatype, the results are returned in the linear unit of measurement specified in the
unit of measure column of the sys.spatial reference systems table for the relevant spatial
reference system. For example, to check the unit of measurement used by the EPSG:4326
spatial reference system, you can run the following T-SQL query:

SELECT
unit of measure
FROM
sys.spatial reference systems
WHERE
authority name = 'EPSG'
AND
authorized spatial reference id = 4326

The result of this query is as follows:

metre

This tells us that the results of any linear calculations performed against data stored in the
geography datatype and defined using the EPSG:4326 spatial reference system will be stated in
meters. To calculate the distance between Paris and Berlin based on the coordinates given eatlier,
you can execute the following T-SQL code:

DECLARE @Paris geography = geography::Point(48.87, 2.33, 4326)
DECLARE @Berlin geography = geography::Point(52.52, 13.4, 4326)
SELECT @Paris.STDistance(@Berlin)

The result will be expressed in meters:

879989.866996421

BNote Don’t worry fyou can’tfo ow the syntax of the preced ng query— cover ths n the next chapter.
You just need to know that th s query creates two geography po nts, represent ng Par s and Ber n, and then
ca cu ates the shortest d stance between them.

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

Because most spatial reference systems are based on metric units, distances calculated
using the geography datatype are usually expressed in meters, and areas in square meters.

Spatial Reference ID

Every time you store an item of data using the geography datatype, you must supply the appro-
priate SRID corresponding to the spatial reference system from which the coordinates were
obtained. SQL Server 2008 uses the information contained in the spatial reference system to
apply the relevant model of curvature of the earth in its calculations, and also to express the
results of any linear methods in the appropriate units of measurement. The supplied SRID
must therefore correlate with one of the supported spatial references in the sys.spatial
reference systems table.

If you were to supply a different SRID when storing an item of geography data, you would
get different results from any methods using that data, since the calculations would be based
on a different set of geodetic parameters.

Size Limitations

Due to technical limitations, SQL Server imposes a restriction on the maximum size of a single
object that can be stored using the geography datatype. The effect of this restriction is that every
geometry using the geography datatype, whether created as a new item of data or the result of
any calculation, must fit inside a single hemisphere. In this context, the term hemisphere does
not refer to a predetermined area of the globe, such as the Northern Hemisphere or Southern
Hemisphere, but rather refers to one-half of the earth’s surface, centered about any point on
the globe. If you try to create an object that exceeds this size, or perform a calculation whose
result would exceed this size, you will receive the following error:

Microsoft.SqglServer.Types.GLArgumentException: 24205: The specified input does not
represent a valid geography instance because it exceeds a single hemisphere.

Each geography instance must fit inside a single hemisphere.

A common reason for this error is that a polygon has the wrong ring orientation.

To work around this limitation, you can break down large geography objects into several
smaller objects that each fit within the relevant size limit. For example, rather than having a
single Polygon object representing the entire ocean surface of the earth, you can define multiple
Polygons that each represent an individual sea or ocean. When combined together, these smaller
objects represent the overall ocean surface.

BENote Thesze mt mposed on the geography datatype app es not ony to geometr es that contan an
area greater than a s ng e hem sphere, but a so to any geometry that conta ns po nts that do not e nthe
same hem sphere. Thus, for examp e, you cannot create a Mu t Po nt geometry us ng the geography datatype that
conta ns two po nts represent ng the North Po e and South Po e.

37

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

Ring Orientation

Look again at the error message shown in the previous section. It states that a common reason
forinvalid geography instances is that “...a polygon has the wrong ring orientation.” What does
this mean? Remember from Chapter 1 that a ring is a closed LineString, and that Polygon
geometries are made up of one or more rings that define the boundary of the area contained
within the Polygon. Ring orientationrefers to the “direction,” or order, in which the points that
make up the ring of a Polygon are stated.

The geography datatype defines features on a geodetic model of the earth, which is a contin-
uous, round surface. Unlike the image created from a map projection, ithasno edges youcan
continue goingin one direction all the way around the world and get back to where you started.
This becomes significant when you define the points of a Polygon ring since, when using a round
model, there is ambiguity as to which side of the ring contains the area included within the
Polygon. Consider Figure 2-2, which illustrates a Polygon whose exterior ring is a series of
points drawn around the equator. Does the area contained within the Polygon represent the
Northern Hemisphere or the Southern Hemisphere?

Figure 2-2. Ambiguous Polygon ring definition using the geography datatype

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

To resolve this ambiguity, when you define the points of a Polygon using the geography
datatype, SQL Server 2008 treats the area on the “left” of the path drawn between the points of
aring as being contained within the interior of the Polygon, and excludes any points that lie on
the “right” side of the ring. In the example given in Figure 2-2, if you were to imagine walking
along the path of the ring in the direction indicated, the area to your left would be north, so the
Polygon illustrated represents the Northern Hemisphere. Another way of thinking about this is
to imagine looking directly down at a point on the earth from space. If it is enclosed by a ring of
points in a counterclockwise direction, then that point is contained within the Polygon (since
it must lie on the left of the path of that ring). If, instead, it appears to be encircled by a ring of
points in a clockwise direction, then that point is not included in the Polygon definition.

ECaution fyou def ne the po nts of asma Poygon rng n the wrong d rect on, the resu t ng object wou d
be “ ns de out"—encompass ng most of the surface of the earth, and ony exc ud ng the sma area conta ned
wthnthe nearrng. Ths woud break the sze m tat on that no geography object can cover more than
one-ha f of the earth’s surface, and wou d cause an error. When you are conta n ng an area w th na Po ygon,
be sure to def ne the po nts na counterc ockw se d rect on, so that the area to be nc uded s on the eft of the
path connect ng the po nts.

What about ring orientation for interior rings, which define areas of space cut out of a geom-
etry? The classification of “interior” and “exterior” cannot easily be applied to rings defined on
the continuous, round surface of the geography datatype. In fact, a Polygon in the geography
datatype may contain any number of rings, each of which divides space on the globe into those
points included within the Polygon, and those points that are excluded. Every one of these rings
could be considered to be an exterior ring or an interior ring. The key rule to remember is that
the area on the left of the path drawn between points of a ring is contained within the Polygon,
and the area on the right side is excluded. Therefore, to define an area of space that should be
excluded from a polygon, you should enclose it in a ring of points specified in clockwiseorder
so that the area is contained on the right-hand side of the path of the ring. To illustrate this,
Figure 2-3 demonstrates the appropriate ring orientation of a Polygon in the geography datatype
containing two rings. The arrows illustrate the orientation of the points in each ring, and the
area enclosed by the Polygon is shaded in gray.

39

40

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

Figure 2-3. Ring orientation of a Polygon containing two rings

The geometry Datatype

In contrast to the geography datatype, the geometry datatype treats spatial data as lying on a flat
plane. As such, the results of all spatial calculations, such as the distance between points, are
worked out using simple geometrical methods. This flat-plane approach is illustrated in Figure 2-4.

o————>0

Figure 2-4. Calculations on the planar geometry type operate in a flat plane.

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

Coordinate System

Since the geometry datatype works with spatial data on a flat, two-dimensional plane, the posi-
tion of any point on that plane can be defined using a single pair of Cartesian (x, y) coordinates.
The geometry datatype can be used to store coordinates from any one of the following types of
coordinate system:

Projected coordinates: The geometry datatype is ideally suited to storing projected coordi-
nates, where each x and y coordinate pair represents the easting and northing coordinate
values obtained from a projected spatial reference system. In this case, the process of projec-
tion has already mapped the angular geographic coordinates onto a flat plane, onto which
the methods of the geometry datatype can be applied.

Geographic coordinates: “Unprojected” geographic coordinates of latitude and longitude
can be assigned directly to the y and x coordinates, respectively, of the geometry datatype.
Although this may seem like an unprojected geographic coordinate system, it is actually
still an example of a projected system, because it is the method used to create an equirect-
angular projection.

Naturally planar coordinates: These coordinates could represent any geometric spatial
data that can be expressed in x and y values, but are not associated with a particular model
of the earth. Examples of such data might be collected from a local survey or topological
plans of a small area where curvature is irrelevant, or from geometrical data obtained from
computer-aided design (CAD) packages.

Unit of Measurement

When using the geometry datatype, the Cartesian coordinates of a point represent the distance
of that point from an origin along a defined axis, expressed in a particular unit of measure-
ment. Since the geometry datatype uses simple planar calculations based on these coordinate
values, the results of any computations using the geometry datatype will be expressed in the
same units of measurement as the coordinate values themselves. For instance, the northing
and easting coordinates of many projected coordinate systems are expressed in meters. This is
the case for the Universal Transverse Mercator (UTM) system and many national grid refer-
ence systems. If you use the geometry datatype to store spatial data based on coordinates taken
from any of these systems, lengths and distances will also be measured in meters. If you were to
calculate an area using the geometry datatype, the result would be the square of whatever unit
was used to define the coordinate values in this case, square meters. If, however, you were to
store coordinates from a projected spatial reference system measured in feet, then the results
of any linear calculations would also be expressed in feet, and areas in square feet.

L)

42

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

ECaution Ear er, tod you that the geometry datatype cou d be used to store “unprojected” geograph ¢
coord nates of attude and ong tude, d recty mapped to the y and x coord nates. However, remember that
attude and ong tude are angu ar coord nates, usua y measured n degrees. fyou use the geometry datatype
to store nformaton n th s way, then the d stances between pontsw aso be measured n degrees, and the
area enc osed wthnaPoygonw be measured n degrees squared. Ths s a most certany not what you
want, so exerc se caut on when us ng the geometry datatype n ths way.

Spatial Reference ID

Since geometry data does not consider any curvature of the earth and does not rely on the unit
of measurement stated in the SRID, supplying a different SRID does not make any difference to
results obtained using the geometry datatype. This can be a tricky concept to grasp. In the last
chapter I told you that that any pair of coordinates projected or geographic must be stated
with their associated SRID so that they can refer to a point on the earth. If we are using the geometry
datatype to store coordinates from a projected coordinate system, how come it doesn’t make a
difference what SRID is provided?

The answer is that the SRID isrequired in a projected coordinate system to initially deter-
mine the coordinates that uniquely identify a position on the earth. However, once we have
derived those values, all further operations on that data can be performed using basic geomet-
rical methods. Any decisions concerning how to deal with the curvature of the earth have already
been made in the process of defining the coordinates that describe where any point lies on the
projected image.

For example, when using the geometry datatype, the distance between a point at coordinates
(0,0) and a point located at (30,40) will always be 50 units, whatever spatial reference system
was used to obtain those coordinates, and whatever units they are expressed in. The actual
features on the earth represented by the points at (0,0) and (30,40) will be different depending
on the system in question, but this does not affect the way that the geometry data is used in
calculations.

In order to perform operations using spatial objects of the geometry type, it makes no differ-
ence what spatial reference system the coordinates of each point were obtained from, as long
as they were all obtained using the same system.

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

Ensuring Consistent Metadata

Even though it does not make a difference to the results, when using the geometry datatype to
store Cartesian data based on a projected coordinate system, you should still specify the relevant
SRID to identify which spatial reference was used to derive those coordinates. The spatial
reference system includes the important additional information that makes those coordinates
relate

to a particular position on the earth. Explicitly stating the SRID with every set of coordinates
ensures not only that you retain this important metadata, but also that you do not accidentally
try to perform a calculation on items of spatial data defined using different spatial references,
which would lead to an invalid result.

BNote The sys.spatial reference systems tabeony contans deta s of geodet ¢ spata references,
s nce these are requ red to perform ca cu at ons us ng the geography datatype. To fnd the appropr ate SRD for a

projected coord nate system, you can ook tup onthe fo ow ng web ste: http://www.epsg-registry.org/.

Storing Nongeodetic Spatial Data

Since the geometry datatype stores planar coordinates and uses standard Euclidean methods
to perform calculations for which no SRID is necessary, it can also be used to store any spatial
data that can be described using x and y coordinates, which do not necessarily relate to any
particular model of the shape of the earth. This is useful for contained, small-scale applications,
such as storing the position of items in a warehouse. In this case, positions can be defined using x
andy coordinates relative to alocal origin they do not need to be expressed using a projected
coordinate system applied to the whole surface of the earth.

The geometry datatype can also be used to store any other naturally planar geometrical
data that can be represented using a coordinate system. For instance, if you had a database
that stored the details of components used in a manufacturing process, you could use a field
of the geometry datatype to record the shape of each component.

When using the geometry type to record spatial data in this way, you should define any
geometry features using SRID 0. This tells SQL Server that the coordinates are not derived from a
particular spatial reference system, and so they are treated as coordinate values with no specific
unit of measurement.

43

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

Ring Orientation

Consider Figure 2-5, which illustrates a Polygon ring representing the Northern Hemisphere
defined on a planar surface, as used by the geometry datatype.

Figure 2-5. Polygon ring definition using the geometry datatype

Unlike the equivalent Polygon using the geography datatype (illustrated in Figure 2-2), the
area contained by the Polygon in Figure 2-5 is unambiguous. Even if the ring orientation was
reversed, so that the points formed a clockwise ring, the area enclosed by the ring would still
represent the Northern Hemisphere. In the geometry datatype, ring orientation the direction
in which the points of a Polygon ring are specified is unimportant. In practical terms, the ring
defined by the point coordinates

(50,30), (52,30), (52,31), (50,31), (50,30)
is treated identically to how it would be treated if it were specified by the following points:
(50,30), (50,31), (52,31), (52,30), (50,30)

When defining interior rings containing areas of space cut out of the Polygon, these too
may be specified in clockwise or counterclockwise fashion, so long as they are completely
contained within the exterior ring, and do not cross one another or contain one another.

Choosing the Right Spatial Datatype

Having looked at the key differences between the two datatypes, you are probably wondering
which one you should use, and in what situations. These are important questions, and
although there are not necessarily any definitive answers, the following list gives you some
general guidelines:

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

¢ Ifyou have latitude and longitude data (such as from a GPS device, from Google Earth,
or from elsewhere on the Web), use the geography datatype, normally using the default
4326 SRID.

* Ifyou are using projected coordinate data (e.g., collected from a flat map), use the geometry
datatype with an SRID to represent the map projection and datum used.

* Ifyou are using x, y data that is not particularly defined relative to the earth, use the
geometry datatype with SRID 0.

In addition to these general rules, there are a number of additional factors, described in
this section, that you should consider to help inform your decision. Choosing the right datatype is
the first step to ensuring that you have an effective design for your spatial database, so be sure
to review these elements carefully before making your decision.

Consistency

In order to perform operations using multiple items of spatial data in SQL Server 2008, all of the
data must be defined using the same spatial reference system, and stored using the same datatype.
Itis not possible to combine geometry and geography data in the same query, nor is it possible
to perform operations on items of the same datatype defined using different SRIDs. If you
attempt to do so, SQL Server will return a NULL result.

If you already have existing spatial data that you would like to integrate into your system,
you should therefore use a datatype suitable for the format in which that data has been collected.
For instance, ifyou have projected data collected from the National Grid of Great Britain system,
you should store the data in a geometry field, using the SRID 27700. If you are using latitude and
longitude coordinate data collected from a GPS system, then you should choose a geography
type, with SRID 4326.

ENote Remember that the SR D prov des nformat on about the system n wh ch coord nate va ues have
been def ned—t does not d ctate the system tse f. You therefore cannots mpy supp y a d fferent SR D va ue
to ex st ng coord nates to express them n a d fferent spata reference. n order to convert coord nates from
one spata reference system nto another, you must reproject the data. SQL Server 2008 does not natve y
support any reproject on methods, but numerous th rd-party too s are ava ab e to do th s, such as 0GR20GR,
part of the 0GR S mp e Feature L brary (http://www.gdal.org/ogr/index.html).

Accuracy

The geometry datatype uses a flat-earth model based on a projection of the earth’s surface onto
a plane. As explained in the last chapter, the process of projecting any three-dimensional surface
in this way always leads to some distortion in how features are represented, which may affect
their area, shape, distance, or direction. This means that, using the geometry datatype, the
results of certain spatial operations will also be distorted, depending on the projection used
and the particular part of the earth’s surface on which the calculation is based.

Generally speaking, the greater the surface area being projected, the more distortion that
occurs. Although over small areas the effects of these distortions are fairly minimal, for large-

45

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

scale or global applications, they can significantly impact the accuracy of any results obtained
using the geometry datatype when compared to results obtained using the geography datatype
(which is not distorted by projection). In many applications that cover only a small spatial area,
such as those contained within a particular state of the United States, the results of calculations
performed using the geometry datatype on the relevant state plane projection will be sufficiently
accurate. However, over larger distances, the computations based on a planar projection become
less accurate, and the geography datatype becomes a more suitable choice.

The End(s) of the World

Extreme examples of the distortion occurring as a result of projection arise because, unlike the
earth itself, a projected map has edges. When you are storing projected spatial data using the
geometry datatype, you must give special consideration to situations in which you need to define
data that crosses these edges. This typically occurs whenever a geometry, or result of a calcula-
tion, crosses the 180" meridian or one of the poles of the earth.

To demonstrate how these distortions affect calculations using the geometry datatype,
consider how you might calculate the shortest straight-line route between Vancouver and
Tokyo. Using the flat geometry datatype, based on a projection centered on the Greenwich
prime meridian, the result would look like that shown in Figure 2-6.

r---Tr-—-"r---—r-—~""r-—--"r-—=--r--"r-—/"r-/""r-="r-—°71r-—.—7°

Figure 2-6. The shortest route between Tokyo and Vancouver using the geometry datatype

In contrast, the geography datatype uses a continuous, round model of the earth, which is
unaffected by the edges introduced as a result of projection. The answer obtained for the shortest
route between Tokyo and Vancouver using the geography datatype would instead look some-
thing like that shown in Figure 2-7.

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

Figure 2-7. The shortest route between Tokyo and Vancouver using the geography datatype

By comparing the routes illustrated in Figure 2-6 and Figure 2-7, you can see that the result
of the geometry datatype, because it cannot cross the edge of the map, depicts a much longer
route, crossing almost all of America, Europe, and Asia. In contrast, the result obtained using
the geography datatype shows the shortest route to be across the Pacific Ocean, which repre-
sents the accurate answer based on the real, round earth.

A further demonstration of these issues occurs when trying to define geometry instances
that extend across the edges of the map in a given projection. Figure 2-8 highlights a Polygon
geometry representing Russia, as depicted in an equirectangular map projection centered on
the Greenwich prime meridian.

Notice that although most of the polygon is contained in the Eastern Hemisphere, the
most north-easterly part of Russia (the region of Chukotka) actually crosses the edge of the
map, to appear in the Western Hemisphere. Using the geometry datatype based on this projec-
tion, it would not be possible to represent Russia using a single Polygon geometry. Instead, you
would need to use a MultiPolygon geometry containing two elements to represent each shape
created where the edge of the map had caused the original shape to be divided into two.

Both of the problems demonstrated in this section could be mitigated to some extent by
choosing an appropriate projected spatial reference system for the geometry datatype, in which
the particular geometry in question does not cross the edges of the map. An example of such a
projection is illustrated in Figure 2-9. However, while this might avoid the issue for one partic-
ular case, it does not solve it completely even if a new map is created based on a different
projection, there will always be features that are located along its edges instead.

48

CHAPTER 2

IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

Figure 2-8. Polygon geometry representing Russia crossing edges of a projection in the
geometry datatype

If you expect to deal with situations where geometries will have to cross the edges of a
projected map, then the geography datatype would be a better choice in which to store your data.

Presentation

Since the geography datatype operates on a three-dimensional model of the earth, if you want
to present the results of any geography data on a map, you first need to project them. As previously
discussed, this introduces distortion. In the example given in Figure 2-7, although the geography
datatype accurately works out the shortest straight-line route connecting two points, if we
were to display this result on a projected map, this “straight” line may appear distorted and
curved. The exact effect of this distortion will differ depending on the particular properties of
the map projection used.

Figure 2-9 depicts the same route between Vancouver and Tokyo as shown in Figure 2-7,
but projected onto a map using the Mercator method, centered on the meridian at 150° longi-
tude. Notice how the route calculated using the geography datatype, which appeared to be a
direct path when plotted on a globe, appears to curve upward on a flat map due to the effects
of distortion caused by projection.

BNote Youw often see greate ptc arcs—the shortest path between two po nts n the geography
datatype—dep cted as curved nes (such as shown n F gure 2-9) on maps used by ar nesto ustrate the
approx mate route taken by arp anes between dest nat ons.

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

Conversely, since the geometry datatype is based on data that has already been projected
onto a plane, no further distortion needs to be introduced to express the results on a map
“straight” lines in the geometry datatype remain straight when drawn on a map (provided that
the map is projected using the same projection as the spatial reference system from which the
points were obtained).

If you will be using data to represent straight lines between points, and you want those lines
to remain straight when displayed on a map, then you should choose the geometry datatype,
and select an appropriate spatial reference corresponding to the map on which those results
will be displayed.

X

L

’

Figure 2-9. The shortest route between Tokyo and Vancouver using the geography datatype, as
projected using the Mercator projection

Performance

Performing spherical computations uses more computing resources than does performing
Cartesian computations. As a result, performing spatial calculations on the ellipsoidal model
used by the geography datatype may take longer to compute than the equivalent operations
using the geometry datatype. This will only affect methods where the geography datatype has to
calculate metrics based on the geodetic model of the earth, such as distances, lengths, or areas
of geometrical objects. When you use any methods that return properties of objects that do not
need to take account of the model of the earth, such as counting the number of points in an
object or describing the type of geometry used to represent a feature, there is no difference in
performance between the geography and geometry types.

50

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

Standards Compliance

According to its web site, http://www.opengeospatial.org/, the Open Geospatial Consortium
(OGQ) is “a non-profit, international, voluntary consensus standards organization that is leading
the development of standards for geospatial and location based services.” The OGC adminis-
ters a number of industry-wide standards for dealing with spatial data. By conforming to these
standards, different systems can ensure core levels of common functionality, which means
that spatial information can be more easily shared between different vendors and systems.

In October 2007, Microsoft joined the OGC as a principal member, and the spatial datatypes
implemented in SQL Server 2008 are largely based on the standards defined by the OGC:

The geometry datatype conforms to the OGC Simple Features for SQL Specification v1.1.0
(http://www.opengeospatial.org/standards/sfs) and implements all the required
methods to meet that standard.

The geography datatype implements many of the same methods as the geometry datatype,
although it does not completely conform to the required OGC standards.

As such, if it is important to you to use spatial methods in SQL Server 2008 that adhere to
accepted OGC standards, or if you want to ensure compatibility with another system based on
those standards, you should use the geometry datatype.

How Spatial Data Is Stored

geometry and geography are both variable-length datatypes. This means that, in contrast to a
fixed-length datatype such as int or datetime, the actual amount of storage required for an
item of spatial data depends on the complexity of the object that the data describes.

SQL Server 2008 stores the information contained in the geography and geometry datatypes
as a stream of binary data. Each stream begins with a header section that defines basic infor-
mation such as the type of geometry being described, the spatial reference system used, and
the overall number of points in the object. This header is immediately followed by the coordinate
values of each x and y (or longitude and latitude) coordinate in the geometry, represented in
8-byte binary format. The more points that an object has in its definition, the longer this binary
stream will be, and therefore the more storage space that it will require.

ENote SQL Server 2008 stores each coord nate as a doub e-prec s on b nary f oat ng-po nt number, fo ow ng
the spec f cat ons of the EEE Standard for B nary F oat ng-Po nt Ar thmet ¢ (EEE 754-2008). Th s format s
ab e to store f oat ng-po nt numbers wth 15 s gn fcant d g ts of prec s on—wh ch s genera y suff ¢ ent to
descr be any pos ton w th subm meter accuracy.

The following list gives examples of the storage space required to store some common
items of spatial data:

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

¢ APoint geometry defined with only two coordinates always occupies 22 bytes of storage
space.

* ALineString between two points, containing the minimum of four coordinates (latitude
and longitude, or x and y values of the start point and the end point), occupies 38 bytes.

e A Polygon geometry occupies a variable amount of space depending on the number of
points that make up that Polygon. Any interior rings defined by a Polygon also increase
the space required to store that Polygon.

There is no specific maximum size for the data storage space used by a geometry or geography
object. However, SQL Server 2008 has an overall restriction on any kind of large object, which
is limited to a size of 231 1 bytes. This is the same limit as is applied to datatypes such as
varbinary(max) and varchar(max), and equates to approximately 2GB for each individual item
of data. You would need to store a very complex geometry object to exceed this limit! If necessary,
remember that complex geometries can be broken down into a number of individual objects
that each fit within the allowed size.

ITip You can use the T-SQL DATALENGTH funct on to f nd out the number of bytes used to store the va ue
of any tem of geometry or geography data.

Converting Between Datatypes

Remember that the geometry datatype can be used to store geometries defined using a projected
coordinate system, a geographic coordinate system, or a naturally planar coordinate system.
The geography datatype, in contrast, can only be used to store geometries defined using a
geographic coordinate system. Since both spatial datatypes can be used to store geographic
coordinate data, any item of data stored using the geography datatype can also be expressed
using the geometry datatype instead. However, you cannot simply use the CAST or CONVERT function
to convert data between the two types. If you try to do so, by running the query

DECLARE @geog geography
SET @geog = geography: :STGeomFromText('POINT(23 32)',4326)
SELECT CAST(@geog AS geometry)

you will receive the following error:

Msg 529, Level 16, State 2, Line 5
Explicit conversion from data type sys.geography to sys.geometry is not allowed.

Notice that the error states that explicit conversion is not allowed this is a deliberate
restriction imposed by SQL Server to ensure that you understand the implications of working
with each datatype, and that you do not casually swap data between them. There are occasions,
however, when it is helpful to be able to convert data between datatypes, since there are functions
available for the geometry datatype that are not available when working with data stored using

51

52

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

the geography datatype. In order to convert from geography to geometry, we can instead take
advantage of the fact that the value of an item of data in either datatype can be represented as
a binary stream. In the following example, the value of the geometry variable, @geom, is set based
on the binary stream representation of the geography variable @geog:

DECLARE @geog geography

SET @geog = geography: :STGeomFromText("'POINT(23 32)',4326)

DECLARE @geom geometry

SET @geom = geometry::STGeomFromWKB(@geog.STAsBinary(), @geog.STSrid)

While every item of geography data can be expressed using the geometry datatype, not every
item of geometry data can be expressed as an item of geography data. In order to convert a value
from the geometry datatype to the geography datatype, the x and y coordinate values of the
existing geometry instance mustrepresent longitude and latitude coordinates taken from
a supported geodetic spatial reference system. The data must also conform to all the other
requirements of the geography datatype, such as ring orientation and size limitations. If these
conditions are all met, you can create a geography instance, @geog, from the binary representa-
tion of a geometry instance, @geom, as follows:

DECLARE @geom geometry

SET @geom = geometry::STGeomFromText('POINT(23 32)',4326)

DECLARE @geog geography

SET @geog = geography: :STGeomFromWKB(@geom.STAsBinary(), @geom.STSrid)

If, however, you are storing northing and easting coordinates from a projected system, or
other nongeodetic data, that data can only be stored using the geometry datatype, and cannot
be converted to the geography datatype.

ECaution There are re atve y few cases nwhch an tem of spat a data can be converted between the
geometry and the geography datatypes, and even when t s technca y poss b e, t does not a ways make
og ca sense to do so. fyou fnd the need to convert between datatypes, t m ght be an nd cat on that the
des gn of your spata data s ncorrect.

Spatially Enabling Your Tables

Having chosen the appropriate spatial datatype, you must add a column of that datatype to the
SQL Server table in which you plan to store your spatial data. There are two cases to consider:
either you are creating a new table, or you are adding a column to an existing table.

Creating a New Table

There are no special attributes or features required to enable spatial data to be stored in a SQL
Server database all that is required is a table that contains at least one geography or geometry
column. Since both the geography and geometry column types are already registered, system-
defined datatypes, you can use anormal T-SQL CREATE TABLE statementto create a table containing
a field of datatype geography or geometry, as follows:

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008 53

CREATE TABLE [dbo].[Cities] (
[CityName] [varchar](255) NOT NULL,
[CitylLocation] [geometry] NOT NULL

This example creates a table containing two columns CityName, which can hold a 255-
character variable-length string, and CitylLocation, which can be used to hold the spatial data
relating to that city, using the geometry datatype.

Adding to an Existing Table

One of the benefits of using the spatial features of SQL Server 2008 is that new geometry or
geography columns can be added to existing tables, enabling spatial information to be seam-
lessly integrated alongside existing items of data.

Suppose that we have an existing table, Customer, that contains the following fields of
customer information:

CustomerID int,
FirstName varchar(50),
Surname varchar (50),
Address varchar (255),
Postcode varchar (10),
Country varchar(32)

Now suppose that we want to add an additional spatial field to this table to record the loca-
tion of each customer’s address. No problem geography and geometry fields can be added to
existing tables just like any other by using an ALTER TABLE statement, as follows:

ALTER TABLE [dbo].[Customer]
ADD CustomerLocation geography
GO

By extending the table in this way, we have enabled the possibility of using spatial methods
in conjunction with our existing customer data, to find answers to questions such as how many
customers we have within a certain area, and how far a particular customer lives from their
closest store.

Enforcing a Common SRID

The coordinates defining a point only make sense in the context of a given spatial reference
system. Although SQL Server 2008 allows you to store data objects from different spatial references
in the same column, when performing functions, all of the spatial data items must be defined
using the same spatial reference (i.e., have the same SRID). Trying to perform a calculation
using coordinates from different systems can be compared to trying to add amounts of money
denominated in different currencies:

25 Dollars + 12 Pounds = 37 . .. what?!

54

CHAPTER 2 | IMPLEMENTING SPATIAL DATA IN SQL SERVER 2008

To prevent you from accidentally performing a nonsensical calculation such as this, SQL
Server will not allow you to perform any operations using data defined in different spatial refer-
ences. The result of any method that attempts to do so will be NULL.

If you know that you will only be storing data based on one particular spatial reference
system in a column, you can enforce the same SRID on all items in that column by adding a
constraint. You can do this by using the ADD CONSTRAINT statement, as follows:

ALTER TABLE [dbo].[Customer]

ADD CONSTRAINT [enforce srid geographycolumn]
CHECK (Customerlocation.STSrid = 4326)

GO

This example creates a constraint called enforce srid geographycolumn, which ensures
that every spatial object inserted into the CustomerLocation field of the Customer table is defined
using the SRID 4326. If you attempt to insert a geography object based on a different SRID, you
will receive the following error:

Msg 547, Level 16, State 0, Line 1

The INSERT statement conflicted with the CHECK constraint
"enforce srid geographycolumn".

The conflict occurred in database "Spatial”,

table "dbo.Customers", column 'Customerlocation'.

The statement has been terminated.

As aresult, you will be able to perform calculations using any two items of data from this
column, knowing that they will be defined based on the same spatial reference system.

Summary

In this chapter, you learned how SQL Server 2008 implements spatial data using the geometry
and geography datatypes:

» The geography datatype uses geodetic spatial data, accounting for the curvature of the earth.
» The geometry datatype uses planar spatial data, in which all points lie on a flat plane.

e There are a number of factors that you should consider when choosing the appropriate
datatype for a given application, including precision, presentation, standards compli-
ance, and consistency with any existing sources of data.

* Internally, SQL Server stores spatial data represented as a stream of binary values.

* You can add spatial columns to an existing table using ALTER TABLE, or create a new
spatially enabled table using the CREATE TABLE T-SQL syntax.

* You can add a constraint to a column of spatial data to ensure that only data of a certain
SRID can be inserted into that column.

CHAPTER 3

Working with Spatial Data
In the .NET Framework

The geography and geometry datatypes both utilize the functionality provided by the .NET
Framework common language runtime (CLR). The .NET Framework CLR was first introduced
to SQL Server in SQL Server 2005 to provide a range of additional functionality and to extend
the ways in which SQL Server could access and manipulate data. SQL Server 2008 takes integra-
tion with the .NET CLR one step further, by relying on the .NET CLR to implement core functions,
including any operations using the spatial datatypes of geometry and geography.

Byusing .NET, SQL Server is able to access and work with spatial data more efficiently than
would be possible using traditional Transact-SQL alone. However, .NET also introduces a range
of new concepts and language syntax with which you may not be familiar. In this chapter I will
introduce the principles of working within an object-oriented environment such as .NET, the
way in which .NET syntax differs from conventional T-SQL syntax, and how these factors
specifically relate to using the new geography and geometry datatypes in SQL Server 2008.

What Is the .NET Framework?

The .NET moniker has been applied to a range of separate, though related, Microsoft technol-
ogies: Visual Basic .NET (VB .NET), an object-oriented programming language based on Visual
Basic in which .NET code can be written; ASP.NET, a web development framework used to
create dynamic web sites and web applications; and the .NET Framework, which is the subject
of this chapter.

The .NET Framework is a software component that forms a core part of the Windows Vista
and Windows Server 2008 operating systems. It can also be installed as an optional add-in to
previous Microsoft operating systems, including Windows XP and Windows Server 2003. SQL
Server 2008 requires the .NET Framework to operate, and version 3.5 of the .NET Framework is
installed as part of the SQL Server 2008 installation process.

56

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

BNote The .NET Framework s not d str buted w th SQL Server 2008 Express Ed t on. Before nsta ng Express
Ed ton, you must f rst down oad and nsta the .NET Framework from http://www.microsoft.com/net.

The .NET Framework itself contains several elements. The two main components are
as follows:

Base Class Library (BCL): A library that provides all .NET applications with a shared set

of methods to perform common programming tasks such as reading and writing to files,
accessing external resources over a network, serializing and encoding data, providing
presentation and user interface components, and querying structured data such as relational
databases or XML sources. These methods are all highly optimized, and readily available
for use by any .NET application. As a result, any applications that run on the .NET Frame-
work can reuse an existing, consistent, and efficient approach to achieving these tasks,
without needing to define their own proprietary methods.

Common language runtime (CLR): The execution environment in which .NET code is
run. Code written for execution using the .NET CLR (called managed code) is platform-
independent, so prior to execution, the CLR must first compile it into the native machine
language of the system on which it is operating. This is known as just-in-time (JIT) compi-
lation. In addition to simply executing the compiled code, the CLR environment also takes
care of issues such as monitoring memory usage, performing garbage collection, managing
threads, and controlling application security.

When installed on an operating system, these two components of the .NET Framework
provide the method of execution and the essential resources required to enable any .NET
applications to be run on that system.

ENote .NET app catons may be deve oped us ng a range of programm ng anguages that conform to the
Common Language Spec f cat on (CLS). Two common y used anguages for .NET deve opment are C# and VB .NET.
Pror to execut on, CLS-comp ant code wr tten n any supported anguage s frst comp ed nto a common,
p atform- ndependent format ca ed Common ntermed ate Language (C L), wh ch can be passed to the CLR
for JT comp aton and execut on spec f ¢ to the system on wh ch the .NET Framework s runn ng.

How .NET Is Hosted

.NET applications are normally executed in the .NET Framework CLR process hosted by the
operating system. However, when you use .NET managed code in SQL Server 2008, SQL Server
actually hosts the runtime environment within its own platform layer SQLOS and the CLR
shares the Database Engine’s process space. When implemented in this way, the CLR is referred
to as the SQLCLR.

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK 57

By hosting the SQLCLR itself, SQL Server 2008 ensures close integration between the SQL
Server query processor and the runtime engine that executes any .NET managed code within
SQL Server. This ensures high-performance transitions between the two platforms. It also ensures
that SQL Server remains in control of allocating resources to the CLR, so that it governs the
memory and processing time given to any .NET processes. The SQLCLR is completely contained
within the integrity and security model provided by SQL Server.

The SQLCLR is a core component of SQL Server 2008, and the SQLCLR process is always
loaded as part of SQL Server. The SQL Server Database Engine uses the functionality provided
by the CLR seamlessly to provide a range of functions, which includes performing operations
using data in the geography and geometry datatypes.

MICROSOFT.SQLSERVER.TYPES.DLL

he NE code requ red by the geometry and geography datatypes n SQL Server 2008 s contaned n a
ded cated assemby ca ed Microsoft.SqlServer.Types.dll Youcanfndthsassemby w thnthe
100\SDK\Assemblies subd rectory of the d rectory n wh ch SQL Server s nsta ed

SQL Server automat ca y mports th s assemb y on startup However you can aso manua y mportth s
assemby nto other NE app catons wh ch enab es you to use the same spata datatypes and methods as
SQL Server tsef butfromwthna NE app caton executed by the norma NE CLR rather than the SQLCLR
Because Microsoft.SqlServer.Types.dll contansa the requred code to mp ement spata funct on-
a ty once you ve mported th sassemby you can even create your own stand-aone NE spata app catons
that don t depend on SQL Serverata nfact Microsoft.SqlServer.Types.dl1 conta ns some methods that
you can accessva NE thatarentava abe drecty nSQL Server tse f (such as the SqlGeometryBuilder and
SqlGeographyBuilder ¢ asses wh chyou can use to programmat ca y create new geometry and geography

nstances respectvey)

he fo ow ng three code stngs ustrate and compare how you can use the methods conta ned w th n
Microsoft.SqlServer.Types.d1ll n SQL Server naVsua Basc NE consoeapp caton and na C#
conso e app caton neach case the code sted creates a new geometry Po ntat coord nates (10 20) us ng
SRD 0 and then returns the WK representat on of that geometry

SQL Server

DECLARE @MyGeometry geometry
SET @MyGeometry = geometry::Point(10, 20, 0)
SELECT @MyGeometry.ToString()

Visual Basic .NET

Imports Microsoft.SglServer.Types
Module MyModule
Sub Main()
Dim MyGeometry As New SqlGeometry()
MyGeometry = SqlGeometry.Point(10, 20, 0)
Console.Write(MyGeometry.ToString())
End Sub
End Module

58 CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

C#

using Microsoft.SglServer.Types;
class MyClass
{
static void Main(string[] args)
{
SqlGeometry MyGeometry = SqlGeometry.Point(10, 20, 0);
System.Console.Write(MyGeometry.ToString());
}
}

he resutof a three methods s exacty the same
POINT (10 20)

hsam of ths book s to exam ne the spata functona ty prov ded within SQL Server 2008 so a the
exampes gvew demonstrate the spata methods d recty ava ab e from SQL Server tse f However you
shou d remember that n many cases you can ach eve the same object ve by us ng the spata methods prov ded
by Microsoft.SqlServer.Types.d1l na NE app caton outs de of SQL Server

Why Use .NET for Spatial Functionality?

Like most relational database management systems, SQL Server is primarily based on Structured
Query Language (SQL). SQL is a widely used, set-based programming language, and is the
recognized standard method used for retrieving and processing data from a database system.
You probably already are familiar with the basic structure of a SQL query, such as shown in the
following listing:

SELECT
ColumnName1,
Function(ColumnName2) AS Alias,

FROM
TableName

WHERE
Condition1
AND
Condition2 = 'Value'

True

Although SQL is a standard approved by both the International Standards Organization
and the American National Standards Institute, many database vendors implement their own
proprietary versions of SQL, which implement additional functionality on top of the core elements
defined in the SQL standard. The particular implementation of SQL used in SQL Server 2008 is
called Transact-SQL, or T-SQL.

T-SQL was originally developed by Microsoft and Sybase, who extended the basic set-based
SQL standard by adding a number of elements to support procedurallogic, such as loops, variables,
and conditional branching. These additions make T-SQL a very powerful, quasi-procedural
language that has been optimized to perform bulk operations against large amounts of data

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

normally stored in relational databases. However, as you've already seen in Chapter 2, there
are several differences between the spatial data stored by the geography and geometry types
compared to conventional numeric or character data. A single item of spatial information
describes anumber of different properties of the feature it represents, has a complex structure,
and may contain a significant amount of data. This makes dealing with spatial data more
complicated than using other types of data. Even with the enhancements it offers over the SQL
standard, T-SQL is simply not designed to handle the complex types of information necessary
to describe spatial data.

In order to be able to access the information in the geometry and geography datatypes
effectively, SQL Server 2008 therefore leverages the power of the .NET CLR instead. The .NET
CLR uses an object-oriented approach to storing and manipulating data, which is ideal for
describing the multifaceted nature of spatial data. Additionally, working with spatial data
involves relatively complex mathematical computations and procedural logic that would be
hard to achieve using predominantly set-based Transact-SQL, but are relatively simple using
amodern CLS-compliant language, such as C#. Whenever SQL Server implements a datatype
using the functionality of the .NET CLR, such as the geography and geometry datatypes, these
are called CLR datatypes.

BNote Because SQL Server 2008 ncorporates both T-SQL and .NET, there are many scenar os where you
w face a cho ce of wh ch p atform to use to mp ement a part cu ar data operat on. Even though the methods
empoyed w be dfferent, t s genera y possb e to ach eve the same des red resu t us ng e ther p atform.
Each has ts own advantages and d sadvantages—set-based operat ons tend to perform better us ng T-SQL,
wh e procedura operat ons, recurs ve code, and constructs such as arrays tend to work better n .NET. A though
spata functona ty cou d be ach eved us ng T-SQL a one, SQL Server 2008 uses .NET as a more appropr ate
and effect ve cho ce for hand ng th s type of data.

CLR USER-DEFINED TYPES

Support for datatypes based on the NE CLR was frst ncorporated nto SQL Server 2005 Atthattme deve opers
were ab e to use the NE Framework to create the r own user-def ned types (UD s) and access data n these
types us ng object-or ented methods However before SQL Server 2008 there were not any system-def ned
datatypes that re ed on the NE CLR nths way

SQL Server 2008 actua y comes w th three prereg stered NE CLR datatypes geometry geography
and hierarchyid hese datatypesa work n much the same way as UD s except that they are system-
def ned types that are a ready reg stered and ready for use n SQL Server

Wh e UD s prov ded a usefu way for users to be ab e to extend the system-def ned sca ar datatypes
w th the r own custom types they were of m ted use for stor ng comp ex data n SQL Server 2005 s nce
each tem of data stored naUD coud ony conta n 8KB of data SQL Server 2008 extends the sze mt of
any NE CLR datatype to 2GB hs ncreased sze mtapp estoUD s aswe as to the geography and

geometry system-def ned types

60

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

Applying Principles of Object Orientation

There are a number of important principles that apply to any object-oriented programming
language, including those targeted at development for the .NET Framework. Following these
principles affects the ways in which you use data stored using CLR datatypes such as geography
and geometry compared to other types of data in SQL Server 2008. If you have used other object-
oriented programming languages in the past, such as Java or C++, you may already be familiar
with the concepts of data abstraction, encapsulation, inheritance, and polymorphism. However, if
you are not, or if you need a refresher, then read on!

Data Abstraction

Most common SQL Server datatypes (such as char, int, datetime, and float) are scalar that
is, each item of data only holds a single value at a time. That value completely describes a single
piece ofinformation acustomer’s address, a product reference number, or the date on which
a transaction took place, for example. In contrast, we know that in order to fully describe a single
item of spatial data, anumber of distinct pieces of information are required the type of geom-
etry used to represent that feature, how many points that geometry contains, the coordinates
of each of those points, and the spatial reference from which those coordinates were obtained.

When storing an item of spatial data representing a feature on the earth, the geography and
geometry datatypes store these abstract pieces of data together in a compound item of data called
an object. Each object contains several data members, with each representing the value of one
particular property of that item of spatial data. When combined together in a single package,
these individual data members form an object representing the entire feature. The process of
describing the properties of real-world features as a collection of individual items of data is the
principle of data abstraction.

There are different ways of abstracting the same real-world item into component elements.
For instance, even though they can be used to describe the same feature on the earth, a
geography object and a geometry object may contain different data members. This concept is
illustrated in Figure 3-1.

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK 61

#esessesssenes
.

Data
Member

#esessesssenes
.

Data
Member

geometry Object geography Object
Figure 3-1. Data abstraction in the geometry and geography object types

Encapsulation (Data Hiding)

In addition to containing a number of different data members representing different properties
of a feature, each object also contains a number of methods to specify how the data contained in
those data members can be accessed.

Normally in SQL Server, we consider the items of data stored in a database as being separate
from the functions that can be performed on that data. For instance, the COUNT function, which
is a function defined by the T-SQL language, can be applied to count the number of items in
any column of data, whatever datatype the values in that column represent.

In contrast, when using an object-oriented language like .NET in SQL Server, the datatype
of a column not only determines the individual elements of the data stored in that column, but
also specifies what methods can be used to access that data.

.NET methods are like T-SQL functions they perform operations on items of data. What
makes methods different from functions is that the onlyway of directly accessing the data
contained within an object is by using the methods specified by that object itself. This is the
principle of encapsulation, or data hiding the individual data members contained within an
object of data using the geometry or geography datatype are kept hidden from the rest of the
system, and the only way of accessing them is by using one of the specific methods provided by
that type of object. The concept of encapsulation is illustrated in Figure 3-2.

62

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

T-SQL NET

Data Data Data
Items of data may be accessed directly Data members contained within an
by any functions of the system object may only be accessed by the

methods defined by that object

Figure 3-2. Using methods to access encapsulated data contained within an object

The main advantage of encapsulation is that, by preventing access to the data contained
in an object by any other means than those methods defined by the object itself, it is easier to
ensure the integrity of data contained in the object. Data members contained within an object
cannot be subject to any externally defined processes over which the object has no control.

The geography and geometry datatypes provide methods that can be used to perform a
wide range of actions using the data contained within objects of that type, or combine and
compare that data with different objects. These methods are described in detail in Chapters 11 13
of this book.

Inheritance

Although every object created from the geography or geometry datatype is based on the funda-
mental properties of that datatype, not all objects of a given datatype are the same. We know
that each item of geometry or geography data actually defines a particular kind of geometry
object aPolygon, a LineString, a Point, or a multielement collection of those geometries.
Each of these specific classes of object is derived from either the geometry or geography generic,
abstract datatype, and inherits the properties and behavior of its parent datatype. This is the
principle of inheritance.

In addition to properties inherited from its parent datatype, each class of object also defines
a number of properties that are specific to that particular class. Any child object created from
this object will inherit these properties as well, making each successive class of derived object
more specific than its parent.

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

The inheritance tree of objects in the geography datatype, demonstrating which object
types are derived from other types, is shown in Figure 3-3.

Geography
I
[EP—— |

Point ! Curve | :Surface: Geometry Collection

N e s TS

LineString Polygon MultiPoint
- _|_ ________ _I_ -

MultiLineString | | MultiPolygon

Figure 3-3. The inheritance hierarchy of objects in the geography datatype. Instantiable types
those types from which an instance of data can be created in SQL Server 2008 are shown with a
solid border.

Note that in addition to Points, LineStrings, Polygons, and multielement types with which
you are now familiar, the inheritance tree contains classes of objects based on additional
geometry types Curve, Surface, MultiCurve, and MultiSurface. The objects in the first cate-
gory, Points, LineStrings, and Polygons, are instantiable types that is, these are the specific
subtypes of spatial data that you can create in SQL Server from the abstract geometry and
geography datatypes. The second category of objects, Curves and Surfaces, cannot be created.
However, you can create instances of the LineString and Polygon types that are derived from
these types, and therefore inherit their properties. For instance, the Curve is the generic one-
dimensional geometric object created from a sequence of points. The LineString object inherits the
generic properties of the Curve, but specifies the additional property that a LineString must be
composed of straight-line segments joining the Points.

Why does SQL Server include Curves and Surfaces if they can’t be created why not just
have LineStrings and Polygons descended directly from the parent geography or geometry
datatype? Remember that the spatial features in SQL Server are largely based on the standards
set out in the Open Geospatial Consortium’s Simple Features for SQL Specification. To conform
to this standard, the object hierarchy model must include the Curve and Surface subclasses.
Additionally, by including the object classes from the outset, SQL Server may be easily extended to
make these types of objects instantiable in the future.

ENote When you create an object of a g ven datatype, t s referred to as an instance of that type. The
process of creat ng a new object of geometry or geography data s therefore known as instantiation.

63

64

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

The inheritance hierarchy of objects for the geometry datatype mirrors that of the geography
datatype shown in Figure 3-3. However, since each class of object only inherits the relevant
methods of the type from which it is created, a Point object created from the geography datatype
will have a set of methods different from that of a Point object created from the geometry datatype.
Although many of the methods provided by the two spatial datatypes are similar, they are not
identical. You should therefore not assume that simply because you can use a certain method
on an item of data of the geometry datatype, you will be able to use an equivalent method on an
item of data of the geography datatype.

Polymorphism

The principle of inheritance tells us that the geography and geometry datatypes each define

a number of methods of accessing data, and that each Point, LineString, and Polygon object
inherits the methods available from the particular datatype from which it is derived. However,
each type of object does not necessarily implement those methods in the same way. The prin-
ciple of polymorphism (from the Greek, meaning “many forms”) means that you can call the
same function against different types of objects and get different behavior in each case.

For instance, when you call the STLength () method against a LineString object, you get the
length of the line. When you call the STLength() method against a Polygon object, you get the
total length of all defined rings. Applying polymorphism means that, under the covers, different
objects may implement the same method in different ways, but you do not need to worry about
exactly how thisoccurs when you invoke the method, you get the appropriate response from
that object for the situation in question.

Instantiating Spatial Objects

When you set the value of a scalar variable, or insert an item of data into a scalar column type,
the approach taken is quite simple you can use the SET statement or the INSERT statement,
and pass it the new value that the variable should hold. For instance, consider the following
examples:

DECLARE @myInt int
SET @myInt = 5

DECLARE @myTable table (myString varchar(32))
INSERT INTO @myTable (myString) VALUES ('This is a string')

However, since an item of data in the geography or geometry type is an object with several
individual members, you cannot simply assign the value of an item of spatial data so easily.
Instead, whenever you create a new item of spatial data in SQL Server, you must invoke a static
method.

Using Static Methods

Whereas most methods are inherited by, and applied to, individual instances of a datatype,
static methods act upon the geography or geometry datatype as a whole. You cannot create a
new object by applying a method on that particular object itself, because it doesn’t exist yet.
Instead, to instantiate a new object, you use a static method belonging to the appropriate

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

datatype. Both datatypes define a number of static methods that can be used to create new
instances of objects of that type.

In order to explicitly state which datatype the method belongs to, you specify a static method
by preceding the name of the method with the datatype name in every case, separated using
two colons (: :). For example, STGeomFromText () is a static method, belonging to the geography
datatype, which can be used to create a new item of geography data. To use this method, you
would invoke it using the following syntax:

geography: : STGeomFromText ()

Note that the geometry datatype also implements a method called STGeomFromText(). If
you wanted to use this method instead, you would invoke it in the following way:

geometry::STGeomFromText ()

The geometry and the geography datatypes each implement 19 static methods, which can
be used to create different kinds of objects of that type, based on different kinds of input. These
are discussed in detail in the next chapter.

Applying a Static Method of the Appropriate Datatype

Itis important to remember that every static method can only instantiate an object of the same
datatype as the datatype of the method itself. Therefore, when you use a static method to create an
object that is to be inserted into a geography or geometry column, or set as the value of a param-
eter, you must use a static method belonging to the relevant datatype.

Consider the following example, which creates a table variable containing a geometry
column, and then inserts data into that column from the result of the STGeomFromText () static
method of the geometry datatype:

DECLARE @myTable table (
FeatureName varchar(32),
FeatureGeometry geometry

)

INSERT INTO @myTable VALUES (
'Statue of Liberty',
geometry: :STGeomFromText (' POINT(-74.045 40.69)"', 4326)

)

At this stage, don’t be too concerned about the parameters contained in the brackets
they will be covered in the next chapter. The important point to note is that, since we created
a table variable with a geometry column, to insert data into that column we must use a static
method belonging to the geometry datatype. In this case, we use the STGeomFromText () method.
If you are keen to know, in this example the parameters state that the method should create a
Point at coordinates 74.045° longitude and 40.69° latitude, specified using the spatial reference
system denoted by the SRID EPSG:4326. This is the approximate location of the Statue of Liberty.

Now suppose instead that you were to provide the same parameters to the STGeomFromText ()
method of the geography datatype, as shown in the following query:

65

66

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

DECLARE @myTable table (
FeatureName varchar(32),
FeatureGeometry geometry

)

INSERT INTO @myTable VALUES (
'Statue of Liberty',
geography: : STGeomFromText ('POINT(74.045 40.69)', 4326)

)

This would result in the error

Msg 206, Level 16, State 2, Line 2
Operand type clash: sys.geography is incompatible with tempdb.sys.geometry

because the resulting object created by the geography: : STGeomFromText () static method is an
instance of a geography object, which cannot be inserted into a column of the geometry
datatype.

Invoking Spatial Instance Methods

Having seen how to create new items of geography and geometry data using static methods, let’s
now look at how we can use .NET CLR instance methods to manipulate that data. Unlike static
methods, which are defined by and applied to either the geometry or geography datatype as a
whole, an instance method applies to an individual instance of geography or geometry data. As
with static methods, there are a number of differences between the .NET approach and the
equivalent T-SQL syntax.

T-SQL Function Syntax

The generic syntax for applying a function to a column of data in T-SQL is as follows:
Function(Column, [Parameter])

To demonstrate this syntax in action, the following example shows how you can use the T-SQL
LEFT function to return the leftmost 15 characters from a string value held in a varchar(32) variable:

DECLARE @myString varchar(32)
SET @myString = 'This is an example of the left function'
SELECT LEFT(@myString, 15)

The result is as follows:

This is an exam

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

.NET CLR Instance Method Syntax

In contrast to the T-SQL syntax, when using .NET, the method name comes after the instance
to which it is being applied. The name of the instance and the method name are separated by
adot (.), and the name of a method is always immediately followed by a pair of opening and
closing round brackets. If a method takes a parameter, it is supplied within the brackets. This
generic syntax is demonstrated as follows:

Instance.Method([Parameter])

For instance, the ToString() method in .NET can be used to return a text representation of
an object. It takes no parameters. It is therefore called as follows:

SELECT
Column.ToString()
FROM
TableName

Compare this to the T-SQL CONVERT function to convert a value to a variable-length character
string, which provides similar functionality:

SELECT

CONVERT(varchar(32), Column)
FROM

TableName

lCaution Un ke T-SQL funct ons, the .NET CLR methods of the geometry and geography datatypes n
SQL Server 2008 are case sens t ve, so be carefu to use Instance.ToString(), not Instance.toString().

Note that, in contrast to the static methods previously described, you do not need to
explicitly specify whether the method belongs to the geometry or geography datatype. This is
because the method acts on a particular instance of an object, which in itself has already been
defined as an instance of an object derived from one of the two types, and has inherited the
relevant methods.

Chaining Multiple Method Calls

In many cases, it is desirable to apply one method to an instance, and then take the result of
that method as the input for a further method. Rather than apply the second method to the
instance itself, you therefore apply it to the result of the first method. The correct syntax in this
case is to list each method after the value to which it should be applied, again using a dot before
each method, and opening/closing round brackets after each method name. Methods are
applied in left-to-right order, starting with the method that is directly applied to the instance
itself, and then working outward. For instance, consider the following example:

Instance1.STUnion(Instance2).STArea()

67

68

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

In this example, the STUnion() method is first to be applied to Instancel. The STUnion()
method combines two geometries the geometry that is represented by the instance on which
itis applied, and a second geometry that is supplied as a parameter to the method. In this case,
the result of this method therefore represents the union of Instancel and Instance2. The STArea()
method is then applied to the resulting geometry, which returns the area of the combined shape.

Accessor and Mutator Methods

In most cases, the NET CLR methods provided by the geography and geometry datatypes are
read-only they can be used to access the data members within an object to return the results,
but do not change any values of that object. Methods of this type are known as accessor methods.
In contrast, methods that change the value of data members contained within an object are
called mutator methods.

Accessing Properties

Mostmethods provided by the geometry and geography datatypes perform some operations on
the members of an object before returning the result. For example, STArea() calculates the area
contained within a geometry; STLength() calculates the length of a geometry; and STOverlaps()
determines whether two geometries overlap. However, in some cases, we may simply want a
method that retrieves (or sets) the value of an individual data member within an object. We
cannot access the value directly data encapsulation prevents us from doingso butwedon’t
really need the method to provide any additional functionality other than retrieving a single
value of a data member within the object. In these cases, an object may provide access to its
data members as a property of that object. A property can be thought of as a method that does
nothing more than provide an exposed interface to a particular data member. Properties still
retain the benefits of encapsulation by not allowing direct access to the item, but provide a
transparent way by which the value can be read, or written.

Syntax

To access the properties of a geometry or geography object, you use a syntax that is similar to,
although simpler than, the syntax that you use for methods. You first state the name of the
object, followed by a dot, followed by the name of the property. However, properties do not
take any arguments, so you do not include the round brackets after the property name. The
generic syntax is therefore:

Instance.Property

For example, the STX property of a geometry Point object returns the value of the x coordinate
of that Point:

SELECT
GeometryColumn.STX
FROM
TableName

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK 69

As with methods, the properties of a particular item of spatial data are inherited from the
parent datatype of which that object is an instance. The STX property used in this example can
only be used on Point objects of the geometry datatype. Why is this property only defined by
objects of the geometry datatype and not the geography datatype? Remember that Points in the
geography datatype are defined not by using coordinates of x and y, but rather by using angular
coordinates of latitude and longitude therefore, it wouldn’t make sense for the geography
datatype to implement a property representing an x coordinate. Instead, the geography datatype
provides access to a similar property, called Long, which provides access to the longitude coor-
dinate value of a Point, as follows:

SELECT
GeographyColumn.Long
FROM
TableName

Read-Only and Read-Write Properties

In most cases, properties of geometry and geography datatypes are read-only. For instance, you
cannot dynamically change the x coordinate of a geometry Point by setting the STX property of
that Point to a new value. In order to change the properties of points defined within a geometry,
you must instead use a static method to redeclare the value of the entire object.

However, the STSRid property of both the geometry and geography datatypes is unusual
in that it enables you to both retrieve and set the spatial reference identifier (SRID) of an item
of spatial data. As such, the SRID of an item of geography or geometry data can be set to a new
value by using a SET T-SQL statement as follows:

SET Instance.STSRid = 4326

Combining T-SQL and .NET CLR Methods

You may have noticed in the examples already used in this chapter that while the NET CLR
complements and extends the functionality of Transact-SQL already used by SQL Server, it
does not replace it. .NET provides the procedural methods by which geography and geometry
data is accessed, but queries using spatial data in SQL Server are still based around familiar T-SQL
language statements such as SELECT, INSERT, UPDATE, and DELETE. When working with spatial
data in SQL Server 2008, you will therefore need to write queries containing both T-SQL and
.NET syntax.

You learned earlier in this chapter that, according to the principle of encapsulation, the
only way to directly access the data contained within an object of geometry or geography data is
to use the relevant CLR method. However, once that method has retrieved the relevant results,
they are returned to T-SQL, where they can be used in conventional T-SQL functions.

For instance, to calculate the area of a Polygon object stored using the geometry datatype,
we can use the STArea() method. The result returned by this method is a floating-point number,
representing the total area of the Polygon geometry. We can use this result in the ORDER BY clause
of a standard T-SQL SELECT statement to sort a result set by area. To demonstrate this, consider
the following query, which selects the three largest US states by area:

70

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

SELECT TOP 3

State Name,

State Geometry.STArea() AS Area
FROM

US States
ORDER BY

State Geometry.STArea() DESC

The results are as follows:

State Name Area

Alaska 1702788.113
Texas 692436.1872
California 423236.0281

Using Open Geospatial Consortium Methods

Many of the NET CLR methods implemented by the spatial datatypes in SQL Server 2008 are
based on standard methods defined by the Open Geospatial Consortium. Whenever the geography
or geometry datatype implements one of these standard methods, the method name is prefixed
by the letters “ST”. Examples of such OGC-compliant methods are STBuffer() and STUnion().
When using any of these methods, the results obtained will be consistent with the standards of the
OGC Simple Features for SQL Specification, v1.1.0, available at http://www.opengeospatial.org/
standards/sfs.

In addition to the OGC standard spatial methods, both spatial datatypes provide a number
of extended methods that provide additional functionality on top of the OGC standards. These
methods are named according to their function, without any additional prefix. Examples of
extended methods are the Reduce () and MakeValid() methods.

ENote The etters “ST” used to pref x 0GC-def ned methods actua y stand for “Spat o-Tempora "—that s,
they are methods des gned to perform ca cu at ons of space andt me. However, SQL Server 2008 does not
mp ement the t me-based aspects of any methods (yet), so nstead you may fnd the pfu to remember “ST”
as denot ng a STandard method.

Handling Exceptions in the CLR

SQL Server 2008 implements error handling through the use of a TRY.. CATCH construct. This
construct is an example of one of the procedural additions that T-SQL provides over the SQL
standard. When using a TRY.. CATCH construct, one or more T-SQL statements are wrapped in
a TRY block. If an error occurs when these statements are executed, or from within a stored
procedure called within the TRY block, an error is thrown, and execution is transferred instead

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK n

to another group of T-SQL statements contained within a CATCH block. The CATCH block catches
the error, and can then determine how to deal with it.

In order to choose an appropriate course of action, statements contained within the CATCH
block have access to a number of functions that give information related to the error that
caused the CATCH block to be executed. These functions are error number(), error severity(),
error state(), error message(), error procedure(), and error line().

To demonstrate the use of TRY.. CATCHusing spatial methods, let’s try to use the static method
STPolyFromText() to create a Polygon of the geometry datatype whose exterior ring is not closed:

BEGIN TRY
DECLARE @polygon geometry
SET @polygon = geometry::STPolyFromText('POLYGON((0 0,10 0,10 10,0 10,2 2))"',2285)
END TRY
BEGIN CATCH
SELECT 'The method failed because of error number ' +
CAST(ERROR NUMBER() AS varchar(32))
END CATCH

In this case, the parameters provided to the STPolyFromText () method specify that a Polygon
should be created, the exterior ring of which starts at coordinate (0,0), but ends at coordinate
(2,2). The result is as follows:

The method failed because of error number 6522

Now let’s try to generate another error. This time, we’ll try to use the STLineFromText () static
method to create a LineString object using the geography datatype that only contains one point:

BEGIN TRY
DECLARE @line geography
SET @line = geography::STLineFromText('LINESTRING(2 0)',17453)
END TRY
BEGIN CATCH
SELECT 'The method failed because of error number ' +
CAST(ERROR NUMBER() AS varchar(32))
END CATCH

This time, the resultis. . .

The method failed because of error number 6522

... huh? Why does the value of ERROR NUMBER() remain the same even though we have caused
a different error, based on the geography datatype rather than the geometry datatype? To answer
this question, we can look up the meaning of error 6522 in the sys.sysmessages table:

72

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

SELECT

description
FROM

sys.sysmessages
WHERE

error = 6522

AND msglangid = 1033

Note that the sys.sysmessages table contains multilingual descriptions for all possible
generated errors in SQL Server, so we add the msglangid = 1033 condition to obtain the English
description of the error. The result is as follows:

A .NET Framework error occurred during execution of user-defined routine
or aggregate "%.*1s": %ls.

What does this mean? Remember that SQL Server hands over all processing of spatial methods
to the SQLCLR. If an exception occurs when working with the geometry and geography datatypesin
SQL Server, this initially raises an error in the .NET environment in which the SQLCLR operates,
rather than directly in the T-SQL environment. The SQLCLR itself then raises a further error in
the T-SQL environment which it does under error code 6522. Whenever you generate an
error using the geometry or geography datatype, you actually generate two error responses
the .NET error code generated by the SQLCLR, and a T-SQL error code of 6522. Unfortunately,
ERROR NUMBER() only holds the value of the T-SQL error, so whenever you encounter an error
using the geometry or geography datatype, this will be 6522 in all cases, which is just the generic
T-SQL error raised every time there is an error encountered by a method using the .NET
Framework.

What we would really like to be able to do is retrieve the value of the original .NET error
code generated so that we can use that in our CATCH block to determine a course of action based
on the specific error. Fortunately, there is an alternative way to do this.

When the SQLCLR encounters an exception, it generates an error message, consisting of a
verbose description of the exception together with the contents of the stack (the list of individual
tasks that the CLR was performing). The details of the T-SQL error 6522 are then appended to
this error message, which is accessible by using the ERROR MESSAGE () function. When called in
a CATCH block, ERROR MESSAGE () returns an nvarchar(2048) string containing the complete text
of the error message that caused the CATCH block to be run, including both SQLCLR and T-SQL
error messages.

To demonstrate this, let’s use the first example again to create a Polygon with an unclosed
external ring, except this time we’ll select the value of ERROR MESSAGE():

BEGIN TRY
DECLARE @polygon geometry
SET @polygon = geometry::STPolyFromText('POLYGON((0 0,10 0,10 10,0 10,2 2))',2285)
END TRY
BEGIN CATCH
SELECT ERROR MESSAGE()
END CATCH

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

The results are as follows:

A .NET Framework error occurred during execution of user-defined routine or
aggregate "geometry":

System.FormatException: 24119: The Polygon input is not valid because the start
and end points of the exterior ring are not the same. Each ring of a polygon must
have the same start and end points.

System.FormatException:

at Microsoft.SglServer.Types.GeometryDataBuilder.EndFigure()

at Microsoft.SglServer.Types.OpenGishWktReader.ParseLineStringText
(FigureAttributes attributes)

at Microsoft.SqlServer.Types.OpenGishWktReader.ParsePolygonText()

at Microsoft.SqlServer.Types.OpenGishWktReader.ParsePolygonTaggedText ()

at Microsoft.SqlServer.Types.OpenGishWktReader.ReadPolygon()

at Microsoft.SqlServer.Types.SqlGeometry.STPolyFromText(SqlChars
polygonTaggedText, Int32 srid)

Notice that this message contains three distinct parts:

* Thedescription of Msg 6522 that we have alreadyseen the T-SQL error that tells us that
there has been a problem in a method using the SQLCLR.

e System.FormatException: 24119 is the reference number relating to a specific .NET error.
The error also has a helpful description of the particular cause of the error in this case,
because the start and end points of the exterior ring of the Polygon are not the same.

¢ Adescription of the processes on the stack at the time the error was generated in this
case, the error occurred when attempting to use the GeometryDataBuilder.EndFigure()
method.

If we repeat this same process with our second example, we can see that the .NET error
returned when trying to create our invalid LineString is

System.FormatException: 24117: The LineString input is not valid because it does not
have enough distinct points. A LineString must have at least two distinct points.

By distilling the contents of ERROR MESSAGE (), we can therefore take specific action based
on the exception raised within the .NET Framework environment.

Summary

In this chapter, you saw how SQL Server 2008 uses the .NET Framework when using the geometry
and geography datatypes:

73

74

CHAPTER 3 | WORKING WITH SPATIAL DATA IN THE .NET FRAMEWORK

e The .NET Framework CLR is an integral component of SQL Server 2008, and is used to
provide the functionality of the geometry and geography CLR datatypes.

e There are a number of differences between the predominantly set-based T-SQL language
and the object-oriented .NET environment. These differences affect the ways in which
you use geometry and geography compared to other SQL Server datatypes.

* CLR datatypes such as geometry and geography are based on an object-oriented
programming model, which applies the principles of data abstraction, encapsulation,
inheritance, and polymorphism.

» Static methods actupon a datatype, and can be used to create new items of geometry and
geography data.

* Instance methods act upon an individual item of geometry or geography data, and can be
used to perform spatial operations using the data contained within that instance.

 Errors that occur using the geometry and geography datatypes are raised within the SQLCLR
environment. Details of those errors can be retrieved using the T-SQL ERROR MESSAGE
function.

You have seenhow using the NET CLR enables SQL Server 2008 to access complex spatial data
using the geography and geometry datatypes. In later chapters of this book, we will examine other
ways in which we can leverage the power of .NET to extend the capabilities of SQL Server 2008, by
using the functions provided by the Base Class Library to perform transformations of XML-
based spatial data, and by accessing web-based geocoding services to obtain the coordinate
positions of locations.

PART 2

Adding Spatial Data

This part of the book explains various ways by which you can add spatial data to your SQL
Server 2008 database. Chapter 4 introduces each of the underlying static methods that are
used to create any items of data from known coordinates. Chapter 5 demonstrates a tech-
nique that harnesses external resources to help derive those coordinates—using
Microsoft’s Virtual Earth Map Control. Chapter 6 discusses other common data formats in
which spatial data can be stored, and provides examples of how data stored in these
formats can be imported into SQL Server. Finally, Chapter 7 shows how you can extend
SQL Server to provide geocoding functionality—automatically obtaining coordinates of an
address by accessing the Microsoft MapPoint Web Service via .NET.

CHAPTER 4

Creating Spatial Data Objects

In the last chapter, I introduced the concept of static methods and explained how they can
be used to instantiate objects of the geography and geometry datatypes. In this chapter we will
examine the different static methods available for each datatype, and compare how they can
be used to create new items of spatial data.

BNote Most of the code samp es n th's chapter dec are oca var ab es, such as @Point, to store the
resu tng nstances created by stat ¢ methods. However, you can nsert the resu ts of a stat ¢ method d recty
nto a geometry or geography coumn n a tab e by nvok ng the method as part of an INSERT statement.

Choosing an Appropriate Static Method

The geography and geometry datatypes both provide a number of different static methods for
creating spatial data objects. The appropriate method to use in a particular situation depends
on the following factors:

* Thetype of geometry object you are trying to create: Some methods can only be used to create
particular types of geometries. For instance, the STLineFromWKB() and STLineFromText()
methods can only create instances of LineString geometries.

* How you will describe the properties of this geometry: All of the methods require you to
supply the spatial representation of a geometry using one of three different standard
formats: Well-Known Text (WKT), Well-Known Binary (WKB), or Geometry Markup
Language (GML). You must use an appropriate method depending on which represen-
tation format you choose to describe the geometry. For example, to create any geometry
instances from a GML representation, you must use the GeomFromGml() method.

* Whether you want to create an item of geometry or geography data: The geography and
geometry datatypes both provide their own implementations of each static method. Since a
static method can only create instances of objects of the same datatype as the datatype
of the method itself, you must choose the method belonging to the appropriate datatype
for the type of object you want to create. For instance, to create a geometry Point object
from WKT, you should use the geometry: : STPointFromText () method. To create a geography
Point object from WKT, you should use the equivalent method of the geography datatype
instead, geography: : STPointFromText().

78

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

Table 4-1 shows the methods that can be used to create different geometry instances. All
of these methods are implemented by both the geography and geometry datatypes.

Table 4-1. Supported Methods to Instantiate Spatial Objects from Different
Representation Formats

Type of Object Well-Known Text Well-Known Binary Geography Markup
Language

Point STPointFromText() STPointFromWKB() GeomFromGm ()
LineString STLineFromText () STLineFromWKB() GeomFromGm ()
Polygon STPo yFromText() STPo yFromWKB() GeomFromGm ()
MultiPoint STMPointFromText() STMPointFromwWKB() GeomFromGm ()
MultiLineString STMLineFromText() STMLineFromWKB () GeomFromGm ()
MultiPolygon STMPo yFromText() STMPo yFromWKB() GeomFromGm ()
Geometry STGeomCo FromText() STGeomCo FromWKB() GeomFromGm ()
Collection

Any supported type gTGeorél;romText() STGeomFromWKB () GeomFromGm ()

arse

Whichever language is used to represent the spatial object, and whichever type of object is
being created, all of the static methods discussed in this chapter share the same basic syntax.
This generic syntax is as follows:

datatype: :method(geometryrepresentation, srid)

The four elements of this syntax are as follows:

datatype specifies whether the static method belongs to the geography or the geometry
datatype, and therefore determines the datatype of the resulting instance created by the
method.

method is the name of the method to create the geometry. This must be one of the methods
listed in Table 4-1.

geometryrepresentation is a valid representation of the geometry to be created. This
representation must be expressed in the appropriate format expected by the chosen
method. The representation is a character string (WKT and GML formats) or binary
stream (WKB) that contains all of the information required to define the geometry in
question.

srid is an integer value representing the identifier of the spatial reference system that
was used to define the coordinates in the geometryrepresentation parameter passed to
the method.

Each format in which geometries can be represented, and each method that can be used
to create instances of objects from those representations, has its own advantages and disad-
vantages. However, the decision of which method to use to create an item of geography or

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

geometry data is only significant at the point of creation, and becomes irrelevant once the item is
created. Having used a particular method to create an item of spatial data, that item of data is
exactly the same as if it had been created using any of the other possible methods.

LATE BINDING

he reference to a geometry or geography object spec f ed by any of the stat ¢ methods s ony reso ved at
runt me when the query that nvokes the method s executed h s s known as /ate binding One effect of ate
bndng sthat unt the query s executed the SQLCLR does not know what type of object w be created by
astatc method Asaresut SQL Server cannot parse a representat on to check whether t wou d produce va d
data For nstance the fo ow ng query comp es correcty n SQL Server Management Stud o w thout gener-
atng any pars ng error

SELECT geometry::STGeomFromText('This is not a real geometry')

However on executon thsqueryw fa because the representat on passed to the method s notva d
WK as requ red by the STGeomFromText () method Be carefu when you spec fy the representat ons passed to
any stat ¢ methods s nce errors may not show up unt you attempt to execute those quer es

Creating Geometries from Well-Known Text

Well-Known Text is one of the standard formats defined by the Open Geospatial Consortium
(OGC) for the exchange of spatial information. It is a simple, text-based format that is easy to
examine and understand. You have already seen an example of WKT in Chapter 1; it is the
format SQL Server 2008 uses to store the parameters of supported geodetic spatial reference
systems in the well known text column of the sys.spatial reference systems table. In that
context, WKT was used to describe the properties of a spatial reference system. However, WKT
can also be used to express individual geometry objects within a spatial reference system. For
example, the following code line demonstrates how WKT can be used to define a LineString
between the points at coordinates (12,20) and (30,44):

LINESTRING(12 20,30 44)
Some of the advantages of the WKT format are
¢ Itis a simple, structured format that is easy to store and share between systems.

¢ Sinceit is text based, visibly identifying the information conveyed in a WKT representa-
tion is easy.

However, WKT has the following disadvantages:

* Aswith any text-based representation, it is not possible to precisely state the value of

certain floating-point coordinate values obtained from binary methods. The inevitable
rounding errors introduced when attempting to do so will lead to a loss of precision.

¢ Since SQL Server must parse the text in a WKT representation to create the relevant
spatial object, creating objects from WKT can be slower than when using other methods.

80

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

Owing to its easy readability and relative conciseness, the WKT format is commonly used
to demonstrate and share spatial data with other users, and is the format used in most of the
examples of this book. It is also the format used in SQL Server 2008 Books Online, the Microsoft SQL
Server online documentation, at http://msdn.microsoft.com/en-us/library/ms130214.aspx.

SQL Server 2008 implements specific static methods for creating each of the basic types of
geometry shapes from WKT Points, LineStrings, and Polygons as well as methods to create
homogenous multielement and heterogeneous Geometry Collection object types. There are
also generic methods that can create any of the supported kinds of geometry object from WKT.
Let’s examine each method in more detail.

Creating a Point from WKT

The WKT syntax to represent a Point from Cartesian coordinates, such as from a projected
coordinate reference system, is as follows:

POINT(x y)
The equivalent WKT syntax for a Point specified in geographic coordinates is
POINT(longitude latitude)

In each case, the representation begins with the POINT keyword, followed by the relevant
coordinate values of that point contained within round brackets. Notice that the coordinate
values are separated by a space, not a comma.

ECaution n everyday anguage, t s common to refer to coord nates of attude and ong tude (n that
order). However, when def n ng a geograph ¢ coord nate par n WKT, the ong tude coord nate comes f rst,
then the at tude coord nate. Be sure that you spec fy your coord nates n the r ght order!

In order to create a geography or geometry Point object from this WKT representation, you
can use the STPointFromText () method of the appropriate datatype. For example, to create a
Point object representing Edinburgh using the geography datatype, with coordinates of 3.19
degrees longitude and 55.95 degrees latitude, expressed using the spatial reference system
identified by SRID 4326, you can run the following query in SQL Server Management Studio:

DECLARE @Edinburgh geography
SET @Fdinburgh = geography::STPointFromText('POINT(-3.19 55.95)', 4326)

You will receive the following message:

Command(s) completed successfully.

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

The variable @Edinburgh now holds the Point instance created by this method.

Let’s try another example. This time, we’ll try to create a point representing Glasgow at
coordinates (258647,665289) using the spatial reference system 27700. To do this, try running
the following query:

DECLARE @Glasgow geography
SET @Glasgow = geography::STPointFromText('POINT (258647 665289)', 27700)

Whoops this time we get the following error message:

Msg 6522, Level 16, State 1, Line 2

A .NET Framework error occurred during execution of user-defined routine

or aggregate "geography":

System.ArgumentException: 24204: The spatial reference identifier (SRID) is not
valid. The specified SRID must match one of the supported SRIDs displayed in the
sys.spatial reference systems catalog view.

Remember that the geography datatype can only be used to store geographic coordinates
from a recognized geodetic spatial reference system. However, in this case we used the
STPointFromText () method of the geography datatype but supplied coordinates based on SRID
27700, which is a spatial reference system based on projected coordinates.

To create an instance of a spatial object based on these coordinates, you can still use the
same WKT syntax, but instead you must use the STPointFromText () method belonging to the
geometry datatype, as follows:

DECLARE @Glasgow geometry
SET @Glasgow = geometry::STPointFromText('POINT (258647 665289)"', 27700)

Because we are now using the geometry datatype, which stores planar data such as that
obtained from a projected spatial reference system, the Point instance can successfully be
assigned to the @Glasgow variable, indicated by the following message:

Command(s) completed successfully.

lCaution Remember that WKT s on y a text representat on of a geometry or geography object— t

s not the va ue of the object tse f. You cannot nsert a WKT strng d recty nto a geometry or geography
coumn ke ths: INSERT INTO GeographyColumn VALUES ('POINT(100 40)'). nstead, you must
pass the WKT str ng as a parameter to a stat ¢ method such as STPointFromText().

81

82 CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

Z AND M COORDINATES

We know that to def ne the pos t on of a po nt on the earth s surface we ony need two coord nates—x and y
(n a projected coord nate reference system) or attude and ong tude (n a geograph ¢ coord nate reference
system) However n add ton to these two coord nates a Po nt object n WK may opt ona y be def ned wth
add tona zand m coord nates

* he z coord nate represents the he ght or e evat on of a pont Just as pos tons on the earth s surface
are measured w th reference to a hor zonta datum the he ght of po nts above or be ow the surface are
measured us ng a vert ca datum he z coord nate of a po nt can measure the he ght above sea eve
the he ght above the under y ng terran or the he ght above the reference e psod depend ng on wh ch
vertca datum s used

* he m coord nate stores the “measure” va ue of apont hs coord nate can be used to represent any
add tona propert es of a po nt that can be expressed as a doub e-prec s on number For nstance fyou
arerecord ng the spata propert es of t me-based data you cou d use the m va ue of a po nt to represent
the t me at wh ch the measurement was taken Or fthe pont saposton yngon aroute the m coor-
d nate cou d be used to store the d stance of that po nt a ong the route

o representa pont n WK conta nng zand m coord nates you use the fo ow ng syntax
POINT (x y z m)
Or fus ng geograph ¢ coord nates use the fo ow ng syntax
POINT (longitude latitude z m)

he stat ¢ methods prov ded by SQL Server 2008 based on WK syntax such as STPointFromText()
support the creat on and storage of zand m va ues as part of a POINT def nton However these coord nates
are not used when perform ng ca cu at ons For nstance when ca cu at ng the d stance between the po nts
ocated at (0 0 0) and (3 4 12) SQL Server ca cu ates the resu t as 5 un ts (the square root of the sum of the
d fference nthe x and y d mens ons) and not 13 (the square root of the sum of the d fference nthe x y and
z d mens ons)

Creating a LineString from WKT

The WKT syntax for a LineString containing n points is as follows:
LINESTRING(x1 y1, X2 y2, .. , Xn yn)

Like the WKT syntax for a Point, the representation begins with a keyword specifying the
type of geometry to be created LINESTRING followed by the coordinates of each point in the
geometry contained in round brackets. The coordinate values defined for a given point are sepa-
rated by a space, and the sets of coordinates representing each point in the LineString are
separated by a comma.

We can use the WKT representation of a LineString in combination with the STLineFromText ()
method to create LineString objects. Let’s start by creating a simple LineString geometry
connecting two points, representing the two ends of Sydney Harbour Bridge. For this example,

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

we’ll use the geography datatype, and define the coordinates of the start and end points using
SRID 4326.

DECLARE @SydneyHarbourBridge geography
SET @SydneyHarbourBridge =
geography: :STLineFromText(
"LINESTRING(
151.209 -33.855,
151.212 -33.850
)"
4326
)

Now let’s try a more complicated LineString, connecting five points. For this example, I'll
also change the code to demonstrate how you can insert the resulting geometry into the geometry
column, GeometryColumn, of a table Geometries, as follows:

INSERT into Geometries (
NameColumn,
GeometryColumn
)
VALUES (
'Linestring connecting five points’,
geometry::STLineFromText (

'LINESTRING(
53.4 -2.99,
53.5 -3.15,
53.47 -4.66,
53.40 -5.11,
53.34 -6.25
)

0
)

This example demonstrates how you can make longer and more complicated LineStrings
by simply adding the coordinates of further points into the WKT representation, separated by
a comma in each case.

Creating a Polygon from WKT
The WKT syntax for a Polygon, containing z rings with » points in each ring, is as follows:
POLYGON(

(ax1 ay1, ax2 ay2, .., axn ayn, ax1 ayl),
(bx1 by1, bx2 by2, .., bxn byn, bx1 by1),

(zx1 zy1, zx2 zy2, .., zxn zyn, zx1 zyl)

)

83

84

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

As in all the previous WKT examples, the representation is contained within round brackets
following the initial keyword in this case POLYGON. Within these round brackets, the coordi-
nates of each ring of the Polygon are contained within their own additional set of brackets.
Since the rings of a Polygon are closed LineStrings, the WKT syntax for each ring is the same as
the syntax used for a LineString definition: the individual coordinate values within a coordi-
nate tuple are separated by a space, and the sets of coordinates are separated by a comma.

The first set of coordinates, (ax1 ay1, ax2 ay2, .. , axn ayn, axl ayl), describes the
points that define the exterior ring of the Polygon. Following the exterior ring definition, the
Polygon may optionally define any number of internal rings: (bx1 by1, bx2 by2, ..,
bxn byn, bx1 by1), (zx1 zy1, zx2 zy2, .., zxn zyn, zx1 zyl), and so forth. Every internal
ring definition follows the same syntax as for the exterior ring, contained within round brackets,
and separated from the previous ring definition by a comma. It is important to remember that
each ring must be closed; so, within each ring, the first coordinate tuple and the last coordinate
tuple must be equal.

ENote When us ng the geometry datatype, the externa rng def nes the overa per meter of the area
contanedwth naPoygon, wh e each nterna rng def nes an area of space cut out of the Po ygon (“ho es”). When
us ng the geography datatype, the d st nct on between “externa ” and “ nterna ” r ngs s not s gn f cant—
every r ng def nes an area of space nc uded nthe Poygon, and an area exc uded. Therefore, when us ng the
geography datatype, the order nwh ch rngs are sted nthe WKT representaton s not mportant.

Even if you are describing a Polygon that only contains one ring, the points of that ring
must still be contained within their own set of round brackets. In this case, the point coordinates
appear within double brackets after the POLYGON keyword definition, as follows:

POLYGON((x1 y1, X2 y2, .. , xn yn, x1 y1))

ECaution A Poygon s composed of c osed r ngs, so the f rst set of coord nates and the ast set of coord nates
of each rng must be the same.

The SQL Server method to create a geometry or geography Polygon object from WKT is called
STPolyFromText (). Let me show you how to use this method to create a Polygon geometry
representing the US Department of Defense Pentagon building, using the geography datatype
and SRID 4326:

DECLARE @Pentagon geography
SET @Pentagon = geography: :STPolyFromText(
"POLYGON(
(
-77.0532238483429 38.870863029297695,
-77.05468297004701 38.87304314667469,
-77.05788016319276 38.872800914712734,

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

-77.05849170684814 38.870219840133124,
-77.05556273460388 38.8690670969385,
-77.0532238483429 38.870863029297695

)s
(
-77.05582022666931 38.8702866652523,
-77.0569360256195 38.870737733163644,
-77.05673217773439 38.87170668418343,
-77.0554769039154 38.871848684516294,
-77.05491900444031 38.87097997215688,
-77.05582022666931 38.8702866652523
)
)
4326

)

This Polygon definition contains two rings. Although each ring defines a five-sided pentagonal
shape, eachring contains six points in its definition, since the point at the start/end of the geometry
is stated twice. Also notice that, since this example uses the geography datatype, the points of
the first ring, which define the outer edge of the building, are defined in counterclockwise
order, whereas the points in the second ring, which enclose the central courtyard omitted from
the geometry, are defined in clockwise order. (For more information on the significance of ring
ordering when using the geography datatype, refer to Chapter 2.)

Creating a MultiPoint from WKT

A MultiPoint is a collection of several Point geometries in a single object. To represent a MultiPoint
objectin WKT, you first declare the MULTIPOINT element name, followed by a comma-separated
list of the coordinate tuples of each geometry included in the instance, in the same manner as
they would be represented in a single-element Point object (that is, the individual coordinate
values of each Point in the collection are stated one after anotherin x y z morder, or longitude
latitude z morder, separated by spaces).
For instance, the following is a WKT representation of a MultiPoint object, containing

three Points:

MULTIPOINT(21 2, 12 2, 30 40)

Since each point in WKT may contain between two and four coordinate values (depending
on whether the optional z and m coordinates are defined), you must place the comma delimiter
correctly to separate each coordinate tuple. Compare the preceding example with the following
code, which uses the same coordinate values but instead creates a MultiPoint instance containing
two Point geometries, each one specifying x, y, and z coordinates:

MULTIPOINT(21 2 12, 2 30 40)

The WKT representation of a MultiPoint geometry can be supplied to the STMPointFromText()
method to instantiate a new MultiPoint object. For example, the following code demonstrates
the use of the STMPointFromText () method to create a MultiPoint geometry containing three
Points, representing the great pyramids of Khafre, Khufu, and Menkaure at Giza, defined using
SRID 32636:

85

86

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

DECLARE @Pyramids geometry
SET @Pyramids =
geometry::STMPointFromText (
"MULTIPOINT(319640 3317580, 319980 3317940, 319400 3317200)°,
32636

Creating a MultiLineString from WKT

The WKT representation of a MultiLineString geometry is formed by a comma-separated list
of individual LineString geometries. However, since the WKT syntax of a LineString geometry
already contains comma delimiters between each Point, each LineString contained within the
MultiLineString collection must be surrounded by round brackets to distinguish the points
contained within that LineString from other LineString elements in the MultiLineString.

The following example demonstrates the syntax for a MultiLineString instance containing
two LineString elements, the first containing three Points, and the second containing two Points:

MULTILINESTRING((10 20, 3 4, 43 42),(44 10, 20 40))

To create an instance of a geometry MultiLineString from this representation, based on
SRID 20539, you can use the STMLineFromText () method, as follows:

DECLARE @MultilineString geometry

SET @MultilineString =

geometry: :STMLineFromText(
"MULTILINESTRING((10 20, 3 4, 43 42),(44 10, 20 40))',
20539

)

Creating a MultiPolygon from WKT

The WKT representation of a MultiPolygon instance begins with a declaration of the MULTIPOLYGON
keyword. As in the MultiLineString, each Polygon element within a MultiPolygon is contained
within an additional set of round brackets, and separated by a comma. The following is a WKT
representation of a MultiPolygon element containing two Polygons, each consisting of an exterior
ring only:

MULTIPOLYGON(((10 20, 30 40, 44 50, 10 20)),((5 0, 20 40, 30 34, 5 0)))

The method to create a MultiPolygon instance from WKT is STMPolyFromText (). This can
be used with the preceding representation using SRID 0, as follows:

DECLARE @MultiPolygon geometry

SET @MultiPolygon =

geometry: :STMPolyFromText(
"MULTIPOLYGON(((10 20, 30 40, 44 50, 10 20)),((5 0, 20 40, 30 34, 5 0)))',
0

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS 87

ICaution Do not get confused between the WKT representat on of a Mu t Po ygon conta n ng two Po ygons
and a Po ygon conta n ng two r ngs. A Mu t Po ygon, such as MULTIPOLYGON(((10 20, 30 40, 44 50,
10 20)),((35 36, 37 37, 38 34, 35 36))), defnes the po nts conta ned w th n two d st nct areas
of space, whereas a Po ygon conta n ng two r ngs, such as POLYGON((10 20, 30 40, 44 50, 10 20),
(35 36, 37 37, 38 34, 35 36)), defnes as ng e area of space from wh ch the po nts conta ned w th n
a second def ned area have been exc uded.

Creating a Geometry Collection from WKT

A Geometry Collection is a multielement object, but unlike the homogenous multielement
types MultiPoint, MultiLineString, and MultiPolygon, a Geometry Collection may contain
multiple different types of geometry in a single object.

To form the WKT representation of a Geometry Collection, you use the GEOMETRYCOLLECTION
keyword, followed by the WKT representation of each individual object to be contained in the
collection, separated by commas. The associated method to create an instance of a Geometry
Collection from this representation is STGeomCollFromText(). To demonstrate how to use this
method, the following code creates a new Geometry Collection containing a Polygon and a
Point object, using the geometry datatype and SRID 0:

DECLARE @GeometryCollection geometry;
SET @GeometryCollection = geometry::STGeomCollFromText(
'GEOMETRYCOLLECTION(

POLYGON((5 5, 10 5, 10 10, 5 5)),

POINT(10 10))",

0

)

BENote The mute ementtypes MutPo nt, MutL neStrng, and Mu't Po ygon area spec f ¢ geometry types
der ved from the gener ¢ Geometry Co ect on ¢ ass.

Creating Any Kind of Geometry from WKT

Each of the methods discussed so far can only be used to create a particular type of geometry
object from WKT. For example, STPointFromText() instantiates a Point object, and
STPolyFromText() instantiates a Polygon object. In addition to these geometry-specific methods,
SQL Server 2008 provides two generalized methods that can create any kind of object from
well-formed WKT. These methods are STGeomFromText () and Parse(). Both methods can be
used with either the geometry or geography datatype.

STGeomFromText () is the OGC standards-compliant method that can create any kind of
spatial object from WKT. So, instead of using the geometry-specific methods STPointFromText ()
and STLineFromText () in the following example,

88

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

DECLARE @myTable TABLE (
GeographyColumn geography
)
INSERT INTO @myTable (Geographycolumn) VALUES
(geography: :STPointFromText('POINT(-122.34 47.65)"', 4326))
INSERT INTO @myTable (Geographycolumn) VALUES
(geography: :STLineFromText('LINESTRING(32.51 -23.34, 33.98 -12.10)"', 4326))

you could alternatively use the STGeomFromText() method in both cases, as follows:

DECLARE @myTable TABLE (
GeographyColumn geography
)
INSERT INTO @myTable (Geographycolumn) VALUES
(geography: :STGeomFromText('POINT(-122.34 47.65)', 4326))
INSERT INTO @myTable (Geographycolumn) VALUES
(geography: :STGeomFromText (' LINESTRING(32.51 -23.34, 33.98 -12.10)"', 4326))

Since the same STGeomFromText() method can be used to create any sort of valid object
from WKT, you may be wondering why you shouldn’t simply use STGeomFromText () in every
situation, instead of using the more specific STPointFromText (), STLineFromText(), and so on.

The answer to this question is that, whereas the object-specific methods parse the WKT
representation supplied to ensure that it represents valid data for the type of object created by
the method, STGeomFromText() cannot be as strict in validating the input supplied. There is
therefore more danger that you could create a badly formed or incorrect type of object using
the STGeomFromText () method. If you know in advance that you will only be creating a certain
sort of geometry, it is better to use the type-specific method designed for that particular geom-
etry object. However, in some situations STGeomFromText () is more useful, such as when you
reuse the same function to create many different types of geometries, or when you do not know
in advance what sort of geometry is being created.

ENote A though the genera zed method s ca ed STGeomFromText(), t can be used for both the
geometry and geography types.

In addition to providing the OGC-compliant STGeomFromText () method, the geometry and
geography datatypes also provide the Parse() method. Parse() operates in exactly the same
way as STGeomFromText(), except that it assumes a default SRID for the coordinates based on
the datatype of the method. For the geometry datatype, Parse() assumes a SRID of 0. For the
geography datatype, Parse() uses SRID 4326 the EPSG code of the spatial reference system
used by GPS satellite positioning devices and many other common applications. If you are
creating objects defined using the default spatial reference system for the datatype you are
using, you may find it more convenient to use the Parse() method instead, omitting the SRID
parameter as follows:

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

DECLARE @LineString geography
SET @LineString = geography::Parse('LINESTRING(120 50, 128 52)")

This code defines a LineString geometry between the points at 120°E 50°N and 128°E 52°N,
defined using the EPSG:4326 spatial reference system.

Representing an Existing Geometry As WKT

Remember that WKT is a representation of a spatial object it is a text string that can be supplied
as a parameter to any of the previously described methods in order to create an instance of a
spatial object in SQL Server. However, it is not the actual value stored in a geography or geometry
column or variable.

When you use any of the static methods based on WKT, such as the STGeomFromText ()
method, SQL Server 2008 parses the WKT representation provided to create a binary object
representing that same information. It is this binary object that is returned by the method and
stored as an item of geography or geometry data.

For instance, if you run the following query,

DECLARE @Point geography
SET @Point = geography::STGeomFromText('POINT(-122.34 47.65)", 4326)
SELECT @Point

the result you get is not the string 'POINT(-122.34 47.65)", but the following binary value
instead:

0xE6100000010C3333333333D34740F6285C8FC2955ECO

In order to express an existing item of spatial data in WKT format, SQL Server 2008 provides
three methods: STAsText (), STAsTextZM(), and ToString(). Table 4-2 gives an overview of each
of these methods, which will then be explored in more depth in the following sections.

Table 4-2. Methods to Retrieve the WKT Representation of Instances of Spatial Data

Method Description

STAsText() This is the OGC standard method for expressing any kind of geometry instance
in the WKT format. Each point within the geometry in the resulting output is
represented by only two coordinates (x/y or longitude/latitude).

AsTextZM() This method retrieves the WKT representation of a geometry, with each point of
the geometry containing up to four coordinate values (x/y or longitude/latitude,
z [if defined], and m [if defined]).

ToString() This method is inherited and implemented by every type of object in .NET. When
used on an instance of geography or geometry data, this method, like AsTextzM(),
returns the WKT representation containing z and m coordinate values if defined.

89

90

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

BNote The WKT representat on returned by the STAsText (), ToString(), and AsTextZM() methods
conta ns the coord nates of each po nt of the geometry, but does not nc ude the SR D of the spat a reference
system from wh ch they were obta ned. You can retr eve ths nformat on us ng the STSrid() property nstead.
Ths s dscussed nmore deta n Chapter 11.

The STAsText() Method

STAsText () is the OGC-compliant method for returning the WKT string representation of an
item of data. Note that, in contrast to the static methods used to create data from WKT, STAsText ()
acts upon a particular existing instance of an object. To retrieve the WKT representation of
every row of data in the geometry column of a table using STAsText (), the syntax is as follows:

SELECT
GeometryColumn.STAsText ()

STAsText () only returns the x and y (or longitude and latitude) coordinates defining the points
of an instance. Although the method can be used against an object whose points also contain
z or m coordinate values, they will not be returned in the output. Consider the following example:

DECLARE @Point geometry
SET @Point = geometry::STPointFromText('POINT(30 20 10 5)', 0)
SELECT @Point.STAsText()

The result is as follows:

POINT (30 20)

The ToString() Method

If you need to return the WKT representation of an object including the z and m coordinate
values of each point, you can use the ToString() extended method instead. The syntax for this
method is as follows:

DECLARE @Point geometry
SET @Point = geometry::STPointFromText('POINT(30 20 10 5)', 0)
SELECT @Point.ToString()

This gives the following result:

POINT (30 20 10 5)

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

BNote The ToString() method s def ned by the base object ¢ ass n .NET, from wh ch every spec f ¢
c ass of object s derved. When nher ted and mp emented by the geometry and geography datatypes, th s
method returns the correspond ng WKT representat on of that object.

The AsTextZM() Method

The AsTextZM() method is an alternative to the ToString() method, which also returns the WKT
representation of an object, including the extended coordinate values of z and m. You can use
this method as follows:

DECLARE @Point geometry
SET @Point = geometry::STPointFromText('POINT(30 20 10 5)', 0)
SELECT @Point.AsTextZM()

This gives the following result:

POINT (30 20 10 5)

ITip You can use the STAsText(), ToString(), and AsTextZM() methods to return the WKT represen-
tat on of any geometry or geography co umn or var ab e, whatever statc method was used to create that data.

Creating Geometries from Well-Known Binary

The WKB format, like the WKT format, is a standardized way of representing spatial data defined
by the OGC. In contrast to the text-based WKT format, WKB represents a geometry or geography
object as a contiguous stream of bytes in binary format. Every WKB representation begins with
a header section that defines the type of geometry being represented, and the order in which
bytes are expressed (for more information on byte ordering, see the upcoming sidebar “Big
Endian vs. Little Endian”). Depending on the type of geometry, the header may also contain
additional descriptive information such as the number of geometries contained within a multi-
element instance, or the number of rings contained in a Polygon geometry. Following the
information in the header, a WKB representation lists a stream of 8-byte values representing
the coordinates of each point in the geometry. The following code demonstrates the WKB
representation of a Point geometry:

0x0000000001401C00000000000040300E000A000000

Asyou can see, the WKB format is not particularly easy to understand when compared to
its sister format, WKT. However, there a number of advantages to the WKB format:

91

92

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

* Creating objects from WKB is faster than using static methods based on either of the
text-based (GML or WKT) formats. Each x and y (or latitude and longitude) coordinate
value in WKB is stored on 8-byte binary boundaries, as they are in SQL Server’s own
internal storage representation. The WKB static methods can therefore efficiently process
and create the associated instance from WKB, whereas in WKT or GML, the parser must
read in the whole text representation first.

» Since itis a binary format, WKB maintains the precision of floating-point coordinate
values calculated from binary operations, without the rounding errors introduced in
a text-based format.

However, WKB also has the following significant disadvantage:

¢ Binary values cannot be easily understood by a human reader it can therefore be hard
to detect errors in a WKB representation that could have been easily spotted from examining
the equivalent WKT or GML representation.

WKB is most suitable in situations where spatial data must be passed directly between
different computer systems, since the speed and precision of this format are beneficial, and the
lack of human readability is not significant.

Just as for the WKT format, SQL Server 2008 provides a specific method for creating each
type of geometry object from a WKB representation of that object, together with a generalized

method STGeomFromWKB () for creating any type of object from valid WKB. Let’s look at each method
in turn.

BIG ENDIAN VS. LITTLE ENDIAN

A s ng e byte of b nary data can store one of 256 d fferent va ues When notated n hexadec ma format these
va ues range from 0x00 (0) to 0xFF (255) n order to descr be prec se ocaton nformat on each coord nate
vaue n the WKB format s expressed as a f oat ng-po nt number stored across 8 bytes of data nany system
that stores mu t byte data such as th s there are d fferent accepted ways of order ng the bytes that represent
each ndvdua b nary vaue

e |Ltte-end an b nary data stores the east s gnfcant orsma est byte at the owest memory address—
that s the “ tte end” comes frst Ltte-end an byte order s a so known as Network Data Representa-
ton (NDR)

e Bg-end an b nary data stores the most s gn f cant byte at the owest memory address—that s t s
stored “b g end” frst B g-end an byte order s a so known as Externa Data Representat on (XDR)

A WKB geometry representat on ke any b nary data can be stored us ng e ther of these formats For
examp e the fo ow ng two b nary streams are both va d WKB representat ons of exact y the same geometry
nstance nbg-endanand tte-end anformat respectvey

0x00 00000001 401C000000000000 4030000000000000
0x01 01000000 0000000000001C40 0000000000003040

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

Each byte s represented by two hexadec ma characters sothe tte-end anva ue 0x1234 s equ va ent
to the b g-end an va ue 0x3412 not 0x4321 n order to know wh ch b nary order s be ng used the f rst byte
of data n a WKB stream represents a s ng e byte order marker (BOM)

e fthefrstbyte s 0(0x00) thss gnfesthatthe rest of the bytes are expressed nb g-end an byte order

o fthefrstbyte s1(0x01) thssgnfes thatthe rema n ng bytes are expressed n tte-end an order

S nce the byte order marker tse f sonyasnge byte t s unaffected by wh ch system s used
-SQL b nary funct ons genera y use b g-end an b nary order However the STAsBinary() method
represents b nary data n tte-end an order herefore fyou use the STGeomFromWKB () method to create
an object from b g-end an WKB and then use the STAsBinary() method to retr eve the WKB representat on of
that object youw getad fferent resut represent ng the same geometry object n tte-end an WKB b nary

Creating a Point from WKB

The WKB representation of a Point object is a 21-byte stream of binary data. The elements
contained within the representation are as follows:

[ByteOrder][Type][X][Y]

The first element, [ByteOrder], is a single-byte value that indicates whether the rest of
the bytes in the WKB stream are expressed using big-endian (0x00) or little-endian (0x01) byte
order. [Type] is a 4-byte unsigned integer indicating the type of geometry. For Point objects,
this will always be the value 1, expressed using the relevant byte order as specified in the first
byte thatis, 0x00000001 for big endian or 0x01000000 for little endian. [X] and [Y] are both 8-byte
floating-point values representing the x and y coordinates of the point, or the longitude and
latitude values if describing a point from a geographic coordinate system.

ENote As nthe WKT format, the WKB representat on of a po nt expressed us ng geograph ¢ coord nates
states the ong tude coord nate f rst, then the attude coord nate. However, un ke WKT, you cannot def ne
addtona z and m coord nate va ues re at ng to each po nt n WKB.

Creating a WKB Point Representation

To demonstrate the static method that SQL Server provides to create Point objects from WKB,
we need to create a sample WKB Point geometry. In order to do this, first let’s declare the
parameters that will represent the values of each element contained within the WKB stream:

DECLARE @ByteOrder bit
DECLARE @Type int
DECLARE @longitude float
DECLARE @latitude float

To build up our WKB representation, we will use the T-SQL CAST function to convert each
element into binary format. The result of this function, like all native SQL Server binary functions,

93

94

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

uses big-endian binary byte order. Since our WKB representation will be based on the big-
endian results of the CAST function, we must state that it too will be in big-endian byte order by
setting the value of the BOM to 0:

SET @ByteOrder = 0

The next element in the WKB binary format defines the type of geometry being repre-
sented. In this example, we are describing a Point geometry, which is denoted in WKB as
geometry type 1:

SET @Type = 1

We will create our point based on the following coordinate values, which represent the
approximate location of Warsaw, Poland using the EPSG:4326 spatial reference system:

SET @longitude = 21.01
SET @latitude = 52.23

Having defined the value of each of the components, we can use the CAST function to
convert them into binary values of the relevant length, and then append them together in a
single binary stream. We will store the result in a varbinary(max) variable called @WKB. This is
demonstrated in the following code:

DECLARE @WKB varbinary(max)

SET @WKB =

CAST(@ByteOrder AS binary(1))
+ CAST(@Type AS binary(4))

+ CAST(@longitude AS binary(8))
+ CAST(@latitude AS binary(8))

The @WKB parameter now holds a valid WKB representation of our point. To check what it
looks like, you can run the following query:

SELECT @WKB

The result is as follows:

0x00000000014035028F5C28F5C3404A1D70A3D70A3D

Note that, at this point, we have not yet created a geometry object the preceding is merely
the WKB representation that can be used to create a geometry object in conjunction with one
of the static methods that accepts WKB as an input.

ENote npractce, youw rarey construct a WKB representat on us ng T-SQL as just shown—t s more
ke y that youw mport ex st ng nformaton n WKB format from an externa source. The techn que just
shown s used prmar y as a demonstrat on of the structure of the WKB format.

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

Using the STPointFromWKB() Method

Now that we have a WKB representation of a Point, we can use that to create a geometry or
geography instance using the STPointFromWKB() method. To create a Point using the geometry
datatype, using SRID 0, based on the parameters in the WKB created in the previous section,
you would use the following syntax:

DECLARE @Warsaw geography
SET @Warsaw = geography::STPointFromWKB(@WKB, 4326)

That’s it! The @Warsaw variable now holds a geometry Point instance based on the parameters
supplied. Here’s the code in full:

/* Declare variables to hold each element of the WKB */
DECLARE @ByteOrder bit

DECLARE @Type int

DECLARE @longitude float

DECLARE @latitude float

/* Set the byte order marker to indicate big-endian byte order */
SET @ByteOrder = 0

/* Geometry Type 1 denotes a point */
SET @Type = 1

/* Set the values of each coordinate for the point */
SET @longitude = 21.01
SET @latitude = 52.23

/* Declare a new binary variable to hold the WKB */
DECLARE @WKB varbinary(max)

/* Append each of the elements together and store them in @WKB */
SET @WKB =

CAST(@ByteOrder AS binary(1))

+ CAST(@Type AS binary(4))

+ CAST(@longitude AS binary(8))

+ CAST(@latitude AS binary(8))

/* Declare a new variable to hold the resulting geometry instance */
DECLARE @Warsaw geography

/* Pass the WKB representation created to the STPointFromWKB() method */
SET @Warsaw = geography::STPointFromWKB(@WKB, 4326)

To check that the point was created correctly, we can use the STAsText () method to get the
WKT representation of our new Point geometry:

SELECT @Warsaw.STAsText()

95

96

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

The result is as follows:

POINT (21.01 52.23)

ENote Un ke WKT, you cannot use WKB to represent the extended coord nate va ues of a po nt, z and m.
Each WKB po nt s def ned by exacty two coord nate va ues, represent ng x and y or ong tude and at tude
coord nates.

Creating a LineString from WKB

The WKB representation of a LineString object, containing n points, is a stream of bytes as follows:
[ByteOrder][Type] [NumPoints][X1][Y1][X2][Y2] .. [Xn][Yn]

As in the WKB representation of a Point, the first byte, [ByteOrder], declares whether the
data is represented in little-endian or big-endian format. The next 4 bytes, [Type], represent
the type of geometry being created, which is always 2 for a LineString.

Following the declaration of the geometry type is an additional 4-byte value, [NumPoints],
which states the number of points in the LineString. Since the WKB structure does not contain
delimiters such as the commas and brackets used in WKT, the representation must include this
value so that SQL Server knows how many items of coordinate data to expect in the stream, and
knows when it has reached the end of the representation. Immediately following the stated
number of points in the LineString is a stream consisting of pairs of 8-byte floating-point values
representing the coordinate values of each of those points.

Based on this information, we can build a WKB representation of a LineString using the
following code:

/* Declare the parameters needed to build a WKB representation of a LineString */
DECLARE @ByteOrder bit

DECLARE @Type int

DECLARE @NumPoints int

DECLARE @x1 float

DECLARE @y1 float

DECLARE @x2 float

DECLARE @y2 float

/* We are using CAST to convert the parameters to big-endian byte order */
SET @ByteOrder = 0

/* LineStrings are denoted as geometry type 2 */
SET @Type = 2

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

/* This LineString will contain two points */
SET @NumPoints = 2

/* Set the x and y coordinate values of each point */

SET @x1 = 16
SET @y1 = 7

SET @x2 = 23
SET @y2 = 10

/* Declare a new binary parameter to hold the full WKB */
DECLARE @WKB varbinary(max)

/* Append the components together to build the Well-Known Binary representation */
SET @WKB =

CAST(@ByteOrder AS binary(1))

CAST(@Type AS binary(4))

CAST(@NumPoints AS binary(4))

CAST(@x1 AS binary(8))

CAST(@y1 AS binary(8))

CAST(@x2 AS binary(8))

CAST(@y2 AS binary(8))

+ + 4+ + + +

@WKB now holds the following value:

0x0000000002000000024030000000000000401C00000000000040370000000000004024000000000000

We can create a LineString geometry from this representation using the STLineFromwWKB()
method of either the geography or geometry datatype. For this example, we will use the method
belonging to the geometry datatype, using SRID 0:

DECLARE @LineString geometry
SET @LineString = geometry::STLineFromWKB(@WKB, 0)

To check that the line was created correctly, once again we can get the WKT representation
of our new LineString using the STAsText () method:

SELECT @LineString.STAsText()

The result is as follows:

LINESTRING (16 7, 23 10)

Creating a Polygon from WKB

The WKB representation of a Polygon geometry containing two rings is as follows:

97

98

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

[ByteOrder][Type] [NumRings][NumPoints][X1][Y1]..[Xn][Yn][NumPoints][X1][Y1]..[Xn][Yn]

{mmmmmmm - Ring 1 --------- PRGEEE TR Ring 2 --------- >

The elements contained within this representation are described in the following list:

As in all other WKB representations, the stream begins with a single-byte indicator of the
byte order of the remaining bytes, [ByteOrder].

[Type] is a 4-byte unsigned integer representing the type of geometry. The value of [Type] is
3 for all Polygons in WKB.

The following 4-byte integer value, [NumRings], specifies the total number of rings in the
Polygon. This value counts the exterior ring, and any interior rings defined by the geometry.

The definition of each ring follows, starting with the exterior ring. Because each ring is a
closed LineString, each Polygon ring follows the same format as for an individual LineString
in WKB first with a 4-byte binary integer, [NumPoints], which states the number of
points in the ring, followed by the x and y coordinates, or longitude and latitude coordi-
nates, of each point.

Any internal rings contained within the Polygon are listed one after another immediately
following the external ring.

To demonstrate this syntax, consider the following code, which builds the WKB represen-
tation of a Polygon containing an exterior ring and one interior ring:

/* Declare all the elements required */
DECLARE @ByteOrder bit

DECLARE @Type int

DECLARE @NumRings int

DECLARE @Ext NumPoints int

DECLARE @Ext x1 float, @Ext y1 float
DECLARE @Ext x2 float, @Ext y2 float
DECLARE @Ext x3 float, @Ext y3 float
DECLARE @Ext x4 float, @Ext y4 float
DECLARE @Int NumPoints int

DECLARE @Int x1 float, @Int y1 float
DECLARE @Int x2 float, @Int y2 float
DECLARE @Int x3 float, @Int y3 float
DECLARE @Int x4 float, @Int y4 float

/* Set the values */
SET @ByteOrder = 0
SET @Type = 3

SET @NumRings = 2

-- Exterior Ring

SET @Ext NumPoints = 5
SET @Ext x1 = -4

SET @Ext y1 = -5

SET @Ext x2 = -4
SET @Ext y2 = 10
SET @Ext x3 = 12
SET @Ext y3 = 10
SET @Ext x4 = 12
SET @Ext y4 = -5
-- Interior Ring
SET @Int NumPoints = 4
SET @Int x1 = 3
SET @Int y1 = 1
SET @Int x2 = 3
SET @Int y2 = 5
SET @Int x3 =7
SET @Int y3 = 3

/* Build the WKB representation */
DECLARE @WKB varbinary(max)

SET @WKB =

CAST(@ByteOrder AS binary(1))
+ CAST(@Type AS binary(4))

+ CAST(@NumRings AS binary(4))
-- Exterior Ring

CAST (@Ext
CAST (@Ext
CAST (@Ext
CAST (@Ext
CAST (@Ext
CAST (@Ext

NumPoints AS binary(4))

x1 AS binary(8)) + CAST(@Ext
x2 AS binary(8)) + CAST(@Ext
x3 AS binary(8)) + CAST(@Ext
x4 AS binary(8)) + CAST(@Ext
x1 AS binary(8)) + CAST(@Ext

-- Interior Ring

+ CAST(@Int
+ CAST(@Int
+ CAST(@Int
+ CAST(@Int
+ CAST(@Int

NumPoints AS binary(4))

x1 AS binary(8)) + CAST(@Int
x2 AS binary(8)) + CAST(@Int
x3 AS binary(8)) + CAST(@Int
x1 AS binary(8)) + CAST(@Int

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

y1
y2
y3
y4
y1

y1
y2
y3
y1

AS
AS
AS
AS
AS

AS
AS
AS
AS

binary(8))
binary(8))
binary(8))
binary(8))
binary(8))

binary(8))
binary(8))
binary(8))
binary(8))

We can now use the STPolyFromwWkB() method in conjunction with our WKB representa-
tion, as follows:

DECLARE @polygon geometry
= geometry: :STPolyFromWKB(@WKB, 0)
SELECT @polygon.STAsText()

SET @polygon

The result is as follows:

POLYGON ((-4 -5, -4 10, 12 10, 12 -5, -4 -5), (31, 3 5, 7 3, 3 1))

99

100

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

Creating a Multielement Geometry from WKB

The WKB representations of the multielement geometry types MultiPoint, MultiLineString,
MultiPolygon, and Geometry Collection are all formed using the same basic structure, as follows:

[ByteOrder][Type] [NumGeometries]<Geometryl><Geometry2> .. <GeometryN>
In each case, the elements of the binary stream are as follows:

e [ByteOrder] is a single byte that indicates whether the rest of the values describing the
multielement instance are expressed using little-endian or big-endian byte order. Note that
this only applies to the values specifically relating to the multielement instance itself that
is, the [Type] and [NumGeometries] values. Each individual geometry contained within
the multielement instance must also specify the order in which the bytes of that partic-
ular element are stored.

e [Type] is a 4-byte unsigned integer indicating the type of multielement geometry being
described. This must correspond to one of the following values:

* 4, representing a MultiPoint

e 5, representing a MultiLineString

* 6, representing a MultiPolygon

* 7,representing a Geometry Collection

e [NumGeometries] is a 4-byte unsigned integer representing the number of individual
geometry elements contained within each multielement instance.

* <Geometryl> ... <GeometryN> are the fully formed WKB representations of the individual
geometries contained within the multielement instance, following the same rules that
you would use if you were defining them as single geometries. This means that every
individual element must explicitly declare all of the elements required in the WKB defi-
nition of that type of geometry, including the geometry type and byte order, not just the
individual coordinate values.

ECaution fyou are def n ng one of the homogenous mu t e ement types, the va ues of <Geometry1> ...
<GeometryN> musta represent nstances of ndvdua geometr es of the correspond ng s ngu ar type. For
examp e, the e ements contaned wth na MutL neStrng e ement musta be va d representat ons of L neStr ng
geometr es.

The following is an example WKB representation of a Geometry Collection, containing a
Point and a LineString:

0x00000000070000000200000000014044333333333333C002888A47ECFE9B010200000002000000
9BFEEC478A8802C033333333333344406666666666F65340B81E85EB51B81B40

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

Table 4-3 breaks down each of the individual elements contained in this representation.

Table 4-3. Elements Contained Within an Example WKB Multielement
Geometry Representation

Value Description

0x Indicates that binary values will be expressed using hexadecimal
notation.

00 The following values are expressed in big endian byte order.

00000007 This geometry is a heterogeneous Geometry Collection, denoted as
type 7.

00000002 There are two geometries contained within this collection.

00 The bytes in the first element are expressed in big endian byte order.

00000001 The first element represents a Point geometry.

4044333333333333 The x coordinate value of this Point.

C002888A47ECFE9B The y coordinate value of this Point.

01 The bytes in the second element are expressed in little endian
byte order.

02000000 The second element represents a LineString geometry.

02000000 This LineString contains two points.

9BFEEC478A8802C0 The x coordinate of the first point in the LineString.

3333333333334440 The y coordinate of the first point in the LineString.

6666666666F65340 The x coordinate of the second point in the LineString.

B81E85EB51B81B40 The y coordinate of the second point in the LineString.

Inorder to instantiate a multielement geometry from a multielement WKB representation,
you can use the appropriate type-specific method as follows:

¢ To create a MultiPoint geometry from WKB, use STMPointFromhKB().

¢ To create a MultiLineString from WKB, use STMLineFromWKB().

* To create a MultiPolygon from WKB, use STMPolygonFromWKB().

¢ To create a Geometry Collection from WKB, use STGeomCol1FromWKB().

In the previous example, the WKB represents a Geometry Collection, so you can use the
STGeomCollFromWKB () method as follows:

SELECT geometry::STGeomCollFromWKB(
0x00000000070000000200000000014044333333333333C002888A47ECFE9B010200000002000000
9BFEEC478A8802C033333333333344406666666666F65340B81E85EB51B81B40, 0)

101

102

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

Creating Any Type of Geometry from WKB

Just as with WKT, SQL Server 2008 provides a generic method for the geometry and geography

datatypes that can be used to create any type of geometry object from well-formed WKB. This
generic method is STGeomFromiKB (), which can be used instead of any of the type-specific methods
mentioned in this section.

Representing an Existing Geometry As WKB

Although SQL Server 2008 stores spatial data internally as a stream of binary data, it is not the
same as the WKB binary data format. As a result, you cannot directly set the value of an item of
geography or geometry data from a WKB representation youmust pass thatrepresentation to
one of the appropriate static methods instead. Likewise, if you directly select the internal binary
value that SQL Server uses to store an item of spatial data, it will not be the same as the WKB
representation of that feature. One reason for this is that the SQL Server internal binary format
stores additional details relating to the spatial reference system that are not present in the orig-
inal WKB representation.

In order to retrieve the WKB representation of a geometry or geography object, you need to
use the STAsBinary() method instead, as follows:

SELECT geometry::STPointFromText('POINT(10.572 2.245)", 0).STAsBinary()

This returns the WKB representation of the geometry, expressed in little-endian binary format:

0x0101000000BE9F1A2FDD242540F6285C8FC2F50140

To take this example one stage further, the following code illustrates how to create a Point
geometry from WKT using STGeomFromText (), then return the WKB representation of that geometry
using STAsBinary(), before creating a second Point using the result of the STAsBinary () method
in conjunction with the STGeomFromWKB() method:

DECLARE
@WKT varchar(255) = 'POINT(52 8)',
@WKB varbinary(max),
@SRID int = O,
@Geometryl geometry,
@Geometry2 geometry

SET @Geometryl = geometry::STGeomFromText(@WKT, @SRID)
SET @WKB = @Geometryl.STAsBinary()
SET @Geometry2 = geometry::STGeomFromWKB(@WKB, @SRID)

SELECT
@Geometryl.STAsText(),
@Geometry2.STAsText()

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

The results demonstrate that the geometries created through both methods are identical:

POINT (52 8) POINT (52 8)

ITip Athough you can create geometr es from WKB expressed n e ther tt e-end an or b g-end an byte
order, the representat on of a geometry returned by the STAsBinary () methodw awaysbe n tte-endan
byte order.

Creating Geometries from Geography
Markup Language

Geography Markup Language is an XML-based language for representing spatial information.
When expressed using a GML representation, each property of a geometry is contained within
specific element tags within the document structure. This makes GML a very explicit and highly
structured format. The following code demonstrates an example of the GML representation of
a point:

<Point xmlns="http://www.opengis.net/gml">
<pos>10 30</pos>
</Point>

Some advantages of the GML format are the following:

* GMLis text based, so it is relatively easy for people to examine and understand the infor-
mation expressed using it.

* Like all XML-based formats, GML has an explicit, highly structured hierarchical document
format. This makes it is easy to understand the structure of complex spatial objects by
examining the structure of the associated GML document.

* GMLis very verbose, explicitly stating all values within specific elements.
However, GML also has the following disadvantages:

* Itis very verbose! Although both GML and WKT are text-based formats, a GML representa-
tion of an object occupies substantially more space than the equivalent WKT representation,
since it stores all information within associated element tags.

 Since GML is text based like WKT, it too suffers from precision issues caused by rounding
when expressing binary floating-point coordinate values.

GML is most commonly used for representing spatial information in an XML-based envi-
ronment. This includes spatial data syndicated over the Internet, which is discussed in more
detail in Chapter 8.

103

104

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

MTip The GML methods mp emented n SQL Server are based on a sca ed-down vers on of the GML 3.1.1
schema. You can v ew the schema used n SQL Server at http://schemas.microsoft.com/sqlserver/
profiles/gml/, or you can fndthe fu GML standards on the OGC web s te, ocated at http://

www .opengeospatial.org/standards/gml.

Structure of a GML Document

The parent element of any GML representation defines the type of geometry being represented.
Every GML representation must be contained within one of the following pairs of tags:

e <Point>...</Point>

e <LineString>...</LineString>

* <Polygon> ... </Polygon>

* <MultiPoint> ... </MultiPoint>

e <MultiCurve> ... </MultiCurve>

* <MultiSurface> ...</MultiSurface>

* <MultiGeometry> ... </MultiGeometry>

The names of these element tags, which are used to declare different geometries using
GML, are similar to the names of the keywords used to define geometries in WKT. However,
there are a few differences:

* Whereas MultiLineString and MultiPolygon geometries may be declared directly in WKT, in
GML they are defined as child elements of the abstract MultiCurve and MultiSurface
elements, respectively.

* An element containing multiple, heterogeneous geometries, known as a Geometry
Collection in WKT, is called a MultiGeometry element in GML.

All of the component properties of a geometry are specified within child elements contained
within the top-level parent element, and are enclosed within specific tags describing the property
of the geometry that they represent. The particular elements contained within the GML repre-
sentation of each geometry type will be discussed in more detail later in this section.

Declaring the GML Namespace

Any tag that defines an XML element may include an xmlns attribute, which associates the
element name with a namespace. The names of elements used in any XML document are only
unique within a given namespace, so <Point xmlns="http://www.opengis.net/gml"> is different
from <Point xmlns="http://www.someothernamespace.com">, orjust<Point> with no associated
namespace. This allows different XML documents to use the same element name in different
situations, by qualifying it with the appropriate namespace.

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

Every element contained within a GML representation must belong to the GML namespace.
This ensures that the names of any elements uniquely identify the appropriate GML element,
rather than an element of the same name from any other XML namespace.

To ensure that every element of a GML representation is associated with the correct
namespace, you should place a declaration of the GML namespace in the top-level parent element
tag. This namespace will then be inherited by each of the child elements nested within that
geometry representation. When you define the GML representation of a geometry for use in
SQL Server, you should therefore always include the xmlns attribute inside the opening tag of
the appropriate parent element, with a value set to a Uniform Resource Identifier (URI) refer-
ence to the GML namespace: http://waw.opengis.net/gml.

Using the example of a LineString, the GML representation should therefore begin and
end with the following tags:

<LineString xmlns="http://www.opengis.net/gml"> .. </LineString>

If you omit the namespace declaration, even though the representation may be well-formed
XML, it does not define a valid GML geometry. If you attempt to use such a representation in
conjunction with the GeomFromGml () method, you will receive an error, as in the following example:

DECLARE @Point geography
SET @Point = geography::GeomFromGml("
<Point>
<pos>10 30</pos>
</Point>',
4326)

System.FormatException: 24129: The given XML instance is not valid because its
top-level tag was Point. The top-level element of the input Geographic Markup
Language (GML) must be one of Point, LineString, Polygon, MultiPoint,
MultiGeometry, MultiCurve, or MultiSurface.

The text of this error message may seem rather confusing it states that our GML repre-
sentation is invalid because the top-level tag is Point. Instead, it helpfully gives alist of possible
valid elements starting with . . . Point?

The reason for the error is that the top-level tag of an XML instance passed to the
GeomFromGml () method must be one of the listed element names, from the GML namespace.
Declaring the namespace in the parent element tag makes the representation valid, as shown
in the following example:

DECLARE @Point geography
SET @Point = geography::GeomFromGml ("
<Point xmlns="http://www.opengis.net/gml">
<pos>10 30</pos>
</Point>',
4326)

Command(s) completed successfully.

105

106

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

Methods to Instantiate Geometry Objects from GML

Unlike the WKT and WKB formats, SQL Server 2008 does not provide different methods for
creating specific geometry types from GML; every geometry object, whether Point, LineString,
Polygon, or multielement geometry, is created using a single generic method GeomFromGm1().
The type of object created by this method is determined by the structure and content of the
GML representation supplied.

The GeomFromGml () method is implemented by both spatial datatypes, so you can use it to
create items of geography or geometry data using the appropriate syntax as follows:

geometry: :GeomFromGml('GML representation', srid)
or
geography: :GeomFromGml('GML representation', srid)

Although the GML standard itself is administered by the OGC, support for instantiating
geometry objects from GML is not part of the OGC Simple Features for SQL Specification. As a
result, the GeomFromGml () static method that creates geometry objects from GML is an extended
SQL Server method, which is not prefixed by the letters “ST.”

Since every type of geometry may be created from GML using the same syntax of the
GeomFromGm1 () method just shown, in the following examples [won't repeat the method usage in
each case. Instead, I will only show you the relevant GML representation of each type of geometry.

ENote Don’'tbe msed by the name—a though GML stands for Geography Markup Language, you can use
GeomFromGm1 () to create objects from a GML representat on n both the geography and geometry datatypes.

Creating a Point from GML
An example of the GML representation of a Point is as follows:
<Point xmlns="http://www.opengis.net/gml">

<p0s>40.4 -2.31667</pos>
</Point>

This example defines a Point geometry, located at coordinates (40.4, 2.31667). The features of
this GML representation are as follows:

* The entire representation is contained between the <Point> opening tag and the </Point>
closing tag, declared using the GML namespace.

e Within this parent element, the coordinates that define the point’s location are contained
within the <pos> and </pos> tags.

* Coordinate values themselves are separated by a space, and listed inx y order for Cartesian
coordinates, or latitude longitude order from a geographic coordinate system.

* Unlike in WKT, the <pos> element of a point in GML must contain exactly two coordi-
nates xandy, orlatitude and longitude. GML does not support z or m coordinates.

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

ECaution GML expresses geograph ¢ coord nates n at tude— ong tude order, wh ch s the oppos te order
from that used n the WKT and WKB formats.

To use a GML representation to create a Point geometry, we can use the GeomFromGML ()
static method of the geometry or geography datatype as follows:

DECLARE @gml xml;

SET @gml = '

<Point xmlns="http://www.opengis.net/gml">
<p0s>40.4 -2.31667</pos>

</Point>

.
)

DECLARE @Point geometry;
SET @Point = geometry::GeomFromGml(@gml, 4326)

The variable @oint now holds a geometry Point object based on the parameters we supplied
to the GeomFromGm1() method anx coordinate of 40.4 and ay coordinate of 2.31667,based on
SRID 4326. Remember that, as in this example, even though the geometry datatype stores flat-
earth data, you canstill use it to define locations based on geographic coordinate systems, with
the values of latitude and longitude mapped directly onto the y and x axes in an equirectan-
gular projection.

To test that this object was created correctly, we can now select the WKT representation of
this Point by using the STAsText () method, as follows:

SELECT @Point.STAsText()

This gives the following result:

POINT (40.4 -2.31667)

Because we have defined a point based on the EPSG:4326 spatial reference system using
geographic coordinates of latitude and longitude, perhaps it would be more suitable to create
our point using the geography datatype instead of the geometry datatype. In order to do this, we
can use the GeomFromGm1() method of the geography datatype instead, as follows:

DECLARE @gml xml;

SET @gml = '

<Point xmlns="http://www.opengis.net/gml">
<p0s>40.4 -2.31667</pos>

</Point>

¥

DECLARE @Point geography;

SET @Point = geography::GeomFromGml(@gml, 4326)

SELECT @Point.STAsText()

107

108

CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

This gives the following result:

POINT (-2.31667 40.4)

Notice that the coordinate order is reversed? In the first example, we passed Cartesian
coordinates to the GeomFromGml() method of the geometry datatype in x y order, which is the
same order as used by STAsText() to express the result. However, in the second example we
stated geographic coordinates required for the geography datatype, but whereas GeomFromGm1 ()
accepts those coordinates in latitude longitude order, STAsText() interprets the result as
longitude latitude.

To create the equivalent Point as the “unprojected” geometry Point in the first example,
where longitude is mapped to x and latitude is mapped to y, we need to swap the coordinates
passed to GeomFromGm1() as follows:

<Point xmlns="http://www.opengis.net/gml">
<p0s>-2.31667 40.4</pos>
</Point>

When supplied to the GeomFromGml () method of the geography datatype, this gives the
following result, represented in WKT:

POINT (40.4 -2.31667)

Creating a LineString from GML

When defining a single Point in GML, as in the previous example, you specify the coordinate
values contained within the <pos> element. When creating a LineString, or any other geometry
that requires more than one point in its definition, you use the <posList> element instead. Since
every point in GML must contain exactly two coordinates, there is no need to define additional
delimiters between each point within the <posList> element, the coordinate values of each
point in the LineString are separated by spaces, with no commas between each coordinate pair.

The following example code demonstrates the GML representation of a LineString instance
joining the points at (6,4) and (3, 5):

<LineString xmlns="http://www.opengis.net/gml">
<poslist>-6 4 3 -5¢/poslist>
</LineString>

The WKT representation of the LineString created from this GML is as follows:

LINESTRING (-6 4, 3 -5)

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

WCaution Un ke the WKT format, there are no commas separat ng each po nt n a GML representat on.

Creating a Polygon from GML

As in the LineString definition, the coordinate values of each point defining the rings of a Polygon
are expressed in space-separated lists contained within a <posList> element. In order to
specify that the list of points contained within this element represents a closed LineString,
each <poslList> element that defines a Polygon ring is nested within additional <LinearRing> ...
</LinearRing> tags.

Every GML Polygon representation must contain one <LinearRing> element within the
<exterior> element of the Polygon definition, defining the points that form the exterior ring of
the polygon. The GML may additionally specify one or more <LinearRing> elements contained
within the <interior> element of the Polygon parent element, defining the interior rings of the
polygon.

The following example code demonstrates the GML representation of a Polygon containing
three linear rings one external ring, and two internal rings cut out of the Polygon shape:

<Polygon xmlns="http://www.opengis.net/gml">
<exterior>
<LinearRing>
<posList>0 0 100 0 100 100 O 100 O 0</poslList>
</LinearRing>
</exterior>
<interior>
<LinearRing>
<posList>10 10 20 10 20 20 10 20 10 10</poslist>
</LinearRing>
</interior>
<interior>
<LinearRing>
<posList>75 10 80 10 80 20 75 20 75 10</poslist>
</LinearRing>
</interior>
</Polygon>

Aswith all other GML geometry representations, you can instantiate an instance of a geometry
based on this representation by passing it to the GeomFromGm1 () method of either the geography
or geometry datatype, together with the SRID of the spatial reference system in which the coor-
dinates were obtained.

Creating a MultiPoint from GML

The parent element defining a MultiPoint geometry in GML is defined using the <MultiPoint>
tag. The individual Point geometries contained within a MultiPoint geometry are defined one
after another, using exactly the same syntax as for individual Points, nested within a child element
of the parent called <pointMembers>.

109

110 CHAPTER 4 | CREATING SPATIAL DATA O0BJECTS

The following example shows the GML representation of a MultiPoint instance containing
two Point geometries:

<MultiPoint xmlns="http://www.opengis.net/gml">
<pointMembers>
<Point>
<pos>2 3</pos>
</Point>
<Point>
<pos>4 10</pos>
</Point>
</pointMembers>
</MultiPoint>

Creating a MultiLineString from GML

When you describe an instance containing more than one LineString geometry in GML, the
parent element is actually MultiCurve rather than MultiLineString. You may recall that, in
Chapter 3, we examined the inheritance hierarchy tree of objects in the geometry and geography
datatypes. The hierarchy tree shows that the MultiLineString object is derived from another
type of object, called a MultiCurve. A MultiCurve is the generic object type for any geometry
that creates a number of paths between different series of points, whereas a MultiLineString is
the specific case of the MultiCurve where those paths are calculated by the linear interpolation
between the points. Although you cannot create MultiCurve objects directly, the GML repre-
sentation portrays the fact that MultiLineStrings are descended from MultiCurves. All LineString
elements contained within the MultiCurve are expressed in the same format as they would be
if they were individual geometries, listed one after another within a child element of the MultiCurve
called <curveMembers>.

The following example code demonstrates the GML representation of a MultiLineString
geometry containing two LineStrings:

<MultiCurve xmlns="http://www.opengis.net/gml">
<curveMembers>
<LineString>
<poslist>2 3 4 10</poslist>
</LineString>
<LineString>
<poslList>4 10 15 40</poslist>
</LineString>
</curveMembers>
</MultiCurve>

Creating a MultiPolygon from GML

The GML element that can contain multiple Polygon elements is called a MultiSurface. Within
a MultiSurface, the definition of each member geometry is contained within an element called
<surfaceMembers>.

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

The following example lists the GML representation of a MultiPolygon instance that contains
two Polygon geometries, each containing a single exterior ring:

<MultiSurface xmlns="http://www.opengis.net/gml">
<surfaceMembers>
<Polygon>
<exterior>
<LinearRing>
<poslist>2 353 6 8 2 7 2 3</posList>
</LinearRing>
</exterior>
</Polygon>
<Polygon>
<exterior>
<LinearRing>
<poslList>10 20 20 20 20 30 10 30 10 20</poslist>
</LinearRing>
</exterior>
</Polygon>
</surfaceMembers>
</MultiSurface>

Creating a Geometry Collection from GML

The parent element of a Geometry Collection represented in GML is called MultiGeometry. The
component elements are therefore contained within opening <MultiGeometry> and closing
</MultiGeometry> tags. As with the other, specific, multielement instances, each of the indi-
vidual geometries contained within a MultiGeometry is nested within an additional element,
in this instance called <geometryMembers>.

The following example shows the GMLrepresentation of a Geometry Collection containing a
Point geometry and a LineString geometry:

<MultiGeometry xmlns="http://www.opengis.net/gml">
<geometryMembers>
<Point>
<pos>15 10</pos>
</Point>
<LineString>
<posList>4 10 2 3</poslList>
</LineString>
</geometryMembers>
</MultiGeometry>

Aswith all other GML geometry representations, you can instantiate an instance of a geometry
based on this representation by passing it to the GeomFromGm1 () method of either the geography
or geometry datatype.

111

112 CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

Representing an Existing Geometry As GML

As with the WKT and WKB formats, SQL Server also provides a method that can be used to
represent existing geometry or geography objects in GML format, AsGm1 (). To demonstrate the
use of this method, the following code listing illustrates how to create a LineString geometry
from WKT, and then retrieve the GML representation of that geometry using AsGm1():

DECLARE @Linestring geometry
SET @Linestring = geometry::STLineFromText('LINESTRING(0 0, 12 10, 15 4)', 0)
SELECT @Linestring.AsGml()

The result is as follows:

<LineString xmlns="http://www.opengis.net/gml">
<posList>0 0 12 10 15 4</posList>
</LineString>

CREATING POINTS USING POINT()

fyou ony w sh to create Po nt objects of e ther the geometry or geography type there s no need to use a
spec f ¢ anguage to represent those po nts—they can be suff ¢ ent y descr bed us ng just three numer ¢ parame-
ters represent ng the x (or ong tude) coord nate the y (or attude) coord nate and the SRD n ths case you
do not need to use one of the ded cated anguage methods descr bed n th s chapter to represent the object—
you can use the Point() method nstead

he Point() method accepts three arguments—represent ng at tude (or x) ong tude (ory) and an SR D—
to create a Po nt object of e ther the geometry or geography datatype o demonstrate th s method
cons der the fo ow ng code

SELECT
geography: :Point (41, -87,4269)

h s examp e creates a geography Pont at attude 41 degrees ong tude —87 degrees us ng the
SR D 4269

CHAPTER 4 | CREATING SPATIAL DATA OBJECTS

Summary

This chapter introduced you to each of the static methods that you can use to instantiate items
of geography or geometry data. There are anumber of methods available, based on three different
standard formats for expressing spatial information: Well-Known Text (WKT), Well-Known
Binary (WKB), and Geography Markup Language (GML).

Each static method requires exactly two parameters the SRID of the spatial reference
system used, and a representation of the geometry expressed using the WKT, WKB, or
GML format.

There are advantages and disadvantages associated with each of the WKT, WKB, and
GML representations. Generally speaking, WKT is the simplest to understand, WKB is
the fastest, and GML is the most structured.

When creating items of spatial data from the WKT or WKB format, there are specific
methods for each type of geometry (Point, LineString, Polygon, and multielement
types), as well as the generic methods STGeomFromText () and STGeomFromWKB(). In contrast,
every item of data created from GML uses the same GeomFromGml () method.

For creating Point geometries, the Point () method can be used, which requires only the
two coordinate values and the SRID to which those coordinates relate.

In addition to the static methods used to create objects from each of these representations,
SQL Server also provides instance methods that can be used to express objects in WKT,
WKB, and GML formats. This functionality is provided by the STAsText (), STAsBinary(), and
AsGm1() methods, respectively.

13

CHAPTER 5

Marking Out Geometries
Using Virtual Earth

In the last chapter, we examined a number of static methods that can be used to create items
of geometry or geography data. To use any of these methods, you must supply a structured
representation of the geometry that you wish to create using the WKT, WKB, or GML format.
Therefore, you need to either have this representation already available or create such a repre-
sentation from known coordinate values of the points in the geometry.

In practice, however, there are many situations in which you simply don’t know the coor-
dinates of the spatial features that you wish to describe. You might be able to identify the feature on
amap, you might even be able to give someone directions to get there, but you cannot state the
latitude and longitude, or x and y values, associated with the points that define its shape. In
situations like this, wouldn’t it be helpful if you could simply trace the shape of a feature on a
virtual map to create a geometry representing that feature?

In this chapter, we will build a small web application that does exactly that, using Microsoft’s
Virtual Earth web service to create a drawing canvas onto which you can mark out the shapes
of geometries. This technique is suitable for creating a small number of discrete features that
have fixed spatial properties. For example, it could be used to record the locations of a number
of warehouses or distribution depots. Note that in this chapter we are using Virtual Earth as an
inputdevice to help define new items of datain SQL Server. In Chapter 9, I will show you how
toretrieve spatial data from SQL Server 2008 and output that data graphically on a Virtual Earth
or Google Maps control.

WCaution The techn que d scussed n th s chapter creates aweb app cat on that uses JavaScr ptto mp e-
ment the features of the V rtua Earth AP . n order to be ab e to use th s app cat on, you must oad th's page
n a JavaScr pt-enab ed web browser, such as Moz a Frefox or M crosoft nternet Exp orer.

Virtual Earth (VE) is an integrated collection of web services from Microsoft that can be used
in a range of geospatial applications plotting routes, finding nearby points of interest (POlIs),
and examining stunning aerial photography of the world. The main component of the Virtual
Earth web service is a JavaScript map control that can be added to a web page to display a two-
dimensional map object. In addition to displaying map data and rich imagery of the earth, the

115

116

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

Virtual Earth application programming interface (API) provides a range of methods that you can
use to manipulate and overlay spatial data on that map. You have probably already seen the VE
map control in use on various sites on the Internet; among other things, it is the main technology
used in the Microsoft Live Search Maps service, available at http://maps.1live.com.

In this chapter, I am first going to show you how to build your own web page containing a
VE map control. Then, I will show you how to use the methods provided by the Virtual Earth
API to draw shapes on the map around specific features of interest. Finally, I'll show you how
you can extend the API with your own methods to create the appropriate WKT representation
of these created shapes, so that they can be used to define items of geography and geometry data
in SQL Server.

Creating the Web Application

To create the required HTML and JavaScript code, you can either use a dedicated program,
such as Microsoft Visual Studio, or use any text editor, including Windows Notepad. Although
it is possible to use a simple text editor, I recommend that you use Visual Studio, since it provides
anumber of helpful programming aids, such as color coding and syntax highlighting, as well as
an integrated ASP.NET development server to preview your site as you develop it. Even if you
don’t have access to the full version of Visual Studio, you can still get the benefits of these
features using Visual Web Developer Express Edition, which is free to download from http://
www.microsoft.com/express/vwd/Default.aspx.

In the following section, I assume that you are using Visual Studio 2008. If you choose to
use a different tool, then some of the actions may differ, although the underlying code will
remain the same.

WTip Thefu app catoncode s ncuded nthe ZPf e accompany ng th s book, wh ch can be down oaded
from the Apress web s te. fyou’d prefer to down oad the code rather than create the f es, you can sk p ahead
to the next sect on.

Creating a New Web Site

Before we can start adding any code, we need to create a new web site project in Visual Studio.
To do so, open the Visual Studio application and follow these steps:

1. From the main Microsoft Visual Studio menu bar, select File » New » Web Site.

2. In the New Web Site dialog box, shown in Figure 5-1, highlight the Empty Web Site
template and choose a location in which to save the files. For this example, I'll use
C:\Spatial\VEDrawingCanvas. You can save the files to any normal drive they do
not need to be published to a web server.

3. Click OK.

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

New Web Site @[ZJ

Templates: I.NET Framework 3.5 | %] &F
Visual Studio installed templates
ERASP.NET Web Site . ASP.NET Web Service LN Empty Web Site
¥SWCF Senvice 58] ASP.NET Reports Web Site 1% Dynamic Data Entities Web Site
ggoynamic Data Web Site FBASP.NET Crystal Reports Web Site
My Templates

(S3search online Templates...

| An empty Web site (.NET Framework 3.5} I

Location: lFile Sysiem v H C:\Spatial\VEDrawingCanvas v ‘ Browse...

Language: ‘ Visual Basic v I

l oK][Cancel l

Figure 5-1. Creating a new web site in Visual Studio 2008

The new web site will be created, and the status bar at the bottom of the screen will display
the following message:

Creating Project 'VEDrawingCanvas'.. project creation successful.

We can now begin adding the elements to our web application.

Adding a Basic Map

To begin, we will add a new HTML page to our web site that will display a basic Virtual Earth
map. You can add a new HTML page to the web site as follows:

1. From the Visual Studio menu bar, select Website » Add New Item.
2. In the Add New Item dialog box, shown in Figure 5-2, highlight HTML Page.

3. Choose aname for the page (I am using the default, H-TMLPage.htm, but you may change
this if you prefer).

4. Click the Add button.

117

118 CHAPTER 5

| MARKING OUT GEOMETRIES USING VIRTUAL EARTH

Add New Item - C:\Spatial\VEDrawingCanvas\

Templates: ||
Visual Studio installed templates |
55| web Form [[]master Page [E=] web User Control
,_g'\gADO.NEI' Data Service _g&ADD.NEI’ Entity Data Model %‘IAJAX Client Behavior
&3 AIAX Client Control &5 JAIAX Client Library] A1AX Master Page
|iE] A3Ax Web Form 55 A1Ax-enabled WCF Service (@] Browser File
TIE__?l Class E Class Diagram \?]Crystal Report
@ DataSet L’g"_-_‘fr’vDynamic Data Field sﬁ Generic Handler
u Global Application Class H|HTML Page %’IJScript File
E%LINQ to SQL Classes =:| Report a Report Wizard
[FhResource File @Site Map @Skin File
L'j SQL Server Database g Style Sheet E’] Text File
ES'?:WCF Service @Web Configuration File __ﬁ]Web Service -
|12 XML File @ XML Schema iE-:;-‘XSLT File

b
| An HTML page that can include client-side code

Name: | HTMLPage.htm

Language: |\.-’isua| Basic v code in separate file

Select master page
l Add] [Cancel

Figure 5-2. Adding an HTML page to the web site

The new file is added to the web site project, and the main Visual Studio window changes
to show the contents of HTMLPage.htm. This file contains a blank template for a web page,

as follows:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<titled</title>

</head>

<body>

</body>
</html>

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH 119

BNote fyou can’t see the contents of the HTMLPage.htm page, doub e-c ck the HTMLPage.htm f e name
n the So ut on Exp orer pane.

To start, we're going to add a few simple lines of code to this template to include a basic VE
map control. Change the contents of HTMLPage.htm by inserting the lines highlighted in bold
in the following code listing:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head>
<title>SQL Server 2008 Geospatial Data Generator</title>
<script src="http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=6.2"

type="text/javascript"></script>

</head>

<body onload="var map = new VEMap('divMap'); map.LoadMap();">
<div id="divMap" style="position:relative;"> </div>

</body>

</html>

That's all that is required! To see what the page looks like, first save the file by selecting File »
Save HTMLPage.htm, and then select File » View in Browser (or press Ctrl+Shift+W).

Your default web browser will load, and you should see a page containing a VE control, as
shown in Figure 5-3. Even though we haven’t added any additional functionality yet, you can
already pan around the map, zoom in and out, and change the display style using the controls
in the top left corner of the window.

ENote Depend ng on your browser’s secur ty sett ngs, you may rece ve a prompt adv s ng you to enab e
act ve content before you can v ew the page correcty. f prompted whether you woud ke to vew actve
content, ¢ ck Yes.

Okay, nowlet’s get back to our code in Visual Studio to see how we created this page. In the
<head> section of the document, we added a reference to the following JavaScript script:

<script src="http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=6.2"
type="text/javascript"></script>

120

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

3 SQL Server 2008 Geospatial Data - Microsoft Internet Explorer

File Edit View Favorites Tools Help
Quc - © 1[G Psarcr Yoo @ 2+ 5 (3 B
Address |@ http://localhost:4990/VEDrawingCanvas/HTMLPage.htm b Go
g L.ake - QueE
D Winnpeg
i : ONTARIO
Ina !
.Reg naE: .Wln:nlpag
S R Lake S Ot
ainneapol SCHIGAN Huren O,
, wis. :' Tagnto By
=L JOWA c'hl__caqalﬁ; @D?l@:f '
g iopa. B
LB
St Louis gy D Phi
~ ‘washlng
.............. oVlrgm
i i : okt it @ NC.
s Angsles L.OKLA. | ARK. pnss "™Yafanta -
Rl L Miss ghfian =
i % 1 Dallas % £ ~5.C.
Microsoft® [£ IMENIGO S s \
Virtual Earth™ B = =
\ Houston_, e
&] Done & Local intranet

Figure 5-3. HTMLPage.htm web page containing a basic Virtual Earth map control

This is the URL of the main Virtual Earth API. At the time of writing, the latest version of the
control is version 6.2, which we specified by using the v=6.2 parameter appended to the end of
the URL string. Once you have included a reference to this script in a web page, you can then
access any of the methods provided by the APL In this example, we used just two such methods:

1. We constructed a new instance of the VE control by using the VEMap() constructor. The
single parameter passed to the VEMap() constructor specifies where the created map
object should be placed on the page. In our example, we specified 'divMap’, which is
the ID of the HTML <div> element we added later in the body of the document.

2. We loaded and populated the map, using the LoadMap () method. This method accepts
a number of optional parameters that specify the initial properties of the map, such as
the center point, zoom level, and map style. However, in this case we called the method
without any parameters, which creates the default map, showing a two-dimensional
road map of the mainland United States.

We placed the calls to both of these methods in the onload event of the body of the HTML
document, which means that the map gets created as soon as the page is loaded by the browser,
as follows:

<body onload="var map = new VEMap('divMap'); map.LoadMap();">

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

The final addition to our code was to specify a new <div> element that would act as a
container for our map:

<div id="divMap" style="position:relative;">

Note that this code simply creates an empty container on the page without specifying any
content it is the VEMap() method that dynamically inserts the map control into this element,
based onits ID. The style="position:relative;" property is a Cascading Style Sheets (CSS)
style declaration to ensure that the map appears in the correct position in the browser.

Extending the Map Functionality

Now that we’ve got our basic Virtual Earth map working, let’s add some custom functionality
that will enable us to mark out the shape of various geometries that we wish to define in SQL
Server. This involves using a range of other methods provided by the main Virtual Earth API, as
well as defining some of our own methods. If we were to continue adding these methods into
the body of our HTMLPage.htm page, it would quickly become quite complicated and difficult
to manage. Instead, we will add a new file to the web site solely to contain our JavaScript func-
tions. To do this, select Website » Add New Item from the Visual Studio menu. In the Add New
Item dialog box, shown in Figure 5-4, highlight the JScript File template. The default name is

JScript.js, which is fine, so go ahead and create the file by clicking Add.

Add New Item - C:\Spatial\VEDrawingCanvas\

Templates: ||
Visual Studio installed templates B
iZ] Web Form "] Master Page [8=] web User Control
3 'S'ADO,NET Data Service }: ADO.NET Entity Data Model QL'IAJAX Client Behavior
£3]AJAX Client Control 55 JAJAX Client Library] A1AX Master Page
Z] A1AX Web Form 55 A1ax-enabled WCF Service @] Browser File
‘ﬂda% E Class Diagram ;:ijl:rystal Report

=T - i % 2
& DataSet {j Dynamic Data Field Generic Handler
,‘Jclubai Application Class Iﬂ HTML Page = ¥ JScript File
% LINQ to SQL Classes @ Report ,._'_:] Report Wizard
SResource File ﬂSite Map |2 Skin File
B SQL Server Database A:i Style Sheet é‘l Text File
ES?:WCF Service |55 Web Configuration File 4] Web Service i
| XML File Iﬂ XML Schema S?XSLT File
v
| A script file containing JScript code
Name: | J5cript.js
Language: |Visua| Basic bt
l Add] [Cancel

Figure 5-4. Adding a JavaScript file to the web site

121

122

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

A new, blank window opens in the main workspace. This is the empty file that we will use
to define the JavaScript functions that build on the base functionality provided by the VE control.
By keeping these functions separate in the JScript.js file, they are easier to manage than if
mixed alongside the main content in the HTMLPage.htm file, which instead will contain the
structural elements of the page.

Declaring the Global Variables

We will start by declaring a number of global variables, which we will need to refer to in different
functions. Add the following code to the top of the JScript.js file:

/x*

* Declare the Global Variables

*/

var map = null; // the map object

var shape = null; // the current shape

var shapeType = null; // the type of the VE shape being created
var shapePoints = new Array(); // the array of points in the shape

This code defines four global variables that will be used throughout the web application.
map will contain the map object itself, and will be the instance upon which any calls to the Virtual
Earth API will act. The shape variable will be used to hold the current shape being drawn on the
map. shapeType will store the type of geometry being defined, and shapePoints will store the
array of points contained in that geometry’s definition.

Initializing the Map

In our first example, we placed the VEMap() constructor and the LoadMap () function directly in
the onload event of the HTML <body> tag in HTMLPage.htm. To make our code neater, let’s move
these separate calls out into a function on their own, which we’ll call getMap (). This function
will contain all of the necessary information required to set up the map when the page is first
loaded. To create the function, add the following code to the JScript.js file:

function getMap() {
// Create a new map instance
map = new VEMap('divMap');
// Define the parameters for the map
map.LoadMap(new VELatLong(51.5, -0.1), 5, VEMapStyle.Road, false);
// Attach an event handler when you move the mouse across the map
map . AttachEvent ("onmousemove", DisplayCoords);

The first line contained within the getMap() function, map = new VEMap('divMap'), is exactly
the same method as we used in the basic example, to construct a new map and place it in the
div element on the page called divMap. We then also call the same LoadMap () method as before, to
configure the properties of that map. However, whereas in the basic example we used LoadMap() on
its own to create a default map, on this occasion we pass a number of parameters to the method
to customize different elements of the initial map appearance. Let’s take this opportunity to

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

examine the different types of map that you can create using Virtual Earth, denoted by parameters
passed to the LoadMap () method:

* The first parameter is a VELatLong() object denoting the center position of the map. In
this case, we are centering on a point at 51.5 degrees latitude, 0.1 degrees longitude,
which is the approximate location of London, England.

* The second parameter gives the zoom level of the map. Greater numbers indicate that
the map should be zoomed in more. For this example, we specify a zoom level of 5.

e The third parameter indicates the display style of the map. The value VEMapStyle.Road
denotes that we are creating a road map that displays road and place name data. Virtual
Earth supports a number of different map styles, as listed and described in Table 5-1.

Table 5-1. Virtual Earth Map Styles That Can Be Passed to the LoadMap() Method

VEMapStyle Description

Road Road map style.

Shaded Shaded map style. This is the same as the Road style but with added
shaded relief contours.

Aeria Aerial map style.

Hybrid Hybrid style, combining an aerial map with label overlays.

Birdseye An oblique, bird’s eye view taken from an overhead angle.

Ob ique Same as Birdseye.

BirdseyeHybrid Oblique imagery as in the Birdseye view, combined with a label overlay.

If you want to mark out real objects that can easily be identified through aerial imagery,
such as buildings and other structures, then you should use the Aerial or Hybrid style. If you
want to mark out features shown on traditional maps, such as roads, rivers, and state or country
boundaries, you may find it easier to set your map to use the Road or Shaded styles.

ENote The LoadMap () method a so accepts other opt ona parameters. For a comp ete st, consu t the
fo ow ng web page: http://msdn.microsoft.com/en-us/library/bb412546.aspx.

The final line in getMap () attaches an event handler to the map object, using the
map.AttachEvent() method. Virtual Earth event handlers can be used to add interactivity to a
map by listening for certain events to occur, which then trigger functions to be executed. In this
case, map.AttachEvent ("onmousemove", DisplayCoords); creates an event handler that causes
the DisplayCoords() function to be called every time the mouse is moved over the map. The
DisplayCoords () function will be used to calculate and update the current coordinates of the
mouse cursor.

123

124

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

Displaying the Coordinates of the Current Mouse Position

To make it easier to mark out exact geometries on the map, we will add a function to our appli-
cation that will retrieve the coordinates of the mouse cursor as you move across the map, and
update the value of two text boxes on the page. To do this, create the DisplayCoords() function
by adding the following code to JScript.js:

function DisplayCoords(e) {
// Retrieve the pixel position of the cursor
var pix = new VEPixel(e.mapX, e.mapY);
// Convert the pixel location to latitude / longitude
var pos = map.PixelTolatLong(pix);
// Update the page to display current cursor latitude / longitude
document.getElementById("Latitude").value = pos.Latitude;
document.getElementById("Longitude").value = pos.Longitude;

The DisplayCoords() function is triggered by the onmousemove event handler added to
the getMap() function. Every time the mouse is moved over the map, this handler calls the
DisplayCoords() function, passing it a parameter, e, that records details of the event that triggered
the handler. In the preceding code, the DisplayCoords () function retrieves the pixel that the mouse
cursor is over by using the e.mapX and e.mapY properties. It then uses the PixelTolLatLong() method
toretrieve the latitude and longitude coordinates of that pixel (based on the position and zoom
level of the current map view). Finally, it sets the value of two elements on the HTML page,
Latitude, and Longitude (which we will create shortly), to reflect these coordinate values.

Drawing a New Geometry

Our next function, createGeometry(), will be the function called when we click a button to start
defining a geometry. The method accepts a parameter, shapetype, which specifies the sort of
shape we are creating.

The Virtual Earth API supports three types of shapes that can be created on a map: Pushpins,
Polylines, and Polygons. These are equivalent to the SQL Server Point, LineString, and Polygon
geometries, respectively, as shown in Table 5-2. Virtual Earth does not support multielement
geometry instances.

Table 5-2. Comparison of Geometric Objects in Virtual Earth and SQL Server 2008

SQL Server Geometry Type Virtual Earth Shape Type
Point Pushpin
LineString Polyline
Polygon Polygon

The createGeometry() function prepares to define a new geometry by taking the
following steps:

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH 125

1. It sets the value of the global shapeType variable to the type of geometry being created.
2. Itresets the shapePoints array, which is used to record each point in the geometry.

3. It attaches an event handler that calls the addPoint() function every time we click the
map. This function will add each point to the shapePoints array of points for the overall
geometry.

4. Tt changes the cursor to a crosshair to show we are in geometry creation mode.

Here’s the code for the createGeometry() function, which you should add to the JScript.js file:

function createGeometry(shapetype) {
// Store the type of VEShape we are defining in the global shapeType variable
shapeType = shapetype;
// Set the length of the shapePoints array to zero
shapePoints.length = 0;
// Attach the addPoint() function to be called every time we click the mouse
map.AttachEvent("onclick", addPoint);
// Change the mouse cursor to show we are adding points
document.getElementById("divMap").childNodes[0].style.cursor = "crosshair";

Defining Each Point in the Geometry

The addPoint () function is the main function that handles the creation of each point in a geometry
shape on the map. Every time you click the mouse button on the map, this function calculates
the coordinates of the location where you clicked (using the same e.mapX, e.mapY, and
PixelTolLatLong() method as used in the DisplayCoords () function), and adds those to the global
array of points of the shape currently being created, shapePoints. The switch (shapeType)
statement is used to create the correct Virtual Earth shape equivalent to the type of geometry
being defined, which is stored in the global variable shape. This shape is then added to the map
using themap.AddShape () method. Once you have finished drawing the geometry, the addPoint ()
method detaches itself from the onclick event handler to prevent any further points from
being added to the geometry, and then calls the makeWKT () method to create the WKT represen-
tation of the resulting shape. For a Point, this occurs when you click the single position on the
map. For a LineString or Polygon, the geometry is ended when you right-click to insert the final
point and end the shape definition.

The code for the addPoint() function to be added to JScript.js is as follows:

function addPoint(e) {
// Retrieve the pixel position that we clicked
var pix = new VEPixel(e.mapX, e.mapY);
// Convert pixel coordinates to latitude and longitude
var pos = map.PixelTolatlong(pix);
// Add these coordinates to the array of points for the current shape
shapePoints[shapePoints.length] = pos;
// Handle different geometries
switch (shapeType) {

126 CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

// We are drawing a VE Pushpin (i.e., a Point)
case VEShapeType.Pushpin:
// Create a new Pushpin VEShape based on the point defined
shape = new VEShape(VEShapeType.Pushpin, shapePoints);
// Add the pushpin to the map
map .AddShape(shape);
break;
// We are defining a LineString or a Polygon
case VEShapeType.Polyline:
case VEShapeType.Polygon:
// If we have only defined two points for the shape
if (shapePoints.length == 2) {
// Create a new Polyline VEShape based on the points defined
shape = new VEShape(VEShapeType.Polyline, shapePoints);
// Add the Polyline to the map
map.AddShape(shape);
}
// If we have defined more than two points for the shape
if (shapePoints.length > 2) {
// Delete the old shape from the map
map.DeleteShape(shape);
// Create a new Polyline or Polygon VEShape based on the points defined
shape = new VEShape(shapeType, shapePoints);
// Add the shape to the map
map.AddShape(shape);
}
break;
// If shapeType is any other value
default:
// Stop calling the addPoint() function on every mouseclick
map.DetachEvent("onclick", addPoint);
// Throw an error
throw ("Unexpected shape type");

}

// When we have finished the shape definition

if (shapeType == VEShapeType.Pushpin e.rightMouseButton == true) {
// Stop calling the addPoint() function on every mouseclick
map.DetachEvent("onclick", addPoint);
// Change the mouse cursor back to normal
document.getElementById("divMap").childNodes[0].style.cursor = "";
// Create the WKT representation of this shape
var WKT = makeWKT(map.GetShapeByID(shape.GetID()))
// Put the WKT output on the page
document.getElementById('WKTOutput').innerText = WKT.toString();

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

Building the WKT Representation

The makeWKT() function is called by addPoint () when you finish defining a shape on the map
(thatis, you right-click to insert the final point of a LineString or Polygon geometry, or you click
to place a Point geometry), and is used to create the WKT representation of the VE shape just
created. The makeWKT () function creates the WKT representation of a geometry by looping
through the array of points contained within the shape object, and expressing them in the
appropriate syntax required by the equivalent WKT geometry. This involves placing a comma
between each coordinate pair, and prefixing the string of point coordinates with the appro-
priate POINT, LINESTRING, or POLYGON identifier.

To add the makeWKT () function, insert the following code into JScript.js:

function makeWKT(shape) {
// Define a variable to hold what type of WKT shape we are creating
var wktShapeType = "";
// Define the WKT type which corresponds to the VEShapeType we have created
switch (shape.GetType()) {
// VEShapeType.Pushpin => WKT POINT
case VEShapeType.Pushpin:
wktShapeType = 'POINT';
break;
// VEShapeType.Polyline => WKT LINESTRING
case VEShapeType.Polyline:
wktShapeType = 'LINESTRING';
break;
// VEShapeType.Polygon => WKT POLYGON
case VEShapeType.Polygon:
wktShapeType = 'POLYGON';
break;
default:
throw ("Unexpected shape type");
}
// Define a new string to hold the point list
var pointsString = ""
// Retrieve an array of points that make up this shape
var points = shape.GetPoints();
// Retrieve the coordinates of the first point
pointsString = points[0].Longitude + " " + points[0].Latitude;
// Loop through remaining points in the object definition
for (var 1 = 1; i < points.length; i++) {
// Append the remaining points, with a comma before each coordinate pair
" " 4+ points[i].Latitude;

n n

pointsString += ", " + points[i].Llongitude +
}
// Build the WKT representation of the shape
var WKT = null
if (wktShapeType == 'POLYGON')
// Polygons require double brackets around the points of the exterior ring
WKT = wktShapeType + "((" + pointsString + "))";

127

128 CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

else
// Other WKT geometry types have single brackets
WKT = wktShapeType + "(" + pointsString + ")";
// Return the final WKT representation
return WKT;

}

Starting Again

Finally, to complete our JScript.js file, we use the StartAgain() function to remove any existing
shapes from the map and reset any variables, so that we can begin creatinga new shape. Here’s
the code:

function StartAgain() {
// Delete all shapes from the map
map.DeleteAllShapes();
// Reset the cursor to default style
document.getElementById('divMap').childNodes[0].style.cursor = "";
// Reset the text
document.getElementById('WKTOutput').innerText =
'The WKT representation of the geometry will appear here.';

Adding Controls to HTMLPage.htm

Now that we’ve added the extra JavaScript functions required to draw geometries on our map
into the JScript.js file, we need to revisit and update our HTMLPage.htm file the main page
viewed by the browser.

Open HTMLPage.htm (if it’s not already visible) by double-clicking the HTMLPage.htm
file name in the Solution Explorer pane. Change the code to be as follows:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head»
<title>SQL Server 2008 Geospatial Data Generator</title>
<script src="http://dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=6.2"
type="text/javascript"></script>
<script src="JScript.js" type="text/javascript"></script>
</head>
<body onload="getMap();">
<form action="">

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

<h2>1.) Select the type of geometry to create</h2>
<input id="DrawPoint" title="Mark a point"
onclick="createGeometry(VEShapeType.Pushpin)" type="button" value="Point" />
<input id="DrawLineString" title="Draw a line"
onclick="createGeometry(VEShapeType.Polyline)" type="button" value="LineString" />
<input id="DrawPolygon" title="Draw a polygon."
onclick="createGeometry(VEShapeType.Polygon)" type="button" value="Polygon" />

<h2>2.) Click the map to define point(s) of this geometry</h2>
<div id="divMap" style=" position: relative;">
<!-- The Virtual Earth Map control will be automatically inserted here -->
</div>
<label for="Latitude">Latitude</label><input id="Latitude" />
<label for="Longitude">Longitude</label><input id="Longitude" />

<h2>3.) Well-Known Text</h2>
<div id="WKTOutput">The WKT representation of the geometry will appear here.</div>

<hr />
<p>
<input id="Reset" onclick="StartAgain();" type="button" value="Start Again" />
</p>
</form>
</body>
</html>

The new HTMLPage.htm contains some important functional changes, as well as some
additional structural and descriptive elements to help you use the page. Let’s review some of
the key amendments, highlighted in bold in the preceding code listing.

In the head section of the HTML page, we include a reference to the JScript.js file we created
earlier, using the line <script src="J]Script.js" type="text/javascript"></script>. Then,
we change the onload event of the body of the page to call the getMap () function defined in the
JScript.js file, which performs all the necessary operations to create and configure the map on
the page.

Within the body of the HTML page itself, we add a number of elements that will provide
the user interface that enables us to use the application. First, we define a number of form input
buttons, which we will use to start drawing on the map. These call the createGeometry() function,
passing a parameter to state what kind of geometry we are about to define, as in this example:

129

130

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

<input id="DrawPoint" title="Mark a point"
onclick="createGeometry(VEShapeType.Pushpin)" type="button" value="Point" />

We also add form elements that the DisplayCoords() function will update to display the
latitude and longitude values of the current mouse position:

<label for="Latitude">Latitude</label><input id="Latitude" />
<label for="Longitude">Longitude</label><input id="Longitude" />

And finally, we add a <div> element that will contain the WKT representation of our geom-
etry when it is complete:

<div id="WKTOutput">The WKT representation of the geometry will appear here.</div>

Once all of these elements have been added, our page is now ready to use!

Using the Web Application

Once you have made all the changes described in the previous section, save the HTMLPage.htm
and JScript.js files by selecting File » Save All (Ctrl+Shift+S). Next, right-click HTMLPage.htm
in the Solution Explorer pane and select the View in Browser menu option (Ctrl+Shift+W). The
page appears as shown in Figure 5-5.

MTip fyou choose to create your f es us ng a text ed tor rather than nVsua Stud o, you shou d create the
HTMLPage.htm and JScr pt.js f es separate y based on the code n the preced ng sect on and save them n
the same d rectory. Then oad the HTMLPage.htm page n your browser (you can norma y do th s by ocat ng
the f e n W ndows Exp orer and doub e-c ckng ts con).

To use the page, follow these steps:

1. Before you begin, adjust the map view so that it clearly shows the feature you will be
tracing. You can click and drag the map (or use the cursor keys) to pan, and zoom in and
out using the plus (+) and minus () keys. Alternatively, you can use the controls in the
top left corner of the map.

2. Click the relevant button to select the type of geometry you want to create: Point,
LineString, or Polygon.

3. Click each point of that geometry on the map. Remember that, when defining the
exterior ring of a Polygon for use in the geography datatype, you should enter the points
of thering in a counterclockwise direction, so that the area enclosed within the Polygon lies
on the left side of the line drawn between the points.

4. When you are done, right-click to insert the final point and finish the geometry.

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

3 SQL Server 2008 Geospatial Data Generator - Microsoft Internet Exp... |._ ”
F'le Edit View Favorites Took Help

Qux- © @G Pseuch Srrmons @ R+ LEF B

Address & http://localhost:4990/VEDrawingCanvas/HTMLPage.htm Lﬁj Bco

1.) Select the type of geometry to create

[Point | [LineString | Polygon |

2.) Click the map to define point(s) of this geometry

The WKT representation of the geometry will appear here.

B s e go Augsbygy o
i -~ i g ‘ﬂl‘l“:;::"‘ s, - PP 33 S%ﬁ
Latimde 51 67255514839676 me‘,]n_4833984374999863

3.) Well-Known Text

Start Again

| €100re T

Figure 5-5. The finished web page

ECaution The app caton descr bed n th s chapter cannot create Po ygons contan ng nter or rngs, or

mu t e ement geometr es.

131

132 CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

The WKT representation of the geometry will appear at the bottom of the screen. Figure 5-6
illustrates an example of how the page can be used to create a Polygon geometry representing
the state of Colorado.

3 SQL Server 2008 Geospatial Data Generator - Microsoft Internet Exp... __”g”g|
Fle Edit View Favorites Tools Help e

QBack -) @ @ Ch j':)Search \;r\\‘{Favorites & @V :;, by 3
& Go

Address |@ http://localhost:4990/VEDrawingCanvas/HTMLPage.htm b

S | NEVADA | UTAH
San Francisco ‘;\ 4

©9eb--

Las Vegas''

Los Angeles --.__ARIZONA £ Santa ;Fa
= Phaenix NEW |
o I MEXICO: : v
g, IS e : TEXAS e i ! GA. #
\'\ Houston | e _New Orlgains .}
ks 5 i @
Y
A I
o MEXICO b 'fﬂ(ﬁhﬁesl K
Victoal Earth™ arrey S —
g uliacan L} U ez Cngrastion D MUBLATIEY

Latitude 38.754083275791416 | Longirudel-105.732421875

3.) Well-Known Text

POLYGON((-102.03964233398437 36.99268153210723, -102.05062866210939 41.00270266805318. -
109.04891967773437 41.000629848685385. -109.04342651367189 37.000359196221574, -
102.03964233398437 36.99268153210723))

3

@ javascript://pushin hover % Local intranet

Figure 5-6. Using the web page to define a Polygon representing the state of Colorado

Creating a Geometry from the WKT Output

Every static method that can be used to create spatial data in SQL Server requires two parame-
ters arepresentation describing the coordinates of each point of the geometry, and the SRID
denoting the spatial reference system in which those coordinates were defined. Now that we
have obtained the WKT representation of a geometry, before we can use that to create an item
of spatial data in SQL Server, we need to know the spatial reference system used by Virtual
Earth. Since the VE control presents a two-dimensional map of the earth, we know that the
spatial information portrayed must be from a projected spatial reference system. The WKT
representation of the particular spatial reference system used by the VE map display, denoted
by EPSG:3785, is as follows:

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH 133

PROJICS[
"Popular Visualisation CRS / Mercator",
GEOGCS[

"Popular Visualisation CRS",
DATUM[
"Popular Visualisation Datum",
SPHEROID[
"Popular Visualisation Sphere",
6378137,
0,
AUTHORITY["EPSG",7059]
1,
TOWGS84[o0, 0, 0, 0, 0, 0, 0],
AUTHORITY["EPSG",6055]
1,
PRIMEM["Greenwich", 0, AUTHORITY["EPSG", "8901"]],
UNIT["degree", 0.0174532925199433, AUTHORITY["EPSG", "9102"]],
AXIS["E", EAST],
AXIS["N", NORTH],
AUTHORITY["EPSG",4055]
1,
PROJECTION["Mercator"],
PARAMETER["False Easting", 0],
PARAMETER["False Northing", 0],
PARAMETER["Central Meridian", o],
PARAMETER["Latitude of origin", 0],
UNIT["metre", 1, AUTHORITY["EPSG", "9001"]],
AXIS["East", EAST],
AXIS["North", NORTH],
AUTHORITY["EPSG",3785]

The SPHEROID parameter of this system specifies a reference ellipsoid with a semimajor axis
of 6,378,137 m, which is the same as the WGS 84 ellipsoid. However, the second parameter, 0,
indicates that no flattening should be applied EPSG:3785is based on the same WGS 84 datum
used by GPS systems, but is applied to a perfectly spherical model of the earth rather than to a
spheroid or an ellipsoid. The WKT representation also shows that EPSG:3785 is based on the
Mercator projection, and uses the Greenwich Prime Meridian.

ENote EPSG:3785 sthe same spata reference system used by both M crosoft V rtua Earth (http://
maps . live.com) and Goog e Maps (http://maps.google.com).

From what you've learned so far, you might well be thinking that, since we have defined
geometries by creating points on this projected map, any coordinates obtained using this tech-
nique will be projected coordinate values that will have to be stored using the geometry datatype

134

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH

and defined using SRID 3785. If so, well done! You have a good understanding of the geometry
and geography datatypes. However, in this instance, this isn’t the case. You see, Virtual Earth
actually uses two spatial reference systems:

* When displaying projected data, Virtual Earth uses a Mercator projection based on the
WGS 84 datum, but applied to a sphere. This is the EPSG:3785 spatial reference just
described.

* When accessing data programmatically through the API methods, however, Virtual Earth
uses (unprojected) geographic longitude/latitude coordinates based on the standard
WGS 84 system that is, EPSG:4326.

Since our web page uses methods provided by the API to obtain results based on a geographic
coordinate system, we can therefore store the results in either the geography or geometry datatype,
using the familiar SRID 4326.

Having used the map to create a new geometry, and obtained the relevant WKT represen-
tation, we can then use that representation in conjunction with the STGeomFromText () method,
as follows:

geography: : STGeomFromText (@WKT, 4326)

@WKT is substituted here for the WKT representation displayed by the web page after you define
a geometry.

To demonstrate this method, the following code creates an item of geography data from
the Polygon representation of Colorado illustrated in Figure 5-6:

DECLARE @Colorado geography

SET @Colorado = geography: :STGeomFromText (
"POLYGON((-102.03964233398437 36.99268153210723, -102.05062866210939
41.00270266805318, -109.04891967773437 41.000629848685385, -109.04342651367189
37.000359196221574, -102.03964233398437 36.99268153210723)) '
,4326

)

Summary

In this chapter I showed you a technique that enables you to use Microsoft Virtual Earth as a
drawing canvas, on which you can mark out the shape of geometries representing features on
the earth. You learned the following:

e Virtual Earth is a web-based mapping service that you can embed within your own web
applications.

e The Virtual Earth API allows you to define Pushpins, Polylines, and Polygons on the map
display. Using JavaScript, these shapes can be converted to the equivalent WKT Point,
LineString, or Polygon representation.

CHAPTER 5 | MARKING OUT GEOMETRIES USING VIRTUAL EARTH 135

* The map image displayed by Virtual Earth is projected using the EPSG:3785 spatial reference
system. This system uses a Mercator projection of the WGS 84 datum, applied to a spherical
model of the earth. However, coordinates accessed through the API are geographic coordi-
nates defined using EPSG:4326.

e The Well-Known Text representation of a Virtual Earth shape, as created by the applica-
tion described in this chapter, can be supplied to the STGeomFromText () method to create
an item of geography or geometry data representing that feature in SQL Server.

CHAPTER 6

Importing Spatial Data

M any spatial applications combine custom-defined spatial features, such as the location
of a set of customers, with spatial data representing widely accepted, generic features on the
earth, such as the boundaries of countries and states, the locations of major world cities, and
the paths of main roads and railways. Rather than having to create this information yourself,
there are a number of alternative sources from which you can obtain commonly used spatial
data on which to base your spatial applications.

In this chapter, I will introduce you to some of the sources from which you can obtain
publicly available spatial information, the formats in which that data is commonly supplied,
and the techniques you can use to import that information into SQL Server.

Sources of Spatial Data

There is a wealth of existing spatial information, which you can obtain from a variety of commercial
data vendors as well as from educational institutions and government agencies who make the
information available for free. Table 6-1 gives details of a few possible Internet sources from
which spatial data is free to download.

Table 6-1. Sources of Freely Downloadable Spatial Information

Source? Description

http://www.census.gov/ The US Census Bureau Geography Division has
lots of high quality spatial information, including
a US Gazetteer, Zip Code Tabulation Areas (ZCTAs),
and the TIGER database of streets, rivers, railroads,
and many other geographic entities (United States
only).

http://geodata.grid.unep.ch/ The United Nations Geo Data Portal includes global,
national, regional, and subregional statistics and
spatial data, covering themes such as covering
themes such as freshwater, population, forests,
emissions, climate, disasters, health, and GDP.

http://biogeo.berke ey.edu/gadm/ The global administrative areas database (GADM)
contains the boundaries of countries, states, coun
ties, provinces, and their equivalents covering the
whole world, and is available as a single ZIP file
hosted at the University of California, Berkeley.

137

138

CHAPTER 6 | IMPORTING SPATIAL DATA

Table 6-1. Sources of Freely Downloadable Spatial Information (Continued)

Source? Description

http://earth info.nga.mi /gns/htm / The US National Geospatial Intelligence Agency
(NGA) GEOnet Names Server (GNS) is the official
repository of all foreign place names, containing
information about location, administrative division,
and quality.

http://geodata.gov/wps/porta /gos The US government “Geospatial One Stop” web
page of geographic data contains classified links to a
variety of sources covering areas including ecology,
geology, health, transportation, and demographics.

4 There may be restrictions on the use of data obrained from these sources. Please refer to the respective
providers for specific details.

As demonstrated in Chapter 4, each of the SQL Server 2008 static spatial methods can only
create a single item of spatial data at a time, from either a WKT, WKB, or GML representation.
However, sources of spatial data such as those listed in Table 6-1 may be stored in a variety of
other spatial formats, and may describe many thousands of individual items in a single docu-
ment. You therefore cannot directly create geography or geometry data from these sources
using any static methods.

In the remainder of this chapter, I discuss some of the common alternative formats of
spatial data that are available, and explain techniques that you can use to import this data into
SQL Server 2008.

Importing Tabular Spatial Data

Although arguably not a spatial data format, the most abundant (and also the simplest) source
of freely available geographic information generally takes the form of a list of place names,
together with a single pair oflatitude and longitude coordinates describing the location of each
place. These sources may also contain other columns of associated information, such as demo-
graphic or economic measures. Information presented in this format is commonly known as a
gazetteer, a dictionary of geographic information.

If you want to import spatial information from a structured table of data containing columns
of latitude and longitude (or northing and easting coordinate values from a projected coordinate
system) such as a gazetteer, you can use one of the available static methods to create a geography
or geometry Point object based on the coordinate values representing each item of data. This
involves the following steps:

1. Import the structured data into a new table by using one of the bulk import methods
provided by SQL Server 2008: the OPENROWSET and BULK INSERT T-SQL statements, the
BCP utility, or the Import and Export Wizard.

2. Use the ALTER TABLE statement to add to the table a new geography or geometry column
that will hold the derived spatial data.

3. Use the T-SQL UPDATE statement in conjunction with a static method to populate the
new column, based on the values of the coordinate columns in the imported data.

CHAPTER 6 | IMPORTING SPATIAL DATA

To demonstrate this approach, let me show you an example using a file of earthquake data
provided by the United States Geological Survey (USGS). The USGS makes a number of datasets
freely available, which you can download from their web site at http://www.usgs.gov. One such
dataset lists real-time, worldwide earthquake lists in the past 7 days, which you can download
directly from http://earthquake.usgs.gov/eqcenter/catalogs/eqs7day-M1. txt. This file is
a comma-separated list of data, containing various attributes of each earthquake in columnar
format, as listed and described in Table 6-2.

Table 6-2. Columns of Data in the eqs7day-M1.txt File

Column Description

Src The two character identifier of the source network that contributed the data

Eqid The unique identifier for this earthquake

Version The version number

Datetime A text string describing the date at which the recording was made

Lat The latitude of the epicenter, stated in the EPSG:4326 spatial reference system

Lon The longitude of the epicenter, stated in the EPSG:4326 spatial reference system

Magnitude The magnitude of the earthquake, determined by the strength of the seismic
waves detected at each station

Depth The depth of the earthquake’s center, measured in kilometers

NST The number of reporting stations

Region A text string description of the area in which the earthquake occurred

To obtain a copy of this data, follow these steps:

1. Load your web browser and, in the address bar, type the following URL address: http://
earthquake.usgs.gov/eqcenter/catalogs/eqs7day-M1.txt. The browser will show the
contents of the latest feed, as demonstrated in the example in Figure 6-1.

2. Save this file to an accessible location by choosing File » Save As (or Save Page As,
depending on your browser). You will be prompted for a file name and location. For
this example, I will assume that you name the file eqs7day-M1.txt and save it to the
C:\Spatial folder.

ENote Because the eqs7day-M1.ixt f e conta ns a constanty updated feed of data from the ast 7 days,
the actua contentofthsf e w be d fferent from that demonstrated n th s chapter.

139

140 CHAPTER 6 | IMPORTING SPATIAL DATA

:Mearthquake.usps.govieqeenter/catalops/eqs 7day-M1.ixt - Microsoft Internet Explorer

File Edit Wiew Favaorites Tools Help a’
—= = = —Te———e
@Back >) |ﬂ @ h) search 5 ¢ Favarites (@2} = 3
fddvess | @1 hitp fearthouake. usgs. govfeqcenter catalogs/eqs7day MLt v/ Beo ks
=

Src,Eqid, Version, Datetime, Lat, Lon, Hagnitude, Depth, NST, Region
hv,00029146,0, "Sunday, July 20, 2008 11:28:26 UTC",19.1767,-155.5633,2.4,6.30,00,"Island of Havaii, Hawaii" -
us,2008usat, 7, "Sunday, July 20, 2008 11:08:30 UTC",35.6214,22.1473,4.4,42.70,24, "central Hediterranean Sea”
nn, 00254800, 1, "Sunday, July 20, 2008 10:57:57 UTCT,41.2050,-114.8600,2.1,4.00,11, "Nevada®

ak, 00055912, 1, "Sunday, July 20, 2008 10:33:34 UTC",61.4013,-147.7007,2.1,11.20,17, "Southern Alaska"

ek, 00055910, 1, "Sunday, July 20, 2008 10:37:56 UTC", 57.1364,-156.5921,2.7,79.90,14, "Alaska Peninsula"

alt, 00055908, 1, "Sunday, July 20, 2008 10:29:45 UTCT,62.3610,-150.6434,1.8,16.80, 11, "Central Llaska"”
©1,14382208, 1, "Sunday, July 20, 2008 10:22:46 UTC",33.4763,-116.4573,1.2,16.80,45, "Southern california”
us,2008usaz, R, "Sunday, July 20, 2008 10:15:24 UTC",38.6752,26.4335,4.0,5.40,44, "near the coast of western Turkey”
ne, 40220924, 1, "Sunday, July 20, 2006 10:05:42 UTC",38.2105,-122.2832,1.7,9.10,23, "Northern California”
©i,14382204, 1, "Sunday, July 20, 2008 10:03:31 UTC",33.4561,-116.4505,1.1,5.50,47, "Southern California”

ek, 00055903, 1, "Sunday, July 20, 2008 09:35:48 UTC", 61.2572,-145.8550,1.6,26.80, 10, "Southern Alaska"

ak, 00055904, 1, "Sunday, July 20, 2008 09:33:20 UTC",63.2926,-151.4758,1.0,7.60,05, "Central Alaska"

ne, 40220923, 1, "Sunday, July 20, 2008 09:31:34 UTC",35.5270,-120.8925,1.2,10.30, 9,"Central California”

nn, 00254797, 1, "Sunday, July 20, 2008 09:02:50 UTC",38.0370,-117.2990,2.1,0.00, 10, "Nevada”
©1,14382200, 1, "Sunday, July 20, 2008 D8:51:18 UTC",34.5285,-116.7401,1.2,11.60,17, "Southern California”

us, 2008usay, 7, "Sunday, July 20, 2008 08:21:42 UTC",4.9312,62.1740,5.2,10.00,23, "Carlsbery Ridge”
pr,p0820201, 1, "Sunday, July 20, 2008 085:12:40 UTC",17.9507,-65.3925,2.7,1%.60,12, "Puerta Rico region”

ak, 00055897, 1, "Sunday, July 20, 2008 08:03:37 UTC",65.1367,-148.6896,3.4,15.50,34, "northern Alaska"
hv,00029145,0, "Sunday, July 20, 2008 07:53:48 UTC",19.3568,-155.0730,2.9,7.60,00,"Island of Havaii, Hawaii"
©i,14382192, 1, "Sunday, July 20, 2008 07:41:33 UTC",33.7103,-116.7335,1.2,21.00,40, "Southern California"

ne, 40220919, 1, "Sunday, July 20, 2008 D7:16:29 UTC",40.4102,-124.3057,2.9,9.70,68, "Northern California’

al, 00055894, 1, "Sunday, July 20, 2008 07:06:22 UTC", 60.6582,-141.7204,2.3,17.60,25, "Southern Alaska"

ne, 40220915, 1, "3unday, July 20, 2008 07:01:47 UOTC",36.5727,-121.1133,2.2,9.590,29,"Central California”

ne, 40220916, 1, "Sunday, July 20, 2008 06:56:18 UTC",38.7720,-122.7447,1.2,1.50,14, "Northern California’

ak, 00055889, 1, "Sunday, July 20, 2008 06:44:08 UTCT,63.5427,-147.3248,2.6,0.10,23, "Central Alaska"

ne, 40220914, 1, "Sunday, July 20, 2008 06:40:34 UTC",38.9308,-122.9640,1.0,10.70, 9,"Northern California”

us, 2008usan, 8, "Sunday, July 20, 2008 06:11:08 UTC",-8.6895,111.3098,5.3,83.50,56, "Java, Indonesial
©1,14382188, 1, "Sunday, July 20, 2008 D6:09:50 UTC",33.6855,-116.7146,1.6,16.20,22, "Southern California”

ne, 40220913, 1, "Sunday, July 20, 2008 05:39:28 UTC",37.7148,-119.6117,1.7,5.10, 9,"Central California”

us, 2008usal, 7, "Sunday, July 20, 2008 05:33:17 UTC",41.7204,144.0122,4.5,35.00,20, "Hokkaido, Japan region”
©1,143821860, 1, "Sunday, July 20, 2008 05:28:30 UTC",35.0521,-117.54685,1.2,5.20,18, "Central California”

sk, 00055886, 1, "Sunday, July 20, 2008 05:16:58 UTC",57.4395,-155.0156,3.1,32.00,19, "Alaska Peninsula"

alt, 00055884, 1, "Sunday, July 20, 2008 04:30:03 UTCT, 60.8664,-146.5931,1.7,19.30,08, "Southern Llaska"

ak, 000556862, 1, "Sunday, July 20, 2008 04:27:59 UTC",63.1368,-150.6253,1.8,100.00,17, "Central Alaska"

] - |
&] Dare ® Internet

%

Figure 6-1. The USGS earthquake data file

Importing the Text File

There are a number of different ways to import data into SQL Server 2008. This example uses
the Import and Export Wizard, which allows you to step through the creation of a simple package
to move data from a source to a destination. The steps follow:

1. From the Object Explorer pane in Microsoft SQL Server Management Studio, right-click
the name of the database into which you would like to import the data, and select Tasks »
Import Data.

2. The Import and Export Wizard appears. Click Next to begin.

3. The first page of the wizard prompts you to choose a data source. Select Flat File Source
from the Data Source drop-down list at the top of the screen.

4. Click the Browse button and navigate to the eqs7day-M1.txt text file that you saved
earlier. Highlight the file and click Open.

5. By default, the Text Qualifier field for the connection is set to <none>. The text strings
within the eqs7day-M1.txt file are contained within double quotes, so change this value
to be a double quote character (") instead.

10.

11.

12

CHAPTER 6 | IMPORTING SPATIAL DATA

The eqs7day-M1.txt text file contains headings, so check the Column Names in the First
Data Row check box.

Click the Advanced option in the left pane. Click each column in turn and, from
the properties pane on the right side, amend the values of the DataType and
OutputColumnWidth fields to match the values shown in Table 6-3.

Once you have made the appropriate changes, click the Next button. The wizard prompts
you to choose a destination.

Enter the details of your SQL Server 2008 instance and database, and then click Next.

The wizard prompts you to select source tables and views. By default, the wizard auto-
matically creates a destination table called eqs7day-M1, so click Next.

On the Save and Run Package screen, click Finish (if you are using SQL Server 2008
Express, Web, or Workgroup Edition, this screen is called Run Package). The package
summary appears, and you are prompted to verify the details.

Click Finish again to execute the package.

ENote

n SQL Server 2008 Express, Web, or Workgroup Ed t on, you can use the mport and Export W zard

to create a package for mmed ate execut on ony. To save packages created by the w zard, you must use SQL
Server Standard, Deve oper, or Enterpr se Ed ton.

Table 6-3. Column Properties for the USGS Earthquake Text File Connection

Name DataType OutputColumnWidth
Src string [DT STR] 2
Eqid string [DT STR] 8
Version string [DT STR] 1
Datetime string [DT STR] 50
Lat doub e precision f oat [DT R8]

Lon doub e precision f oat [DT R8]

Magnitude f oat [DT R4]

Depth f oat [DT R4]

NST two byte signed integer [DT I2]

Region string [DT STR] 255

You will receive a message informing you that the execution was successful, and stating
the number of rows transferred from the text file into the destination table. You may now close

the wiz

ard by clicking the Close button.

141

142

CHAPTER 6 | IMPORTING SPATIAL DATA

Let’s check the contents of our new table. You can do this by opening a new query window
and issuing the following command:

SELECT * FROM [eqgs7day-M1]

You will see the data inserted from the text file, as shown in Figure 6-2.

3 Results |y Messages|

Src | Egid Version Datetime Lat Lon Magnitude Depth NST | Region]
1 ci 14394700 1 Wednesday, September 24, 2008 19:21:55 UTC 36.0864 -117.8501 14 45 21 Central California =
2 ci 14394696 1 Wednesday, September 24, 2008 18:57:31 UTC 344421 -118.0073 22 77 45 Southern California
3 ak 00069720 1 Wednesday, September 24, 2008 18:29:11 UTC 60.1676 -153.8832 28 100 53 Southern Alaska
4 ci 14394684 1 Wednesday, September 24, 2008 18:25:28 UTC 32.6763 -115.9196 1.7 6.2 27 Southern California
5 ci 14394680 1 Wednesday, September 24, 2008 18:23:54 UTC 33.027 -1164236 1.3 74 33 Southern California
6 ci 14394676 1 Wednesday, September 24, 2008 18:23:11 UTC 332503 -116.2673 12 132 32 Southern California
7 ak 00069718 1 Wednesday, September 24, 2008 18:14:45 UTC 60.2384 -141.3107 1.6 0 11 Southern Alaska
i 14304R72 1 Wednesd niemher 24 2003 180701 ITC__ 332933 -11R7318 13 114 A0 authern California e

Figure 6-2. The data inserted from the eqs7day-M]I.txt file

Adding the geography Column

The location of each earthquake is currently described in the eqs7day-M1 table using the latitude
and longitude coordinate values stored in the Lat and Lon columns. In order to use any of the
spatial methods provided by SQL Server, we need to use these coordinates to create arepresen-
tation of each earthquake using the geography or geometry datatype instead. Since the Lat and
Lon columns contain geographic coordinates describing an exact location, we will create a
Point object representing each earthquake using the geography datatype. To add to the table a
new column of the geography datatype called Location, execute the following T-SQL query:

ALTER TABLE [egs7day-M1]
ADD Location geography
GO

Populating the Spatial Column

Having added a new geography column to the eqs7day-M1 table, we now need to populate it
with Point geometries representing each individual earthquake. We can do this by using the
Point() method of the geography datatype, supplying the values contained within the Lat and
Lon columns, together with the SRID 4326 on which they are based. We will then set the value
of the Location column to the result of this method by using a SQL UPDATE statement. To popu-
late the Location column, execute the following code:

UPDATE [egs7day-M1]
SET Location =
geography: :Point(Lat, Lon, 4326)

You receive a message stating the number of rows affected, as shown here (the number of
rows affected differs depending on the number of earthquakes in the dataset you downloaded):

843 row(s) affected.

CHAPTER 6 | IMPORTING SPATIAL DATA

To test the contents of the Location column, you can now run the following query:

SELECT TOP 5

Eqid,

Location.STAsText() AS Epicenter
FROM

[eqs7day-M1]

The results are as follows:

Eqid Epicenter

14394700 POINT (-117.85 36.0864)
14394696 POINT (-118.007 34.4421)
00069720 POINT (-153.883 60.1676)
14394684 POINT (-115.92 32.6763)
14394680 POINT (-116.424 33.027)

Using the Point () method, we have been able to populate the Location column with Point
geometries representing the latitude and longitude of each earthquake’s epicenter, which lies
on the surface of the earth. However, the point of origin of an earthquake (its hypocenter) normally
lies deep within the earth, tens or hundreds of miles underground. In the eqs7day-M1 dataset,
the depth of the hypocenter, in kilometers, is recorded in the Depth column. To be able to
represent the position of the hypocenter of each earthquake instead, we need to define each
Point in the Location column with an additional z coordinate based on the value of the Depth
column. Although we cannot use the Point() method to do this, because it only accepts two
coordinate values, we can use the static methods based on the WKT syntax, which do support
z coordinates.

The following code illustrates how to update the Location column using the
STPointFromText () method instead, by creating the WKT representation of a Point based on
the latitude, longitude, and depth of each earthquake. Since the Depth column represents a
distance beneath the earth’s surface, the z coordinate of each Point is set based on the negative
value of the Depth column.

UPDATE [eqs7day-M1]
SET Location =
geography: :STPointFromText(
"POINT("
+ CAST(Lon AS varchar(255)) + ' '
+ CAST(Lat AS varchar(255)) + ' '
+ CAST (-Depth AS varchar(255)) + ')',
4326)

You can now select the data contained in the eqs7day-M1 table, including the Point repre-
sentation of the hypocenter of each earthquake, as follows:

143

144

CHAPTER 6 | IMPORTING SPATIAL DATA

SELECT

Eqid,

Location.AsTextZM() AS Hypocenter
FROM

[eqs7day-M1]

The results follow:

Eqid Hypocenter

14394700 POINT (-117.85 36.0864 -4.5)
14394696 POINT (-118.007 34.4421 -7.7)
00069720 POINT (-153.883 60.1676 -100)
14394684 POINT (-115.92 32.6763 -6.2)
14394680 POINT (-116.424 33.027 -7.4)

MTip Once you have popu ated the Location co umn w th Po nts represent ng the ocat on of each earth-
quake, you can de ete the orgna Lat, Lon, and Depth co umns from wh ch they were der ved. f you ever
need to retr eve the or g na coord nate va ues, you can do so us ng the Lat, Long, and Z propert es (exp a ned
n more deta n Chapter 11).

Importing Data from Keyhole Markup Language

KML is an XML-based language originally developed by Keyhole, Inc., for use in its EarthViewer
application. In 2004, Google acquired Keyhole, together with EarthViewer, which Google used as
the foundation on which to develop its popular Google Earth platform (http://earth.google. com).
Although the KML format has undergone some revisions since then (at the time of writing, the
latest version is KML 2.2), it continues to be the native format for storing spatial information used
in Google Earth. In 2008, KML was adopted by the Open Geospatial Consortium as a standard
format for spatial information, and you can now find the latest implementation of the KML
specification at the OGC web site, at the following address: http://www.opengeospatial.org/
standards/kml/.

While KML has always been used within the Google Earth community to share user-created
spatial data, the popularity and accessibility of the Google Earth platform among the wider
Internet community means that KML is becoming increasingly used for educational and research
purposes, as well as in critical applications such as emergency and disaster services. Coupled
with its adoption as a standard by the OGC, KML isbecoming an increasingly important format
for the interchange of spatial data.

Comparing KML to GML

Like GML, a KML file may contain different types of geometric instances to describe spatial
features: Points, Paths (which are equivalent to LineStrings), and Polygons. However, whereas
the GML format (like WKT and WKB) is purely used to describe the shape and location of

CHAPTER 6 | IMPORTING SPATIAL DATA

geographic features, a KML file additionally specifies how those features should be styled and
presented in a graphical display.

To demonstrate the KML document format, Listing 6-1 shows the KML representation of a
Path, taken from the sample code available at http://code.google.com/apis/kml/documentation/
kml tut.html.

Listing 6-1. An Example KML Document

<?xml version="1.0" encoding="UTF-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<name>Paths</name>
<description>Examples of paths. Note that the tessellate tag is by default
set to 0. If you want to create tessellated lines, they must be authored
(or edited) directly in KML.</description>
<Style id="yellowlLineGreenPoly">
<LineStyle>
<color>7fooffff</color>
<width>4</width>
</LineStyle>
<PolyStyle>
<color>7fooffoo</color>
</PolyStyle>
</Style>
<Placemark>
<name>Absolute Extruded</name>
<description>Transparent green wall with yellow outlines</description>
<styleUrl>#tyellowlLineGreenPoly</styleUrl>
<LineString>
<extrude>1</extrude>
<tessellate>1</tessellate>
<altitudeMode>absolute</altitudeMode>
<coordinates> -112.2550785337791,36.07954952145647,2357
-112.2549277039738,36.08117083492122,2357
-112.2552505069063,36.08260761307279,2357
-112.2564540158376,36.08395660588506,2357
-112.2580238976449,36.08511401044813,2357
-112.2595218489022,36.08584355239394,2357
-112.2608216347552,36.08612634548589,2357
-112.262073428656,36.08626019085147,2357
-112.2633204928495,36.08621519860091, 2357
-112.2644963846444,36.08627897945274,2357
-112.2656969554589,36.08649599090644 ,2357
</coordinates>
</LineString>
</Placemark>
</Document>
</kml>

145

146

CHAPTER 6 | IMPORTING SPATIAL DATA

Notice that this KML representation contains a lot more information than is needed to
describe the purely geometric properties of the LineString in question: there are also many
different styling and descriptive elements. If we were to describe this same feature using the
GML format, which only contains elements relating to the shape of the features, we would only
require the code listing shown in Listing 6-2.

Listing 6-2. Equivalent GML LineString Representation

<LineString xmlns="http://www.opengis.net/gml">
<poslList>
36.079549521456471 -112.2550785337791
36.081170834921217 -112.25492770397381
36.082607613072788 -112.25525050690629
36.083956605885056 -112.25645401583761
36.08511401044813 -112.2580238976449
36.085843552393939 -112.2595218489022
36.086126345485887 -112.2608216347552
36.086260190851469 -112.262073428656
36.086215198600911 -112.2633204928495
36.086278979452743 -112.2644963846444
36.086495990906442 -112.26569695545891
</posList>
</LineString>

Transforming KML to GML

One of the advantages of the highly structured nature of XML is that specifying explicit trans-
formations to convert from one XML dialect into another is relatively easy. By creating and
applying the necessary transformation(s), it is therefore possible to convert from KML (such
as shown in Listing 6-1) into the GML (shown in Listing 6-2), which can then be imported into
SQL Server using the GeomFromGm1 () method of the geography or geometry datatype. In order to
convert from KML to GML, the following transformations must occur:

1. Remove any KML elements that purely describe styling or descriptive properties, which are
not relevant in the GML file. These elements include <LookAt>, <visibility>,<styleUrl>,
<Style>, and <name>.

2. Retrieve the contents of those elements that do relate to geometric properties, and
replace them with the equivalent GML elements, as shown in Table 6-4.

Table 6-4. Geographic KML Elements and Their GML Equivalents

KML GML Description

<GeometryCo ection> <GeometryCo ection> Denotes a Geometry Collection element
<Po ygon> <Po ygon> Denotes a Polygon geometry
<LineString> <LineString> Denotes a LineString geometry

<Point> <Point> Denotes a Point geometry

CHAPTER 6 | IMPORTING SPATIAL DATA

Table 6-4. Geographic KML Elements and Their GML Equivalents

KML GML Description
<outerBoundaryIs> <exterior> Denotes the exterior boundary of
a Polygon
<innerBoundaryIs> <interior> Denotes the interior boundary of
a Polygon
<coordinates>? <pos> The element containing the coordinate
<poslList> list of a geometry

4 In GML, there is a distinction between the <pos> element, which is used to contain a single coordinate tuple
(such as used to define a single Point geometry), and the <posList> element, which contains multiple coor
dinate tuples (as in a LineString or Polygon). In KML, there is no such distinction, and the <coordinates>
element is used in every case.

BENote A muteement geometres n KML are represented as a Geometry Co ect on—there are no
spec f ¢ homogenous e ement types that are equ va ent to Mu t Po nt, Mu t L neStr ng, or Mu t Po ygon
geometr es.

3. Manipulate the contents of the <coordinates> element, which contains the coordinates
of each point in a KML geometry, into the appropriate format for the equivalent GML
<posList> or <pos> element, as follows:

a. Replace the comma separator used between each value of a coordinate tuple with
a space.

b. Ifthe coordinates within the KML <coordinates> element are stated with an altitude (z)
coordinate, then disregard this value.

c. Reverse the coordinate order of the two remaining coordinates to state them in
latitude longitude order.

BNote Eary versons of the GML standard contan a <coordinates> e ement very s m ar to that used n
KML. However, th s was deprecated n GML vers on 3.1.0 and s not supported by SQL Server 2008. You must
use the <posList> or <pos> e ement nstead.

There are several methods that you could use to make the changes necessary to transform
from the KML document shown in Listing 6-1 into the equivalent GML representation shown
in Listing 6-2. For example, you could use XQuery, or you could apply an Extensible Stylesheet
Language Transformation (XSLT). XQuery and XSLT are both approved standards administered by
the World Wide Web Consortium (W3C). For more information on how they can be used to
transform and query XML data, refer to the W3C web pages at http://www.w3.0rg/TR/xs1t.html
and http://www.w3.0rg/TR/xquery/, respectively. However, note that any method that performs
a simple conversion between the two XML formats may suffer from the following limitations:

147

148

CHAPTER 6 | IMPORTING SPATIAL DATA

* You will lose any additional descriptive and styling elements contained in the original
KML file, which may contain useful additional information about each geometry instance
that cannot be represented in GML.

* There is no validation or error checking performed on the source document to check
whether it would create a valid geometry. For instance, remember that in order to create
a geography Polygon instance from the converted GML representation, the points of a
ring containing an area of space must be listed in counterclockwise order, which might
not be as they were listed in the original KML <coordinates> element.

If you want to use a more robust method to import KML data into SQL Server 2008, you
might want to investigate the range of third-party tools available designed specifically for this
purpose, some of which are listed at the end of this chapter.

ENote KML and GML are not the on y XML-based spata data formats. For examp e, GPS Exchange Format
(GPX) s an XML format used to store and share data between many d fferent types of handhe d GPS dev ces.

Importing Data from ESRI Shapefile Format

The shapefile format was designed and is maintained by Environmental Systems Research
Institute, Inc. (ESRI). Originally developed for use in its ARC/INFO suite of GIS software, the
shapefile is now a very common format used for exchanging spatial information between all
kinds of systems, and is the format in which most commercial spatial data is supplied. Over
time, a large body of spatial datasets has been created in ESRI shapefile format.

Although a set of data provided in shapefile format is commonly referred to as “a shapefile”
(singular), this is a slight misnomer, since a single shapefile actually consists of several files.
Each file relating to a given shapefile dataset shares the same file name, with one of the following
file extensions:

.shp: The SHP file contains the raw geometrical shape data. Each SHP file can contain
items of only one kind of geometry shape: Points, LineStrings, or Polygons.

.shx: The SHX file maintains the shapefile index, which holds one index entry for every
shape in the shapefile document. Each index entry describes the start position and length
of the associated shape record in the SHP file.

.dbf: The DBF file contains additional, nonspatial attributes of each shape. For instance,
in a shapefile containing Polygons representing the states of America, the DBF file might
contain the name of each state, its population, or the name of its state capital.

.prj: The PR] file gives details about the projection in which the coordinates of the geom-
etry data are represented, in the same format as used in the well known text column of
the sys.spatial reference systems table. When importing a shapefile into SQL Server,
this file contains the information that is required to determine the correct spatial refer-
ence identifier (SRID).

CHAPTER 6 | IMPORTING SPATIAL DATA

ENote Anyva ddocument nshapef e format mustcontanaSHP f e and an assoc ated SHX f e. F eswth
the .dbf and .prj extens ons are opt ona f es that conta n add tona nformat on about the data.

Obtaining Sample Shapefile Data

To demonstrate how to import data from the shapefile format into SQL Server, we’ll use data
from the US Census Bureau representing the Zip Code Tabulation Areas (ZCTAs) of the state of
California. ZCTAs were defined by the US Census Bureau during the US 2000 census, and are
approximately equivalent to the delivery area for a five-digit ZIP code as used by the US Postal
Service. You can download the ESRI shapefile of the ZCTA areas in the state of California
directly from the US Census web site at the following URL: http://www.census.gov/geo/cob/
bdy/zt/z500shp/zt06 doo shp.zip.

Download this ZIP file and extract its contents. You will find that it contains the following files:

e 7t06 d00.shp
e 7t06 d00.shx
e zt06 d00.dbf

The SHP file, which is the largest of these files (4,560KB), contains the raw data that defines
the Polygon shapes representing each ZCTA. The SHX file is the index file that records the start
position and length of each shape in the shapefile. In addition to these two files, which contain
the purely spatial information representing each ZCTA, the DBF file includes additional asso-
ciated columns of data, as listed and described in Table 6-5.

Table 6-5. Columns of Data in the zt06 d00.dbf File

Column Description

Area The internal area of each ZCTA, in square kilometers.

Perimeter The length of the perimeter of each ZCTA, in kilometers.

ZT06 D00 An automatically generated sequential feature number.

ZT06 D00 ID A user defined feature number.

ZCTA The ZCTA reference five digit number.

NAME Same as ZCTA.

LSAD The Legal/Statistical Area Description (LSAD) code. This is a two character

field that corresponds to a legal or statistical type of entity. For a five digit
ZCTA code, this is always Z5.

LSAD TRANS The description associated with the LSAD of each shape. For ZCTAs, this
is 5 Digit ZCTA .

149

150

CHAPTER 6 | IMPORTING SPATIAL DATA

ITip For more nformaton on any of the data contaned nzt06 d00.dbf, consuthttp://www.vcgi.org/
metadata/BoundaryOther ZCTA2000.txt.

Notice that there is no included PR]J file relating to the ZCTA shapefile. How then do we
know what spatial reference system has been used to define the coordinates? A further search of the
US Census Bureau web site reveals a page of metadata, located at http://www.census.gov/geo/
www/cob/zt metadata.html. This page states that the ZCTA data is defined using a geographic
coordinate system based on the NAD 83 datum. We know that the WKT representation of any
spatial reference system must begin with a keyword representing the type of coordinatesused for
geographic coordinates as used in the ZCTA data, this is GEOGCS. We also know that the WKT
representation of a spatial reference system must state the name of the datum on which it is
based NAD83. With this information, we can search for the correct identifier for this spatial
reference system in the sys.spatial reference systems table using the following query:

SELECT
spatial reference id
FROM
sys.spatial reference systems
WHERE
well known text LIKE 'GEOGCS%"NAD83"%'

The single result returned is as follows:

spatial reference id
4269

So, when importing the data contained in this shapefile, we should use SRID 4269. Since
this is a spatial reference system based on geographic coordinates, we will choose the geography
datatype to store the spatial data. With this information, we are now ready to import the data
from the shapefile into SQL Server.

Importing Shapefile Data with Shape2SQL

Shape2SQL is a popular, simple application specifically designed to load shapefile data into
SQL Server 2008. You can download it as part of the SQL Spatial Tools package, freely available
from http://www.sharpgis.net/page/SQL-Server-2008-Spatial-Tools.aspx.

Once you have downloaded and unzipped the SqlSpatialTools.zip archive, load the appli-
cation by double-clicking the Shape2Sql.exe file. When you run the Shape2SQL application for
the first time, you are prompted to enter details of the database connection, as shown in Figure 6-3.

In the Database Configuration dialog box, enter the name of the SQL Server 2008 instance
that you want to import shapefile data to, and provide any authentication details required to
connect to that server. Then select the appropriate database from the drop-down list, and click OK.

Once the database configuration is complete, the main window of the Shape2SQL applica-
tion appears. Figure 6-4 illustrates the Shape2SQL application, showing the settings required
to import the California ZCTA data that you saved earlier.

CHAPTER 6

Database Configuration

Server name: | |

Log on to the server
@ Use Windows Authentication
O Use SQL Server Authentication

User name | |

Password

Connect to a database

@ Select or enter a database name:

|Spatia| v

O Attach a database file:

[cancel | oK

| IMPORTING SPATIAL DATA

Figure 6-3. Configuring the database connection for the Shape2SQL application

E® shapefile Uploader for SQL Server 2008

Shapefile |C\Spatial\zt06_d00.shp

2490 Polygon features in shapefile.

Database properties

Server |Spatia|@VIFiTUAL—WINXP

Geometry properties Attributes

Configure.. I

LSAD TRANS

Replace existing table Geometry Name geog
O Planar Geomet 1D Column Name D
Yy
® Geography (Spheric) ' AREA
PERIMETER
SetSRID | 4269 7O B
Create Spatial Index g?_i Doo |
Table Name 7i06_d00 NAME
LSAD

Upload to Database]

Figure 6-4. Setting options to import California ZCTA data using the Shape2SQL application

151

152 CHAPTER 6 | IMPORTING SPATIAL DATA

To set the appropriate options to import the California ZCTA data, follow these steps:

1. Click the ... button in the top right corner of the screen to select a shapefile. Browse to
the location where you saved the zt06 d00.shp file, highlight it, and click Open. The
application will display the number and type of features found in the shapefile. The
zt06 d00.shp file used in this case contains 2490 Polygon features.

ECaution norderto mport a shapef e us ng Shape2SQL, the SHP f e and assoc ated SHX f e must be saved
n the same ocat on. fan assoc ated DBFf e sasosaved nthe same ocaton,youw beabeto mportaddtona,
nonspata attr butes assoc ated w th each shape from the DBF f e nto co umns of the SQL Server tab e.

2. Check that the Server field in the Database Properties section specifies the correct
server and database into which to insert the data. If you need to change any of the
details, click the Configure button to open the Database Configuration dialog box.

3. Inthe Geometry Properties section at the bottom left of the application window, use the
following options to specify how you want the data to be imported into SQL Server:

* Replace existing table: When this option is checked, if a table already exists with the
specified name, it is dropped and replaced with a new table containing the imported
shape data. If unchecked, data instead is appended to an existing table. If no table
exists with the name specified, a new table is created regardless of whether this option
is checked or not.

* Planar Geometry/Geography (Spheric): Choosing one of these options determines
the datatype of the column into which imported data will be inserted. Selecting the
Planar Geometry option leads to the geometry datatype being used, whereas choosing
Geography (Spheric) leads to the geography datatype being used. The California
ZCTA data is defined using geographic coordinates, so choose Geography (Spheric).

* Set SRID: You must enter the integer value that identifies the spatial reference system in
which the coordinates of the shape have been defined.