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Foreword 

Spatial data has always been an important component to comprehensive information management 
but it has struggled to escape its “techie” origins. Spatial data management debuted in SQL Server 
2008 as a comprehensive yet simple spatial implementation designed to provide solutions for both 
experienced and novice practitioners. Alastair’s book, “Beginning Spatial with SQL Server 2008”, 
provided an excellent introduction into the basic concepts of spatial data management and how to 
apply these to the spatial features in SQL Server 2008. This book remains a basic staple for those 
wishing to implement spatial using SQL Server regardless of version. 

With the release of SQL Server 2012, Microsoft has continued to refine spatial data management, 
adding support for sophisticated new features such as FULLGLOBE objects, aggregates, curves on the 
ellipsoid and simplified spatial index creation, among many others.  With the publication of “Pro 
Spatial with SQL Server 2012,” Alastair provides the logical follow-on book by both expanding on 
advanced concepts while at the same time documenting the new spatial features in SQL Server 2012.  
It is a needed and welcome addition and will greatly assist in the effort to make spatial data 
management more understood and hence accessible for programmers everywhere. 

  

Spatial Ed 
 (a.k.a Ed Katibah, Microsoft SQL Server Spatial Program Manager) 

April 2012 
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Introduction 

Support for spatial data was first introduced to SQL Server with the release of SQL Server 2008. At that 
time, many developers and DBAs didn't really know about spatial data, how to use it, or what benefits 
it could bring. As a result, the spatial functionality was treated as a curious niche addition that, while 
causing excitement among a small group of specialists interested in geospatial data (including 
myself), was largely disregarded by the mainstream SQL Server community. 

Over time, more and more people have come to appreciate that, far from being a specialized, niche 
area, spatial information is all around us; what's more, if correctly harnessed, that information can be 
used to answer a wide range of practical business questions: 

• Analyzing regional, national, or international sales trends 

• Deciding the optimum location for a new outlet based on proximity to customers 
and competitors 

• Allowing customers to track delivery of a parcel 

• Providing location-based services relevant to a user's current position 

• Monitoring the routes of vehicles in a logistics network 

• Maximising the coverage of a local marketing campaign 

• Assessing the impact of environmental change, such as identifying houses at risk 
of flooding due to rising sea levels 

The growing awareness of spatial data among developers has coincided with increasing 
appreciation in the business community for the value that spatial analysis can add to almost every 
organisational decision; spatial data is now increasingly being considered as a core component of 
every business database. 

Microsoft have continued to build upon the foundations laid down in SQL Server 2008 by adding to 
and enhancing the set of spatial features available, making SQL Server 2012 arguably the most richly-
featured of any mainstream RBDMS in terms of spatial functionality. New features include support for 
curved geometries, a range of aggregate methods, and the ability to define geographic instances of 
any size, while many existing methods have been made more robust and efficient following 
improvements such as the introduction of a dedicated query plan for nearest-neighbor queries. 

In this book, I aim to provide a comprehensive guide to working with spatial data in SQL Server so 
that you can use these features to add exciting and value-adding capabilities to your database 
applications. 

About This Book 
This book is intended for anybody who works with, or would like to work with, locational information 
in SQL Server. While advertised as a "Pro" level book, I've not assumed any prior knowledge of 
working with spatial data: all concepts are explained in detail the first time they are mentioned. "Pro" 
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is more a description of how I hope you will feel about your spatial abilities after having read the book, 
rather than any pre-requisite of your ability or experience before you begin! 

Chapter Overview 
The chapters of this book are provided in a broadly sequential order, whereby topics are introduced in 
the order in which, as a newcomer to spatial data, you are likely to encounter them. If you are already 
comfortable with the basics then you may of course choose to dive straight-in to one of the later topics. 
Be aware, however, that later topics build upon the knowledge you'll have learned in the previous 
chapters, and the topics covered increase in complexity throughout. 

Chapter 1 introduces the fundamental concepts involved when working with 
spatial information, including theoretical issues relating to modeling the 
earth, coordinate reference systems, and map projections. 

Chapter 2 explains the various sorts of data structure that can be used to 
represent physical entities on the surface of the earth, and describes the 
properties of different geometry types such as Points, LineStrings, Curves, and 
Polygons. 

Chapter 3 looks at the specific implementation of spatial functionality in SQL 
Server 2012 provided by the two spatial datatypes: geometry and geography. 

Chapter 4 covers the range of methods available to create new spatial data 
from common industry-wide formats such as Well-Known Text, Well-Known 
Binary, and Geography Markup Language. 

Chapter 5 examines various tools and techniques to import existing spatial 
datasets into SQL Server from formats such as ESRI Shapefile or MapInfo files. 

Chapter 6 demonstrates how to make use of existing address information in 
spatial queries, by geocoding it into coordinates using the Bing Maps Locations 
API. 

Chapter 7 identifies some common problems that can arise when working 
with spatial data and explains how to manage issues relating to data quality 
and deal with errors. 

Chapter 8 provides an overview and practical implementation of datum 
transformation and reprojection: processes required to convert data obtained 
from different spatial reference systems into a consistent, comparable format. 

Chapter 9 gives a thorough coverage of the methods provided by SQL Server to 
examine properties of an individual item of spatial data, such as calculating its 
length or area, or retrieving its individual coordinate points.  

Chapter 10 looks at the range of methods available to modify different aspects 
of an item of spatial data – simplifying it, enlarging it, or converting its curves 
to lines, for example. 

Chapter 11 explains the different ways in which multiple items of spatial data 
can be combined – in row-wise or column-wise methods, or by merging entire 
result sets. 
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Chapter 12 examines those methods that SQL Server provides to examine the 
spatial relationship between two different elements – calculating the distance 
between them, or determining whether they touch, cross, or are contained 
within each other, for example. 

Chapter 13 demonstrates different approaches to analyzing the geographic 
distribution of a set of spatial data, including generating spatial histograms 
and k-means clustering. 

Chapter 14 discusses the popular topic of routefinding, such as those used in 
satellite-navigation systems. It covers both the theory and practical 
implementations of routefinding algorithms using SQLCLR. 

Chapter 15 introduces an area that I personally find fascinating: that of 
triangulation and tessellation. Far from being abstract mathematical 
processes, the methods discussed here can provide valuable insight about the 
distribution of a set of spatial data.  

Chapter 16 considers methods to present spatial data to end users, including 
making use of third party tools such as Google Earth or Bing Maps. 

Chapter 17 demonstrates how to use the map component to incorporate spatial 
data as part of a SQL Server Reporting Services report. 

Chapter 18 explains how spatial indexes work, and how to use them to 
maximize the performance of your spatial queries. 

Finally, the appendix provides a number of lookup tables that you will find 
useful as you set out to develop your own spatial applications. 

What You Need to Use This Book 
Spatial functionality is included with all versions of SQL Server 2012, including the freely-available 
SQL Server 2012 Express Edition, which you can download from 
http://www.microsoft.com/sqlserver/en/us/get-sql-server/try-it.aspx 

Most of the T-SQL code samples can be executed directly in SQL Server Management Studio. Some 
of the more advanced topics require the compilation and registration of custom SQLCLR procedures 
and functions, for which you'll need to use Visual Studio (again, a freely-available Express Edition is 
available). All CLR code has been written in C#, as the .NET language with the greatest penetration 
among developers. 

Occassionally, I make use of components that may not be present in every SQL Server installation 
(such as SQL Server Integration Services or Reporting Services), or show you how to integrate spatial 
data from SQL Server with other tools, such as WPF, Google Earth, or MapPoint. To follow these 
examples you'll need to have the requisite software installed, but I'll clearly point out those situations 
in which this is necessary. 

About the Code Samples 
If you consult the Microsoft product documentation for SQL Server's spatial data types 
(http://msdn.microsoft.com/en-us/library/ff848797%28v=sql.110%29.aspx), you'll notice that they 
typically use rather abstract examples in their code listings such as this: 

SET @h = geometry::STGeomFromText('POINT(10 10)', 0); 
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In contrast, I've attempted to make the code listings in this book relate to a wide variety of real-world 
examples: from determining the free delivery area around a pizza restaurant to analysing the 
worldwide distribution of a species of plant, and from plotting the path of the first transatlantic flight to 
understanding the spread of cholera in Victorian London.  

I've enjoyed thinking up these examples, and I hope you find them fun and informative. I believe 
that using different examples makes learning more interesting and memorable, and it also 
demonstrates just how many different potential applications there are for spatial data in the world. 

The source code for the projects described in this book is available for download at 
http://www.apress.com/9781430234913.  This is the official home page of the book.  You can also check 
for errata and find related Apress titles here. 
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Spatial Reference Systems 

Spatial data analysis is a complex subject area, taking elements from a range of academic disciplines, 
including geophysics, mathematics, astronomy, and cartography. Although you do not need to 
understand these subjects in great depth to take advantage of the spatial features of SQL Server 2012, 
it is important to have a basic understanding of the theory involved so that you use spatial data 
appropriately and effectively in your applications. 

This chapter describes spatial reference systems—ways of describing positions in space—and 
shows how these systems can be used to define features on the earth's surface. The theoretical concepts 
discussed in this chapter are fundamental to the creation of consistent, accurate spatial data, and are 
used throughout the practical applications discussed in later chapters of this book. 

What Is a Spatial Reference System? 
The purpose of a spatial reference system (sometimes called a coordinate reference system) is to 
identify and unambiguously describe any point in space. You are probably familiar with the terms 
latitude and longitude, and have seen them used to describe positions on the earth. If this is the case, 
you may be thinking that these represent a spatial reference system, and that a pair of latitude and 
longitude coordinates uniquely identifies every point on the earth's surface, but, unfortunately, it's 
not quite that simple. 

What many people don't realize is that any particular point on the ground does not have a unique 
latitude or longitude associated with it. There are, in fact, many systems of latitude and longitude, and 
the coordinates of a given point on the earth will differ depending on which system was used. 
Furthermore, latitude and longitude coordinates are not the only way to define locations: many spatial 
reference systems describe the position of an object without using latitude and longitude at all. For 
example, consider the following three sets of coordinates: 

• 51.179024688899524, –1.82747483253479 

• SU 1215642213 

• 581957, 5670386 

These coordinates look very different, yet they all describe exactly the same point on the earth's 
surface, located in Stonehenge, in Wiltshire, United Kingdom. The coordinates differ because they all 
relate to different spatial reference systems: the first set is latitude and longitude coordinates from the 
WGS84 reference system, the second is a grid reference from the National Grid of Great Britain, and 
the third is a set of easting/northing coordinates from UTM Zone 30U. 

Defining a spatial reference system involves not only specifying the type of coordinates used, but 
also stating where those coordinates are measured from, in what units, and the shape of the earth over 
which those coordinates extend. 
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Many different spatial reference systems exist, and each has different benefits and drawbacks: 
some offer high accuracy but only over a relatively small geographic area; others offer reasonable 
accuracy across the whole globe. Some spatial reference systems are designed for particular purposes, 
such as for nautical navigation or for scientific use, whereas others are designed for general global use. 

One key point to remember is that every set of coordinates is unique to a particular spatial 
reference system, and only makes sense in the context of that system. 

Modeling the Earth 
The earth is a very complex shape. On the surface, we can see by looking around us that there are 
irregular topographical features such as mountains and valleys. But even if we were to remove these 
features and consider the mean sea-level around the planet, the earth is still not a regular shape. In 
fact, it is so unique that geophysicists have a specific word solely used to describe the shape of the earth: 
the geoid. 

The surface of the geoid is smooth, but it is distorted by variations in gravitational field strength 
caused by changes in the earth's composition. Figure 1-1 illustrates a depiction of the shape of the geoid. 

 

Figure 1-1. The irregular shape of the earth. 

In order to describe the location of an object on the earth’s surface with maximum accuracy, we 
would ideally define its position relative to the geoid itself. However, even though scientists have 
recently developed very accurate models of the geoid (to within a centimeter accuracy of the true 
shape of the earth), the calculations involved are very complicated. Instead, spatial reference systems 
normally define positions on the earth's surface based on a simple model that approximates the geoid. 
This approximation is called a reference ellipsoid. 

■ Note  Not only is the geoid a complex shape, but it is also not constant. Astronomical and geophysical forces, 
climatic changes, and volcanic activity all contribute to changes in the earth's structure that continuously alter the 

shape of the geoid. 
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Approximating the Geoid 
Many early civilizations believed the world to be flat (and a handful of modern day organizations still 
do, e.g., the “Flat Earth Society,” http://www.theflatearthsociety.org). Our current understanding of 
the shape of the earth is largely based on the work of Ancient Greek philosophers and scientists, 
including Pythagoras and Aristotle, who scientifically proved that the world is, in fact, round. With this 
fact in mind, the simplest reference ellipsoid that can be used to approximate the shape of the geoid is a 
perfect sphere. Indeed, there are some spatial reference systems that do use a perfect sphere to model 
the geoid, such as the system on which many Web-mapping providers, including Google Maps and 
Bing Maps, are based. 

Although a sphere would certainly be a simple model to use, it doesn't really match the shape of the 
earth that closely. A better model of the geoid, and the one most commonly used, is an oblate spheroid. A 
spheroid is the three-dimensional shape obtained when you rotate an ellipse about its shorter axis. In 
other words, it's a sphere that has been squashed in one of its dimensions. When used to model the 
earth, spheroids are always oblate—they are wider than they are high—as if someone sat on a beach 
ball. This is a fairly good approximation of the shape of the geoid, which bulges around the equator. 

The most important property of a spheroid is that, unlike the geoid, a spheroid is a regular shape 
that can be exactly mathematically described by two parameters: the length of the semi-major axis 
(which represents the radius of the earth at the equator), and the length of the semi-minor axis (the 
radius of the earth at the poles). The properties of a spheroid are illustrated in Figure 1-2. 

 

Figure 1-2. Properties of a spheroid. 

■ Note  A spheroid is a sphere that has been “flattened” in one axis, and can be described using only two 
parameters. An ellipsoid is a sphere that has been flattened in two axes; that is, the radii of the shape in the x-, y-, 
and z-axes are all different. Although referred to as a reference ellipsoid, in practice most models of the earth are 

actually spheroids, because ellipsoid models of the world are not significantly more accurate at describing the 

shape of the geoid than simpler spheroid models. 
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The flattening ratio of an ellipsoid, f, is used to describe how much the ellipsoid has been 
“squashed,” and is calculated as 

f = (a – b ) / a 

where a = length of the semi-major axis; b = length of the semi-minor axis. 

In most ellipsoidal models of the earth, the semi-minor axis is only marginally smaller than the 
semi-major axis, which means that the value of the flattening ratio is also small, typically around 
0.003. As a result, it is sometimes more convenient to state the inverse flattening ratio of an ellipsoid 
instead. This is written as 1/f, and calculated as follows. 

1 / f = a / (a – b) 

The inverse-flattening ratio of an ellipsoid model typically has a value of approximately 
300.Given the length of the semi-major axis a and any one other parameter, f, 1/f, or b, we have all the 
information necessary to describe a reference ellipsoid used to model the shape of the earth. 

Regional Variations in Ellipsoids 
There is not a single reference ellipsoid that best represents every part of the whole geoid. Some 
ellipsoids, such as the World Geodetic System 1984 (WGS84) ellipsoid, provide a reasonable 
approximation of the overall shape of the geoid. Other ellipsoids approximate the shape of the geoid 
very accurately over certain regions of the world, but are much less accurate in other areas. These local 
ellipsoids are normally only used in spatial reference systems designed for use in specific countries, 
such as the Airy 1830 ellipsoid commonly used in Britain, or the Everest ellipsoid used in India. 

Figure 1-3 provides an (exaggerated) illustration of how different ellipsoid models vary in accuracy 
over different parts of the geoid. The dotted line represents an ellipsoid that provides the best accuracy 
over the region of interest, whereas the dash-dotted line represents the ellipsoid of best global accuracy. 

 

Figure 1-3. Comparison of cross-sections of different ellipsoid models of the geoid. 
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It is important to realize that specifying a different reference ellipsoid to approximate the geoid 
will affect the accuracy with which a spatial reference system based on that ellipsoid can describe the 
position of features on the earth. When choosing a spatial reference system, we must therefore be 
careful to consider one that is based on an ellipsoid suitable for the data in question. 

SQL Server 2012 recognizes spatial reference systems based on a number of different reference 
ellipsoids, which best approximate the geoid at different parts of the earth. Table 1-1 lists the 
properties of some commonly used ellipsoids that can be used. 

Table 1-1. Properties of Some Commonly Used Ellipsoids 

Ellipsoid Name Semi-Major Axis (m) Semi-Minor Axis (m) Inverse Flattening Area of Use 

Airy (1830) 6,377,563.396 6,356,256.909 299.3249646 Great Britain 

Bessel (1841) 6,377,397.155 6,356,078.963 299.1528128 Czechoslovakia, 
Japan, South Korea 

Clarke (1880) 6,378,249.145 6,356,514.87 293.465 Africa 

NAD 27 6,378,206.4 6,356,583.8 294.9786982 North America 

NAD 83 6,378,137 6,356,752.3 298.2570249 North America 

WGS 84 6,378,137 6,356,752.314 298.2572236 Global 

Realizing a Reference Ellipsoid Model with a Reference Frame 
Having established the size and shape of an ellipsoid model, we need some way to position that model 
to make it line up with the correct points on the earth's surface. An ellipsoid is just an abstract 
mathematical shape; in order to use it as the basis of a spatial reference system, we need to correlate 
coordinate positions on the ellipsoid with real-life locations on the earth. We do this by creating a 
frame of reference points. 

Reference points are places (normally on the earth's surface) that are assigned known 
coordinates relative to the ellipsoid being used. By establishing a set of points of known coordinates, 
we can use these to "realize" the reference ellipsoid in the correct position relative to the earth. Once 
the ellipsoid is set in place based on a set of known points, we can then obtain the coordinates of any 
other points on the earth, based on the ellipsoid model. 

Reference points are sometimes assigned to places on the earth itself; The North American Datum 
of 1927 (NAD 27) uses the Clarke (1866) reference ellipsoid, primarily fixed in place at Meades Ranch 
in Kansas. Reference points may also be assigned to the positions of satellites orbiting the earth, which 
is how the WGS 84 datum used by GPS-positioning systems is realized. 

When packaged together, the properties of the reference ellipsoid and the frame of reference 
points form a geodetic datum. The most common datum in global use is the World Geodetic System of 
1984, commonly referred to as WGS 84. This is the datum used in handheld GPS systems, Google Earth, 
and many other applications. 

A datum, consisting of a reference ellipsoid model combined with a frame of reference points, 
creates a usable model of the earth used as the basis for a spatial reference system. 

We now need to consider what sort of coordinates to use to describe positions relative to the 
chosen datum. 
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There are many different sorts of coordinate systems, but when you use geospatial data in SQL 
Server 2012, you are most likely to use a spatial reference system based on either geographic or 
projected coordinates. 

Geographic Coordinate Systems 
In a geographic coordinate system, any location on the surface of the earth can be defined using two 
coordinates: a latitude coordinate and a longitude coordinate.  

The latitude coordinate of a point measures the angle between the plane of the 
equator and a line drawn perpendicular to the surface of the earth to that point. 

The longitude coordinate measures the angle (in the equatorial plane) 
between a line drawn from the center of the earth to the point and a line 
drawn from the center of the earth to the prime meridian. The prime meridian 
is an imaginary line drawn on the earth's surface between the North Pole and 
the South Pole (so technically it is an arc, rather than a line) that defines the 
axis from which angles of longitude are measured. 

The definitions of the geographic coordinates of latitude and longitude are illustrated in Figure 1-4. 

 

Figure 1-4. Describing positions using a geographic coordinate system. 

■ Caution  Because a point of greater longitude lies farther east, and a point of greater latitude lies farther north, 
it is a common mistake for people to think of latitude and longitude as measured on the earth's surface itself, but 
this is not the case: latitude and longitude are angles measured from the plane of the equator and prime meridian 

at the center of the earth. 
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Geographic Units of Measurement 
Coordinates of latitude and longitude are both angles, and are usually measured in degrees (although 
they can be measured in radians or any other angular unit of measure). When measured in degrees, 
longitude values measured from the prime meridian range from –180° to +180°, and latitude values 
measured from the equator range from –90° (at the South pole) to +90° (at the North pole).  

Longitudes to the east of the prime meridian are normally stated as positive values, or suffixed 
with the letter "E". Longitudes to the west of the prime meridian are expressed as negative values, or 
using the suffix "W". Likewise, latitudes north of the equator are expressed as positive values or using 
letter "N", whereas those south of the equator are negative or denoted with the letter "S". 

NOTATION OF GEOGRAPHIC COORDINATES 

There are several accepted methods of expressing coordinates of latitude and longitude. 

When expressing geographic coordinate values of latitude and longitude for use in SQL Server 2012, you 
must always use decimal degree notation. The advantage of this format is that each coordinate can be 
expressed as a single floating-point number. To convert DMS coordinates into decimal degrees you can 
use the following rule. 

Degrees + (Minutes / 60) + (Seconds / 3600) = Decimal Degrees 

For example, the CIA World Factbook (https://www.cia.gov/library/publications/the-world-
factbook/geos/uk.html ) gives the geographic coordinates for London as follows, 

51 30 N, 0 10 W 

When expressed in decimal degree notation, this is 

51.5 (Latitude), –0.166667 (Longitude) 

 

Defining the Origin of a Geographic Coordinate System 
Latitude coordinates are always measured relative to the equator: the line that goes around the 
"middle" of the earth. But from where should longitude coordinates, which are measured around the 
earth, be measured? 

1. The most commonly used method is the DMS (degree, minutes, seconds) system, 
also known as sexagesimal notation. In this system, each degree is divided into 60 
minutes. Each minute is further subdivided into 60 seconds. A value of 51 
degrees, 15 minutes, and 32 seconds is normally written as 51°15’32”. 

2. An alternative system, commonly used by GPS receivers, displays whole degrees, 
followed by minutes and decimal fractions of minutes. This same coordinate value 
would therefore be written as 51:15.53333333. 

3. Decimal degree notation specifies coordinates using degrees and decimal 
fractions of degrees, so the same coordinate value expressed using this system 
would be written as 51.25888889. 
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A common misconception is to believe that there is a universal prime meridian based on some 
inherent fundamental property of the earth, but this is not the case. The prime meridian of any spatial 
reference system is arbitrarily chosen simply to provide a line of zero longitude from which all other 
coordinates of longitude can be calculated. The most commonly used prime meridian is the meridian 
passing through Greenwich, England, but there are many others. For example, the RT38 spatial 
reference system used in Sweden is based on a prime meridian that passes through Stockholm, some 
18 degrees east of the Greenwich Prime Meridian. Prime meridians from which coordinates are 
measured in other systems include those that pass through Paris, Jakarta, Madrid, Bogota, and Rome. 

 If you were to define a different prime meridian, the value of the longitude coordinate of all the 
points in a given spatial reference system would change. 

Projected Coordinate Systems 
Describing the location of positions on the earth using coordinates of latitude and longitude is all very 
well in certain circumstances, but it's not without some problems. To start with, you can only apply 
angular coordinates onto a three-dimensional, round model of the earth. If you were planning a car 
journey you'd be unlikely to refer to a “travel globe” though, wouldn't you? Because an ellipsoidal 
model, by definition, represents the entire world, you can't magnify an area of interest without 
enlarging the entire globe. Clearly this would get unwieldy for any applications that required focusing 
in detail on a small area of the earth’s surface. 

Fortunately, ancient geographers and mathematicians devised a solution for this problem, and the 
art of cartography, or map-making, was born. Using various techniques, a cartographer can project all, 
or part, of the surface of an ellipsoidal model onto a flat plane, creating a map. The features on that 
map can be scaled or adjusted as necessary to create maps suitable for different purposes. 

Because a map is a flat, two-dimensional surface, we can then describe positions on the plane of 
that map using familiar two-dimensional Cartesian coordinates in the x- and y-axes. This is known as 
a projected coordinate system. 

■ Note  In contrast to a geographic coordinate system, which defines positions on a three-dimensional, round 
model of the earth, a projected coordinate system describes the position of points on the earth’s surface as they lie 

on a flat, projected, two-dimensional plane. 

Creating Map Projections 
We see two-dimensional projections of geospatial data on an almost daily basis in street maps, road 
atlases, or on our computer screens. Given their familiarity, and the apparent simplicity of working on 
a flat surface rather than a curved one, you would be forgiven for thinking that defining spatial data 
using a projected coordinate system was somehow simpler than using a geographic coordinate system. 
The difficulty associated with a projected coordinate system is that, of course, the world isn’t a flat, two-
dimensional plane. In order to be able to represent it as one, we have to use a map projection. 

Projection is the process of creating a two-dimensional representation of a three-dimensional 
model of the earth, as illustrated in Figure 1-5. Map projections can be constructed either by using 
purely geometric methods (such as the techniques used by ancient cartographers) or by using 
mathematical algorithms (as used in more modern, complex projections). However, whatever method 
is used, it is not possible to project any three-dimensional object onto a two-dimensional plane 
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without distorting the resulting image in some way. Distortions introduced as a result of the projection 
process may affect the area, shape, distance, or direction represented by different elements of the map.  

 

Figure 1-5. Projecting a 3D model of the earth to create a flat map. 

By altering the projection method, cartographers can reduce the effect of these distortions for 
certain features, but in doing so the accuracy of other features must be compromised. Just as there is 
not a single "best" reference ellipsoid to model the three-dimensional shape of the earth, neither is 
there a single best map projection when trying to project that model onto a two-dimensional surface. 

Over the course of time, many projections have been developed that alter the distortions 
introduced as a result of projection to create maps suitable for different purposes. For instance, when 
designing a map to be used by sailors navigating through the Arctic regions, a projection may be used 
that maximizes the accuracy of the direction and distance of objects at the poles of the earth, but 
sacrifices accuracy of the shape of countries along the equator. 

The full details of how to construct a map projection are outside the scope of this book. However, 
the following sections introduce some common map projections and examine their key features. 

Hammer–Aitoff Projection 
The Hammer–Aitoff map projection is an equal-area map projection that displays the world on an 
ellipse. An equal-area map projection is one that maintains the relative area of objects; that is, if you 
were to measure the area of any particular region on the map, it would accurately represent the area 
of the corresponding real-world region. However, in order to do this, the shapes of features are 
distorted. The Hammer–Aitoff map projection is illustrated in Figure 1-6. 
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Figure 1-6. The Hammer–Aitoff map projection. 

Mercator Projection 
The Mercator map projection is an example of a conformal map projection. A conformal map 
projection is any projection that preserves the local shape of objects on the resulting map.  

The Mercator projection was first developed in 1569 by the Flemish cartographer Gerardus 
Mercator, and has been widely used ever since. It is used particularly in nautical navigation because, 
when using any map produced using the Mercator projection, the route taken by a ship following a 
constant bearing will be depicted as a straight line on the map.  

The Mercator projection accurately portrays all points that lie exactly on the equator. However, as 
you move farther away from the equator, the distortion of features, particularly the representation of 
their area, becomes increasingly severe. One common criticism of the Mercator projection is that, due 
to the geographical distribution of countries in the world, many developed countries are depicted with 
far greater area than equivalent-sized developing countries. For instance, examine Figure 1-7 to see 
how the relative sizes of North America (actual area 19 million sq km) and Africa (actual area 30 
million sq km) are depicted as approximately the same size. 

Despite this criticism, the Mercator projection is still used by many applications, including Bing 
Maps and Google Maps, and it is probably one of the most instantly recognizable of all geographical 
images of the world. 
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Figure 1-7. The Mercator map projection. 

Equirectangular Projection 
The equirectangular projection is one of the first map projections ever to be invented, being credited to 
Marinus of Tyre in about 100 AD. It is also one of the simplest map projections, in which the map displays 
equally spaced degrees of longitude on the x-axis, and equally spaced degrees of latitude on the y-axis. 

This projection is of limited use in spatial data analysis because it represents neither the accurate 
shape nor area of features on the map, although it is still widely recognized and used for such purposes 
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as portraying NASA satellite imagery of the world (http://visibleearth.nasa.gov/). Figure 1-8 
illustrates a map of the world created using the equirectangular projection method. 

 

Figure 1-8. The equirectangular map projection. 

Universal Transverse Mercator Projection 
The Universal Transverse Mercator (UTM) projection is not a single projection, but rather a grid 
composed of many projections laid side by side. The UTM grid is created by dividing the globe into 60 
slices, called “zones,” with each zone being 6° wide and extending nearly the entire distance between 
the North Pole and South Pole (the grid does not extend fully to the polar regions, but ranges from a 
latitude of 80°S to 84°N). Each numbered zone is further subdivided by the equator into north and south 
zones. Any UTM zone may be referenced using a number from 1 to 60, together with a suffix of N or S 
to denote whether it is north or south of the equator. Figure 1-9 illustrates the grid of UTM zones 
overlaid on a map of the world, highlighting UTM Zone 15N. 

Within each UTM zone, features on the earth are projected using a transverse Mercator projection. 
The transverse Mercator projection is produced using the same method as the Mercator projection, but 
rotated by 90°. This means that, instead of portraying features that lie along the equator with no 
distortion, the transverse Mercator projection represents features that lie along a central north–south 
meridian with no distortion. Because each UTM zone is relatively narrow, any feature on the earth 
lies quite close to the central meridian of the UTM zone in which it is contained, and distortion within 
each zone is very small. 
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Figure 1-9. UTM zones of the world. 

The UTM projection is universal insofar as it defines a system that can be applied consistently 
across the entire globe. However, because each zone within the UTM grid is based on its own unique 
projection, the UTM map projection can only be used to represent accurately those features lying 
within a single specified zone. 

Projection Parameters 
In addition to the method of projection used, there are a number of additional parameters that affect 
the appearance of any projected map. These parameters are listed in Table 1-2. 

Table 1-2. Map Projection Parameters 

Parameter Description 

Azimuth The angle at which the center line of the projection lies, relative to north 

Central meridian The line of longitude used as the origin from which x coordinates are measured 

False easting A value added to x coordinates so that stated coordinate values remain positive 
over the extent of the map 

False northing A value added to y coordinates so that stated coordinate values remain positive 
over the extent of the map 

Latitude of center The latitude of the point at the center of the map projection 
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Parameter Description 

Latitude of origin The latitude used as the origin from which y coordinates are measured 

Latitude of point The latitude of a specific point on which the map projection is based 

Longitude of center The longitude of the point at the center of the map projection 

Longitude of point The longitude of a specific point on which the map projection is based 

Scale factor A scaling factor used to reduce the effect of distortion in a map projection 

Standard parallel A line of latitude along which features on the map have no distortion 

Projected Units of Measurement 
Having done the hard work involved in creating a projection, the task of defining coordinates on that 
projection thankfully becomes much easier. If we consider all of the points on the earth’s surface to lie 
on the flat surface of a map then we can define positions on that map using familiar Cartesian 
coordinates of x and y, which represent the distance of a point from an origin along the x-axis and y-
axis, respectively. In a projected coordinate system, these coordinate values are normally referred to as 
eastings (the x-coordinate) and northings (the y-coordinate). This concept is illustrated in Figure 1-10. 

 

Figure 1-10. Describing position on the earth using a projected coordinate system. 
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Eastings and northings coordinate values represent a linear distance east and north of a given 
origin. Although most projected coordinates are measured in meters, the appropriate units of 
measurement for a spatial reference system will vary depending on the uses of that particular system. 
Some systems use imperial units of measurement or locally relevant units: the foot, Clarke's foot, the 
U.S. survey foot, or the Indian foot, for example (all of which are approximately equal to 30.5 cm, 
although subtly different!). The coordinates of a spatial reference system designed for high-accuracy 
local surveys may even specify millimeters as a unit of measurement. 

Putting It All Together: Components of a Spatial Reference 
System 
We have examined several components that make up any spatial reference system—a system that 
allows us to define positions on the earth’s surface—that we can use to describe positions on the 
surface of the earth. Table 1-3 gives an overview of each component. 

Table 1-3. Components of a Spatial Reference System 

Component Function 

Coordinate system Specifies a mathematical framework for determining the position of items 
relative to an origin. Coordinate systems used in SQL Server are generally 
either based on geographic or projected coordinate systems. 

Datum States a model of the earth onto which we can apply the coordinate system. 
Consists of a reference ellipsoid (a three-dimensional mathematical shape 
that approximates the shape of the earth) and a reference frame (a set of points 
to position the reference ellipsoid relative to known locations on the earth). 

Prime meridian Defines the axis from which coordinates of longitude are measured. 

Projectiona Details the parameters required to create a two-dimensional image of the 
earth’s surface (i.e., a map), so that positions can be defined using projected 
coordinates. 

Unit of measurement Provides the appropriate unit in which coordinate values are expressed. 

a Projection parameters are only defined for spatial reference systems based on projected coordinate systems. 

Through a combination of all these elements, you can define a spatial reference system capable of 
uniquely identifying any point on the earth. 
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■ Note  In order to be able to describe positions on the earth using a projected coordinate system, a spatial 
reference system must first specify a three-dimensional, geodetic model of the world (as would be used by a 
geographic coordinate system), and then additionally state the parameters detailing how the two-dimensional 

projected map image should be created from that model. For this reason, spatial reference systems based on 
projected coordinate systems must contain all the same elements as those based on geographic coordinate 

systems, together with the additional parameters required for the projection.  

Spatial Reference Identifiers (SRIDs) 
Every time we state the latitude and longitude, or x- and y-coordinates, that describe the position of a 
point on the earth, we must also state the associated spatial reference system from which those 
coordinates were obtained. Without the extra information contained in the spatial reference system, a 
coordinate tuple is just an abstract set of numbers in a mathematical system. The spatial reference 
system takes the abstract coordinates from a geographic or projected system and puts them in a context 
so that they can be used to identify a real position on the earth’s surface. 

However, it would be quite cumbersome to have to write out the full details of the datum, the prime 
meridian, and the unit of measurement (and any applicable projection parameters) each time we 
wrote down a set of coordinates. Fortunately, various authorities allocate easily memorable, unique 
integer reference numbers that represent all of the necessary parameters of a spatial reference 
system. These reference numbers are called spatial reference identifiers (SRIDs). 

One authority that allocates SRIDs is the European Petroleum Survey Group (EPSG), and its 
reference identification system is implemented in SQL Server 2012. Whenever you use any of the 
spatial functions in SQL Server that involve stating the coordinates of a position, you must also supply 
the relevant EPSG SRID of the system from which those coordinates were obtained. 

Some examples of SRIDs assigned by the EPSG that can be used in SQL Server are: 

• 4269 (North American Datum 1983) 

• 32601 (UTM Zone 1 North) 

• 4326 (World Geodetic System 1984) 

• 32136 (Tennessee State Plane Coordinate System) 

A more comprehensive list of common spatial reference identifiers can be found in the appendix 
of this book. 

■ Tip  You can view the details of all spatial reference systems administered by the EPSG registry at the following 

website, http://www.epsg-registry.org. 
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Well-Known Text of a Spatial Reference System 
SQL Server maintains a catalogue view, sys.spatial_reference_systems, in which it stores the details 
of all 392 supported geographic spatial reference systems. The information contained in this table is 
required to define the model of the earth on which geographic coordinate calculations take place. Note 
that no additional information is required to perform calculations of data defined using projected 
coordinates, because these take place on a simple 2D plane. Therefore SQL Server can support data 
defined using any projected coordinate system. 

The parameters of each geographic spatial reference system in sys.spatial_reference_systems are 
stored in the well_known_text column using the Well-Known Text (WKT) format, which is an industry-
standard format for expressing spatial information defined by the Open Geospatial Consortium (OGC). 

■ Note  SQL Server only supports geographic coordinate data defined relative to one of the spatial reference 
systems listed in sys.spatial_reference_systems. This table contains the additional information required to 

construct the model of the earth on which geographic coordinate calculations take place. However, because no 
additional information is required to perform calculations on a 2D plane, SQL Server supports projected coordinate 
data defined from any projected coordinate reference system, and the details of such systems are not listed in 

sys.spatial_reference_systems. 

To illustrate how spatial references are represented in WKT format, let’s examine the properties 
of the EPSG:4326 spatial reference by executing the following query. 

SELECT 
  well_known_text 
FROM 
  sys.spatial_reference_systems 
WHERE 
  authority_name = 'EPSG' 
  AND  
  authorized_spatial_reference_id = 4326; 
The following is the result (with line breaks and indents added to make the result easier to 
read). 
GEOGCS[ 
  "WGS 84",  
  DATUM[ 
    "World Geodetic System 1984", 
    ELLIPSOID[ 
      "WGS 84", 
      6378137, 
      298.257223563 
    ] 
  ],  
  PRIMEM["Greenwich", 0], 
  UNIT["Degree", 0.0174532925199433] 
] 
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This result contains all the parameters required to define this spatial reference system, as follows. 

Coordinate system: The first line of a WKT spatial reference is a keyword to tell 
us what sort of coordinate system is used. In this case, GEOGCS tells us that 
EPSG:4326 uses a geographic coordinate reference system. If a spatial reference 
system is based on projected coordinates then the WKT representation would 
instead begin with PROJCS. Immediately following this is the name assigned to 
the spatial reference system. In this case, the Well-Known Text is describing the 
"WGS 84" spatial reference system. 

Datum: The values following the DATUM keyword provide the parameters of 
the datum. The first parameter gives us the name of the datum used. In this case, 
it is the "World Geodetic System 1984" datum. Then follow the parameters of the 
reference ellipsoid. This system uses the "WGS 84" ellipsoid, with a semimajor 
axis of 6,378,137 m and an inverse-flattening ratio of 298.257223563. 

Prime meridian: The PRIMEM value tells us that this system defines 
Greenwich as the prime meridian, where longitude is defined to be 0. 

Unit of measurement: The final parameter specifies that the unit in which 
coordinates are measured is the "Degree". The value of 0.0174532925199433 is a 
conversion factor required to convert from radians into the stated units (1 
degree = π/180 radians). 

Contrasting a Geographic and a Projected Spatial Reference 
Let’s compare the result in the preceding section to the WKT representation of a spatial reference 
system based on a projected coordinate system. The following example shows the WKT representation 
of the UTM Zone 10N reference, a projected spatial reference system used in North America. The SRID 
for this system is EPSG:26910.  

■ Note  Remember that, because this is a projected spatial reference system, you won't find these details in the 
sys.spatial_reference_systems table. Instead, you can look up the details of these systems using a site such as 

http://www.epsg-registry.org or http://www.spatialreference.org. 

PROJCS[ 
  "NAD_1983_UTM_Zone_10N", 
  GEOGCS[ 
    "GCS_North_American_1983", 
    DATUM[ 
      "D_North_American_1983", 
      SPHEROID[ 
        "GRS_1980", 
        6378137, 
        298.257222101 
      ] 
    ], 
    PRIMEM["Greenwich",0], 
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    UNIT["Degree", 0.0174532925199433] 
  ], 
  PROJECTION["Transverse_Mercator"], 
  PARAMETER["False_Easting", 500000.0], 
  PARAMETER["False_Northing", 0.0], 
  PARAMETER["Central_Meridian", -123.0], 
  PARAMETER["Scale_Factor", 0.9996], 
  PARAMETER["Latitude_of_Origin", 0.0], 
  UNIT["Meter", 1.0] 
] 

Notice that the Well-Known Text for this projected coordinate system contains a complete set of 
parameters for a geographic coordinate system, embedded within brackets following the GEOGCS 
keyword. The reason is that a projected system must first define the three-dimensional, geodetic 
model of the earth, and then specify several additional parameters that are required to project that 
model onto a plane. 

■ Note  The Well-Known Text format in which SQL Server stores the properties of spatial reference systems in the 
sys.spatial_reference_systems table is exactly the same format as used in the .PRJ file used to describe 

the spatial reference in which the data in an ESRI shapefile are stored. 

Summary 
After reading this chapter, you should understand how spatial reference systems can be used to 
describe positions in space: 

• A spatial reference system consists of a coordinate system (which describes a 
position using either projected or geographic coordinates), a datum (which 
describes a model representing the shape of the earth), the prime meridian 
(which defines the origin from which units are measured), and the unit of 
measurement. When using projected coordinates, the spatial reference system 
also defines the properties of the projection used. 

• A geographic coordinate system defines the position of objects using angular 
coordinates of latitude and longitude, which are measured from the equator and 
the prime meridian, respectively. 

• A projected coordinate system defines the position of objects using Cartesian 
coordinates, which measure the x and y distance of a point from an origin. These 
are also referred to as easting and northing coordinates. 

• Whenever you state a set of coordinates representing a point on the earth, it is 
essential that you also give details of the associated spatial reference system. 
The spatial reference system defines the additional information that allows us to 
apply the coordinate reference to identify a point on the earth. 

• For convenience, spatial reference systems may be specified by a single integer 
identifier, known as a spatial reference identifier (SRID). 
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• Details of all the geographic spatial reference systems supported by SQL Server 
2012 are contained within a system catalogue view called 
sys.spatial_reference_systems. SQL Server also supports data defined using any 
projected spatial reference system. 

•  The Well-Known Text format is a standard format used to express the properties 
of a spatial reference system. 

If you are interested in reading further about the topics covered in this chapter, I recommend 
checking out the Microsoft white paper, "Introduction to Spatial Coordinate Systems: Flat Maps for a 
Round Planet," which can be found in the MSDN SQL Server developer center site, at 
http://msdn.microsoft.com/en-us/library/cc749633(SQL.100).aspx. 
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Spatial Features 

In the last chapter, I stated that the purpose of geospatial data was to describe the shape and location of 
objects on the Earth. Although this objective may be simply stated, in practice it is not always so easy to 
achieve. 

In many cases, although we have a rough understanding of the position and geographic extent of 
features on the Earth, they may be hard to define in exact terms. For example, at what point does the 
body of water known as the Gulf of Mexico become the Atlantic Ocean? Where exactly do we draw the 
line that defines the boundary of a city or forest? In some parts of the world, there is even ambiguity or 
contention as to where the border between two countries lies, and there are still significant areas of 
land and sea that are subjects of international dispute. 

Even if we agree on the precise shape and location of a feature, it may be hard to describe the 
properties of that feature with sufficient detail; natural features, such as rivers and coastlines, have 
complex irregular shapes. Even man-made structures such as roads are rarely simple straight lines.  

It would be very hard, if not impossible, to define the shape of these features exactly. Instead, 
spatial data represents these objects by storing simple geometrical shapes that approximate their 
actual shape and position. These shapes are called geometries. 

The spatial functionality in SQL Server is based on the Open Geospatial Consortium’s “Simple 
Features for SQL Specification”, which you can view online at 
http://www.opensgeospatial.org/standards/sfs. This standard defines a number of different types of 
geometries, each with different associated properties. In this chapter, each of the different types of 
geometry is examined and  the situations in which it is most appropriate to use each type are described. 

■ Note  In the context of spatial data, the word "geometry" can have two distinct meanings. To emphasize the 
difference, geometry (code formatting) is used to refer to the geometry datatype, whereas geometry (no 

formatting) is used to refer to simple shapes representing features on the Earth. 

Geometry Hierarchy 
There is a total of 14 standard types of geometries recognized by SQL Server (not counting the special 
cases of the FullGlobe or Empty geometries; more on those later). However, only ten of these geometry 
types are instantiable (that is to say, you can actually create instances of these geometries); the 
remaining four types are abstract classes from which other instantiable classes are derived.  

Geometries can be broadly categorized into two groups, as follows. 
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Single geometries contain one discrete geometric element. The most basic 
single geometry is a Point. There are also three types of curve (LineString, 
CircularString, and CompoundCurve) and two types of surface (Polygon and 
CurvePolygon). 

Geometry collections are compound elements, containing one or more of the 
individual geometries listed above. Geometry collections may be 
homogeneous or heterogeneous. A homogeneous geometry collection 
contains several items of the same type of single geometry only (e.g., a 
MultiPoint is a geometry collection containing only Points). A heterogeneous 
geometry collection contains one or more of several different sorts of 
geometry, such as a collection containing a LineString and a Polygon. 

■ Note  The Microsoft Books Online documentation refers to these two categories of geometries as “Simple 
types” and “Collection types” (http://technet.microsoft.com/en-

us/library/bb964711%28SQL.110%29.aspx). The use of the word “Simple” here has been deliberately avoided 

because this has a separate meaning (as used by the STIsSimple() method) that is discussed later. 

Figure 2-1 illustrates the inheritance tree of geometry types, which demonstrates how the 
different types of geometry are related to each other. Every item of spatial data in SQL Server is an 
example of one of the ten instantiable classes shown with a solid border. 

 

Figure 2-1. The inheritance hierarchy of geometry types. Instantiable types (those types from which an 
instance of data can be created in SQL Server 2012) are shown with a solid border. 

SQL Server 2008 provided only a single instantiable type of Curve (the LineString), and only a 
single type of instantiable surface (the Polygon). Both of these geometry types are straight-edged, 
linear features. SQL Server 2012 added support for curved geometries, and the CircularString, 
CompoundCurve, and CurvePolygon curved geometries shown in Figure 2-1 are new types introduced 
in SQL Server 2012. 
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■ Note  In the OGC Simple Features specification, geometry type names are written using Pascal case (also called 
Upper CamelCase) and this is the standard generally used in Microsoft documentation. For this reason, that 

convention is also adopted in this book by referring to geometry types as MultiPoint, LineString, and so on. 

Interiors, Exteriors, and Boundaries 
Once you have defined an instance of any of the types of geometry listed in the previous section, you 
can then classify every point in space into one of three areas relative to that geometry: every location 
must lie either in the geometry's interior, in its exterior, or on its boundary: 

• The interior of a geometry consists of all those points that lie in the space 
occupied by the geometry. In other words, it represents the "inside" of the 
geometry. 

• The exterior consists of all those points that lie in the area of space not occupied 
by the geometry. It can therefore be thought of as representing the “outside” of 
the geometry. 

• The boundary of a geometry consists of those points that lie on the “edge” of the 
geometry in question. 

Generally speaking, every geometry contains at least one point in its interior and also at least 
one point lies in its exterior. The only exceptions to this rule are the special cases of the empty 
geometry and the full globe geometry: an empty geometry has no interior, and therefore every point 
is considered to lie in its exterior, whereas the full globe geometry is exactly the opposite: containing 
every point in its interior, with no points in its exterior. 

The distinction between these classifications of space becomes very important when considering 
the relationship between two or more geometries, because these relationships are defined by 
comparing where particular points lie with respect to the interior, exterior, or boundary of the two 
geometries in question. For example: 

• Two geometries are said to intersect each other if there is at least one point that 
lies in either the interior or boundary of both geometries in question. 

• Two geometries are deemed to touch each other if there is at least one shared 
point that lies on the boundary of both geometries, but no points common to the 
interior of both geometries. Note that this criterion is more specific than the 
general case of intersection decribed above, and any geometries that touch must 
therefore also intersect. 

• If two geometries have no interior or boundary points in common then they are 
said to be disjoint. 

• The distance between two geometries is measured as the shortest possible 
distance between any two interior points of the two geometries. 

These concepts, and other related classifications, are discussed in later chapters of this book when 
spatial relationships are explained in more detail. For the remainder of this chapter, I instead 
concentrate on examining the various types of geometry in greater detail. 
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Points 
A Point is the most fundamental type of geometry, and is used to represent a singular position in 
space. 

Example Point Usage 
When using geospatial data to define features on the Earth, a Point geometry is generally used to 
represent an exact location, which could be a street address, or the location of a bank, volcano, or city, 
for instance. Figure 2-2 illustrates a Point geometry used to represent the location of Berlin with 
respect to a map of Germany. Berlin has a fascinating and complicated history, the city itself being 
politically divided for much of the twentieth century between West Berlin and East Berlin, a division 
that famously led to the erection of the Berlin Wall. Despite the fact that West Berlin was, to all intents 
and purposes, a part of West Germany, it lay in a region that, for 50 years following the Second World 
War, was proclaimed to be the German Democratic Republic (East Germany), and was entirely isolated 
from the rest of West Germany. 

 

Figure 2-2. A Point geometry marking the location of Berlin. 
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■ Note  Inasmuch as a Point geometry represents an infinitely small, singular location in space, it is impossible to 
truly illustrate it in a diagram. Throughout this book, Point geometries are represented as small black circles, as in 

Figure 2-2. 

Defining a Point 
A Point is defined by a pair of coordinate values, either an x-coordinate value and a y-coordinate 
value from a planar coordinate system, or a latitude and longitude coordinate value from a geographic 
coordinate system. 

When expressed using the Well-Known Text (WKT) format, a Point located with coordinates x = 5 
and y = 3 may be written as follows, 

POINT(5 3) 

The WKT representation begins with the POINT keyword followed by the relevant coordinate 
values, contained within round brackets. The coordinate values are separated by a space (not a 
comma, as you might initially expect). Figure 2-3 illustrates the Point geometry represented by this 
definition. 

 

Figure 2-3. A Point located at POINT(5 3). 

Defining a Point from geographic coordinates follows the same convention, but with one thing to 
watch out for: whereas in everyday language it is common to refer to coordinates of "latitude and 
longitude" (in that order), when you write geographic coordinates in WKT the longitude coordinate 
always comes first, then the latitude coordinate. The WKT syntax for a geography Point located at a 
latitude of 40° and longitude of 60° is therefore: 

POINT(60 40) 

The location of this Point is illustrated in Figure 2-4. 
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Figure 2-4. A Point located at geographic coordinates POINT(60 40).  

To help remember the correct order for geographic coordinates, try thinking of longitude as being 
equivalent to the x-coordinate, because longitude increases as you travel east around the world (until 
you cross the 180th meridian). Likewise, latitude is equivalent to the y-coordinate, with increasing 
latitude extending farther north. Because you list planar coordinates in (x y) order, the equivalent 
order for geographic coordinates is therefore (longitude latitude). 

■ Caution  When defining geographic coordinates using WKT the longitude coordinate comes first, then the 

latitude coordinate. 

Defining Points in 3- and 4-Dimensional Space 
In addition to the x- and y- (or longitude and latitude) coordinates required to locate a Point on the 
surface of the Earth, the WKT syntax enables you to specify additional z-and m-coordinate values to 
position a point in four-dimensional space. 

The z-coordinate is the height, or elevation, of a Point. Just as positions on the 
Earth's surface are measured with reference to a horizontal datum, the height 
of points above or below the surface are measured relative to a vertical datum. 
The z-coordinate may represent the height of a point above sea-level, the 
height above the underlying terrain, or the height above the reference 
ellipsoid, depending on which vertical datum is used. 

The m-coordinate represents the “measure” value of a Point. The fourth 
dimension is most commonly thought of as time, although the m-coordinate 
can be used to represent any additional property of a point that can be 
expressed as a double-precision number. For example, if you were recording 
time-based data, you could use the m-coordinate to represent the time at 
which the location of a point was recorded. Or, if recording waypoints along a 
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route, the m-coordinate could be used to express the distance of how far along 
the route each point lay. 

The WKT syntax for a Point containing z- and m-coordinates is as follows, 

POINT(x y z m) 

Or, if using geographic coordinates: 

POINT(longitude latitude z m) 

However, you should be aware that, although SQL Server 2012 supports the creation, storage, and 
retrieval of z- and m-coordinate values, all of the inbuilt methods operate in 2D space only. The z and 
m values assigned to a Point instance will therefore not have any effect on the result of any 
calculations performed on that instance. 

For example, when calculating the distance between the Points located at (0 0 0) and (3 4 12), SQL 
Server calculates the result as 5 units (the square root of the sum of the difference in the x and y 
dimensions only), and not 13 (the square root of the sum of the difference in the x, y, and z 
dimensions). You can, however, retrieve the z and m values associated with any instance and use them 
in your own calculations, as is demonstrated in a later chapter. 

Characteristics of Points 
All Point geometries share the following characteristics. 

• A Point is zero-dimensional, which means that it has no length in any direction 
and there is no area contained within a Point.  

• A Point has no boundary. 

• The interior of a Point is the Point itself. Everything other than that Point is the 
exterior. 

• Points are always classified as "simple" geometries. 

LineStrings 
Having established the ability to define individual Points, we can then create a series of two or more 
Points and draw the path segments that directly connect each one to the next in the series. This path 
defines a LineString. 

Example LineString Usage 
In geospatial data, LineStrings are commonly used to represent features such as roads, rivers, delivery 
routes, or contours of the Earth. Figure 2-5 illustrates a LineString that represents the route of the 
Orient Express railway, which traveled across Europe between Paris and Istanbul. The Orient Express 
was one of the world’s most famous luxury railway services, and passed through many of Europe’s 
great cities during its 1200-mile route, including Munich, Vienna, Budapest, and Belgrade. 
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Figure 2-5. A LineString representing the route of the Orient Express railway.  

Defining a LineString 
When expressed using the WKT format, the coordinate values of each Point are separated by a space, 
and a comma separates each Point from the next in the LineString, as follows. 

LINESTRING(2 3, 4 6, 6 6, 10 4) 

The LineString created by this WKT definition is illustrated in Figure 2-6. 

 

Figure 2-6. A LineString geometry. 
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■ Note  Some GIS systems make a distinction between a LineString and a Line. According to the Open Geospatial 
Consortium specification (a standard on which the spatial features of SQL Server 2012 are largely based), a Line 
connects exactly two Points, whereas a LineString may connect any number of Points. Because all Lines can be 

represented as LineStrings, of these two types SQL Server 2012 only implements the LineString geometry. If you 
need to define a table in which only Lines can be stored, you can do so by adding a CHECK constraint that calls the 

STNumPoints() method to test whether inserted LineString values contain only two points. 

LineStrings created from geographic coordinates follow the same convention: the coordinates of 
each Point in the LineString are listed in longitude–latitude order (as they would be for an individual 
Point), and each Point in the LineString is separated by a comma. 

Characteristics of LineStrings 
All LineStrings are one-dimensional geometries: they have an associated length, but do not contain 
any area. This is the case even when the ends of the LineString are joined together to form a closed 
loop. LineStrings may be described as having the following additional characteristics. 

• A simple LineString is one where the path drawn between the points of the 
LineString does not cross itself. 

• A closed LineString is one that starts and ends at the same point. 

• A LineString that is both simple and closed is known as a ring. 

• The interior of a LineString consists of all the points that lie on the path of the 
line. Be aware that, even when a LineString forms a closed ring, the interior of 
the LineString does not contain those points in the area enclosed by the ring. 
The interior of a LineString consists only of those points that lie on the 
LineString itself. 

• The boundary of a LineString consists of the two points that lie at the start and 
end of the line. However, a closed LineString, in which the start and end points 
are the same, has no boundary. 

• The exterior of a LineString consists of all those points that do not lie on the line. 

Different examples of LineString geometries are illustrated in Figure 2-7. 

 

Figure 2-7. Examples of  LineString geometries. (From left–right) A simple LineString, a simple closed 
LineString (a ring), a nonsimple LineString, a nonsimple closed LineString. 
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LineStrings and Self-Intersection 
It is worth noting that, although the path of a nonsimple LineString may cross itself at one or more 
distinct points, it cannot retrace any continuous length of path already covered. Consider Figure 2-8, 
which illustrates the shape of a capital letter “T”: 

 

Figure 2-8. A geometry in the shape of a capital letter T. 

The shape illustrated in Figure 2-8 cannot be represented by a single LineString geometry, 
because doing so would necessarily involve retracing at least one section of the path twice. Instead, 
the appropriate type of geometry to represent this shape is a MultiLineString geometry, discussed later 
this chapter. 

CircularStrings 
As described in the previous section, LineStrings are formed by defining the path segments 
connecting a series of Points in order. The line segments that connect consecutive points are 
calculated by linear interpolation: each line segment represents the shortest direct route from one 
Point to the next in the LineString. 

However, this is clearly not the only way to connect a series of Points. An alternative method 
would be to define a curve that connects each Point with a smooth line and gently changing gradient, 
rather than abrupt angular corners between segments typical of a LineString. The CircularString 
geometry, which is a new geometry type introduced in SQL Server 2012, provides one such curved line 
by using circular, rather than linear, interpolation between points. In other words, a CircularString is 
defined by the paths connecting a series of points in order, where the path segments connecting each 
pair of points is an arc formed from part of a circle. 

Example CircularString Usage 
Every year, teams of rowers from Oxford University and Cambridge University compete in a boat race 
on the River Thames in West London. Starting from Putney Bridge, the race course follows the river 
upstream for slightly over four miles, ending just before Chiswick Bridge. The course is marked by 
three distinctive bends; the crew rowing on the north side of the river has the advantage in the first 
and third bends, whereas the crew rowing on the south side of the river has the advantage of being on 
the inside for the long second bend.  

A CircularString, as illustrated in Figure 2-9, is a suitable geometry to model the course of the race, 
because it can represent more accurately the smooth curves of the river than is possible using linear 
interpolation as in a LineString. 
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Figure 2-9. A CircularString geometry representing the course of the Oxford–Cambridge University boat 
race. 

■ Note  Don't be misled by the name: a CircularString geometry does not have to form a complete circle (although 
it can); it merely means that the segments joining consecutive points are circular arcs rather than straight lines as 

in a LineString. 

Defining a CircularString 
There are an infinite number of circular arcs that connect two Points. In order to specify which of these 
arcs should be created, every CircularString segment actually requires three points: the start and end 
points to be connected, and an additional anchor point that lies somewhere on the arc between those 
points. The CircularString will follow the edge of the only circle that passes through all three points. 

The syntax for the Well-Known Text representation of a CircularString is as follows, 

CIRCULARSTRING (1 3, 4 1, 9 4) 

The CircularString created from this definition is shown in the solid line illustrated in Figure  
2-10. The dashed line illustrates the complete circle from which the CircularString arc has been 
created. 
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Figure 2-10. CircularString defined by the circular interpolation of three points. 

■ Note  The additional anchor point does not need to lie in the middle of the start and end points of a 

CircularString; it can be any point that lies on the circular arc between the start and end point. 

Like LineStrings, CircularStrings can be created between a series of any number of consecutive 
points. Each segment implicitly starts at the endpoint of the previous curved segment. Each additional 
segment requires both an anchor point and an endpoint, therefore every valid CircularString contains 
an odd number of points, and must contain at least three points. 

■ Note  A valid CircularString must have an odd number of points, greater than one. 

WHEN IS A CIRCULARSTRING A STRAIGHT LINE? 

One interesting point to note is that it is possible to specify a CircularString in which the anchor point lies 
exactly on the straight line between the start and end point. The circular arc created in such cases is a 
straight line, effectively joining all three points with the arc taken from a circle of infinite radius. The same 
result can also be achieved if the anchor point is exactly equal to either the start or end point. 

The set of points contained by either a LineString or a "straight" CircularString are identical, which can be 
confirmed using SQL Server's STEquals() method as shown in the following code listing. 

DECLARE @LineString geometry = 'LINESTRING(0 0, 8 6)'; 
DECLARE @CircularString1 geometry = 'CIRCULARSTRING(0 0, 4 3, 8 6)'; 
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DECLARE @CircularString2 geometry = 'CIRCULARSTRING(0 0, 0 0, 8 6)'; 
 
SELECT 
  @LineString.STEquals(@CircularString1), -- Returns 1 (true) 
  @LineString.STEquals(@CircularString2);  -- Returns 1 (true) 
  

Characteristics of CircularStrings 
CircularStrings, like LineStrings, inherit from the abstract Curve geometry type, and share many of 
the same characteristics. 

• CircularStrings are one-dimensional geometries; they have an associated 
length, but do not contain any area.  

• A simple CircularString is one where the path drawn between the points of the 
CircularString does not cross itself. 

• A closed CircularString is one that starts and ends at the same point.  

• The interior of a CircularString consists of all the points that lie on the arc 
segments. 

• The boundary of a CircularString consists of the start and end points only, except 
in the case of a closed CircularString, which has no boundary. 

• The exterior of a CircularString consists of all those points not on the path of the 
CircularString. 

• Every CircularString must be defined by an odd number of points greater than 
one. 

Drawing Complete Circles 
To create a CircularString that forms a complete circle, you might expect that you would need to define 
only three points: one point used twice as both the start and end of the CircularString, and one other 
anchor point that lies somewhere on the perimeter of the circle. However, the problem with this 
definition is that it does not specify the orientation of the created circle; that is, beginning from the 
start point, does the path of the CircularString travel in a clockwise or anti-clockwise direction through 
the anchor point and back to where it started? 

To avoid this ambiguity, in order to create a CircularString that forms a complete circle, five points 
are required. As with any closed LineString, the start and end points are the same. The remaining 
three points can be any other points that lie on the circle, listed in the desired order. The following 
Well-Known Text defines a clockwise circle with a radius of two units, centered about the point at (5 5): 

CIRCULARSTRING(3 5, 5 7, 7 5, 5 3, 3 5) 

This CircularString is illustrated in Figure 2-11. 
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Figure 2-11. Creating a circle using a CircularString geometry. 

■ Note  In order to define a full circle, you must define a CircularString containing five points. 

Choosing Between LineString and CircularString 
Although LineString geometries can be used to approximate a curve by using a number of small 
segments, CircularStrings can generally do so more efficiently and with greater accuracy. However, 
even though the CircularString geometry may enable you to describe rounded features with greater 
precision, the LineString is better supported and more widely used in spatial applications. For this 
reason, you will probably find that many sources of spatial data still use LineStrings even in situations 
where CircularStrings may provide greater benefit. 

You may also find that, when exporting your own data for use in third-party spatial applications, 
CircularStrings are not supported and you may have to convert your CircularStrings to LineStrings 
instead. Fortunately, SQL Server provides a method to do just this—STCurveToLine()—which is 
documented in Books Online at http://msdn.microsoft.com/en-us/library 
/ff929272%28v=sql.110%29.aspx. 

CompoundCurves  
A CompoundCurve is a single continuous path between a set of Points, in which the segments joining 
each pair of Points may either be linear (as in a LineString) or curved (as in a CircularString), or a 
mixture of both. The CompoundCurve geometry is a new geometry type introduced in SQL Server 2012.  
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Example CompundCurve Usage 
The Daytona International Speedway race track in Daytona Beach, Florida, is recognizable by its 
distinctive tri-oval shape, consisting of three straights and three smooth corners. This revolutionary 
circuit design, conceived by Bill France, founder of NASCAR, was created to maximize the angle of 
vision in which spectators could see cars both approaching and driving away from them. 

Figure 2-12 illustrates a CompoundCurve representing the shape of the Daytona racing circuit, 
consisting of three CircularString segments and three LineString segments. 

 

Figure 2-12. A CompundCurve representing the Daytona International Speedway racing circuit.  

Defining a CompoundCurve 
The Well-Known Text for a CompoundCurve geometry begins with the COMPOUNDCURVE keyword 
followed by a set of round brackets. Contained within the brackets are the individual LineString or 
CircularString segments that are joined together to form the compound curve. 

Each CircularString or LineString segment in the CompoundCurve must begin at the point where 
the previous segment ended, so that the CompoundCurve defines a single continuous path. The 
coordinates of CircularString segments are preceded by the CIRCULARSTRING keyword, whereas 
LineString segments are not preceded by any keyword; they are simply a list of coordinates contained 
in round brackets. 

The following code listing demonstrates the Well-Known Text representation of a 
CompoundCurve geometry containing two LineString segments and two CircularString segments: 

COMPOUNDCURVE( 
  (2 3, 2 8), 
  CIRCULARSTRING(2 8, 4 10, 6 8), 
  (6 8, 6 3), 
  CIRCULARSTRING(6 3, 4 1, 2 3) 
) 

This CompoundCurve geometry is illustrated in Figure 2-13. 
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Figure 2-13. A CompoundCurve geometry. 

Characteristics of CompoundCurves 
CompoundCurves are constructed from one-dimensional LineStrings and CircularStrings, therefore 
CompoundCurves are themselves one-dimensional, and contain no area. 

• A simple CompoundCurve is one that does not intersect itself. 

• A closed CompoundCurve is one that starts and ends at the same point. 

Polygons 
A Polygon is a type of surface; that is, a Polygon is a two-dimensional geometry that contains an area 
of space. The outer extent of the area of space contained within a Polygon is defined by a closed 
LineString, called the exterior ring. In contrast to a simple closed LineString geometry, which only 
defines those points lying on the ring itself, the Polygon defined by a ring contains all of the points 
that lie either on the line itself, or contained in the area within the exterior ring. 

Example Polygon Usage 
Polygons are frequently used in spatial data to represent geographic areas such as islands or lakes, 
political jurisdictions, or large structures. Figure 2-14 illustrates a Polygon that represents the state of 
Texas, United States. The large state (261,797 square miles) has a very distinctive, recognizable shape, 
which features straight sides along the northwest border with New Mexico, the meandering path of the 
Red River dividing Texas from Oklahoma to the north, and the smooth border of the Gulf Coast to the 
southeast.  
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Figure 2-14. A Polygon geometry representing the U.S. state of Texas. 

Exterior and Interior Rings 
Every Polygon must have exactly one external ring that defines the overall perimeter of the geometry. 
It may also contain one or more internal rings. Internal rings define areas of space contained within 
the external ring, but excluded from the Polygon. They can therefore be thought of as “holes” that have 
been cut out of the main geometry. 

Figure 2-15 illustrates a Polygon geometry containing a hole. The Polygon in this case represents 
the country of South Africa, and the hole represents the fully enclosed country of Lesotho. 

 

Figure 2-15. A Polygon containing an interior ring, representing South Africa. The interior ring represents 
the border with Lesotho. 
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Defining a Polygon 
The Well-Known Text for a Polygon begins with the POLYGON keyword, followed by a set of round 
brackets. Within these brackets, each ring of the Polygon is contained within its own set of brackets. 
The exterior ring, which defines the perimeter of the Polygon, is always the first ring to be listed. 
Following this, any interior rings are listed one after another, with each ring separated by a comma. 

The following code listing demonstrates the WKT syntax for a rectangular Polygon, two units wide 
and six units high. 

POLYGON((1 1, 3 1, 3 7, 1 7, 1 1)) 

And the following code listing demonstrates the WKT syntax for a triangular Polygon containing 
an interior ring. 

POLYGON((10 1, 10 9, 4 9, 10 1), (9 4, 9 8, 6 8, 9 4)) 

These two Polygons are both illustrated in Figure 2-16. 

 

Figure 2-16. Examples of Polygon geometries. (From left–right) A Polygon; a Polygon with an interior ring. 

■ Note  Because Polygons are constructed from rings, which are simple closed LineStrings, the coordinates of the 

start and end points of each Polygon ring must be the same. 

Characteristics of Polygons 
All Polygons share the following characteristics. 

• Because Polygons are constructed from a series of one or more rings, which are 
simple closed LineStrings, all Polygons are themselves deemed to be simple 
closed geometries. 
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• Polygons are two-dimensional geometries; they have both an associated length 
and area. 

• The length of a Polygon is measured as the sum of the lengths of all the 
rings of that Polygon (exterior and interior). 

• The area of a Polygon is calculated as the area of space within the exterior 
ring, less the area contained within any interior rings.  

CurvePolygons 
The CurvePolygon, like the Polygon, is defined by one exterior ring and, optionally, one or more 
interior rings. Unlike the Polygon, however, in which each ring must be a simple closed LineString, 
each ring in a CurvePolygon can be any type of simple closed curve. Those curves can be LineStrings, 
CircularStrings, or CompoundCurves, so the rings that define the boundary of a CurvePolygon can 
have a mixture of straight and curved edges. 

Example CurvePolygon Usage 
Yankee Stadium, built in 1923 in New York City, hosted over 6581 home games of the New York 
Yankees baseball team in its 85-year history, prior to its closure in 2008 (the team now plays in a new 
stadium, also named “Yankee Stadium,” constructed a short distance away from the site of the original 
Yankee Stadium). It was the first three-tiered sports facility to be built in the United States, and one of 
the first to be officially named a stadium (as opposed to a traditional baseball park, or field). 

The large stadium was designed to be a multipurpose facility that could accommodate baseball, 
football, and track and field events, and the smooth-cornered, irregularly sided shape of the stadium 
can be be modeled as a CurvePolygon whose exterior ring contains four CircularString segments and 
four LineString segments, as illustrated in Figure 2-17.  

 

Figure 2-17. A CurvePolygon representing Yankee Stadium in New York.  
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Defining a CurvePolygon 
The WKT representation of a CurvePolygon follows the same general syntax as that for a Polygon. 
However, because the CurvePolygon allows rings to be defined as LineStrings, CircularStrings, or 
CompoundCurves, you must specify which kind of curve is used for each ring. 

The LineString is considered to be the “default” curve type, and linear rings do not need to be 
explicitly preceded by the LINESTRING keyword. In the following code listing, a CurvePolygon is defined 
by a linear ring between five points:  

CURVEPOLYGON((4 2, 8 2, 8 6, 4 6, 4 2)) 

The result, shown in Figure 2-18, is a square of width and height 2 units, exactly the same as would 
have been created using the following Polygon geometry. 

POLYGON((4 2, 8 2, 8 6, 4 6, 4 2)) 

 

Figure 2-18. A CurvePolygon with a LineString exterior ring. 

In the following code listing, the exterior ring of the CurvePolygon is instead defined using a 
CircularString geometry between the same set of points. 

CURVEPOLYGON(CIRCULARSTRING(4 2, 8 2, 8 6, 4 6, 4 2)) 

In this case, rather than creating a square, the resulting CurvePolygon is a circle of radius 2.828 
(�8) , centered on the point (6 4), as shown in Figure 2-19. 
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Figure 2-19. A CurvePolygon with a CircularString exterior ring. 

Characteristics of CurvePolygons 
With the exception of the method of interpolation between points, CurvePolygons share exactly the 
same general characteristics as Polygons: 

• CurvePolygons are two-dimensional, simple, closed geometries. 

• They have a length equal to the perimeter of all defined rings. 

• The area contained by a CurvePolygon is equal to the area of space enclosed 
within the exterior ring less any area contained within any interior rings. 

MultiPoints 
A MultiPoint is a homogeneous collection of Point geometries. Unlike the LineString or CircularString, 
which are formed from a series of connected Points, there are no connecting lines between the 
individual Points in a MultiPoint: they are distinct and separate. 

Example MultiPoint Usage 
The Ardrossan windfarm in Ayrshire, Scotland, contains 14 wind turbines providing green electricity 
to around 20,000 homes. If each turbine is modeled as a distinct Point geometry, then the collection of 
turbines forming the entire windfarm can be modeled as a MultiPoint geometry, as in Figure 2-20. 
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Figure 2-20. A MultiPoint instance representing the location of each wind turbine at the site of the 
Ardrossan wind farm.  

Defining A MultiPoint 
To represent a MultiPoint geometry in Well-Known Text, you first declare the MULTIPOINT element 
name, followed by a comma-separated list of the coordinate tuples of each point contained in the 
instance, contained within round brackets. The coordinates of each point are listed in exactly the same 
manner as they would be if used to define an individual Point instance; that is, coordinates are listed 
in x, y, z, m order, or longitude, latitude, z, m order, with values separated by spaces. 

The following code listing is an example of a MultiPoint containing three Points, 

MULTIPOINT(0 0, 2 4, 10 8) 

The geometry created by this WKT is shown in Figure 2-21. 

 

Figure 2-21. A MultiPoint geometry. 
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Be careful with the placement of the comma(s) in the Well-Known Text representation of a 
MultiPoint geometry; because each Point may contain between two and four coordinate values 
(depending on whether the optional z- and m-coordinates are defined), you must place the comma 
carefully to separate each coordinate tuple. Compare the following two WKT representations, which 
use the same coordinate values, but vary in their comma placement. 

MULTIPOINT(0 0, 2 4, 10 8) 
MULTIPOINT(0 0 2 , 4 10 8) 

The first geometry represents a MultiPoint geometry containing three Points, each one specified 
with only x- and y-coordinates. The second example creates a MultiPoint containing only two Point 
geometries, with each one specifying x-, y-, and z-coordinates. 

Characteristics of MultiPoints 
MultiPoint geometries all share the following characteristics. 

• MultiPoints, in common with the individual Point geometries from which they 
are formed, are always simple closed geometries. 

• MultiPoints are one-dimensional, and have no length nor do they contain any area.  

Many Single Points, or One Multipoint? 
There are many occasions in which you will find yourself working with a set of data in which each 
individual item can be defined as a Point. However, this does not necessarily mean that it makes sense 
to combine all of the elements together into a MultiPoint. A MultiPoint should not generally be used 
simply as a means to group a set of Points; instead, it should be used to define a single logical feature 
whose geographic location and shape are best described by a set of disparate singular entities. 

Consider a university campus consisting of a number of different buildings. In this case, it might 
be reasonable to define the entire campus as a MultiPoint geometry, with each Point representing one 
of the buildings on the campus. 

However, what if you had a table of customers in which each customer's address was represented 
as a Point; would it then make sense to create a MultiPoint combining all of your customers' locations 
in a single geometry? Probably not. Generally speaking, the only situations in which you should do 
this is if it makes sense to treat that collection as a logical single unit, or if there is some operation that 
needs to be applied to the collection of Points as a whole. In other cases, you should just leave the data 
as a set of otherwise unrelated Points.  

MultiLineStrings 
A MultiLineString is a homogeneous collection of LineString geometries. 

Example MultiLineString Usage  
The River Nile Delta, formed where the River Nile joins the Mediterranean Sea, is one of the largest 
river deltas in the world. It extends approximately 240 km along the coastline of Northern Egypt, and 
begins some 160 km farther south, near Cairo. Approximately half of Egypt’s population of 83 million 
live within the region of the Nile Delta. 

The network of distributary channels formed as the River Nile bifurcates can be modeled as a 
MultiLineString, as illustrated in Figure 2-22. 
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Figure 2-22. A MultiLineString geometry representing the Nile River delta.  

Defining a MultiLineString 
The WKT representation of a MultiLineString geometry is formed by a comma-separated list of 
individual LineString geometries, contained within a set of round brackets following the MULTILINESTRING 
keyword. Because it is known that the elements within a MultiLineString must all be LineStrings, it is not 
necessary to include the individual LINESTRING keyword in front of each element; each LineString is 
merely represented by a comma-separated series of coordinate values within round brackets. 

The following code listing demonstrates the Well-Known Text representation of a 
MultiLineString containing three LineStrings: the first and second containing only two points each, 
and the third containing three points.  

MULTILINESTRING((0 0, 2 2), (3 2, 6 9), (3 3, 5 3, 8 8)) 

The MultiLineString geometry represented by this WKT is shown in Figure 2-23. 

 

Figure 2-23. A MultiLineString geometry. 
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Characteristics of MultiLineStrings 
Unlike MultiPoints and MultiPolygons, which generally contain elements that are disjoint from each 
other, MutiLineStrings are frequently comprised of a number of intersecting LineString elements. For 
example, any road or river that splits into two or more forks cannot be represented by a single 
LineString geometry, and must instead be represented as a MultiLineString, with each fork being 
represented by a separate LineString within the MultiLineString. Additional properties of 
MultiLineStrings are as follows. 

• As are LineStrings, MultiLineStrings are one-dimensional. 

• A MultiLineString is simple if all of the LineString elements contained within it 
are completely disjoint from each other. If any two LineStrings intersect (even if 
they only touch each other) the MultiLineString is not considered to be simple. 

• A MultiLineString is closed if all of the LineString instances contained within it 
are themselves closed (i.e., every LineString forms a closed loop, ending at the 
same point from which it started). 

MultiPolygons 
A MultiPolygon is a geometry collection containing several Polygon geometries. 

Example MultiPolygon Usage 
MultiPolygons are frequently used to represent countries, because many countries are not defined by 
a single continuous border. Take New Zealand, for example, as illustrated in Figure 2-24. 

 

Figure 2-24. A MultiPolygon representing the country of New Zealand.  

It is easy to think of other countries that consist of two or more separate geographic islands or 
regions, including Japan, the United States of America (Alaska and Hawaii), Australia (Tasmania), 
France (Corsica), and many others. In all these cases, the geographic area represented by a particular 
political entity is best represented as a MultiPolygon. 
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Defining a MultiPolygon 
The Well-Known Text representation of a MultiPolygon uses the MULTIPOLYGON keyword, followed by 
the definition of each Polygon contained in the collection, contained within round brackets. 

The following code listing illustrates the WKT syntax required to define a MultiPolygon 
containing two Polygons, each one containing only a single exterior ring. 

MULTIPOLYGON(((10 20, 30 10, 44 50, 10 20)), ((35 36, 37 37, 38 34, 35 36))) 

Take care to place the brackets carefully, because brackets are used both to separate individual 
rings within a Polygon and also to separate Polygons within a MultiPolygon. Compare the preceding 
code listing to the following, which instead creates a MultiPolygon geometry containing only one 
Polygon that contains an interior ring. 

MULTIPOLYGON(((10 20, 30 10, 44 50, 10 20), (35 36, 37 37, 38 34, 35 36))) 

Characteristics of MultiPolygons 
Characteristics of MultiPolygons are as follows. 

• MultiPolygons are two-dimensional, simple, closed geometries. 

• The length of a MultiPolygon is defined as the sum of the lengths of all the rings 
in all the Polygons it contains. 

• The area of a MultiPolygon is the sum of the areas of all its Polygons.  

GeometryCollections 
The MultiPoint, MultiLineString, and MultiPolygon geometries considered previously are examples of 
geometry collections containing only a single type of geometry. It is also possible to define a generic, 
heterogeneous GeometryCollection, which may contain any number of any type of geometry (with the 
exception of the FullGlobe geometry, discussed later). The GeometryCollection is also the only type of 
collection that can contain multiple curved objects. 

Example GeometryCollection Usage 
GeometryCollections are commonly returned as the result of an aggregate query that returns a single 
record representing a varied set of features. For example, if you were to run an aggregate query to 
return, “All those features that lie within one mile of Trafalgar Square, London,” you might expect to 
see geometries in the results representing Nelson’s Column and the Cenotaph (Points), Downing 
Street and the Strand (LineStrings), and St. James’ Park (Polygon). If these results were aggregated 
into a single record, the only geometry type capable of representing them all would be a 
GeometryCollection. 

Defining a GeometryCollection 
The Well-Known Text syntax for a GeometryCollection begins with the keyword GEOMETRYCOLLECTION, 
followed by the fully formed WKT representation of each element in the collection, contained within a 
set of round brackets. The following code listing illustrates the WKT syntax for a GeometryCollection 
containing a Polygon and a Point. 

GEOMETRYCOLLECTION(POLYGON((5 5, 10 5, 10 10, 5 5)), POINT(10 12)) 
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Characteristics of Geometry Collections 
The characteristics of a GeometryCollection depend on the elements it contains. 

• If all the elements contained in the GeometryCollection are simple then the 
GeometryCollection is itself simple. If any of the elements are not simple then 
the collection is not simple. 

• Likewise, if all the elements contained within the GeometryCollection are 
closed then the collection itself is closed. If any element is not closed then the 
GeometryCollection is not closed.  

• The number of dimensions occupied by a GeometryCollection is the same as the 
element with the highest number of dimensions that it contains. In other words, 
any GeometryCollection that contains only Points and MultiPoints will occupy 
zero dimensions; a collection containing LineStrings, CircularStrings, or 
CompoundCurves will occupy one dimension; and a collection that contains at 
least one Polygon or MultiPolygon will occupy two dimensions. 

■ Note  Although there are specific MultiLineString and MultiPolygon collections, there is no specific collection 
that can contain multiple instances of their equivalent curved forms; there are no MultiCircularString, MultiCurve, 
or MultiCurvePolygons, for example. To create a collection that contains more than one of these elements you 

must use the generic GeometryCollection type. 

FullGlobe 
The FullGlobe is a special type of geometry that encompasses the whole surface of the Earth. 

Defining a FullGlobe 
A FullGlobe geometry covers the entire surface of the Earth, thus there is no need to state any 
particular coordinate points in its construction. The Well-Known Text representation of a FullGlobe 
geometry is therefore very simply:  

FULLGLOBE 

Characteristics of the FullGlobe geometry are as follows. 
• A FullGlobe does not have a boundary nor any exterior, because every point on 

the Earth is considered to lie in the interior of a FullGlobe. 

• A FullGlobe geometry is closed. 

• A FullGlobe geometry cannot be a member of a GeometryCollection. 
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Empty Geometries 
One final type of geometry to consider is an empty geometry. An empty geometry is one that does not 
contain any points. Even though it contains no points, an empty geometry is still nominally assigned a 
particular type, so you may have an empty Point or empty LineString geometry, for example. 

 

 

 

 

Figure 2-25. An  empty Point geometry, an empty LineString geometry, and an empty Polygon geometry. 
(JOKE!) 

You may be wondering why you would ever create an empty geometry: how can you represent the 
location or position of a feature on the Earth using a shape with no points? One way of thinking about 
this is as follows. If geometries represent the position (and therefore, by implication, the presence) of 
features on the Earth's surface, then empty geometries denote the absence of any such features. 

You don't generally create empty geometries directly, but you do get empty geometries returned 
in the results of a spatial query in which no points match the specified criteria.  For example, empty 
geometries can be used as a response to a question, “Where is x?” when the answer is, “Nowhere on 
Earth.” 

■ Note  An empty geometry is not the same as NULL. A NULL value suggests a result that has not been 
evaluated or is undefined. An empty geometry value suggests that a result has been evaluated, but that it does not 

represent a location on the Earth. 

Defining an Empty Geometry 
Empty geometries of any type can be defined using the Well-Known Text syntax by declaring the 
name of the type of geometry followed by the word EMPTY. 

Some examples of different types of empty geometries are as follows. 

POINT EMPTY 
LINESTRING EMPTY 
GEOMETRYCOLLECTION EMPTY 
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Characteristics of Empty Geometries 
Characteristics of empty geometries are as follows. 

• Empty geometries are simple geometries.  

• Empty geometries are not closed. 

• Empty geometries have no interior and no boundary. Everything is exterior to 
an empty geometry. 

Choosing the Correct Geometry 
There is no “correct” type of geometry to use to represent any given feature on the Earth. The choice of 
which geometry to use will depend on how you plan to use the data. If you are going to analyze the 
geographic spread of your customer base, you could define Polygon geometries that represented the 
shape of each of your customers' houses, but it would be a lot easier to consider each customer's 
address as a single Point. In contrast, when conducting a detailed analysis of a small-scale area for 
land-planning purposes, you may want to represent all roads, buildings, and even walls of buildings 
as Polygons having both length and area, to ensure that the spatial data represent their actual shape as 
closely as possible. 

Summary 
In this chapter, you learned about the different types of geometries that can be used to store spatial 
data in SQL Server 2012. 

• Points are the most basic type of geometry, representing a singular location in 
space. They are used as a building block to construct the more complex types of 
geometry. 

• LineStrings, CircularStrings, and CompoundCurves are all one-dimensional 
geometries that are typically used to represent paths, routes, borders, and 
similar features. 

• Polygons and CurvePolygons are two-dimensional geometries. They have a 
boundary that contains an interior area, and may also have one or more 
interior holes. 

• Elements may be combined together into collections. Homogeneous collections 
are MultiPoints, MultiLineStrings, and MultiPolygons, respectively. SQL Server 
also supports a heterogeneous GeometryCollection that may contain any 
number of any type of geometry (other than a FullGlobe). 

• There are two special types of geometry: the FullGlobe geometry, which covers 
the entire surface of the Earth, and the Empty geometry, which contains no area 
at all. 
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Spatial Datatypes 

Every variable, parameter, and column in a SQL Server table is defined as being of a particular 
datatype. The datatype determines the range of values that can be stored and the ways in which that 
data can be used. You are probably already familiar with many SQL Server datatypes, such as those 
listed in Table 3-1. 

Table 3-1. Common SQL Server Datatypes 

Datatype Usage 

char Fixed-length character string 

datetime Date and time value, accurate to 3.33 ms 

float Floating-point numeric data 

int Integer value between –231 (–2,147,483,648) and 231 – 1 (2,147,483,647) 

money Monetary or currency data 

nvarchar Variable-length unicode character string 

In addition to these common datatypes designed to hold numeric, character, or date and time data, 
SQL Server 2012 has two datatypes specifically designed to hold spatial data: geometry and geography. 
These are listed in Table 3-2. 

Table 3-2. SQL Server Spatial Datatypes 

Datatype Usage 

geography Geodetic vector spatial data 

geometry Planar vector spatial data 

There are several similarities between the geometry and geography datatypes: 
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• They both employ a vector model of spatial data, in which features may be 
represented using a range of geometries including Points, LineStrings, 
Polygons, and collections of these types. 

• Internally, SQL Server stores values of both datatypes as a serialized stream of 
binary data in the same format. 

• When working with items of data from either type, you use object-oriented 
methods based on the .NET framework. 

• They both provide much of the same standard spatial functionality, such as 
calculating the length or area of a feature, the distance between features, or 
testing whether two features intersect.  

However, there are also a number of important differences between the two types. When you store 
spatial data in SQL Server 2012, you must choose whether to store that information using the geometry 
datatype or the geography datatype according to the nature of the data in question, and how you plan to 
use that data. In this chapter, we explore the features of the two types, and  show how to decide which 
datatype to use in a given situation. 

SQLCLR Foundations 
Before looking at the specific differences between the geometry and geography datatypes, it’s worth 
spending a bit of time examining the way in which both datatypes are implemented in SQL Server. 

The geometry and geography datatypes are both system-defined CLR datatypes. The abbreviation 
CLR in this context refers to the Common Language Runtime, the environment used to execute managed 
.NET code. Whereas most SQL Server queries use the T-SQL query engine, when working with CLR 
datatypes SQL Server additionally leverages the .NET runtime process hosted by SQL Server known as 
SQLCLR. The managed code environment in which SQLCLR operates allows SQL Server to deal with 
certain types of complex data objects, such as spatial data, more efficiently than relying on T-SQL alone. 

■ Note  SQL Server uses SQLCLR to perform operations on system-defined CLR datatypes—geometry, 
geography, and hierarchyid—as well as for user-defined CLR datatypes (UDTs). When querying such data, 

SQLCLR works alongside the T-SQL engine; it does not replace it. 

In all versions of SQL Server since SQL Server 2005, it has been possible to use the SQLCLR to 
execute user-defined .NET code. In order to do so, however, the server must first be configured to allow 
such behavior, which can be done by calling the sp_configure system stored procedure and setting the 
clr_enabled option to 1. In contrast, system-defined CLR datatypes such as geometry and geography 
require no additional configuration; they are automatically available for use in all SQL Server 2012 
databases. As such, you can start using spatial datatypes straight away in your database just as you 
would any other type of data. 

Even though they require no configuration, there are still some special considerations of working 
with the geometry and geography datatypes (and with CLR datatypes in general) that you should be 
aware of, as follows. 

• Each CLR data item is defined as an object, a serialized representation of a 
compound set of values. If you do a simple SELECT query of a column of data 
defined using a CLR datatype, your query will return a set of binary values. 
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• As with classes in object-oriented languages, a CLR datatype defines a number 
of methods and properties. Each individual item of geography or geometry data is 
an instance of the respective datatype, and inherits the methods of the datatype 
from which it is derived. So, methods defined by the geometry datatype can only 
be used on items of geometry data, and methods defined by the geography 
datatype can only be used on items of geography data. 

• The syntax required for writing queries involving CLR data is a little bit 
different from regular T-SQL query syntax, and may look unfamiliar to you.  

• Unlike regular T-SQL functions, such as SUM, CAST, or SUBSTRING, the methods and 
properties defined by CLR datatypes, such as ToString(), STArea(), or 
STIntersects(), are case-sensitive. 

• CLR datatypes can be used within a .NET application layer as well as within 
SQLCLR, therefore with clever coding and application design you can develop 
encapsulated spatial routines that can be re-used in both the database layer and 
the application layer with only a minimum amount of recoding. 

• Errors encountered in SQLCLR code need to be handled in a different way from 
T-SQL errors. 

• Because spatial data are not comparable, you can't use geometry or geography 
data with any T-SQL operators that make a direct comparison between two 
values. For example, you cannot ORDER BY or SELECT DISTINCT values from a 
column of spatial data, nor can you UNION two result sets containing a column of 
the geography or geometry datatype (although you can UNION ALL two datasets). 
You also can’t join two tables together using conventional join syntax such as 
TableA.GeometryColumn = TableB.GeometryColumn. Instead, you must use the 
appropriate comparison operator defined by the datatype itself, for example, 
TableA.GeometryColumn.STEquals(TableB.GeometryColumn) = 1 

Many of these issues are explored in more detail in the topics covered throughout this book. 

Methods and Properties 
The range of methods available for a given item of spatial data (i.e., what you can actually do with that 
data) is dependent on the datatype in which it is defined. Although in most cases there are methods to 
provide equivalent functionality in both the geometry and geography datatypes, there are some methods 
that can only be applied to one or the other. For example, the STRelate() method, which allows you to 
define and test for a specific pattern of intersection between two geometries, is only available for the 
geometry datatype. 

In some cases, there are methods that provide roughly equivalent functionality between the two 
types, but under a different name: for example, Lat and Long, which return the (geographic) coordinate 
values of a geography instance, provide equivalent functionality to STY and STX, which return the 
(Cartesian) coordinate values of a geometry instance. 

In general, the methods available using either type can be classified into one of two categories: 

• OGC methods: Methods that adhere to the Open Geospatial Consortium specifications 
are prefixed by the letters ST (an abbreviation for spatiotemporal). These methods 
provide commonly used, basic functionality for working with spatial instances such 
as STIntersects(), used to determine whether one instance intersects another; 
STDistance(), used to calculate the shortest distance between two instances; and 
STArea(), used to calculate the area contained within a Polygon instance. 
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• SQL Server also provides a number of extended methods, which provide 
additional functionality on top of the OGC standard. These include Reduce(), 
which simplifies a geometry; BufferWithTolerance(), which applies a buffer 
within a given tolerance limit; and Filter(), which performs an approximate test 
of intersection based on a spatial index. 

Static Methods 
To create an item of geography or geometry data, you must use a static method belonging to the 
appropriate datatype. The syntax for using a static method is to state the name of the datatype followed 
by a pair of colons, and then the name of the method. For example, the Parse() method is a static 
method that can be used to create an instance from a supplied Well-Known Text string. To use the 
Parse() method of the geometry datatype to create a Point geometry at coordinates (30,40), you would 
call it as shown in the following code listing, 

SELECT geometry::Parse('POINT(30 40)'); 

■ Note  The geometry Parse method treats all supplied coordinate values as defined using SRID 0; that is, they 

are abstract coordinates with no relation to a specific model of the Earth. 

To provide another example, the following code listing creates a table containing a single column 
of the geography datatype, and then inserts three Points into that table created using the geography 
Point() static method. The Point() method requires three parameters representing latitude, longitude, 
and SRID. The return value of the method is a Point geometry at the specified location. 

CREATE TABLE geographypoints ( 
  Location geography 
); 
 
INSERT INTO geographypoints VALUES 
(geography::Point(51, 1, 4326)), 
(geography::Point(52, –2, 4326)), 
(geography::Point(50.7, –1.1, 4326)); 

After executing this code listing, the geographypoints table now contains three rows each 
representing a location in the south of England, defined using the EPSG:4326 spatial reference system. 

Instance Methods 
The process of creating an item of data using a static method is known as instantiation, and the 
geometry created is referred to as an instance of the geometry or geography dataype (depending on the 
static method from which it was created). Operations performed on individual values of spatial data 
are therefore called instance methods. Items of both the geography and geometry datatypes provide a 
range of instance methods for performing common calculations, including intersections, measuring 
distances, and addition and subtraction of geometries. 

The syntax for using an instance method is to state the name of the item (or column) of data on 
which the method should be performed followed by a single dot (.) and then the name of the method to 
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be called followed by a set of closed brackets (). If the method requires any parameters, these should be 
supplied within the brackets. 

For example, the ToString() method is an instance method that retrieves the Well-Known Text 
representation of any item of geography or geometry data. It requires no parameters. To retrieve the 
WKT of each Point in the Location column of the geographypoints table created in the preceding code 
listing, you can execute the following. 

SELECT 
  Location.ToString() 
FROM 
  geographypoints; 

As another example, the STBuffer() method is an instance method that creates a buffer zone 
around a geometry. It requires a single parameter stating the amount by which the geometry should be 
buffered. Positive values create an enlarged area around a geometry, whereas negative values create 
a reduced area. The following code listing declares a geometry Point variable located at (12 7) using the 
geometry Point() static method, and then selects a buffer of 5 units about that geometry by calling the 
STBuffer() method on that instance. 

DECLARE @point geometry = geometry::Point(12, 7, 0); 
SELECT @point.STBuffer(5); 

Note that instance methods can be chained together, where the result of one method is passed 
directly to the next method. For example, the following code listing creates a buffered Point geometry 
using STBuffer() and then returns the area of that buffered geometry by calling by calling the STArea() 
method on the buffered instance. 

DECLARE @point geometry = geometry::Point(3, 5, 0); 
SELECT @point.STBuffer(5).STArea(); 

■ Note  In the preceding code listings, the coordinates from which the geometry Points were created were 
abstract x- and y-coordinates; they weren’t intended to represent any particular feature on the Earth’s surface. To 
indicate this, a value of 0 has been supplied as the third parameter to the Point() method, which means that 

these coordinates do not relate to any particular spatial reference system.  

Properties 
Certain properties of a geography or geometry instance can be accessed directly using property notation, 
which, like the syntax for instance methods, uses the column name followed by a single dot and then the 
name of the property to retrieve. However, because you do not need to provide parameters to retrieve 
the property of an instance, property names are not followed by a set of brackets. 

For example, the Lat and Long properties represent the latitude and longitude coordinates of a 
geography Point instance, respectively. The following code listing illustrates how to retrieve the 
latitude and longitude coordinates of each Point in the geographypoints table. 

SELECT 
  Location.Lat, 
  Location.Long 
FROM  
  geographypoints; 
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Some properties, such as Lat and Long are read-only. That is to say, you cannot update the latitude 
coordinate of a Point by running the following query, 

UPDATE geographypoints SET Location.Lat = 20; 

Attempting to do so will result in the following error. 

Msg 6595, Level 16, State 1, Line 1 
Could not assign to property 'Lat' for type 'Microsoft.SqlServer.Types.SqlGeography' in 
assembly 'Microsoft.SqlServer.Types' because it is read only. 

Changing the coordinate values associated with a geometry or geography instance requires you to 
create an entirely new geometry from a static method. However, certain properties of existing 
geometries can be both retrieved and set. For example, the STSrid property allows you either to return 
or update the spatial reference identifier associated with an instance. To change the spatial reference 
identifier of the Points in the geographypoints table to use the North American Datum 1983 (SRID 
4269), you can execute the following code listing. 

UPDATE geographypoints 
SET Location.STSrid = 4269; 

■ Note  Updating the STSrid property of an instance does not reproject the coordinate values into the specified 
spatial reference system; it merely changes the metadata describing the system in which those coordinates are 

defined.  

Spatial Libraries 
All of the functionality of the geography and geometry datatypes is contained in two libraries: 
Microsoft.SqlServer.Types.dll and SqlServerSpatial.dll. These assemblies are created when you 
install SQL Server 2012, but they can also be installed separately as part of the Microsoft SQL Server 
Feature Pack, available for download from http://www.microsoft.com/downloads. 

Microsoft.SqlServer.Types.dll contains the managed (.NET) code necessary 
to define the spatial datatypes, and is installed by default in the \Program 
Files\Microsoft SQL Server\110\SDK\Assemblies directory. 
SqlServerSpatial.dll contains additional functionality required to perform 
spatial operations, written using native (C++) code. This assembly is installed 
by default in the \Windows\System32 directory. 

Because these two libraries are redistributable and independent of SQL Server, you can reference 
them in your own applications and use exactly the same spatial methods as provided by the database in 
any other layer of your architecture: in a client-side app, or in a webservice, for example. The machine 
on which these applications are executed doesn’t even need to have SQL Server installed, so long as it 
has the two libraries listed above (and the prerequisites to execute the code they contain, namely the 
.NET Framework and the Microsoft C++ runtime libraries). 
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■ Note  You can import SQL Server’s spatial libraries and use them from within other applications, such as a WPF 
application, an ASP.NET webpage, or a console application. However, because the SqlServerSpatial.dll library uses 
unmanaged code, these applications must be run on a Windows-based platform, and you cannot use the spatial 

datatypes in a Silverlight application, for example. 

Whereas the SQL Server spatial datatypes are called geography and geometry, when you call 
directly into the SqlServer.Types.dll library from .NET, the corresponding spatial datatypes are called 
SqlGeography and SqlGeometry. Throughout this book, I concentrate on examples that use the geography 
and geometry types as they are implemented in SQL Server. However, it is worth remembering that 
almost all of the same functions can be applied to the equivalent SqlGeography and SqlGeometry types 
in a .NET application (one significant exception to this rule is that it is only possible to create and 
utilize a spatial index on data held in the database itself). 

The geography Datatype 
The most important feature of the geography datatype (and its .NET equivalent, SqlGeography) is that it 
stores geodetic spatial data, which take account of the curved shape of the Earth. 

In order to define positions on a geodetic model, geography data is always stated using angular 
coordinates of latitude and longitude from a geographic coordinate system. Not only is geography data 
defined and stored on a geodetic model, but when you write spatial queries involving geography data, 
SQL Server uses angular computations to work out the result. These computations are calculated based 
on the properties of the ellipsoid model in which that data was defined. 

For example, if you were to define a LineString connecting two Points on the Earth's surface in the 
geography datatype, the line would curve to follow the surface of the reference ellipsoid between the 
Points. Every “line” drawn between two Points in the geography datatype is actually a great elliptic arc: 
that is, the line on the surface of the ellipsoid formed by the plane intersecting the start and end Points 
of the line and the center of the reference ellipsoid. This concept is illustrated in Figure 3-1. 

 

Figure 3-1. Calculations on the geography datatype account for curvature of the Earth. 
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Spatial Reference Systems for the geography Datatype 
The geography datatype performs calculations with respect to the reference ellipsoid, therefore 
geography data can only be defined using one of the geographic spatial reference systems supported by 
SQL Server, as listed in the sys.spatial_reference_systems table. This table contains the metadata 
required by SQL Server to perform the appropriate ellipsoidal calculations, and its structure is shown 
in Table 3-3. 

Table 3-3. Structure of the sys.spatial_reference_systems Table 

Column Name Description 

spatial_reference_id The integer identifier used within SQL Server 2012 to refer to 
this system. 

authority_name The name of the standards body that administers this reference. 

authorized_spatial_reference_id The identifier allocated by the issuing authority to refer to this 
system. 

well_known_text The parameters of the spatial reference system, expressed in 
Well-Known Text format. 

unit_of_measure A text description of the unit used to express linear 
measurements in this system, such as, "metre" or "foot". 

unit_conversion_factor A scale factor for converting from meters into the appropriate 
linear unit of measure 

■ Note  Currently all but one of the spatial reference systems supported by SQL Server are based on the EPSG 
registry, and the value of the internal spatial_reference_id for any system listed in sys.spatial_reference_systems 
is the same as the authorized_spatial_reference_id allocated by the EPSG. The only exception is SRID 104001, a 

system defined by Microsoft that defines coordinates on a perfect unit sphere. 

The parameters that describe a geographic coordinate system (the ellipsoid, prime meridian, 
angular unit of measure, and the like) are defined in WKT format in the well_known_text column of the 
sys.spatial_reference_systems table. However, you might also have noticed that one of the other 
columns of data defined in the sys.spatial_reference_systems table is unit_of_measure. Why does SQL 
Server need to know a separate unit of measure, you might ask, when there is already a unit of 
measure embedded in the well_known_text definition of the system (which, for latitude and longitude 
coordinates as used by a geographic coordinate system, is generally degrees)? 

The answer is that, although angular units of latitude and longitude are all very well for describing 
the location of Points, they are not that helpful for expressing the distance between Points, nor the area 
enclosed within a set of Points. For example, using the spatial reference system EPSG:4326, we can state 
the location of Paris, France as a point at 48.87°N, 2.33°E. Using the same system, the location of Berlin, 
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Germany could be described as 52.52°N, 13.4°E. However, if you wanted to know the distance between 
Paris and Berlin, it would not be very helpful to state that they were 11.65° apart, with the answer 
measured in degrees. You would probably find it much more useful to know that the distance between 
them was 880 km, or 546 miles, say.  

To account for this, SQL Server defines an additional linear unit of measurement for every 
geodetic spatial reference system. When you use the geography datatype, although coordinates must be 
supplied in angular latitude and longitude coordinates, the results of any calculations are returned in 
the linear unit of measure specified in the unit_of_measure column of the 
sys.spatial_reference_systems table for the relevant spatial reference system. 

To check the units of measurement corresponding to a particular spatial reference system, you 
can run a query as follows (substituting the SRID of the appropriate spatial reference system). 

SELECT  
  unit_of_measure  
FROM  
  sys.spatial_reference_systems  
WHERE  
  authority_name = 'EPSG' 
  AND 
  authorized_spatial_reference_id = 4326; 

This query gives the following result, which tells us that linear measurements of any geography 
data defined using the EPSG:4326 spatial reference system are stated in meters. 

metre 

With this knowledge, we can use the geography datatype to determine the distance between Paris 
and Berlin based on the latitude and longitude coordinates as stated previously, but returning the 
answer in meters. This is shown in the following code listing. 

DECLARE @Paris geography = geography::Point(48.87, 2.33, 4326); 
DECLARE @Berlin geography = geography::Point(52.52, 13.4, 4326); 
SELECT @Paris.STDistance(@Berlin); 

The result, a distance of just under 880 km, is as follows. 

879989.866996421 

■ Note  Every time you store an item of data using the geography type, you must supply the SRID of the spatial 
reference system from which the coordinates were obtained. SQL Server 2012 uses the information contained in 
the spatial reference system to apply the relevant model of curvature of the Earth in its calculations, and also to 
express the results of any linear methods in the appropriate units of measurement. The supplied SRID must 

therefore correspond to one of the supported spatial references in the sys.spatial_reference_systems table. 
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Correct Ring Orientation for geography Polygons 
Recall that a ring is a closed LineString, and a Polygon geometry is made up of one or more rings that 
define the boundary of the area contained within the Polygon. Ring orientation refers to the 
“direction,” or order, in which the Points that make up the ring of a Polygon are listed. 

The geography datatype defines features on a geodetic model of the Earth, which is a continuous 
round surface. Unlike the image created from a map projection, this geodetic model has no edges; you 
can continue going in one direction all the way around the world and get back to where you started. 
This becomes significant when defining a Polygon ring because when using a three-dimensional 
round model it is ambiguous as to what area is contained inside the ring, and what is outside. Consider 
Figure 3-2, which illustrates a Polygon defined using the geography datatype whose exterior ring is a 
series of points drawn around the equator; does the interior of this Polygon include the Northern 
Hemisphere, or the Southern Hemisphere?  

 

Figure 3-2. The importance of Polygon ring orientation using the geography datatype. Does the Polygon 
created from the ring shown here contain the Northern Hemisphere, or the Southern Hemisphere? 

To resolve this ambiguity, SQL Server applies a rule known as the "left-hand rule" (or, sometimes, 
the "left-foot rule"); if you imagine yourself walking along the ring of a geography Polygon, following 
the points in the order in which they are listed, SQL Server 2012 treats the area on the “left” of the line 
drawn between the Points of the ring as the interior of the Polygon, and the area on the “right” as the 
exterior. Another way of thinking about this is to imagine looking down at a point on the surface of the 
Earth from space; if that point is enclosed by a Polygon ring in a counterclockwise direction then that 
point is contained inside the Polygon, otherwise it is outside. 

Applying this rule, we can determine that the Polygon illustrated in Figure 3-2 therefore 
represents the Northern Hemisphere. If the order of the points in the Polygon ring were to be 
reversed, then this Polygon would instead contain the Southern Hemisphere. 
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■ Caution  It is a common mistake to list the points of a Polygon ring with incorrect ring orientation, in which case 
the resulting Polygon is “inside-out”: the area that was intended to be contained within the Polygon is outside, and 
the interior of the Polygon actually contains the entire rest of the Earth’s surface. When defining a Polygon ring in 

the geography datatype, ensure that the interior is on the "left" of the line connecting the points. 

Remember that Polygons can also contain one or more interior rings, which mark out areas of 
space not included in the interior of the Polygon. To define an area of space not included in a Polygon 
you should therefore enclose it in a ring of Points listed in clockwise order, so that the area to be 
excluded lies to the right of the line. The illustration shown in Figure 3-3 demonstrates the correct ring 
orientation required to define a geography Polygon containing a hole. 

 

Figure 3-3. A geography Polygon containing an interior ring. 

As before, if the Points of each ring were listed in reverse order then the Polygon would become 
inverted: the interior of the Polygon would contain the entire surface of the globe except for the area 
shaded in gray in Figure 3-3. 
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■ Tip  The geography datatype defines a ReorientObject() method, which flips the interior and exterior of a 

geography Polygon instance, and has the same effect as reversing the coordinate order of each ring. 

The geometry Datatype 
In contrast to the geography datatype, the geometry datatype operates on a two-dimensional flat plane. 
As such, calculations such as the distance between Points are worked out using simple geometrical 
methods on a flat surface. This is illustrated in Figure 3-4. 

 

Figure 3-4. Calculations on the planar geometry type operate on a flat plane. 

The geometry datatype stores planar spatial data defined using Cartesian (x, y) coordinates, which 
makes it ideally suited to storing coordinate data from a projected spatial reference system. In this case, 
the act of projection has already mapped the geographic position of features on the Earth’s surface onto 
a flat plane. It can also be used to store “unprojected” geographic coordinates of latitude and longitude, 
where the longitude coordinate value is mapped directly to the x value, and the latitude value is used as 
the y value (in doing so, you are implicitly projecting the data using an equirectangular projection). 

In fact, the geometry datatype can be used to store any coordinates that can be expressed using x and 
y values. Examples of such coordinates might be data collected from a local survey, or topological plans 
of a geographically small area where curvature of the Earth can be safely ignored, or geometrical data 
obtained from computer-aided design (CAD) packages. For example, Figure 3-5 shows the floorplan of 
the European SQLBits conference held at the Grand Hotel in Brighton, England in April 2012, defined 
entirely using the geometry datatype and displayed using the SQL Server Management Studio Spatial 
Results tab. This data was created from an original plan supplied in PDF format. 
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Figure 3-5. A floorplan modeled using the geometry datatype. 

Because the geometry datatype uses simple planar calculations, the results of any computations 
will be expressed in the same units of measurement as the underlying coordinate values. The most 
common unit of measurement in which the coordinates of projected spatial reference systems are 
stated is the meter; this is the case for the Universal Transverse Mercator system and many National 
Grid reference systems, for example. If you use the geometry datatype to store data based on one of 
these systems, lengths and distances calculated using the STLength() and STDistance() methods will be 
measured in meters. And, if you were to use STArea() to calculate the area of a geometry, the result 
would be measured in square meters. In contrast, the coordinates used to create the floorplan shown in 
Figure 3-5 were measured in pixels, so using the STArea() method to calculate the area of each room 
would lead to a result measured in pixels squared. 

■ Caution  Earlier, it was stated that the geometry datatype could be used to store "unprojected" geographic 
coordinates of latitude and longitude, directly mapped to the y- and x-coordinates. However, remember that these 

are angular coordinates, usually measured in degrees. If you use the geometry datatype to store information in 
this way then the distances between points would also be measured in degrees, and the area enclosed within a 
Polygon would be measured in degrees squared. This is almost certainly not what you want, so exercise caution 

when using the geometry datatype in this way. To return a geometry calculation measured in meters, say, the 

input coordinates must also be measured in meters. 
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Spatial Reference Systems for the geometry Datatype 
The geometry datatype does not take account of any curvature of the Earth, nor does it rely on knowledge 
of the unit of measurement in which coordinates are defined, therefore stating a different SRID does not 
alter the numeric value of any calculations performed on geometry data. This can be a tricky concept to 
grasp; the first chapter of this book states that any pair of coordinates—projected or geographic—must be 
stated together with their associated spatial reference in order to refer to a position on the Earth. So why 
doesn’t it make a difference what spatial reference identifier is supplied to the geometry datatype? 

The answer is that choosing a difference spatial reference system does make a difference when 
initially determining the coordinates that identify a position on the Earth. However, once those values 
have been obtained, all further operations on those data can be performed using basic geometrical 
methods. Any decisions concerning how to deal with the curvature of the Earth have already been made 
in the process of defining the coordinates that describe where any point lies on the projected image. 

When using the geometry datatype, the distance between a Point at (0 0) and a Point located at (30 
40) will always be 50 units, whatever spatial reference system was used to obtain those coordinates, 
and in whatever units they are expressed. The actual features on the Earth represented by the Points at 
(0 0) and (30 40) will be different depending on the system in question, but this does not affect the way 
that geometry data is used in calculations. The result will always be accurate relative to the spatial 
reference in which the Points themselves were defined. 

Consider the following code listing, which defines the Well-Known Text representation of a 
straight LineString geometry. The LineString in question represents the Royal Mile, which is the 
straight route connecting Edinburgh Castle with the Palace of Holyrood House, running along some of 
the oldest streets in Edinburgh. The coordinates in the Well-Known Text string are defined using 
SRID:27700, which is a projected coordinate system in which coordinates are measured in meters, so 
the result of the STLength() method gives the length of the Royal Mile in meters: 

-- Define the WKT of the LineString 
DECLARE @WKT nvarchar(max) = 'LINESTRING (325156 673448, 326897 673929)'; 
 
-- Construct a geometry LineString from the coordinates using SRID 27700 
DECLARE @RoyalMile geometry = geometry::STGeomFromText(@WKT, 27700); 
 
-- Calculate the length of the LineString 
SELECT @RoyalMile.STLength(); 

The result is 1806.22313128805. Now suppose that we were to use exactly the same Well-Known 
Text string but, this time, change the SRID supplied to the STGeomFromText() method: 

-- Define the WKT of the LineString 
DECLARE @WKT nvarchar(max) = 'LINESTRING (325156 673448, 326897 673929)'; 
 
-- Construct a geometry LineString from the coordinates using SRID 32039 
DECLARE @RoyalMile geometry = geometry::STGeomFromText(@WKT, 32039); 
 
-- Calculate the length of the LineString 
SELECT @RoyalMile.STLength();  

The result is still 1806.22313128805, exactly as before. As demonstrated, the numeric value of any 
calculations performed using geometry data remains unchanged no matter in what spatial reference 
system the coordinates are provided. However, that doesn't mean to say that it's not still important to 
provide the correct SRID to identify the spatial reference system from which coordinates were derived. 
The spatial reference system defines the important additional information that makes those coordinates 
relate to a particular position on the Earth, and enable you to interpret the results appropriately: 
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The first code listing uses the correct SRID for the coordinates, EPSG:27700, 
which defines the Royal Mile as a straight line between two points in 
Edinburgh, 1806 meters in length. 

The second code listing uses the same coordinate values but suggests that they 
are defined relative to the Texas Central coordinate system (EPSG:32039). 
Although the numerical value of the result is the same, the interpretation of 
this result would imply that the Royal Mile is a straight line of length 
1806.22313128805 feet, drawn between two points in the Quitman Mountains 
of Texas, United States. This is clearly incorrect! 

Supplying an incorrect SRID will lead to many problems farther downstream in your spatial 
applications. Once the metadata associated with a set of coordinates has been lost it cannot be 
redetermined, because looking at a set of coordinate values in isolation gives very little indication of 
the system from which they have been derived. By explicitly stating the SRID with every set of 
coordinates, not only will you retain this important metadata, but it will also ensure that you do not 
accidentally try to perform a calculation on items of spatial data defined using different spatial 
reference systems, which would lead to an invalid result. 

So please, I implore you, always, always use the correct SRID with any spatial data in SQL Server, 
even when using the geometry datatype! 

■ Note  The sys.spatial_references table only contains details of geodetic spatial references, because these 
are required to perform calculations using the geography datatype. In order to find the appropriate SRID for a 

projected coordinate system, you can look it up on the EPSG website at http://www.epsg-registry.org/. 

Storing Nongeodetic Data 
The geometry datatype stores planar coordinates and uses standard Euclidean methods to perform 
calculations for which no SRID is necessary, therefore it can also be used to store any data that can be 
described using pairs of x and y floating point coordinates (or, if using the optional z- and m-
coordinates, up to four coordinate values per item). Such items of data do not necessarily have to relate 
to any particular model of the shape of the Earth; for example, you could store the location of items in a 
warehouse using x- and y-coordinates relative to a local origin, or describe the location of components 
on a printed circuitboard. 

When using the geometry type to record data such as these, you should use SRID 0. This SRID 
denotes that the coordinates are not derived from any particular spatial reference system, and 
coordinate values should be treated as x and y values with no specific units of measurement. 

The Insignificance of Ring Orientation in a geometry Polygon 
The geometry datatype operates on an infinite flat plane, thus the area contained by a closed line 
drawn between any set of points is unambiguous. Therefore, unlike when using the geography 
datatype, ring orientation (the direction in which the points of a ring are specified) is unimportant for 
geometry Polygons. 

In the geometry datatype, a Polygon whose exterior ring is defined by the coordinates 

(50,30), (52,30), (52,31), (50,31), (50,30)  
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contains exactly the same area as if it were specified by the following coordinates, 

(50,30), (50,31), (52,31), (52,30), (50,30) 

This applies to both interior and exterior rings of the geometry datatype, so the area contained by a 
geometry Polygon remains exactly the same even if the points are supplied in reverse order. This is 
illustrated in Figure 3-6, where the highlighted Polygon will always represent the Northern 
Hemisphere irrespective of ring orientation. 

 

Figure 3-6. Ring orientation is not significant in the geometry datatype. 

Comparing geography and geometry Datatypes 
On the face of it, the decision as to which spatial datatype you should use in a given situation is pretty 
straightforward: if you’ve got projected coordinate data, measured in x- and y-coordinates, then use the 
geometry datatype; if, on the other hand, you’ve got geographic coordinate data expressed in latitude and 
longitude coordinates, then use the geography datatype. However, although the difference in accepted 
coordinate systems is certainly the single most important difference between the types, there are other 
factors that you should bear in mind when deciding which datatype to use for a given application. 

Consistency 
In order to perform operations using different items of spatial data in SQL Server 2012, all of the data 
must be defined using the same spatial reference system, and stored using the same datatype. It is not 
possible to combine geometry and geography data in the same query, nor perform operations on items 
of the same datatype defined using different SRIDs. If you attempt to do so, SQL Server will return a 
NULL result.  

If you already have existing spatial data that you would like to integrate into your system, you 
should therefore use a datatype suitable for the format in which that data has been collected. For 
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instance, if you have projected data collected from the National Grid of Great Britain, you should store 
the data in a geometry field, using the SRID of 27700. If you are using latitude and longitude coordinate 
data collected from a GPS system, then you should choose a geography type, with SRID of 4326. If you 
would like to combine multiple sets of data defined in different spatial reference systems, then you 
must first transform one or more of the sets of coordinate data in order to make them consistent. For 
more information on reprojection and transformation, refer to Chapter 8. 

■ Note  Remember that the spatial reference identifier provides descriptive information about the system in which 
coordinate values have been defined; it does not dictate the system itself. You therefore cannot simply update the 
SRID value relating to a set of coordinates to express them in a different spatial reference system. Instead, to 

convert coordinates from one spatial reference system into another you must transform or reproject the data. 

Accuracy 
Calculations using the geometry datatype are performed on a flat plane. Any geospatial features drawn 
on a flat plane must have been projected and, as explained in Chapter 1, the process of projecting any 
three-dimensional object onto a surface will always lead to some distortion in the way those features 
are represented. This distortion may affect the area, shape, distance, or direction of the data. Therefore, 
the results of certain operations using the geometry datatype will inevitably also be distorted, with the 
effect of distortion varying depending on the projection used and the particular part of the Earth's 
surface on which the calculation is based.  

Generally speaking, the greater the surface area being projected, the more distortion occurs. 
Although over small areas the effects of these distortions are fairly minimal, in  large-scale or global 
applications there can be a significant impact on the accuracy of any results obtained using the 
geometry datatype when compared to the geography datatype (which is not distorted by projection). 

In many applications that cover only a small spatial area, such as those contained within a 
particular state of the United States, the results of calculations performed using the geometry type on 
the relevant state plane projection will be sufficiently accurate. However, over larger distances, the 
computations based on a planar projection will become more and more inaccurate, and the geography 
datatype become a more suitable choice.  

The End(s) of the World 
One particularly extreme example of the distortion occurring as a result of projection is that, unlike the 
Earth itself, a projected map has edges. When storing projected spatial data using the geometry 
datatype, special consideration therefore needs to be taken in situations where you need to define 
data that cross these edges. This typically occurs in the following situations. 

• Any geometries or calculations that cross the 180th meridian 

• Any Polygon geometries that enclose the North or South Pole 

To demonstrate how these distortions affect calculations using the geometry datatype, consider 
how you might calculate the shortest straight line route taken from Vancouver to Tokyo. Using the flat 
geometry datatype, the result (based on a map projection centered on the Greenwich meridian) might 
look like that shown in Figure 3-7. 
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Figure 3-7. The shortest line between Tokyo and Vancouver using the geometry datatype. 

In contrast, the geography datatype uses a continuous round model of the Earth, which is unaffected 
by the edges introduced as a result of projection. The answer obtained for the shortest route between 
Tokyo and Vancouver using the geography datatype would instead look like that shown in Figure 3-8. 

 

Figure 3-8. The shortest route between Tokyo and Vancouver using the geography datatype. 
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It is obvious that, in cases such as these, the results obtained using the geography datatype give a 
more accurate answer based on the real round Earth. 

A further demonstration of these issues is the problem of trying to define geometry instances that 
extend across the edges of the map in a given projection. Figure 3-9 highlights a Polygon geometry 
representing Russia. 

 

Figure 3-9. Polygon geometry representing Russia crossing edges of a projection in the geometry datatype. 

Notice that although most of the Polygon is contained in the eastern hemisphere, the most 
northeasterly part of Russia (the region of Chukotka) actually crosses the edge of the map, to appear in 
the western hemisphere. Using the geometry datatype based on this projection, it would not be possible 
to represent Russia using a single Polygon geometry; instead you would need to use a MultiPolygon 
geometry containing two elements to represent the two distinct Polygons created where the edge of 
the map had caused the original feature to be divided in two. 

Both of the problems demonstrated in this section could be mitigated to some extent by choosing 
an appropriate projected spatial reference system in which the geometry in question does not cross 
the edges of the map. However, although this would avoid the issue for a particular case, it does not 
solve it; even if a different projection is chosen there will always be some features that will occur on 
the new edges instead. 

If you expect to have to deal with geometries that risk extending over the edges of a map 
projection, then the geography datatype would be a better choice in which to store your data. 

Presentation 
Because the geography datatype operates on a three-dimensional model of the Earth, if you want to 
present the results of any geography data in a display, they will need to be projected (unless you’ve got 
one of those fancy 3D displays). As we have already discussed, this introduces distortion. In the example 
above, although the geography datatype accurately works out the shortest straight line connecting two 
points, if we were to display this result on a projected map, this "straight" line would appear distorted 
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and curved. The exact effect of this distortion will differ depending on the particular properties of the 
map projection used.  

Conversely, because as the geometry datatype is based on data that has already been projected 
onto a plane, no further calculations or distortion need be introduced to express the results on a map: 
"straight" lines in the geometry datatype remain straight when drawn on a map (providing the map is 
projected using the same projection as the spatial reference system from which the points were 
obtained). 

If you are storing spatial data in SQL Server specifically for the purpose of display on a particular 
map (say, for creating a tile overlay on Bing Maps or Google Maps), then it might be beneficial to 
store that data using the geometry datatype in the same projected spatial reference system as the map 
on which it is intended to be displayed. This reduces additional calculations required when the data is 
retrieved and projected onto the map, and reduces the need to introduce further distortion in the data 
at display time.  

Performance 
Performing ellipsoidal computations uses more computing resources than Cartesian computations. As 
a result, spatial calculations using the geography datatype may take longer to compute than the 
equivalent operations using the geometry datatype. This only affects methods where the geography 
datatype has to calculate metrics based on the geodetic model of the Earth (such as distances, lengths, 
or areas). When using methods that return properties of objects which do not take account of the model 
of the Earth, such as returning the number of points in an object, there is no difference in performance 
between geography and geometry types. 

OGC Standards Compliance 
According to their website, the Open Geospatial Consortium (OGC) is: 

“a non-profit, international, voluntary consensus standards organization that is 
leading the development of standards for geospatial and location based services.” 

 —http://www.opengeospatial.org/ 

The OGC administer a number of industrywide standards for dealing with spatial data. By 
conforming to these standards, different systems can ensure core levels of common functionality, which 
ensures that spatial information can be more easily shared among different vendors and systems. 

In October 2007, Microsoft joined the Open Geospatial Consortium (OGC) as a principal member, 
and the spatial datatypes implemented in SQL Server 2012 are largely based on the standards defined 
by the OGC:   

• The geometry datatype conforms to the OGC Simple Features for SQL 
specifications v1.1.0 (http://www.opengeospatial.org/standards/sfs) and 
implements all the required methods to meet that standard. 

• The geography datatype implements most of the same methods as the geometry 
datatype, although it does not completely conform to the required OGC standards.  

As such, if it is important to you to use spatial methods in SQL Server 2012 that adhere to accepted 
OGC standards (such as if you are replacing the functionality of a legacy system based on those 
standards), you should use the geometry datatype.  
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General Rules 
If you are still unsure which type to use, consider the following general rules. 

• If you have latitude and longitude coordinate data (collected from a GPS, from 
Google Earth, or most sources listed on the Web) use the geography datatype, 
normally using the default 4326 SRID. 

• If you have x- and y-coordinate data (e.g., collected from a flat map), use the 
geometry datatype with an SRID to represent the map projection and datum used. 

• If you have x- and y-coordinate data that are not defined in relation to any 
particular model of the Earth, use the geometry datatype with SRID = 0. 

Storage Requirements 
The datatypes geometry and geography are both of variable length. In contrast to a fixed-length 
datatype such as int or datetime, the actual amount of storage required for an item of spatial data 
varies depending on the complexity of the object that the data describes. Just as a varchar(max) field 
varies in size according to the number of characters in the string being stored, so too does a geometry 
or geography field vary in size according to the number of points in the corresponding geometry. 

The structure of an item of geometry or geography data begins with a header section, which defines 
basic information such as the type of shape being described, the spatial reference system used, and the 
overall number of points in the object. This header is immediately followed by the coordinate values of 
each x- and y- (or longitude and latitude) coordinate in the geometry, represented in 8-byte binary 
format. The more points that an object has in its definition, the longer this binary stream will be, and 
therefore the more storage space will be required. 

• A Point geometry defined with only two coordinates will always occupy 22 bytes 
of storage space. 

• A LineString between two Points, containing the minimum of four coordinates (x 
and y values of the start and end Point), requires 38 bytes of storage. This 
increases by 16 bytes for every additional line segment added to the LineString. 

• A Polygon occupies a variable amount of space depending on the number of Points 
with which it is defined (not related to the area of space contained by the Polygon). 
If a Polygon contains interior rings, these also increase the storage required. 

There is no specific maximum size of an item of geometry or geography data. However, SQL Server 
2012 has an overall restriction on any kind of large object, which is limited to a size of 231 – 1 bytes. 
This is the same limit as is applied to datatypes such as varbinary(max) and varchar(max), and equates 
to approximately 2 Gb for each individual item of data. You would need to store a very complex 
geometry object in order to exceed this limit. If necessary, remember that complex geometries can be 
broken down into a number of individual objects which each fit within this limit. 

■ Tip  You can use the DATALENGTH function to find out the number of bytes used to store the value of any item of 

geometry or geography data (or, for that matter, any other item of data). 
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Internal Data Structure 
Generally speaking, you do not need to know the internal format that SQL Server uses to store 
geography or geometry data; the dedicated methods provided by each type provide the functionality 
required to create and modify instances as appropriate. However, on some occasions it can be useful to 
modify the bytes of a geography or geometry instance directly. For example, you may be designing a 
spatial application using nonmanaged code (such as C or C++) that cannot use the SqlGeography and 
SqlGeometry types directly, and you need to programmatically construct a geography or geometry 
instance from its constituent elements. 

To investigate the format used by SQL Server, let’s first create a simple geography Point instance 
using the Point() static method and then SELECT the corresponding native value, as shown in the 
following code listing. 

SELECT 
geography::Point(40, –100, 4269); 

The result is: 

0xAD100000020C000000000000444000000000000059C0 

This value may be broken down into a number of constituent parts, as shown in Table 3-4. 

Table 3-4. Elements of a Geography Instance 

Element Description 

0x Hexadecimal notation identifier 

AD100000 Spatial Reference identifier (4 bytes). The integer SRID value—in this case 
4269—expressed as a 4-byte binary value. 

02 Version number (1 byte). SQL Server 2008/SQL Server 2008 R2 uses version 1 
serialization, whereas SQL Server 2012 uses version 2 serialization. 

OC Serialization properties (1 byte). This value is set from a series of bit flags 
representing the following additional properties of the geometry. 

Whether the geometry is larger than a hemisphere (0 × 20) 

Whether the geometry is a single line segment (0 × 10) 

Whether the geometry is a single Point (0 × 08) 

Whether the geometry is valid (0 × 04) 

Whether the geometry contains m-coordinates (0 × 02) 

Whether the geometry contains z-coordinates (0 × 01) 

For this case, the flags for a valid (0 × 04), single Point (0 × 08) geometry have 
been set, leading to the value 0C 
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Element Description 

0000000000004440 Latitude coordinate (40) expressed as 8-byte floating point binary 

00000000000059C0 Longitude coordinate (–100) expressed as 8-byte floating point binary 

Suppose instead that we wanted to construct programmatically a geography Point instance defined 
at a latitude of 42 degrees, longitude of –90 degrees, using the SRID 4326. To do so, we could build up 
the geography value from the corresponding binary elements, as shown in the following code listing. 

DECLARE @point geography = 
  0xE6100000 +              -- SRID (4326) 
  0x02 +                    -- Version (2) 
  0x0C +                    -- Properties (Single Point [8] + Valid [4]) 
  0x0000000000004540 +      -- Latitude (42) 
  0x00000000008056C0        -- Longitude (–90) 
   
SELECT 
  @point.STSrid, 
  @point.ToString(); 

The WKT results returned by the ToString() method confirm that the geography Point has been 
created at the appropriate coordinates, using the 4326 SRID: 

4326    POINT(–90 42) 

This is admittedly a fairly contrived example, and there are few situations in which you would 
need to do such manual binary manipulation in T-SQL. However, it does demonstrate that it is 
certainly possible to do so, and you can reuse the same approach in other application layers. 

■ Note  For more information on the serialization format used for SQL CLR datatypes, refer to the following 
document: http://download.microsoft.com/download/7/9/3/79326E29-1E2E-45EE-AA73-

74043587B17D/%5BMS-SSCLRT%5D.pdf. 

Converting Between Datatypes 
Given that the two spatial datatypes are so similar, you might think that it would be an easy task to 
convert data between the two. However, you cannot simply CAST or CONVERT between the two types. If 
you try to do so, such as in the following query, 

DECLARE @geog geography; 
SET @geog = geography::STGeomFromText('POINT(23 32)', 4326); 
SELECT CAST(@geog AS geometry); 

you will receive the error, 
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Msg 529, Level 16, State 2, Line 5 
Explicit conversion from datatype sys.geography to sys.geometry is not allowed. 

Notice the wording used in this error message: conversion is not allowed. This is not a technical 
limitation of SQL Server; because geometry and geography both use the same underlying structure, 
converting data between the types is incredibly easy from a technical point of view. Rather, this is a 
deliberate restriction imposed by SQL Server to ensure that you understand the implications of 
working with each datatype, and that you don’t casually swap data between them. 

There are very few scenarios in which it makes sense to take coordinate data from one spatial 
datatype and convert it directly into the other. If you find a requirement to convert data between the 
two datatypes then it normally also involves transforming the associated coordinate data from a 
geographic coordinate system used in the geography datatype to a projected coordinate system for the 
geometry datatype, for example. Nevertheless, there are a few occasions when it is useful to be able to 
take geographic coordinates from a geography instance and convert them directly into the geometry 
datatype. This might be the case if you want to use one of the methods that is only available to the 
geometry datatype, such as STBoundingBox(), or STRelate(). 

In order to convert from geography to geometry, we can take advantage of the fact that both 
datatypes can be represented by, and created from, a binary stream in the Well-Known Binary format. 
In the following example the value of the geometry variable, @geom, is created from the STGeomFromWKB() 
static method. The arguments passed to this method are the Well-Known Binary representation and 
SRID of the geography variable @geog. 

-- First, create a geography instance 
DECLARE @geog geography; 
SET @geog = geography::Point(23,32, 4326); 
 
-- Convert to geometry via WKB 
DECLARE @geom geometry; 
SET @geom = geometry::STGeomFromWKB(@geog.STAsBinary(), @geog.STSrid); 

The resulting geometry Point instance is defined using exactly the same coordinates and SRID as 
the original geography instance @geog. 

The approach just described can be used to convert any geography instance to the geometry 
datatype. Inasmuch as geometry does not enforce any restrictions on the SRID used, any coordinate 
data stored using the geography datatype can also be stored using the geometry datatype. However, in 
order to perform conversion the other way, from geometry to geography, the coordinate values of the 
existing geometry instance must represent latitude–longitude coordinates taken from a supported 
geodetic spatial reference system. If you are storing Northing and Easting coordinates from a 
projected system, or other nongeodetic data, those data can only be stored using the geometry datatype. 

Creating Spatially Enabled Tables 
There are no special attributes or configurations required to enable spatial data to be stored in a SQL 
server database; all that is required is a table containing at least one geography or geometry column. 
The following code listing creates a table containing two columns: CityName, which can hold a 255-
character variable length string, and CityLocation, which can be used to store the location of that city 
using the geography datatype: 

CREATE TABLE dbo.cities ( 
  CityName varchar(255), 
  CityLocation geography 
); 
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New geometry or geography columns can be added to existing tables, enabling spatial information 
to be seamlessly integrated alongside existing items of data. Let's suppose that you have an existing 
table, customer, that contained the following fields of customer information. 

CREATE TABLE dbo.customer ( 
  CustomerID int, 
  FirstName varchar(50), 
  Surname varchar (50), 
  Address varchar (255), 
  Postcode varchar (10), 
  Country varchar(32) 
); 

Now suppose that you want to add an additional spatial field to this table to record the location of 
each customer's address. No problem; geography and geometry fields can be added to existing tables just 
like any other by using an ALTER TABLE statement as follows. 

ALTER TABLE dbo.customer 
ADD CustomerLocation geography; 

By extending the table in this way, we have enabled the possiblity of using spatial methods in 
conjunction with our existing customer data, to find answers to questions such as how many customers 
there are within a certain area, and how far a particular customer lives from his closest store. 

Enforcing a Common SRID 
It is worth nothing that, although all the values stored in a single geography or geometry column must 
match the datatype of that column, they do not all have to share the same spatial reference system. 
Within a single geometry column, you may have instances defined using the UTM grid, the Alaskan 
State Plane coordinate system, and the National Grid of Finland, for example. However, I find that the 
flexibility to store instances from different spatial reference systems in the same column is rarely 
useful; remember that, in order to perform calculations involving two or more items of data, they must 
be defined using the same spatial reference system. Mixing spatial reference systems within the same 
column introduces an unnecessary chance of error. 

Within a single column of a table, I only store instances defined using a common spatial reference 
system. I normally name this column according to the type of data and the spatial reference system 
used. For example, for a column containing geography instances defined using SRID 4326, I would 
choose the column name geog4326. Of course, you can name your spatial columns using any name 
you’d like, but I find that using this convention helps me by knowing, at a glance, important metadata 
about all the values in that column. 

To ensure that all the instances in a column are defined using the same system, you can add a 
constraint on the STSrid property of that column. For example, the following code listing demonstrates 
how to add a constraint to ensure that only instances defined using SRID 4199 (Egypt 1930) are stored 
in the CustomerLocation column of the customer table. 

ALTER TABLE dbo.customer 
ADD CONSTRAINT enforce_customerlocation_srid4199  
CHECK (CustomerLocation.STSrid = 4199); 

It is now possible to perform calculations safely using any two data items from this column, 
knowing that they will be defined based on the same spatial reference system. You may also find it 
useful to enforce additional constraints on the type of spatial data stored in a particular column. For 
example, the following code listing creates a constraint that uses the STGeometryType() method to 
ensure that only Point geometries may be stored in the CustomerLocation column. 
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ALTER TABLE dbo.customer 
ADD CONSTRAINT enforce_customerlocation_point  
CHECK (CustomerLocation.STGeometryType() = 'POINT'); 

Summary 
In this chapter you learned about the two datatypes used for storing spatial data in SQL Server 2012, 
geometry and geography, and examined the key differences between the two types. 

• The geography datatype uses geodetic spatial data, which accounts for the 
curvature of the earth. 

• The geometry datatype uses planar spatial data, in which all points lie on a flat 
plane. 

• You considered the factors influencing the choice of which datatype to use, and 
saw some example usage scenarios for each type. 

• You saw the reasons why, whichever datatype you use, it is important to state the 
correct spatial reference identifier associated with any coordinate data. 

• You examined the structure in which SQL Server 2012 stores spatial data, 
represented as a stream of binary values. 

• You also saw how to add a column of spatial data to a SQL Server table, and add a 
constraint to that column to ensure that only data of a certain SRID could be 
inserted.  
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Creating Spatial Data  

In the first three chapters of this book I introduced you to the main components necessary to define 
spatial data in SQL Server, namely, a set of coordinate locations, the spatial reference system in which 
those coordinates are defined, the type of geometry used to represent a feature, and the datatype in 
which that feature is stored. 

In this chapter, we apply the knowledge you’ve gained so far in a practical context, by looking at 
the different methods you can use to create items of geometry or geography data. Every method requires 
those same key pieces of information: the spatial reference system, type of geometry, and datatype, 
together with the coordinates that define that instance. 

The way in which you provide those elements varies depending on the method you choose; SQL 
Server implements methods that create data from several different standard formats: Well-Known 
Text (WKT), Well-Known Binary (WKB), and Geography Markup Language (GML). It also exposes an 
API that allows you to construct items of spatial data programmatically using the SqlGeometryBuilder 
and SqlGeographyBuilder classes. Each of these methods is examined in turn and the advantages and 
disadvantages of each discussed. 

Creating Spatial Data from Well-Known Text 
Well-Known Text is one of the standard formats defined by the Open Geospatial Consortium for the 
exchange of spatial information. It is a simple, text-based format that is easy to examine and 
understand. You have already seen several examples of WKT in this book; it is the format SQL Server 
2012 uses to store the parameters of supported spatial reference systems in the well_known_text 
column of the sys.spatial_reference_systems table, and it is also used in the examples of each of the 
types of geometry demonstrated in Chapter 2. 

Some of the advantages of the WKT format are: 

• It is a simple structured format that is easy to store and share between systems. 

• Because it is text-based, it is easy to examine visibly and identify the 
information conveyed in a WKT representation. 

However, it also has the following disadvantages. 

• As with any text-based representation, it is not possible to precisely state the 
value of certain floating point coordinate values obtained from binary methods. 
The inevitable rounding errors introduced when attempting to do so will lead to 
a loss of precision. 
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• SQL Server must parse the text in a WKT representation into its own internal 
binary format, therefore creating objects from WKT may be slower than other 
methods. 

Because WKT is both simple to read and understand, it is the format used in most of the MSDN 
online documentation and code samples, as well as in other resources. It is also the format that is most 
widely used throughout this book. 

Choosing a WKT Static Method  
SQL Server 2012 implements dedicated static methods for creating each of the basic types of geometry 
from WKT. It also implements some generic static methods that can create any of the supported kinds 
of geometry. Table 4-1 lists the different methods that can be used. 

Table 4-1. Methods to Instantiate Spatial Data from Well-Known Text 

Geometry Static Method 

Point STPointFromText() 

LineString STLineFromText() 

Polygon STPolyFromText() 

MultiPoint STMPointFromText() 

MultiLineString STMLineFromText() 

MultiPolygon STMPolyFromText() 

GeometryCollection STGeomCollFromText() 

Any supported geometry STGeomFromText() / Parse() 

All of the methods listed in Table 4-1 are implemented by both the geometry and geography 
datatypes, with the datatype of any created instance matching the datatype of the method from which it 
was created. Note that there are no dedicated methods to create CircularString, CurvePolygon, or 
CompoundCurve geometries from WKT; these methods appear to have been overlooked in the OGC 
standard and so are not implemented by SQL Server either. To create a curved geometry from WKT 
you must use the generic STGeomFromText() or Parse() methods. 

Passing WKT to the Method 
The syntax for using any of the WKT static methods is the same: first stating the datatype to which the 
method belongs followed by the method name, separated by double colons. Each method itself requires 
two parameters: the first being the WKT of the geometry to be created, and then the SRID of the spatial 
reference system. 

This syntax is illustrated as follows. 

Datatype::Method( WKT, SRID ) 
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Let’s illustrate this with a few examples. To begin, let’s take the simple example of a Point located 
at geographic coordinates of latitude –27.5 and a longitude of 153, measured using the WGS84 spatial 
reference system, SRID 4326. This is the approximate location of Brisbane, Australia. 

The Well-Known Text representation of this Point is: 

POINT(153 -27.5) 

We can create a geography Point instance by supplying this WKT string to the dedicated 
STPointFromText() method, together with the associated SRID, as follows. 

SELECT 
geography::STPointFromText('POINT(153 -27.5)', 4326); 

Notice that the WKT parameter is passed as a nvarchar(max) text string, and supplied in single 
quotes. If you use the SqlServer.Types.dll library in a .NET application then the WKT is passed as a 
SqlChars value instead, as shown in the following C# code listing. 

SqlGeography Point = SqlGeography.STPointFromText( 
  new SqlChars("POINT(153 -27.5)"), 
  4326); 

The STPointFromText() method can be used to create Point instances only. If you supply the WKT 
representation of a different sort of geometry to the STPointFromText() method then SQL Server will 
throw an exception (System.FormatException 24142). To create a LineString geometry, for example, you 
should use the STLineFromText() method instead, supplying the WKT of a LineString as shown in the 
following code listing. 

SELECT 
geometry::STLineFromText('LINESTRING(300500 600150, 310200 602500)', 27700); 

If you know in advance that the data you will be creating will only be of a certain type of 
geometry, then I generally recommend that you use the method dedicated to that geometry type, 
STPointFromText() for Points, STPolyFromText() for Polygons, and so on. Using these methods will 
provide a first sanity check of your data by ensuring that it only contains geometries of the expected 
type; any other data will throw an exception. 

However, there are also occasions when you require a method that will create spatial data from a 
WKT string of any sort of geometry. In these situations, you can use the STGeomFromText() method 
instead. The following code listing demonstrates how the STGeomFromText() method can be used to 
create both the Point and LineString from the previous examples.  

SELECT 
geography::STGeomFromText('POINT(153 -27.5)', 4326), 
geometry::STGeomFromText('LINESTRING(300500 600150, 310200 602500)', 27700); 

The results obtained from the STGeomFromText() method are identical to those obtained from the 
dedicated STPointFromText() or STLineFromText() methods used previously. 

■ Note  There is no performance benefit from using a geometry type-specific method such as 
STPointFromText() rather than the generic STGeomFromText() method. The sole advantage is that it restricts the 
types of geometry that will be accepted in the WKT input (and therefore, by implication, the type of geometry that 
will be returned by the method). If this is your objective, you might also want to consider adding a CHECK 
constraint that tests the value returned by the STGeometryType() method at the point that a geometry is inserted 
into a table, as demonstrated in Chapter 3.  
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Another alternative is to use the generic Parse() method. In common with the STGeomFromText() 
method, the Parse() method will create an item of spatial data from any supplied WKT representation. 
The difference is that, unlike the other static methods, Parse() does not require you to set an SRID; the 
spatial reference system is assumed based on the datatype being used. For the geography datatype, the 
Parse() method always uses SRID 4326, whereas for the geometry datatype it is SRID 0. 

If you attempt to set the value of a geometry or geography column or variable directly from a 
character string, the string will be treated as WKT and passed to the Parse() method. As such, the 
following T-SQL code listing, 

DECLARE @Delhi geography = 'POINT(77.25 28.5)'; 

produces exactly the same result as 

DECLARE @Delhi geography = geography::Parse('POINT(77.25 28.5)'; 

which, in turn, is equivalent to 

DECLARE @Delhi geography = geography::STGeomFromText('POINT(77.25 28.5)', 4326); 

As long as you are dealing with the common cases of using the geography datatype with SRID 4326, 
or the geometry datatype with SRID 0, you can therefore use the Parse() method as a convenient way of 
shortening your code.  

To demonstrate the same example using the static methods provided by the SqlGeography or 
SqlGeometry classes in a .NET application, you will probably find it easier to write: 

SqlGeography Delhi = SqlGeography.Parse("POINT(77.25 28.5)"); 

compared to 

SqlGeography Delhi = SqlGeography.STGeomFromText( 
  new SqlChars("POINT(77.25 28.5)"), 4326); 

One subtle difference worth noting from this example is that, although STGeomFromText() accepts 
the supplied WKT input as a SqlChar array, the Parse() method treats the WKT input as a SqlString. 
SqlChar values can be streamed, whereas a SqlString cannot. Using Parse() therefore requires a 
contiguous block of memory to be allocated for the entire supplied WKT string. This, combined with the 
fact that Parse() can only be used for creating instances defined using limited SRIDs, means that you 
will need to decide whether it is suitable for use in a particular scenario compared to the more verbose 
STGeomFromText() method. 

■ Note  All of the static methods that operate on WKT input expect decimal coordinate values to be represented 
using a decimal point (.) to separate the integral and fractional parts of the coordinate, for example, 52.61. 

Depending on the regional settings of your database or operating system, you may find that coordinate values are 
instead displayed and represented using other coordinate separators, such as the comma in 52,61. When 
supplying WKT for any of the static methods listed in this section, be sure to check the culture settings of your 

application. 
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Retrieving the WKT Representation of an Instance 
Well-Known Text is simply one format in which geometry and geography data can be represented. 
Remember that, internally, SQL Server actually stores spatial data in a binary format, not as a text 
string. If you want to retrieve the Well-Known Text of an existing geography or geometry instance, you 
can use one of the appropriate instance methods: STAsText(), AsTextZM(), or ToString(). 

STAsText() is the OGC-compliant method for retrieving the Well-Known Text 
of an instance. The returned nvarchar (or SqlChars) WKT string will only 
contain 2D coordinates (x and y, or latitude and longitude). It will not contain 
any z- or m-coordinate values associated with the geometry. 

AsTextZM() is an extended method that returns the Well-Known Text of an 
instance as an nvarchar(max) or SqlChars value, including any z- and m-
coordinate values defined by the geometry. 

ToString() is a method defined by the Object base class in the .NET 
framework, and therefore is inherited and implemented by all classes, 
including the geometry and geography datatypes. The purpose of the ToString() 
method is to convert any object into a string value suitable for display 
purposes. When implemented by the geometry and geography datatypes, the 
ToString() method retrieves the WKT of an instance including z-and m-
coordinate values as an nvarchar(max) value, just as AsTextZM() method does. 
When called on a SqlGeography or SqlGeometry instance in .NET code, 
ToString() returns a string rather than SqlChars returned by AsTextZM(). 
Apart from the datatype of the returned value, there is no difference between 
the AsTextZM() and ToString() methods.  

The following code listing demonstrates the output of the STAsText(), AsTextZM(), and ToString() 
methods when called on a geometry Point instance containing x-, y-, and z-coordinate values. 

DECLARE @Point geometry = geometry::STPointFromText('POINT(14 9 7)', 0); 
SELECT 
  @Point.STAsText() AS STAsText, 
  @Point.AsTextZM() AS AsTextZM, 
  @Point.ToString() AS ToString; 

The results are shown as 

STAsText         AsTextZM         ToString 
POINT (14 9)     POINT (14 9 7)   POINT (14 9 7) 

Creating Spatial Data from Well-Known Binary 
The Well-Known Binary format, like the WKT format, is a standardized way of representing spatial 
data defined by the OGC. In contrast to the text-based WKT format, WKB represents a geometry or 
geography instance as a binary value. Every WKB representation begins with a header section that 
defines the type of geometry being represented, and the order in which bytes are expressed (big-
endian or little-endian). Depending on the type of geometry, the header may also contain additional 
descriptive information such as the number of geometries contained within a multielement instance, 
or the number of rings contained in a Polygon geometry. Following the information in the header, a 
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WKB representation lists a stream of 8-byte values representing the coordinates of each point in the 
geometry. 

Although SQL Server 2012 stores spatial data internally as a stream of binary data, it is not the 
same as the WKB binary data format. As a result, you cannot directly set the value of an item of 
geography or geometry data from a WKB representation. Instead, you must pass that WKB 
representation to one of the appropriate static methods. Likewise, if you directly select the internal 
binary value that SQL Server uses to store an item of spatial data, it will not be the same as the WKB 
representation of that feature. One difference between WKB and SQL Server's own internal binary 
format is that SQL Server serializes the spatial reference identifier and other properties related to the 
geometry not present in the WKB representation.  

■ Note  The WKB format has some similarities with the internal binary format that SQL Server uses to store 
geometry and geography data, but they are not the same. As in WKT, creating spatial data from WKB requires 

passing that WKB representation to a suitable static method. 

The following are some advantages of the WKB format. 

• Creating objects from WKB is faster than using static methods based on a text-
based representation such as WKT. Each x- and y- (or latitude and longitude) 
coordinate value in WKB is stored on 8-byte binary boundaries, as they are in 
SQL Server's own internal storage representation. The WKB static methods can 
therefore efficiently process and create the associated instance from WKB, 
rather than in WKT or GML where the parser must read in the whole text 
representation first. 

• Because it is a binary format, WKB maintains the precision of floating-point 
coordinate values calculated from binary operations, without the rounding 
errors introduced in a text-based format. 

However, WKB also has the following significant disadvantage. 

• Binary values cannot be easily understood by a human reader; it can therefore 
be hard to detect errors in a WKB representation that could have been easily 
spotted from examining the equivalent WKT or GML representation. 

Choosing a WKB Static Method 
Just as for the WKT format, SQL Server 2012 provides a specific method for creating each type of 
geometry from a Well-Known Binary representation, as well as a generalized method 
STGeomFromWKB() for creating any type of object from valid WKB. The list of static methods that can be 
used to create geography or geometry data from WKB is shown in Table 4-2. 
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Table 4-2. Methods to Instantiate Spatial Data from Well-Known Binary 

Geometry Static Method 

Point STPointFromWKB() 

LineString STLineFromWKB() 

Polygon STPolyFromWKB() 

MultiPoint STMPointFromWKB() 

MultiLineString STMLineFromWKB() 

MultiPolygon STMPolyFromWKB() 

GeometryCollection STGeomCollFromWKB() 

Any supported geometry STGeomFromWKB() 

To demonstrate the use of these methods, let's first take a look at an example WKB representation 
of a Point geometry:  

0x00000000014001F5C28F5C28F6402524DD2F1A9FBE 

The elements of this binary string are broken down in Table 4-3. 

Table 4-3. Elements Contained Within an Example WKB Geometry Representation 

Value Description 

0x Hexadecimal notation identifier 

00 Byte order marker. 0×00 indicates little-endian byte order 

00000001 This geometry is a Point, denoted as type 1 

4001F5C28F5C28F6 x-coordinate (10.572) 

402524DD2F1A9FBE y-coordinate (2.245) 

To create a geometry Point instance from this WKB representation, using the Qatar National Grid 
(SRID 2099), you can use the STPointFromWKB() method as follows. 

SELECT 
geometry::STPointFromWKB(0x00000000014001F5C28F5C28F6402524DD2F1A9FBE, 2099); 

Or, you can use the generic STGeomFromWKB() method, which can be used to create any type of 
geometry from WKB: 
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SELECT 
geometry::STGeomFromWKB(0x00000000014001F5C28F5C28F6402524DD2F1A9FBE, 2099); 

■ Note  The spatial reference identifier is not serialized as part of the WKB binary string, so it must be provided as 

the second parameter to any static methods that instantiate geometries from WKB. 

Representing an Existing Geometry as WKB 
Just as SQL Server provides the STAsText() method to retrieve the WKT of a geometry, so too does it 
provide a method to retrieve the WKB representation of an instance. In order to retrieve the WKB 
representation of a geometry or geography instance you can use the STAsBinary() method, as follows. 

DECLARE @g geometry = geometry::STPointFromText('POINT(14 9 7)', 0); 
SELECT 
  @g.STAsBinary(); 

The result is as follows.  

0x01010000000000000000002C400000000000002240 

Note that, like its WKT sister, STAsText(), the WKB representation produced by the STAsBinary() 
method specifies coordinates in two dimensions only: x and y for the geometry datatype, or latitude and 
longitude for the geography datatype. You can confirm this by converting the Well-Known Binary result 
above back to Well-Known Text: 

-- Declare point containing x, y, and z coordinates 
DECLARE @g geometry = geometry::STPointFromText('POINT(14 9 7)', 0); 
 
-- Convert to WKB using STAsBinary() 
DECLARE @WKB varbinary(max) = @g.STAsBinary(); 
 
-- Now create a new geometry instance from this WKB 
DECLARE @h geometry = geometry::STPointFromWKB(@WKB, 0); 
 
--Retrieve the Well-Known Text of the new geometry 
SELECT @h.AsTextZM(); 

The geometry created from the WKB retrieved from the STAsBinary() method is now simply 
POINT(14 9), with no z-coordinate value. In order to create a WKB representation that retains the full 
fidelity of the original point supplied in this example, which has x-,  y-, and z-coordinates, you can use 
the AsBinaryZM() method instead. This will serialize any geometry or geography instance into WKB 
format including x-, y-, z-, and m-coordinate values, as follows. 

DECLARE @g geometry = geometry::STPointFromText('POINT(14 9 7)', 0); 
SELECT @g.AsBinaryZM(); 

The WKB result produced by the AsBinaryZM() method in this example, which is a longer binary 
string containing three coordinate values, is:  
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0x01E90300000000000000002C4000000000000022400000000000001C40 

Creating Spatial Data from Geometry Markup Language 
Geometry Markup Language is an XML-based language for representing spatial information. In 
common with all XML dialects, GML is a very explicit and highly structured format, where each 
property of the geometry is contained within specific element tags within the document structure. 

The following code listing demonstrates an example of the GML representation of a Point located 
at a latitude of 47.6 degrees North, longitude 122.3 degrees West. 

<Point xmlns="http://www.opengis.net/gml"> 
  <pos>47.6 -122.3</pos> 
</Point> 

Note that, unlike in WKT, the GML format states geographic coordinates in latitude–longitude 
order rather than longitude–latitude order (although geometric coordinates are listed in x–y order in 
both WKT and GML). 

GML does not support z- or m-coordinates, so every coordinate pair is made up of exactly two 
values, separated by a space. To define a single coordinate pair, as used to create a Point geometry, 
those values are listed within the GML <pos> element. To define a LineString or Polygon containing 
more than one pair of coordinate points, the values of each coordinate pair are instead listed within 
the GML <posList> element, with each coordinate pair also separated by a space. 

Note that GML uses a space both as the separator between individual values within a coordinate 
tuple, as well as to separate each coordinate tuple from the next. There is no need to differentiate these 
delimiters from each other because every GML coordinate tuple contains exactly two values; therefore 
the elements in a <posList> can be parsed into an array of points by breaking it apart following every 
other space. 

The following code listing demonstrates the GML representation of a LineString connecting three 
points at (–6,4), (3,–5), and (10,8). 

<LineString xmlns="http://www.opengis.net/gml"> 
  <posList>-6 4 3 -5 10 8</posList> 
</LineString> 

■ Tip  You can return the GML representation of any existing geography or geometry instance by calling the 

AsGml() method. 

Some advantages of the GML format are as follows. 

• GML is text-based, making it relatively easy to examine and understand the 
information contained within. 

• The explicit structure of a GML document mirrors the structure of a geometry 
itself; a GML <Polygon> contains an <exterior> element, which specifies a 
<LinearRing> containing an array of coordinates in a <posList>, for example. 
This makes it easy to understand the structure of a complex geometry by 
examining the structure of the associated GML representation. 
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• GML is very verbose, explicitly stating all values within specific elements. 

However, GML also has the following disadvantages. 

• It is very verbose! Although both WKT and GML are text-based formats, the GML 
representation of a geometry requires substantially more space than the 
equivalent WKT representation 

• Because GML is text-based, it too suffers from precision issues caused by 
rounding of binary floating-point values. 

GML is most commonly used for representing spatial information in an XML-based environment, 
including when syndicating spatial data over the Internet. 

■ Note  The GML methods implemented in SQL Server are based on a scaled-down version of the GML 3.1.1 
schema. You can view the schema used in SQL Server at http://schemas.microsoft.com/sqlserver/profiles 
/gml/ or you can find the full GML standards on the OGC website, located at 

http://www.opengeospatial.org/standards/gml. 

GeomFromGml()—The Only GML Static Method 
Unlike the WKT and WKB formats, SQL Server does not provide different methods for creating each type 
of geometry from GML; every geometry, whether Point, LineString, Polygon, or GeometryCollection, is 
created using the same generic static method, GeomFromGml(). The geometry returned by the 
GeomFromGml() method is determined by the structure and content of the GML representation supplied. 

The GeomFromGml() method is implemented by both geometry and geography datatypes. The 
following code listing demonstrates its usage to create a geography Point instance at a latitude of 47.6, 
longitude of 122.3 West using the North American datum 1983 (SRID 4269): 

DECLARE @gml xml =  
'<Point xmlns="http://www.opengis.net/gml"> 
  <pos>47.6 -122.3</pos> 
</Point>'; 
 
SELECT 
geography::GeomFromGml(@gml, 4269); 

The GML Namespace 
The xmlns attribute of an XML element associates that element with a particular namespace. XML 
elements are unique only within a given namespace, so <Point xmlns="http://www.opengis.net/gml"> 
is different from <Point xmlns="http://www.someothernamespace.com">, or just <Point> with no 
associated namespace. 

In a GML representation, every element must belong to the GML namespace, 
http://www.opengis.net/gml. This unambiguously defines that element as being a GML element, 
rather than an element of the same name from any other XML namespace. To ensure that a GML 
representation is valid, you should always attach the xmlns="http://www.opengis.net/gml" attribute to 
the top-level tag of the GML document. This namespace will then be inherited by all of the child 
elements nested within that element. 
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Using the example of a LineString, the GML representation should therefore always be formed as 
follows. 

<LineString xmlns="http://www.opengis.net/gml"> 
  <posList>-6 4 3 -5</posList> 
</LineString> 

If you omit the namespace, you will still have valid, well-formed XML, but it will no longer define 
a valid GML geometry. Attempting to create a geometry from such a representation using the 
GeomFromGml() method will result in an error as shown in the next example: 

DECLARE @NoGMLNameSpace xml =  
'<LineString> 
  <posList>-6 4 3 -5</posList> 
</LineString>'; 
 
SELECT geometry::GeomFromGml(@NoGMLNameSpace, 0); 

The error received is rather confusing, with the FormatException message being given as  

System.FormatException: 24129: The given XML instance is not valid because the top- 
level tag is LineString. The top-level element of the input Geographic Markup  
Language (GML) must contain a Point, LineString, Polygon, MultiPoint,  
MultiGeometry, MultiCurve, MultiSurface, Arc, ArcString, CompositeCurve,  
PolygonPatch or FullGlobe (geography Data Type only) object. 

The text of the error message states that the GML representation passed to the GeomFromGml() 
method is invalid because the top-level tag is LineString. Instead, it helpfully suggests a list of possible 
valid elements, including… LineString? 

As explained previously, XML elements are unique only within a particular namespace; what the 
preceding error message really should say is that the top-level element of the input GML must be one 
of the listed elements from the GML namespace. Declaring the GML namespace as an attribute on the 
parent element tag resolves the error, as shown in the following example.  

DECLARE @WithGMLNameSpace xml =  
'<LineString xmlns="http://www.opengis.net/gml"> 
  <posList>-6 4 3 -5</posList> 
</LineString>'; 
 
SELECT geometry::GeomFromGml(@WithGMLNameSpace, 0); 

(1 row(s) affected) 

Representing an Existing Geometry as GML 
The GML equivalent to the STAsText() and STAsBinary() methods is called AsGml(). The AsGml() method 
can be used to return the GML representation of any instance of geography or geometry data, as shown 
in the following code listing. 

DECLARE @polygon geography = 'POLYGON((-4 50, 2 50, 2 60, -4 60, -4 50))'; 
SELECT @polygon.AsGml(); 
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The result is: 

<Polygon xmlns="http://www.opengis.net/gml"> 
  <exterior> 
    <LinearRing> 
      <posList>50 -4 50 2 60 2 60 -4 50 -4</posList> 
    </LinearRing> 
  </exterior> 
</Polygon> 

Note that, because this is an instance of the geography datatype, the latitude and longitude values 
of each coordinate pair in the resulting GML are listed in reverse order compared to that in the 
supplied WKT. 

PRACTICAL USES OF GML IN SQL SERVER 

GML is a widely accepted standard in the geospatial world, and it provides a rich set of elements capable 
of describing spatial features with all their associated metadata. It is used in many professional and 
industrial datasets. For example, GML is the native format in which data from the Ordnance Survey (the 
British government's national executive mapping agency) is distributed. 

Unfortunately, SQL Server implements only a reduced subset of the full GML standard, and lacks many of 
its more advanced elements. What's more, the parser used by the GeomFromGml() method will fail to parse 
GML documents containing those GML elements not recognized by SQL Server, even if the document itself 
adheres to the full published GML schema. 

For this reason, I find the GeomFromGml() method to be of little use to create geography or geometry data 
from GML documents found "in the wild," because there is no guarantee that SQL Server will be able to 
parse them. The best way of knowing that SQL Server will be able to parse a particular GML file is if that 
file were itself created from SQL Server's AsGml() method, but that of course implies that the data has 
already been successfully imported into the database! 

Creating Spatial Data from Dynamically Generated WKT 
The static methods introduced thus far in this chapter create instances of geometry or geography data 
from fully formed WKT, WKB, or GML representations. However, on many occasions we do not have, 
nor necessarily want, such predefined representations to hand. Instead of providing a static WKT or 
WKB string, you may want to create a geometry programmatically through code, for example. Creating 
geometries programmatically allows you to define spatial features based on a query of an underlying 
data source, or take advantage of programming logic such as conditional blocks and control-of-flow 
statements to determine the resulting geometry at runtime. 

The first approach to creating such "dynamic" geography or geometry data is to consider methods 
that construct a WKT string in code before passing it to a static method. Because WKT is just a simple 
text string, we can CAST numeric coordinates into nvarchar values and then use the range of T-SQL 
string manipulation functions to construct the required WKT string. 

To demonstrate this approach, suppose that you had a table containing the log data transmitted 
from the GPS device in a moving vehicle. The table records the latitude and longitude of the vehicle 
sampled at regular intervals in time, stored in two float columns, together with a timestamp record of 
when that measurement was made, stored in a datetime column. You can create a table illustrating this 
structure together with some sample data using the following code listing. 
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CREATE TABLE GPSLog ( 
  Latitude float, 
  Longitude float, 
  LogTime datetime 
); 
INSERT INTO GPSLog VALUES 
  (51.868, -1.198, '2011-06-02T13:47:00'), 
  (51.857, -1.182, '2011-06-02T13:48:00'), 
  (51.848, -1.167, '2011-06-02T13:49:00'), 
  (51.841, -1.143, '2011-06-02T13:50:00'), 
  (51.832, -1.124, '2011-06-02T13:51:00'); 

Now suppose that we wanted to create Point instances corresponding to each record in the table. 
Because the coordinates were recorded from a GPS system, we know that the SRID is 4326, and because 
this is a geographic coordinate system we should use the geography datatype. 

Therefore, we could use T-SQL string methods to concatenate the relevant elements of a WKT 
representation for each Point and pass them to the STGeomFromText() method: 

SELECT geography::STGeomFromText( 
  'POINT(' + CAST(Longitude AS varchar(32)) + ' ' + CAST(Latitude AS varchar(32)) + ')', 
  4326 
  ) 
FROM GPSLog; 

The preceding code listing uses the CAST statement to convert each coordinate to a nvarchar value. 
It also concatenates the two coordinates, separated by a space, and appends round brackets and the 
POINT keyword around the outside. In other words, we've dynamically constructed the WKT 
representation of each row in the table, and then used this to create a Point instance using the 
STGeomFromText() method. 

This example doesn't really provide much value; we could have achieved the same result more 
easily by supplying the numeric latitude and longitude values directly to the Point() method, as follows. 

SELECT geography::Point(Latitude, Longitude, 4326) FROM GPSLog; 

The Point() method is a static method that can be used to create Point geometries from three 
parameters: two float coordinate values and an integer SRID. Not only does using Point() make this 
code simpler to read than the previous example, but because it doesn't require unnecessary CASTing 
and string concatenation to create the WKT representation, it will almost certainly be faster too. 

■ Note  When using the geography Point() method, the coordinate parameters are supplied with latitude first, 

then longitude, which is opposite to the order in which they are stated in WKT. 

But what if we wanted to create something a bit more complex? Suppose that, rather than create 
individual Point instances for each row in the GPSLog table, you wanted to create a LineString joining 
each of the points in order. There is no inbuilt function that accepts an array of coordinates and returns 
the LineString created from them, so dynamically constructing the WKT may be a better choice here. 

The following code listing demonstrates one way of achieving this. 

-- Declare an empty nvarchar to hold our constructed WKT string 
DECLARE @WKT nvarchar(max) = ''; 
 
-- Build up the comma-delimited list of coordinate pairs 
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SELECT @WKT = @WKT + CAST(Latitude AS varchar(32)) + ' ' + CAST(Longitude AS varchar(32)) + 
',' 
FROM GPSLog 
ORDER BY LogTime; 
 
-- Remove the final trailing comma 
SET @WKT = LEFT(@WKT, LEN(@WKT) - 1); 
 
-- Append the LINESTRING keyword and enclose the coordinate list in brackets 
SET @WKT = 'LINESTRING(' + @WKT + ')'; 
 
-- Pass the constructed WKT to the static method 
SELECT geography::STGeomFromText(@WKT, 4326); 

The preceding code listing creates the desired result, illustrated in the Spatial Results tab of SQL 
Server Management Studio as shown in Figure 4-1. 

 

Figure 4-1. A LineString created from dynamically constructed WKT. 

However, there are a couple of problems with this method. First, the code required to create it is 
pretty ugly. Ugly code is not only unappealing to look at, but it's also hard to maintain, and it's much 
more likely to conceal hidden bugs. Without the comments inserted, would it be obvious why you had to 
use the LEFT function to trim the last character from the list of coordinates? The code required to 
construct the WKT could arguably be cleaned up somewhat if implemented as a recursive CTE, but it 
would still involve a degree of manual string manipulation. 
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It's also slow: string manipulation functions are generally not known for being efficient, and this 
method requires both CASTing and concatenating of nvarchar values.  

Finally, although this approach is somewhat dynamic, it's hard to include much control-of-flow or 
conditional operators. Consider how much more complicated the code would quickly become if the 
GPSLog table contained details of multiple vehicles that we wanted to plot as separate LineStrings, or if 
we were to try to construct more complicated geometries such as Polygons from the underlying data. 

The fact is that, although you can use T-SQL string functions to create dynamic WKT strings, the 
primarily procedural-based T-SQL engine is not designed for this kind of operation. Fortunately, SQL 
Server provides us with an alternative in the form of the SqlGeometryBuilder and SqlGeographyBuilder 
classes available in SqlServer.Types.dll, which we examine in the next section. 

Creating Spatial Data Using the Builder Classes 
As explained in Chapter 3, the spatial functionality of SQL Server's geometry and geography datatypes is 
contained in a compiled .NET assembly, SqlServer.Types.dll. This assembly is installed by SQL Server, 
and located in the /100/SDK/Assemblies subdirectory of the directory in which SQL Server is installed. 

In addition to the SqlGeometry and SqlGeography classes, which mirror the functionality of the 
geometry and geography datatypes in SQL Server, the SqlServer.Types.dll assembly also provides 
additional SqlGeometryBuilder and SqlGeographyBuilder classes, which are only accessible via .NET code. 

The SqlGeometryBuilder and SqlGeographyBuilder classes provide a simple core set of methods 
that can be used to programmatically build geometry and geography instances, respectively. These can 
either be created in the application layer or, if exposed via a CLR UDF or stored procedure, in SQL 
Server itself. 

This section demonstrates how to create spatial data using the SqlGeometryBuilder class in a C# 
console application, but the same procedure can be followed whatever the tier in which this code is used. 

■ Tip  The SqlGeometryBuilder and SqlGeographyBuilder classes can be used in any .NET application that 

references the SqlServer.Types.dll library, and are not dependent on SQL Server being installed. 

Configuring a .NET Console Application for Spatial Data 
To demonstrate the basic approach required to use the Builder classes, we start by creating a simple C# 
console application that creates a geometry, and then prints the Well-Known Text of that geometry to 
the screen. To do so: 

• Load up Visual Studio and, from the File menu, select New ➤Project. 

• In the following dialogue box, click to expand the set of Visual C# project types, 
and highlight Console Application. 

• Choose a name and location for your project, and click OK. 

These steps are illustrated in Figure 4-2. 
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Figure 4-2. Creating a new spatial console application. 

When your project is first created, you’ll see the default Program.cs code file in which we insert the 
code for our application. But, before we do so, we need to include a reference to the 
Microsoft.SqlServer.Types.dll library. 

• Select Project ➤ Add Reference. 

• On the Add Reference dialogue box that appears, ensure that the .NET tab is 
selected. Scroll down the list until you find Microsoft.SqlServer.Types and click 
to highlight it. 

• Click OK. 

These steps are illustrated in Figure 4-3. 
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Figure 4-3. Adding a reference to the Microsoft.SqlServer.Types library. 

■ Note  Depending on your system configuration, the Microsoft.SqlServer.Types library might not 
automatically show up in the list of installed components under the Visual Studio .NET tab. In such cases, you can 
locate the library manually by clicking the Browse tab, navigating to \Program Files (x86)\Microsoft SQL 

Server\110\SDK\Assemblies and highlighting Microsoft.SqlServer.Types.dll in that directory. 

Once the reference has been added to the project, we add a using directive so that we can easily 
reference the methods contained in the Microsoft.SqlServer.Types library without having to specify 
the namespace each time. Add the following line to the top of your Program.cs file, 

using Microsoft.SqlServer.Types; 

The project is now set up and ready to use the spatial datatypes, and we can get on with writing the 
body of our code. 

Constructing a Simple Point 
The first thing to do is to create a new instance of the appropriate builder class. There are two builder 
classes to choose from: SqlGeographyBuilder constructs SqlGeography instances, whereas 
SqlGeometryBuilder, unsurprisingly, constructs SqlGeometry instances. 

For this first example, we will create a geometry Point instance, so we use the corresponding 
SqlGeometryBuilder class. Add the following code as the first line in the Main method of the application. 
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SqlGeometryBuilder gb = new SqlGeometryBuilder(); 

After instantiating the appropriate builder class, the next thing is to specify the spatial reference 
system in which the coordinates of this geometry will be  defined. You do this by passing the 
appropriate SRID to the SetSrid() method of the builder instance. The following example illustrates 
how to set the spatial reference of the geometry to SRID 27700. 

gb.SetSrid(27700); 

■ Caution  You must call SetSrid() to set the SRID of the builder immediately after it is created, and before 

adding any points. 

The next step is to specify the type of geometry that will be created. For the SqlGeometryBuilder, 
you do this by passing a member of the OpenGisGeometryType enumeration to the BeginGeometry() 
method. The equivalent for the SqlGeographyBuilder class is to pass an OpenGisGeographyType to the 
BeginGeography() method. There is one enumeration for every type of geometry that can be created. 

To begin creating a Point geometry using the SqlGeometryBuilder, you use the following code. 

gb.BeginGeometry(OpenGisGeometryType.Point); 

■ Note  The SqlGeometryBuilder and SqlGeographyBuilder classes have a near identical set of methods, 
except that every occurrence of the word "geometry" becomes "geography". So, BeginGeometry() corresponds 
to BeginGeography(), EndGeometry() becomes EndGeography(), and ConstructedGeometry is equivalent to 

ConstructedGeography.  

The first set of coordinates of the geometry are specified with a call to the BeginFigure() method. 
The following code listing creates a point at an x-coordinate of 300500 and y-coordinate of 600200. 

gb.BeginFigure(300500, 600200); 

If the geometry contains more than a single Point, then additional line segments are added by 
calling the AddLine() method. Because the Point we are defining in this example contains only one 
pair of coordinates, we do not need to use AddLine(), and we can now end the figure: 

gb.EndFigure(); 

A SqlGeometry Point instance contains only a single figure, so at this point we can end the 
geometry: 

gb.EndGeometry(); 

Having ended the geometry, we can then retrieve the constructed SqlGeometry Point via the 
ConstructedGeometry property of the SqlGeometryBuilder instance: 

SqlGeometry Point = gb.ConstructedGeometry; 

This is a simple demonstration application, therefore we then just print the WKT of the 
constructed geometry to the console window, using the ToString() method: 



CHAPTER 4 ■  CREATING SPATIAL DATA 

 

95 

Console.WriteLine(Point.ToString()); 

Here's the full code listing for Program.cs: 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Data.SqlTypes; 
using Microsoft.SqlServer.Types; 
 
namespace ProSpatial.Ch4 
{ 
  class Program 
  { 
    static void Main(string[] args) 
    { 
 
      // Create a new instance of the SqlGeographyBuilder 
      SqlGeometryBuilder gb = new SqlGeometryBuilder(); 
 
      // Set the spatial reference identifier 
      gb.SetSrid(27700); 
 
      // Declare the type of geometry to be created 
      gb.BeginGeometry(OpenGisGeometryType.Point); 
 
      // Add the coordinates of the first (and only) point 
      gb.BeginFigure(300500, 600200); 
 
      // End the figure 
      gb.EndFigure(); 
 
      // End the geometry 
      gb.EndGeometry(); 
 
      // Retrieve the constructed geometry 
      SqlGeometry Point = gb.ConstructedGeometry; 
 
      // Print WKT of the geometry to the console window 
      Console.WriteLine(Point.ToString()); 
 
      // Wait for user input before exiting 
      Console.ReadLine(); 
    } 
  } 
} 

Hit F5 to debug the application, and you should see the WKT of the constructed geometry instance 
displayed as 

POINT (300500 600200) 
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Building Polygons with Multiple Rings 
Let's now look at some slightly more complex examples, the first of which is to create a geometry 
Polygon containing an interior ring. The steps involved are similar to the preceding example, except 
that each ring in the Polygon begins with a new call to the BeginFigure() method, stating the 
coordinates of the first point in that ring. Additional coordinates are added to each ring using the 
AddLine() method, which adds a straight line segment from the previous point to the given coordinates. 
Polygon rings must be closed, therefore the coordinates specified in the final call to AddLine() must 
always be the same as those provided to the BeginFigure() method used to commence that ring. The 
following code listing demonstrates this approach. 

// Create a new instance of the SqlGeometryBuilder 
SqlGeometryBuilder gb = new SqlGeometryBuilder(); 
 
// Set the spatial reference identifier 
gb.SetSrid(0); 
 
// Declare the type of geometry to be created 
gb.BeginGeometry(OpenGisGeometryType.Polygon); 
 
// Exterior ring 
gb.BeginFigure(0, 0); 
gb.AddLine(10, 0); 
gb.AddLine(10, 20); 
gb.AddLine(0, 20); 
gb.AddLine(0, 0); 
gb.EndFigure(); 
 
// Interior ring 
gb.BeginFigure(3, 3); 
gb.AddLine(7, 3); 
gb.AddLine(5, 17); 
gb.AddLine(3, 3); 
gb.EndFigure(); 
 
// End the geometry and retrieve the constructed instance 
gb.EndGeometry(); 
SqlGeometry Polygon = gb.ConstructedGeometry; 

The Polygon instance created by this code listing is equivalent to the following WKT. 

POLYGON ((0 0, 10 0, 10 20, 0 20, 0 0), (3 3, 7 3, 5 17, 3 3)) 

■ Note  To construct a Polygon geometry using the SqlGeometryBuilder class, each ring requires a separate call 
to the BeginFigure() method. The exterior ring is the first to be created, and every subsequent figure defines an 

interior ring. 
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Creating Geometry Collections 
To build a collection-type geometry, you begin with a call to BeginGeometry() (or BeginGeography()), 
specifying one of either the MultiPoint, MultiLineString, MultiPolygon, or GeometryCollection 
geometry types. Then, for each element within the collection you call BeginGeometry() (or 
BeginGeography()) again, specifying the type of that individual geometry.  

To demonstrate, the following example creates a MultiPoint geometry containing three Points. 
This time, I use the SqlGeographyBuilder() class, so note that I use the corresponding geography 
method names and enumerations. Also note that the coordinates passed to the BeginFigure() method 
must be given in latitude–longitude order: 

// Create a new instance of the SqlGeographyBuilder 
SqlGeographyBuilder gb = new SqlGeographyBuilder(); 
 
// Set the spatial reference identifier 
gb.SetSrid(4269); 
 
// Declare the type of collection to be created 
gb.BeginGeography(OpenGisGeographyType.MultiPoint); 
 
// Create the first point in the collection 
gb.BeginGeography(OpenGisGeographyType.Point); 
gb.BeginFigure(40, -120); 
gb.EndFigure(); 
gb.EndGeography(); 
 
// Create the second point in the collection 
gb.BeginGeography(OpenGisGeographyType.Point); 
gb.BeginFigure(45, -100); 
gb.EndFigure(); 
gb.EndGeography(); 
 
// Create the third point in the collection 
gb.BeginGeography(OpenGisGeographyType.Point); 
gb.BeginFigure(42, -110); 
gb.EndFigure(); 
gb.EndGeography(); 
 
// End the collection geometry and retrieve the constructed instance 
gb.EndGeography(); 
SqlGeography MultiPoint = gb.ConstructedGeography; 

The geometry created in this example is equivalent to the following WKT. 

MULTIPOINT((-120 40), (-100 45), (-110 42)) 

■ Caution  Be sure that all figures and geometries are closed (i.e., every BeginFigure() and BeginGeometry() 
have matching EndFigure() and EndGeometry() calls) before retrieving the constructed geometry from the 

Builder class. 



CHAPTER 4 ■  CREATING SPATIAL DATA 

 

98 

Building Curved Geometries 
To add curved segments that are used to define a CircularString, CompoundCurve, or CurvePolygon 
geometry, you use the AddCircularArc() method. This works in a similar way to AddLine(), except that it 
requires two sets of coordinates: an anchor point that the curve passes through and the final point of 
the arc. The following code listing demonstrates how to create a CompoundCurve geometry using the 
SqlGeometryBuilder class. 

// Create a new instance of the SqlGeometryBuilder 
SqlGeometryBuilder gb = new SqlGeometryBuilder(); 
 
// Set the spatial reference identifier 
gb.SetSrid(0); 
 
// Declare the type of geometry to be created 
gb.BeginGeometry(OpenGisGeometryType.CompoundCurve); 
 
// Add the first point of the geometry 
gb.BeginFigure(50, 0); 
 
// Define a straight line segment to the point at (50, 10) 
gb.AddLine(50, 10); 
 
// Create a circular arc segment that passes through (55,5) and ends at (60,0) 
gb.AddCircularArc(55, 5, 60, 0); 
 
// End the figure 
gb.EndFigure(); 
 
// End the geometry 
gb.EndGeometry(); 
 
// Retrieve the constructed instance 
SqlGeometry Curve = gb.ConstructedGeometry; 

The result is equivalent to the following WKT: a CompoundCurve consisting of a single straight 
line segment followed by a circular arc segment. 

COMPOUNDCURVE((50 0, 50 10), CIRCULARSTRING(50 10, 55 2, 60 0)) 

Although the examples shown here have used hard-coded coordinate values for simplicity, it is 
easy to see how the SqlGeometryBuilder and SqlGeographyBuilder classes provide much more flexibility 
for defining dynamic spatial instances than the static methods provided by the geometry and geography 
datatypes within SQL Server. 

Looking back at the earlier example of the table of GPS points, for example, you could create a CLR 
User-Defined Aggregate that used the SqlGeographyBuilder class to construct a LineString representing 
the route by reading the coordinate values of each point in the table and passing these to successive calls 
to the AddLine() method, returning the constructed geography instance once all points had been added. 
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Programmatically Defining Three- and Four-Dimensional 
Geometries 
The BeginFigure(), AddLine(), and AddCircularArc() methods used to construct geometries with 
SqlGeometryBuilder or SqlGeographyBuilder require coordinate tuples containing x and y, or latitude 
and longitude values. These methods also provide overloads that will accept x-, y-, z-, and m-
coordinates for the SqlGeometryBuilder, or latitude, longitude, z, and m for the SqlGeographyBuilder. 
This is demonstrated in the following code listing, which creates a SqlGeography Point instance 
containing a z-coordinate value. 

// Create a new instance of the SqlGeographyBuilder 
SqlGeographyBuilder gb = new SqlGeographyBuilder(); 
 
// Set the spatial reference identifier 
gb.SetSrid(4326); 
 
// Declare the type of geometry to be created 
gb.BeginGeography(OpenGisGeographyType.Point); 
 
// Specify latitude, longitude, z, m coordinate values 
gb.BeginFigure(52, 0.15, 140, null); 
 
// End the figure 
gb.EndFigure(); 
 
// End the geography 
gb.EndGeography(); 
 
// Return the constructed instance 
SqlGeography PointZ = gb.ConstructedGeography; 

■ Note  There is no overload that accepts only latitude, longitude, and z-coordinate values, only one that accepts 
latitude, longitude, z-, and m-coordinates. If you do not require an m-coordinate value, simply pass a null 

parameter value as in this example. 

Summary 
In this chapter, you saw different methods of creating instances of the geometry and geography datatype 
in SQL Server. 

• There are static methods dedicated to creating different types of geometries 
from Well-Known Text and Well-Known Binary, as well as generic methods to 
create any type of geometry. 

• Static methods must be supplied with a fully formed representation of the 
geometry to be created, together with the spatial reference identifier in which 
the coordinates of that geometry are defined. 
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• It is possible to dynamically create WKT (or WKB) representations before 
passing them to the appropriate static method, but doing so can require some 
awkward string manipulation. 

• You can use the SqlGeometryBuilder and SqlGeographyBuilder classes to 
programmatically create geometry or geography instances in .NET. This facilitates 
a much more manageable approach to creating dynamic spatial instances at 
runtime. 
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Importing Spatial Data 

In the last chapter, we examined various methods that can be used to create individual items of 
geography or geometry data, for example, using a static method that accepts WKT or WKB input, or using 
one of the SqlGeometryBuilder or SqlGeographyBuilder classes. Each of these methods creates only a 
single item of data at a time. So what if you wanted to import an entire set of spatial data? 

In this chapter, I will introduce you to some of the sources from which you can obtain publicly 
available sets of spatial information, examine the formats in which those datasets are commonly 
supplied, and teach you some of the techniques you can use to import that information into SQL Server.  

Sources of Spatial Data 
There is a wealth of existing spatial information that you can purchase from various commercial data 
vendors, as well as an ever-increasing amount of data made freely available by educational 
institutions and government agencies. Table 5-1 provides details of a few sources of spatial data that 
you can download over the Internet. 

Table 5-1. Sources of Freely Downloadable Spatial Information 

Sourcea Description 

http://www.geonames.org The GeoNames database contains over 8,000,000 place names 
across all countries and can be downloaded free of charge. 

http://geodata.grid.unep.ch/ The United Nations Geo Data Portal includes global, national, 
regional, and subregional statistics and spatial data, covering 
themes such as freshwater, population, forests, emissions, 
climate, disasters, health, and GDP. 

http://www.diva-gis.org/gData This dataset, originally designed to support the study of 
biodiversity, contains a wealth of feature layers including 
inland water, administrative areas, altitude, and population 
density for almost every country in the world. 
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Sourcea Description 

http://www.census.gov The U.S. Census Bureau Geography Division has lots of high-
quality spatial information, including a gazetteer, Zip Code 
Tabulation Areas (ZCTAs), and the TIGER database of streets, 
rivers, railroads, and many other geographic entities (United 
States only). 

http://earth-info.nga.mil/gns/html/ The U.S. National Geospatial-Intelligence Agency (NGA) 
GEOnet Names Server (GNS) is the official U.S. repository of 
all foreign place names, containing information about 
location, administrative division, and quality. 

http://www.ordnancesurvey.co.uk 
/products/os-opendata.html 

The Ordnance Survey is the executive mapping agency of 
Great Britain. Its range of OpenData products includes 
transportation, natural features, administrative, and postcode 
data for Great Britain. 

http://www.openstreetmap.org A collaboratively edited, openly available streetmap of the 
whole world (think of it as the "Wikipedia" of Web maps). The 
OSM planet database has over 250 Gb of vector data available 
for download in XML format. 

http://geodata.gov/wps/portal/gos The U.S. government “Geospatial One Stop” Web page of 
geographic data contains classified links to a variety of sources 
covering areas including ecology, geology, health, 
transportation, and demographics. 

a There may be restrictions on the use of data obtained from these sources. Please refer to the respective providers for 
specific details. 

Spatial datasets obtained from the sources listed in Table 5-1 may be provided in a variety of 
different formats, and may contain a significant volume of data. A full download of U.S. census data, 
for example, is several hundred gigabytes in size. 

The remainder of this chapter describes some of the alternative formats in which spatial data is 
commonly supplied, and explains techniques that you can use to import this data into SQL Server 2012. 

Importing Tabular Spatial Data 
The most abundant (and also the simplest) source of freely available geographic information generally 
takes the form of a list of place names, together with separate columns containing the latitude and 
longitude coordinates of each location. These tabular sources may also contain other columns of related 
information, such as associated demographic or economic measures. Information presented in this 
format is commonly known as a gazetteer, a dictionary geographic information. Spatial information in 
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gazetteer format resembles the index that can be found at the back of an atlas, which may list place 
names, or road names, for example, together with the location of that item on the map. 

To demonstrate how to add a column of spatial data to a table containing columns of latitude and 
longitude (or Northing and Easting coordinates), let's consider an example using a file of earthquake data 
provided by the United States Geological Survey (USGS). The USGS makes a number of datasets freely 
available that you can download from their website at http://www.usgs.gov. One such dataset lists real-
time, worldwide earthquakes from the past seven days, which you can download directly from 
http://earthquake.usgs.gov/eqcenter/catalogs/eqs7day-M1.txt. This file is a comma-separated list of 
data containing various attributes of each earthquake in columnar format, as listed and described in Table 
5-2. 

Table 5-2. Columns of Datae in the eqs7day-M1.txt File 

Column Description e Length 

Src The two-character identifier of the source 
network that contributed the data 

String [DT_STR] 2 

Eqid The unique identifier for this earthquake String [DT_STR] 8 

Version The version number String [DT_STR] 1 

Datetime A text string describing the date at which the 
recording was made 

String [DT_STR] 50 

Lat The latitude of the earthquake epicenter, stated 
in the EPSG:4326 spatial reference system 

Float [DT_R4] - 

Lon The longitude of the earthquake epicenter, stated 
in the EPSG:4326 spatial reference system 

Float [DT_R4] - 

Magnitude The magnitude of the earthquake, determined by 
the strength of the seismic waves detected at each 
station 

Float [DT_R4] - 

Depth The depth of the earthquake’s center, measured 
in kilometers 

Float [DT_R4] - 

NST The number of reporting stations Two-byte signed 
integer [DT_I2] 

- 

Region A text string description of the area in which the String [DT_STR] 255 
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earthquake occurred 

To obtain a copy of this data, follow these steps. 

1. Load your Web browser and, in the address bar, type the following URL address, 
http://earthquake.usgs.gov/eqcenter/catalogs/eqs7day-M1.txt. The 
browser will show the contents of the latest feed, as demonstrated in the 
example in Figure 5-1. 

2. Save this file to an accessible location by choosing File � Save As (or Save 
Page As, depending on your browser). You will be prompted for a file name 
and location. For this example, it is assumed that you name the file eqs7day-
M1.txt and save it to the C:\Spatial folder. 

■ Note  Because the eqs7day-M1.txt file contains a constantly updated feed of data from the last seven days, the 

actual content of the file you download will be different from that demonstrated in this chapter. 

 

Figure 5-1. The USGS earthquake data file.  
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Importing the Text File 
There are a number of different ways to import data into SQL Server 2012. This example uses the 
Import and Export Wizard, which allows you to step through the creation of a simple package to move data 
from a source to a destination. If you want to create a repeatable load process, or have more control 
over the way in which the data is imported, you may instead prefer to create a custom SSIS package, or 
use the BCP Bulk Copy tool. 

The steps to import the earthquake file using the Import and Export Wizard follow. 

1. From the Object Explorer pane in Microsoft SQL Server Management Studio, 
right-click the name of the database into which you would like to import the 
data, and select Tasks ➤ Import Data. 

2. The Import and Export Wizard appears. Click Next to begin. 

3. The first page of the wizard prompts you to choose a data source. Select Flat 
File Source from the Data Source drop-down list at the top of the screen. 

4. Click the Browse button and navigate to the eqs7day-M1.txt text file that you 
saved earlier. Highlight the file and click Open. 

5. By default, the Text Qualifier field for the connection is set to <none>. The 
text strings within the eqs7day-M1.txt file are contained within double 
quotes, so change this value to be a double quote character (") instead. 

6. The eqs7day-M1.txt text file contains headings, so check the Column Names 
in the First Data Row check box. 

7. Click the Advanced option in the left pane. Click each column in turn and, 
from the properties pane on the right side, amend the values of the DataType 
and OutputColumnWidth fields to match the values shown in Table 5-1. 

8. Once you have made the appropriate changes, click the Next button. The 
wizard prompts you to choose a destination. 

9. Enter any authentication details required to connect to the chosen SQL 
Server 2012 database, and then click Next. 

10. The wizard prompts you to select source tables and views. By default, the wizard 
automatically creates a destination table called eqs7day-M1. You can leave this 
name if you like, but it's generally not a good idea to use table names that 
contain nonalphanumeric characters. Instead, I suggest you double-click on the 
table name in the destination column and edit it to remove the minus sign, 
making the destination table simply eqs7dayM1. Then click Next. 

11. On the Save and Run Package screen, click Finish (depending on the edition 
of SQL Server 2012 you are using, this may be called Run Package). The 
package summary appears, and you are prompted to verify the details.  

12. Click Finish again to execute the package. 

You will receive a message informing you that the execution was successful, and stating the 
number of rows transferred from the text file into the destination table. You may now close the wizard 
by clicking the Close button. 

Let’s check the contents of the new table. You can do this by opening a new query window and 
issuing the following command against the database to which you just imported the earthquake data. 

SELECT * FROM eqs7dayM1; 
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You will see the data inserted from the text file, as shown in Figure 5-2. 

 

Figure 5-2. The data inserted from the eqs7day-M1.txt file. 

Creating a Computed Column 
The location of each earthquake is currently described in the eqs7dayM1 table by latitude and longitude 
coordinate values stored in the Lat and Lon columns. In order to use any of the spatial methods 
provided by SQL Server, we need to use these coordinates to create a representation of each 
earthquake using the geography or geometry datatype instead. To do so, we can create a new computed 
column containing a Point geometry representing the epicenter of each earthquake using the Point() 
method of the geography datatype. This is demonstrated in the following code listing. 

ALTER TABLE eqs7dayM1 
ADD Epicenter AS geography::Point(Lat, Lon, 4326);  

To test the contents of the Epicenter column, you can now run the following query, 

SELECT TOP 5 
  Eqid, 
  Epicenter.STAsText() AS Epicenter 
FROM 
  eqs7dayM1; 

The results are as follows. 

Eqid          Epicenter 
10325561      POINT (-150.3317 65.0131) 
10325555      POINT (-152.2948 57.4106) 
00349540      POINT (-119.8993 39.4092) 
10325549      POINT (-149.6373 61.2189) 
71655381      POINT (-121.287 36.6595) 
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Populating a Noncomputed Column 
Using the Point() method, we have been able to populate the Epicenter column with Point geometries 
representing the latitude and longitude of each earthquake’s epicenter, which lies on the surface of the 
earth. However, the origin of an earthquake (its hypocenter) normally lies deep within the earth, tens or 
hundreds of miles underground. In the eqs7day-M1 dataset, the depth of the hypocenter, in 
kilometers, is recorded in the Depth column. To be able to represent the position of the hypocenter of 
each earthquake instead, we need to define each Point with an additional z-coordinate based on the 
value of the Depth column. 

The following code adds a new column, Hypocenter, to the eqs7dayM1 table. Rather than being 
computed like the Epicenter column, the Hypocenter column is populated with an UPDATE statement 
that sets the value of each row using a dynamically created WKT string based on the latitude, 
longitude, and depth of each earthquake. Note that, because the Depth column represents a distance 
beneath the earth’s surface, the z-coordinate of each Point is set based on the negative value of the Depth 
column. 

-- First, add a new column to the table 
ALTER TABLE eqs7dayM1 
ADD Hypocenter geography; 
GO 

-- Populate the column 

UPDATE eqs7dayM1 
SET Hypocenter =  
  geography::STPointFromText( 
    'POINT(' 
      + CAST(Lon AS varchar(255)) + ' ' 
      + CAST(Lat AS varchar(255)) + ' ' 
      + CAST (-Depth AS varchar(255)) + ')', 
    4326); 

You can now select the data contained in the eqs7dayM1 table, including the Point representations 
of both the epicenter and hypocenter of each earthquake, as follows. 

SELECT TOP 5 
  Eqid, 
  Epicenter.ToString() AS Epicenter, 
  Hypocenter.ToString() AS Hypocenter 
FROM 
  eqs7dayM1; 

The results follow. 

Eqid        Epicenter                  Hypocenter 
10325561    POINT(-150.3317 65.0131)   POINT(-150.332 65.0131 -0.1) 
10325555    POINT(-152.2948 57.4106)   POINT(-152.295 57.4106 -30.1) 
00349540    POINT(-119.8993 39.4092)   POINT(-119.899 39.4092 -6.8) 
10325549    POINT(-149.6373 61.2189)   POINT(-149.637 61.2189 -33) 
71655381    POINT(-121.287 36.6595)    POINT(-121.287 36.6595 -7.9) 
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Comparing Computed, Noncomputed, and Persisted Columns 
The Epicenter and Hypocenter columns of the eqs7dayM1 table both appear to behave in the same way: 
you can include them in a SELECT statement, and apply the full range of geography methods on both. 
However, there are some important differences between them due to the way they were created. 

Epicenter is a computed column, and the Point instances it contains are 
calculated only at runtime of a query that involves that column. The 
epicenters are created using the Point() method based on the coordinates 
contained in the Lat and Lon columns of the eqs7dayM1 table, which creates a 
dependency on those columns remaining in the table schema. The values in 
the Epicenter column are not stored anywhere, and are disposed of following 
every query execution. 

Hypocenter is a regular noncomputed column in which the value of every 
geography Point instance is materialized and stored in the database. This 
eliminates the dependency on the Lat and Lon columns (and the Depth column), 
because the individual coordinate values of each earthquake can be retrieved 
from the Hypocenter column using the Lat, Lon, and Z properties if necessary. 

There are are advantages and disadvantages of both methods. Using a computed column requires 
less storage in the database layer, because computed values are never physically stored in the table. 
However, they require more overhead in the execution phase in order to determine the value of each 
instance when used in a query. An advantage of computed columns is that when dealing with Point data 
as in this example, you might find it easier to manage separate columns of numeric coordinates than 
having to manage a single compound geography value, especially when dealing with spatial data in 
which coordinates are frequently changing. To update any single coordinate of a geography instance, for 
example, requires you to completely recreate the instance from a static method, which could be deferred 
until query time if using a computed column. However, a drawback of computed columns is that, because 
their value is only calculated at runtime, you cannot generally create an index on a computed column. 
Spatial indexes are crucial to creating efficient performant queries, as discussed later in this book. 

A third option worth considering is the fact that computed columns can be persisted. A persisted 
computed column contains values that are defined according to a specified calculation, as in the case of 
the Epicenter column, but the values of which are materialized and stored in the database as is the 
Hypocenter column. The stored values of a persisted computed column are updated whenever the value 
of a column used as part of its calculation changes. 

Persisted computed columns can be considered to represent the best of both worlds, allowing you 
to easily manage coordinate data in separate numeric columns while also seamlessly providing a 
geography Point instance based on those coordinates for use in any spatial queries. And, because the 
values are materialized in the database, indexes can be added to persisted computed columns.  

The following code listing adds a new persisted computed column, Hypocenter_Persisted, using 
the PERSISTED option following the column definition. 

ALTER TABLE eqs7dayM1 
ADD Hypocenter_Persisted AS geography::STPointFromText( 
  'POINT(' 
    + CAST(Lon AS varchar(255)) + ' ' 
    + CAST(Lat AS varchar(255)) + ' ' 
    + CAST (-Depth AS varchar(255)) + ')', 
  4326) PERSISTED; 

Note that, even though the Hypocenter_Persisted column is persisted, the values it contains still 
have a dependency on the Lat, Lon, and Depth columns, and you will not be able to drop any column 
from a table that is referenced by a computed column definition. Persisted computed columns are not 
necessarily the right option in every scenario, but it's certainly useful to be aware of them. 



CHAPTER 5 ■  IMPORTING SPATIAL DATA 

 

109 

Importing Data Using OGR2OGR 
OGR2OGR is a component of the Geospatial Data Abstraction Library, more commonly referred to as 
GDAL. GDAL is an open-source library and command-line toolkit that provides various utilities to 
read and write from different spatial data formats. 

The core GDAL library provides raster data functionality for data sources such as GeoTIFF, MrSID, 
and JPEG2000, whereas the OGR sublibrary provides support for vector data, including ESRI shapefiles, 
MapInfo files, KML, GML, and various spatial databases including PostGIS, Oracle Spatial, and SQL 
Server. 

The GDAL/OGR library is relatively mature, powerful, and has an active development 
community. It's also free, and licensed under a permissive MIT-style open source license. This section 
shows how to use OGR2OGR, the command-line component of the OGR library, to import data from 
various different sources into SQL Server. 

Obtaining and Installing the GDAL/OGR Library 
In common with much open source software, the GDAL/OGR library has been developed to work 
across many different operating environments and to be relatively platform-independent. 
Unfortunately, that means that it is not necessarily as simple to set up compared to an application that 
has been tailored specifically for the Windows operating system from the outset. Nevertheless, it is not 
too hard to get working, and there are two possible approaches you can follow. 

One option is to download the latest GDAL source from http://download.osgeo.org/gdal and 
configure and compile it using Visual Studio (or another tool from which you can compile C++). This 
will give you the most flexibility to adjust some of GDAL's configuration options, such as linking in 
additional optional libraries. This is also the best route to take if you want to understand how GDAL 
works behind the scenes, or if you want to extend it or integrate its functionality into part of another 
application or larger workflow. However, you should expect to invest a little time and effort to 
understand the structure of the source code if you choose to take this route. 

Alternatively, if you simply want to get hold of a working copy of the OGR2OGR executable so that 
you can follow along with the examples in this section, I suggest instead that you download the 
OSGeo4w package from http://osgeo4w.osgeo.org. OSGeo4w (Open Source Geospatial for Windows) 
is a package containing ready-compiled Windows binaries of a range of open source geospatial tools, 
including GDAL/OGR, MapServer, QGIS, and many more. I recommend OSGeo4W not only as a 
convenient way to get hold of GDAL/OGR itself, but you also might find that you can make use of many 
of the other included tools to integrate with spatial data in SQL Server. 

Whatever option you choose, ensure that your version of the GDAL library corresponds to version 
1.8.0 or greater because this is the version at which support for SQL Server was first introduced. 

OGR2OGR—Basic Syntax 
OGR2OGR is the command-line component of the GDAL/OGR library that can be used to convert 
vector data from one format to another. You can retrieve a full list of usage options by typing the 
following in a command prompt window (assuming that the directory in which OGR2OGR is installed 
is located in the command path). 

ogr2ogr /? 

The basic syntax to load data from a source to a destination is as follows. 

ogr2ogr -f {OutputFormat}    {Destination}    {Source}    {Additional Options} 

To import data into SQL Server you state the {OutputFormat} as "MSSQLSpatial", and specify the 
{Destination} using the connection string of the target SQL Server database. In the code listing below, 
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the contents of the {Source} file will be loaded into a new table in the ProSpatial database of the 
default localhost SQL Server instance, for example: 

ogr2ogr 
  -f "MSSQLSpatial" 
  "MSSQL:server=localhost;database=ProSpatial;trusted_connection=yes" 
  {Source} 
  {Additional Options} 

The default OGR2OGR behavior is to create a new table in the destination database named with 
the same filename as the {Source} dataset. The data from a shapefile named MyData.shp will be 
imported into the SQL Server table MyData, for example. If a table with that name already exists then the 
command will fail. This behavior can be modified by specifying one of the following flags in the 
{Additional Options}. 

-append appends new records into an existing table with the specified name. 

-overwrite deletes the existing destination table and re-creates it. 

-nln "tablename"  inserts data into the named table rather than the default 
table named based on the {Source} dataset name. 

There are further {Additional Options}, some of which vary depending on the nature of the source 
data. In the following sections we examine some practical scenarios that demonstrate these options, as 
well as the syntax required to load from {Source} datasets of several common formats. 

Importing ESRI Shapefile Data 
The shapefile format was designed and is maintained by Environmental Systems Research Institute, 
Inc. (ESRI). Originally developed for use in its ARC/INFO suite of GIS software, the shapefile is now a 
very common format used for exchanging spatial information between all kinds of systems, and is the 
format in which most commercial spatial data is supplied. Over time, a large body of spatial datasets 
has been created in ESRI shapefile format. 

Although a set of data provided in shapefile format is commonly referred to as “a" shapefile (singular), 
this is a slight misnomer because a single shapefile actually consists of several files. Each file relating 
to a given shapefile dataset shares the same file name, with one of the following file extensions. 

.shp: The SHP file contains the raw geometrical shape data. Each SHP file can 
contain items of only one kind of geometry shape: Points, LineStrings, or 
Polygons. 

.shx: The SHX file maintains the shapefile index, which holds one index entry 
for every shape in the shapefile document. Each index entry describes the start 
position and length of the associated shape record in the SHP file. 

.dbf: The DBF file contains additional nonspatial attributes of each shape. For 
instance, in a shapefile containing Polygons representing the states of 
America, the DBF file might contain the name of each state, its population, or 
the name of its state capital. 

.prj: The PRJ file gives details about the projection in which the coordinates of 
the geometry data are represented, in the same format as used in the 
well_known_text column of the sys.spatial_reference_systems table. When 
importing a shapefile into SQL Server, this file contains the information that 
is required to determine the correct spatial reference identifier (SRID). 
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Shapefiles may contain coordinate data defined using either projected or geographic coordinate 
reference systems. The following sections show an example of each of these, imported into a column of 
the geometry and geography datatype, respectively. 

Obtaining Sample Shapefile Data 
For this example, we use a projected dataset of Polygons representing precinct outlines of the city of 
Boston, Massachussetts. As do many large U.S. cities, the City of Boston maintains a website from 
which you can download various spatial datasets related to the city. 

To download the precinct dataset, go to the website at http://hubmaps1.cityofboston.gov/datahub/ 
(you may be asked to accept a license agreement). From the left-hand menu, select GIS Data 
Downloads to display various layers, grouped by theme. Under the Political heading, click on the small 
blue icon to the right of the Precincts layer, which will bring up a popup window. Click on the link in the 
popup window to download the layer and metadata, as shown in Figure 5-3. Then having downloaded 
the Precincts.zip file, unzip it to extract the set of files for the Precincts shapefile. 

 

Figure 5-3. Downloading Boston Precinct data. 
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Loading the Data 
To import the shapefile into SQL Server using the default OGR2OGR options, open a command prompt 
window, navigate to the folder in which you extracted the Precincts shapefile, and execute the 
following command (you need to change the SQL Server connection string as appropriate). 

ogr2ogr 
  -f "MSSQLSpatial" 
  "MSSQL:server=localhost;database=ProSpatial;trusted_connection=yes" 
  "precincts.shp" 

■ Note  For the purposes of clarity, I've separated the output format, destination, and source parameter values in 
this code listing onto separate lines. However, when executing OGR2OGR you should not insert carriage returns 

between parameters, but list them all on the same line with a space separating each. 

After importing the dataset, you should find that three tables have been created in the specified 
destination database (the ProSpatial database, in my case): precincts, geometry_columns, and 
spatial_ref_sys. 

The geometry_columns and spatial_ref_sys tables store metadata about any spatial data that has 
been imported by OGR2OGR into a destination database. If, at some point in the future, you were to 
use this same data as the source of another transformation (suppose you were to export the precincts 
dataset from SQL Server to KML) then OGR2OGR would refer to these tables to provide additional 
information used in the conversion. In essence, spatial_ref_sys is OGR2OGR's own version of SQL 
Server's sys.spatial_reference_systems table. However, such information is not essential and can 
always be re-created, so you can ignore these tables for now (or even delete them if you choose, 
although be aware that they will be re-created the next time you import any data). 

What's more interesting to us right now is the precincts table, which contains the data imported 
from the precincts shapefile. The structure of the table is as follows. 

[ogr_fid] [int] IDENTITY(1,1) NOT NULL, 
[ogr_geometry] [geometry] NULL, 
[objectid] [numeric](10, 0) NULL, 
[prcnts_id] [float] NULL, 
[id] [varchar](4) NULL, 
[wdpct] [varchar](4) NULL, 
[pct] [varchar](2) NULL, 
[shape_area] [numeric](19, 11) NULL, 
[shape_len] [numeric](19, 11) NULL 

The polygon shapes representing the outline of each precinct have been imported into a geometry 
column of the table named ogr_geometry. The attributes from the precincts.dbf file have been used to 
populate additional columns in the table, containing various identifiers together with the length and 
area of each precinct shape. To ensure uniqueness of each row in the table, OGR2OGR has 
automatically added an IDENTITY column, ogr_fid, which contains a unique integer reference for each 
record. 

To test out the data loaded into the table, we can plot the ogr_geometry column on the Management 
Studio Spatial Results Tab, as shown in Figure 5-4. 
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Figure 5-4. The precincts shapefile plotted using the Management Studio Spatial Results tab. 

■ Note  After importing a dataset, you may find that OGR2OGR creates additional tables in your database: 

geometry_columns and spatial_ref_sys. These tables are used by OGR2OGR to store additional metadata. 

Assigning an Output SRID 
The result displayed in Figure 5-4 seems pretty good, but there are still a few tweaks that you might 
want to make. You could, for example, use the –nln "NewTable" option to change the name of the table 
into which the data is inserted, or specify –select objectid,pct to copy only certain attribute fields 
from the shapefile to columns in the destination table. 

The most important change to be made, however, is to correct a problem that might not yet be 
apparent but which can be demonstrated by executing the following code listing. 

  SELECT ogr_geometry.STSrid FROM precincts; 

The STSrid property returns the spatial reference identifier of an instance, and the results of this 
query show that OGR2OGR has loaded every record in the precincts table using a spatial reference 
identifier of 32768. This value seems like a perfectly plausible SRID so it might not strike you as 
particularly odd, but it's not the correct spatial reference identifier for this data. In fact, it's not a valid 
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SRID at all; it's the code that OGR2OGR uses when the destination spatial reference system is 
undefined. (Perhaps a code of 99999 would have made this more obvious!) 

To assign the correct SRID, we first need to examine the properties of the spatial reference system 
in which the coordinates were originally supplied, which is described in the precincts.prj file that 
accompanies the shapefile. The PRJ file is a simple text file, so you can load it up in any text editor to 
show the contents as follows. 

PROJCS[ 
 "NAD_1983_StatePlane_Massachusetts_Mainland_FIPS_2001_Feet", 
  GEOGCS[ 
    "GCS_North_American_1983", 
    DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137.0,298.257222101]], 
    PRIMEM["Greenwich",0.0], 
    UNIT["Degree",0.0174532925199433]], 
  PROJECTION["Lambert_Conformal_Conic"], 
  PARAMETER["False_Easting",656166.6666666665], 
  PARAMETER["False_Northing",2460625.0], 
  PARAMETER["Central_Meridian",-71.5], 
  PARAMETER["Standard_Parallel_1",41.71666666666667], 
  PARAMETER["Standard_Parallel_2",42.68333333333333], 
  PARAMETER["Latitude_Of_Origin",41.0], 
  UNIT["Foot_US",0.3048006096012192]] 

This preceding PRJ text should look familiar to you as the Well-Known Text representation of a 
projected spatial reference system, which we examined back in Chapter 1. This particular system is the 
state plane coordinate system for Massachussetts Mainland, which uses a Lambert Conformal Conic 
projection of the North American 1983 Datum, centered on a central meridian at 71.5 degrees West. 

Because this is a projected coordinate system, we can't look for it in SQL Server's 
sys.spatial_reference_systems table. Instead, you can go to the EPSG registry website at 
http://www.epsg-registry.org and search for spatial reference systems using the name 
"Massachusetts Mainland". There will be a few matches returned, but the distinguishing properties of 
the system we're looking for is that it's based on the NAD83 datum, with the unit of measure being US 
Feet. This leads to only one possible spatial reference system: SRID 2249. 

To correct the SRID of the records in the precincts table, you could execute a T-SQL UPDATE query 
after importing the data, as follows. 

UPDATE precincts 
SET ogr_geometry.STSrid = 2249; 

A better approach, however, would be to make OGR2OGR assign the correct SRID at the point the 
data is inserted. This can be done by specifying the -a_srs parameter, together with the EPSG code of 
the spatial reference system to be used. The following example recreates the precincts table using the –
a_srs parameter to populate every record with SRID 2249. Note that because I want to replace the 
existing precincts table, I've also included the –overwrite parameter: 

ogr2ogr 
  -f "MSSQLSpatial"  
  "MSSQL:server=localhost;database=ProSpatial;trusted_connection=yes"  
  "precincts.shp"  
  -a_srs "EPSG:2249"  
  -overwrite 
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■ Tip  You can find the full list of OGR2OGR options by calling ogr2ogr /? or by looking at 

http://www.gdal.org/ogr2ogr.html. 

Re-executing the previous code listing to retrieve the SRID of the values in the ogr_geometry 
column now shows that all the data have been imported with the correct SRID: 

  SELECT DISTINCT ogr_geometry.STSrid FROM precincts; 

2249 

Another Example: Specifying Layer Creation Options 
To provide a further example of importing data from shapefile format into SQL Server, we will use data 
from the U.S. Census Bureau representing the Zip Code Tabulation Areas (ZCTAs) of the state of 
California. These ZCTAs were defined by the U.S. Census Bureau during the U.S. 2010 census, and are 
approximately equivalent to the delivery area for a five-digit ZIP code as used by the U.S. Postal 
Service. You can download the ESRI shapefile of the Californian ZCTA areas used in this example 
from the following URL: 
http://www2.census.gov/geo/tiger/TIGER2010/ZCTA5/2010/tl_2010_06_zcta510.zip. 

■ Tip  You can download many other interesting shapefile datasets from the U.S. Census by using the Web 

download interface at http://www.census.gov/cgi-bin/geo/shapefiles2010/main. 

Download this ZIP file and extract its contents. You should see the familiar structure of a shapefile 
dataset: the .shp file that defines the coordinate data, the .dbf file containing the various attributes attached 
to each shape, the .shx index file, and the .prj file describing the projection parameters. Let's start by 
looking at the tl_2010_06_zcta510.prj file, the content of which is shown below: 

GEOGCS[ 
  "GCS_North_American_1983", 
  DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]], 
  PRIMEM["Greenwich",0], 
  UNIT["Degree",0.017453292519943295] 
] 

Notice that, because the Well-Known Text definition in the tl_2010_06_zcta510.prj file begins with 
the keyword GEOGCS, we know that the coordinates of this shapefile are defined using a geographic 
coordinate system, and should be imported into a column of the geography datatype. Now, we just need to 
determine the appropriate SRID for the data in this column. 

To find out the SRID, you could search for the parameters listed in the tl_2010_06_zcta510.prj file on 
the EPSG registry website, as we did to find the SRID of the Massachussetts Mainland projection in the 
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preceding example. However, even though this would allow you to find the correct SRID, it wouldn’t 
necessarily prove that this data could be imported into SQL Server. Remember that SQL Server only 
supports geographic coordinates defined using one of the spatial reference systems listed in the 
sys.spatial_reference_systems table. Therefore, instead of looking up the projection on a website, we'll 
search for a record in the sys.spatial_reference_systems table that matches the parameters given in the 
tl_2010_06_zcta510.prj file. That way, we can look up the corresponding SRID and check that it's a 
supported spatial reference system at the same time. 

 The .prj file states that the ZCTA coordinate data is defined using a geographic coordinate system 
based on the NAD 83 datum. We can search for the correct identifier for this spatial reference system 
in the sys.spatial_reference_systems table using the query: 

SELECT 
  spatial_reference_id  
FROM  
  sys.spatial_reference_systems  
WHERE  
  well_known_text LIKE 'GEOGCS%"NAD83"%'; 

The single result returned is as follows. 

spatial_reference_id 
4269 

So, when importing the data contained in the ZCTA shapefile, we should use the –a_srs parameter 
to assign SRID 4269. Because SRID 4269 is a geographic coordinate reference system, we also need to tell 
OGR2OGR to import the data into a column using the geography datatype rather than the geometry datatype 
as used in the last example. 

OGR2OGR settings that are specific to the destination data format, such as the choice between using the 
geometry/geography datatype, are known as layer creation options. You can specify one or more layer 
creation options using the –lco flag. In the following code listing, two layer creation options are given.  

GEOM_TYPE="geography" specifies that the shape data should be inserted into a 
column of the geography datatype (the alternative, and default value, is 
GEOM_TYPE="geometry").  

GEOM_NAME="geog4269" sets the name of the geography column to geog4269 (I've 
chosen this column name following my convention of concatenating the datatype 
and SRID of the data it contains). 

As in the preceding example, I use the –a_srs parameter to ensure that the created geometries are 
assigned the correct SRID of EPSG:4269. I also use the –overwrite option to specify that the requested 
destination table should be replaced should it already exist.  

I also include two other options: 

-nln "CaliforniaZCTA" specifies the name of the destination table in SQL 
Server. Without this switch, the table would have been named 
tl_2010_06_zcta510 to match the input shapefile, but that's rather difficult to 
remember! 

-progress is a switch to tell OGR2OGR to display a simple progress bar in the 
console window as the data is uploaded. This is particularly useful when 
loading larger datasets to give an indication of how far along the import 
procedure has progressed (and how much farther it has to go). 
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Here’s the full code listing to load the Californian ZCTA shapefile: 

ogr2ogr 
  -f "MSSQLSpatial"  
  "MSSQL:server=localhost;database=ProSpatial;trusted_connection=yes"  
  "tl_2010_06_zcta510.shp"  
  -a_srs "EPSG:4269" 
  -overwrite 
  -lco "GEOM_TYPE=geography" 
  -lco "GEOM_NAME=geog4269" 
  -nln "CaliforniaZCTA" 
  -progress 

As the records are imported from the shapefile into SQL Server, OGR2OGR will update a 
percentage progress bar as illustrated in Figure 5-5. 

 

Figure 5-5. Displaying progress of OGR2OGR import from ESRI shapefile. 

Once the progress bar has reached 100%, the import is complete and you can select the data from the 
CaliforniaZCTA table, the (partial) content of which is displayed in the SSMS Spatial Results tab as shown in 
Figure 5-6. 
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Figure 5-6. Displaying the ZCTA areas of California.  

Importing MapInfo Data 
MapInfo Professional is a GIS system for Windows platforms often used in public sector organizations. 
MapInfo datasets are saved in an ASCII text format, either using the native .tab file extension, or 
saved as a MapInfo Interchange File (MIF), which typically comes as a pair of files with .mif and .mid 
extensions. OGR2OGR can read and write MapInfo datafiles in either native (.tab) or interchange 
(.mid/.mif) format. 

Obtaining Sample MapInfo Data 
To demonstrate the process of importing MapInfo data into SQL Server, we will use a dataset from 
Geoscience Australia, a department of the Australian government responsible for various geoscientifc 
and environmental research and information management. 

Starting from the homepage of the Geoscience Australia website at http://www.ga.gov.au/, use the 
search box to search for "river basins data". When the search results are displayed, clicking the top hit 
should take you to a page of metadata titled "Australia's River Basins 1997". This page tells you various 
useful information about this dataset and, around halfway down the page (under the heading "Access"), 
contains a link labeled "Free Data Download". 

■ Note  At the time of writing, the direct URL link for the river basins dataset is 

https://www.ga.gov.au/products/servlet/controller?event=FILE_SELECTION&catno=42343. 
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On the File Selection page, click to select the MapInfo Interchange Format (MIF) checkbox in the 
Available Files column as shown in Figure 5-7, and then click Continue to File Download. Finally, click 
on the dataset title hyperlink to download the file.  

 

Figure 5-7. Downloading a MapInfo dataset from the Geoscience Australia website. 

The file download consists of a single ZIP archive containing several files. Extract these files to 
find three datasets containing Point (rbasin_point), LineString (rbasin_chain), and Polygon 
(rbasin_polygon) features in MapInfo Interchange Format, each having an associated .mid and .mif 
file. There is also a copyright notice and a user guide to accompany the dataset. 

Determining the SRID 
Following the same steps as with the ESRI shapefile examples, before loading the data into SQL Server, 
we first need to determine what SRID is associated with the coordinates. But, unlike with the shapefile 
data sources, we don't have a .prj file to refer to and, although the header of a MapInfo file can contain 
details of the projection used, the river basin files obtained from Geoscience Australia don't have this 
information. 
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Fortunately, a quick glance through the user guide that accompanies the download reveals a 
passage in Section 2.3, Coordinate system, as follows. 

Australia's River Basins 1997 data is available in geographical coordinates (latitude 
and longitude) in decimal degrees using the Australian Geodetic Datum (AGD66). 

Perfect. Now, as we did with the U.S. Census data, we just need to take a look in the 
sys.spatial_reference_systems table to find the ID for a geographic coordinate system based on the 
AGD66 datum: 

SELECT * FROM sys.spatial_reference_systems 
WHERE well_known_text LIKE '%AGD66%'; 

There's a single matching result returned, with SRID 4202. 

Loading the Data 
That's all the information we need, so now we can use OGR2OGR to import the MapInfo data from the 
RBasin_Polygon dataset using the following command, 

ogr2ogr 
  -f "MSSQLSpatial" 
  "MSSQL:server=localhost;database=ProSpatial;trusted_connection=yes" 
  "RBasin_Polygon.mid" 
  -a_srs "EPSG:4202" 
  -lco "GEOM_TYPE=geography" 
  -lco "GEOM_NAME=geog4202" 

Note that this code listing follows exactly the same pattern as used to load data from ESRI 
shapefiles; the options set in this case specify that the data should be loaded into a new table in the 
tempdb database of the SQL Server instance running on localhost, using SRID 4202, with a geography 
column named geog4202. The only difference from the last example, in fact, is that instead of providing 
the name of the .shp shapefile, you provide the name of the MapInfo .mid file instead. There are no 
additional options to set regarding the input file format; this is determined dynamically from the 
structure of the input file itself. 

Once the import has finished, select the data in the RBasin_Polygon table in SQL Server and you 
should see the familiar shape of Australia, as shown in Figure 5-8. 
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Figure 5-8. Australian River Basins imported from MapInfo into SQL Server. 

Reprojecting Data During Import 
In all the preceding examples we've used the –a_srs option to assign the SRID to the data in SQL 
Server to be the same as the spatial reference system in which the coordinates of the source dataset 
were defined. It's worth noting that OGR2OGR can also reproject data from the source coordinate 
system into another spatial reference system as it is imported into the destination. To do so, instead 
of using the –a_srs option to assign a spatial reference system to the output, you use –s_srs to specify 
the EPSG code of the source coordinate system and –t_srs to specify the coordinate system into which 
it should be transformed. 

For example, the following code listing demonstrates how to import the Boston precincts shapefile 
dataset used previously but, this time, reprojects the data from SRID 2249 to SRID 4326 as it is loaded. 
This involves conversion from a projected coordinate system to a geographic coordinate system, 
therefore I've also used the GEOM_TYPE layer creation option to ensure that a geography column is used 
in the destination table, which I've called precincts_reprojected: 

ogr2ogr 
  -f "MSSQLSpatial"  
  "MSSQL:server=localhost;database=ProSpatial;trusted_connection=yes" 
  "precincts.shp" 
  -s_srs "EPSG:2249" 
  -t_srs "EPSG:4326" 
  -overwrite 
  -lco "GEOM_TYPE=geography" 
  -lco "GEOM_NAME=geog4326"  
  -nln "precincts_reprojected" 
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The resulting Polygons, now contained in the geography column geog4326, are illustrated in Figure 5-9. 

 

Figure 5-9. Massachussetts precinct polygons reprojected to SRID 4326 in the geography datatype. 

Reprojection and transformation between different coordinate systems are covered in detail in 
Chapter 8. 

Exporting Spatial Data from SQL Server 
Although the main focus of this chapter is concerned with getting data from different sources into SQL 
Server, it is worth noting that OGR2OGR can just as easily be used to export data from SQL Server into 
another supported format. 

To export data from SQL Server with OGR2OGR you follow the same basic pattern as when 
importing, except that you provide the SQL Server connection string as the {Source} for the 
transformation, and set the filename of the target file as the {Destination}. You also need to set the –f 
option to specify the format in which the output file should be written. 

It is often the case that you don't want to export a complete single table, but possibly a subset of a 
table, or the results of a query that combines fields from multiple tables. To do this, you can specify 
the –sql option, supplying a SQL query to be executed that will return the relevant source data from 
the database. 

To demonstrate, in the following sections we take the data from the precincts_reprojected table 
and export them to a KML file. 

Keyhole Markup Language 
Keyhole Markup Language, more commonly known as KML, is an XML-based language originally 
developed by Keyhole Inc. for use in its EarthViewer application. In 2004, Google acquired Keyhole, 
together with EarthViewer, which it used as the foundation on which to develop its popular Google Earth 
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platform (http://earth.google.com). Although the KML format has undergone several revisions since 
then (at the time of writing, the latest version is KML 2.2), it continues to be the native format for 
storing spatial information used in Google Earth. 

In 2008, KML was adopted by the Open Geospatial Consortium as a standard format for spatial 
information, and you can now find the latest implementation of the KML specification at the OGC 
website, at http://www.opengeospatial.org/standards/kml/. 

KML has always been used within the Google Earth community to share user-created spatial data, 
however, the popularity and accessibility of the Google Earth platform among the wider Internet com-
munity means that KML is becoming increasingly used for educational and research purposes, as well as 
in critical applications such as emergency and disaster services. Coupled with its adoption as a standard 
by the OGC, KML is becoming an increasingly important format for the interchange of spatial data. 

Exporting from SQL Server to KML with OGR2OGR 
To use OGR2OGR to write spatial data to a KML file, you set the -f format flag as "KML", and set the 
name of the kml file as the {Destination}. Note that KML files can only contain coordinates defined 
using SRID 4326, so if your source data uses any other spatial reference system, you will also have to use 
the –t_srs option to transform the coordinates to SRID 4326 in the process. In this example, we export 
data from the precincts_reprojected table, in which the geog4326 column already contains coordinates 
in the correct spatial reference system (because they were transformed into SRID 4326 during import). 

We use the –sql option to retrieve only the ID and shape of each precinct. The shape information 
itself is retrieved from the geog4326 column in Well-Known Binary format using the STAsBinary() 
method. Although OGR2OGR can read SQL Server's native binary format, I find it sometimes leads to 
problems, and using the industry-standard WKB format is a more reliable option. 

Here's the code listing to export the relevant data from the precincts_reprojected table to a new 
precincts.kml file in the c:\spatial directory: 

ogr2ogr 
  -f "KML" 
  "C:\spatial\precincts.kml" 
  "MSSQL:server=localhost;database=tempdb;trusted_connection=yes;" 
  -sql "SELECT prcnts_id, geog4326.STAsBinary() FROM precincts_reprojected" 
  -overwrite 

The resulting KML file begins as shown below. Notice how the KML structure of a Polygon, in 
which a space-separated list of coordinates is listed within a <coordinates> element contained within 
<outerBoundaryIs>, closely resembles the GML format in which space-separated Polygon coordinates 
are listed within the <posList> element contained within an <exterior> element: 

<?xml version="1.0" encoding="utf-8" ?> 
<kml xmlns="http://www.opengis.net/kml/2.2"> 
<Document><Folder><name>SELECT</name> 
<Schema name="SELECT" id="SELECT"> 
  <SimpleField name="Name" type="string"></SimpleField> 
  <SimpleField name="Description" type="string"></SimpleField> 
  <SimpleField name="prcnts_id" type="float"></SimpleField> 
</Schema> 
  <Placemark> 
    <Style> 
      <LineStyle><color>ff0000ff</color></LineStyle> 
      <PolyStyle><fill>0</fill></PolyStyle></Style> 
    <ExtendedData> 
      <SchemaData schemaUrl="#SELECT"> 
        <SimpleData name="prcnts_id">1</SimpleData> 
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      </SchemaData> 
    </ExtendedData> 
    <Polygon> 
      <outerBoundaryIs> 
        <LinearRing> 
          <coordinates>-71.008036474492485,42.387093194669127 
 -71.010502257322116,42.389034720949425 -71.011425746332051,42.38976473048055  
-71.011931948239607,42.390174099511839 -71.01262223043183,42.390907499155361  
-71.013103274784129,42.391509391490196 … 
-71.008036474492485,42.387093194669127 
          </coordinates> 
        </LinearRing> 
      </outerBoundaryIs> 
    </Polygon> 
  </Placemark> 
  <Placemark> 
… 
  </Placemark> 
</Folder></Document></kml> 

When viewed in Google Earth, this KML file is displayed as shown in Figure 5-10. 

 

Figure 5-10. Viewing precincts of Boston exported from SQL Server to a KML file in Google Earth. 



CHAPTER 5 ■  IMPORTING SPATIAL DATA 

 

125 

Spatial ETL Using SQL Server Integration Services 
The techniques discussed thus far in this chapter demonstrate some simple methods that allow you to 
import spatial data in various formats into SQL Server 2012, but they cannot readily be automated or 
used as part of a robust extraction, transformation, and load (ETL) process. 

Unfortunately, SQL Server Integration Services, Microsoft's own ETL tool for SQL Server, does not 
directly support transformations between spatial data formats such as the ESRI shapefile or MapInfo 
file format. However, there are still ways to use spatial data in SSIS, as is demonstrated in this section. 

Importing Point Data Using a Custom Script Component 
SQL Server does not provide any specific functionality for dealing with spatial data. However, because 
geography and geometry are CLR datatypes based on the .Net framework, you can import spatial data in 
an SSIS dataflow task by using a custom script component that references the 
Microsoft.SqlServer.Types.dll library and makes use of the SqlGeography and SqlGeometry classes. 

To demonstrate this approach, we will create an SSIS package that loads the same eqs7day-M1 
dataset used right at the beginning of this chapter, but instead of running a T-SQL script to populate a 
geography Point column representing the epicenter of each record after loading the table, we'll create 
this column as part of the SSIS load process itself. 

■ Note  SQL Server Integration Services is not available as part of SQL Server Express. To follow this example you 

must be using SQL Server developer, standard or enterprise edition. 

Creating a New SSIS Project 
To begin, create a new SSIS project  by following these steps. 

1. From the main menu of Business Intelligence Development Studio (or Visual 
Studio), select File ➤ New ➤ Project... 

2. In the New Project dialog box that appears, highlight Integration Services 
Project from the Business Intelligence Project types templates. 

3. Choose a Name and Location for the new SSIS project, and then click OK. 

Creating the Text File Connection 
Once the new project has been created, define a connection to the eqs7day-M1.txt source file as 
follows. 

1. From the Visual Studio main menu, click on SSIS ➤ New Connection... 

2. In the Add SSIS Connection Manager dialog box that appears, select FLATFILE 
Connection manager for flat files, and then click the Add... button. 

3. The Flat File Connection Manager Editor dialog will appear. Notice that this 
is exactly the same dialog as you used to set the file source for the 
Import/Export Wizard at the beginning of this chapter, and you need to choose 
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exactly the same settings as before. Start by giving a name to this connection. 
I use "Earthquakes Text File". 

4. Click the Browse button, and navigate to the eqs7day-M1.txt text file. 
Highlight the file and click open. 

5. Change the Text qualifier to be a double quote character ("). 

6. Click to enable the checkbox next to Column names in the first data row. 

7. You now need to configure the datatype of each column in the textfile. Select 
the Advanced option from the left-hand pane of the Flat File Connection 
Manager Editor. As before, click each column in turn and, from the properties 
pane on the right-hand side, amend the values of the Datatype and 
OutputColumnWidth fields to match the values shown in Table 5-2. 

8. Once you have made the appropriate changes as shown in Figure 5-11, click 
OK to close the Flat File Connection Manager Editor. 

 

Figure 5-11. SSIS Flat File Connection Manager to the eqs7day-M1.txt file. 

The new connection will appear in the Connection Managers pane at the bottom of the screen. 
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Creating the SQL Server Connection 
Next you need to add the details of the SQL Server database that will be the destination into which the 
data are inserted. We will use an OLE DB connection to the database, which you can create by 
following these steps. 

1. From the Visual Studio main menu, click on  SSIS ➤ New Connection... 

2. In the Add SSIS Connection Manager dialog box that appears, select OLEDB 
Connection manager for OLE DB connections, and then click the Add... 
button. 

3. On the next screen, you will see a list of all available data connections. Click 
New... 

4. From the Provider dropdown at the top of the form, ensure that SQL Server 
Native Client 11.0 is selected. 

5. Enter the relevant details of the SQL Server instance to which you wish to 
upload the data, and click OK. 

The connection manager settings that I use for connecting to the SQL Server 2012 instance 
running on my local machine are shown in Figure 5-12. 

 

Figure 5-12. Connection Manager settings for SQL Server 2012.  
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We've now set up the relevant connections for our project, so it's time to add the task that will 
transform the data from our text file into SQL Server. 

Adding a New Dataflow Task and Specifying the Data Source 
The project will contain a single dataflow task that transforms data from the source text file into the 
destination SQL Server table. From the Toolbox on the left-hand side of the screen, drag a new Data 
Flow Task onto the Control Flow designer surface in the center of the screen, and then double-click on 
the Data Flow Task to edit it. 

We will add a data source to the dataflow that uses the connection to our eqs7day-M1.txt file:  

1. From the toolbox, under the Other Sources heading, select Flat File Source, 
and drag it into the designer surface. 

2. Double-click the Flat File Source to bring up the Flat File Source Editor. 

3. Select the Earthquakes Text File connection from the dropdown box, and click 
OK. 

Creating the Script Component 
Next we need to add a script component that will use the lat and lon columns from the text file source to 
create a new geography column containing a Point instance. Because this script will act upon input 
columns and create new output columns, we must use a transformation script. 

1. Open the toolbox once again and, under the Common heading, select the 
Script Component item and drag it onto the dataflow workspace. 

2. In the Select Script Component Type dialog window that appears, select 
Transformation, and click OK. 

3. Now connect the flat file source as an input to the script component. To do 
this, first click once on the Flat File Source item. Then click and drag the 
green arrow that appears underneath to connect it to the Script Component 
item. 

To configure the script, double-click on the Script Component item that you just added to the Data Flow 
window. This will bring up the Script Transformation Editor dialog window. 

1. Click on the Input Columns tab on the left-hand side. The Available Input 
Columns table will show all of the columns available from our source text file. 
For this transformation, we need only the Lat and Lon columns, so click once 
to select the check boxes next to each of these items. 

2. Next, click on the Inputs and Outputs item on the left-hand side. 

3. Click once on the small [+] icon next to Output 0, and then click on the Output 
Columns item that appears underneath it. 

4. Click on the Add Column button to create a new output column. 

5. A new output column will be created. By default, this is named Column; while 
the name of the column is still highlighted, let's change it to something more 
informative, such as Location. 

6. In the properties window on the right-hand side, set the DataType of the new 
Location column to image [DT_IMAGE]. 



CHAPTER 5 ■  IMPORTING SPATIAL DATA 

 

129 

The preceding steps are illustrated in Figure 5-13. 

 

Figure 5-13. Configuring the Script Transformation Component. 

■ Note  Why do we specify the image [DT_IMAGE] datatype for a column that will contain geography data? SSIS 
datatypes are not specific to SQL Server, because SSIS can connect to many different data sources. The image 
[DT_IMAGE] datatype, named because it can be used to store image data in databases, can be used to represent 

any binary value up to a maximum size of 2^31-1 (2,147,483,647) bytes, including geography or geometry data. 
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To add the code that will be executed by the script task, click on the script tab on the left-hand side of 
the Script Editor Transformation dialog box. You can create SSIS custom scripts using either Microsoft 
Visual C# 2010 or Microsoft Visual Basic 2010. C# is the default, and that's what I use in this example. (If 
you prefer to write your own script in Visual Basic, you can do so by changing the ScriptLanguage 
property in the right-hand pane.) 

Click the Edit Script… button. A new Visual Studio editor window will appear containing the 
skeleton template for a C# script component. We edit this script to create a geography Point item to 
populate the Location column as part of the dataflow. 

Before we can create our new script, we first need to add the necessary references to the .NET 
libraries that contain the methods we want to use. 

1. From the main menu, select Project ➤ Add Reference… 

2. Scroll down the list of components under the .NET tab, and highlight the 
Microsoft.SqlServer.Types component (or Browse to the Program Files 
(x86)\Microsoft SQL Server\110\SDK\Assemblies directory and highlight it 
from there). 

3. Click OK. Microsoft.SQLServer.Types will appear in the References list in the 
Solution Explorer pane. 

Having included a reference to Microsoft.SQLServer.Types in our project, we also need to include 
the corresponding namespace in our code so that we can easily reference the methods included in the 
assembly. To do so, add this line to the list of references at the top of main.cs, on the line immediately 
following using Microsoft.SqlServer.Dts.Runtime.Wrapper: 

using Microsoft.SqlServer.Types; 

We also use the BinaryWriter() and MemoryStream() methods from the System.IO namespace, so 
include a reference to that namespace by adding the following line, 

using System.IO; 

The main functionality of our script is contained within the ProcessInputRow() method. This 
method acts upon the data in each row of the source file as they pass through the script component. 
There is already an empty template for ProcessInputRow() method in the script, as follows. 

public override void Input0_ProcessInputRow(Input0Buffer Row) 
{ 
  /* 
    Add your code here 
  */ 
} 

Edit this to be as follows. 

public override void Input0_ProcessInputRow(Input0Buffer Row) 
{ 
  // Instantiate a new geography object 
  SqlGeography point = new SqlGeography(); 
 
  // Use the Point() method of the geography datatype to create a point from the lat and lon  
  // values of this row 
  point = SqlGeography.Point(Row.Lat, Row.Lon, 4326); 
 
  // Instantiate a new memorystream 
  MemoryStream ms = new MemoryStream(); 
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  // Instantiate a new binarywriter based on the memorystream 
  BinaryWriter bw = new BinaryWriter(ms); 
 
  // Write the result to the binarywriter 
  point.Write(bw); 
 
  // Insert the resulting object into the Location row 
  Row.Location.AddBlobData(ms.ToArray()); 
  } 
} 

We are not performing any postexecute() or preexecute() methods, so you can remove these 
empty methods from the file if you wish. When you have made these changes, the resulting main.cs file 
should look like that shown in the following code listing. 

using System; 
using System.Data; 
using Microsoft.SqlServer.Dts.Pipeline.Wrapper; 
using Microsoft.SqlServer.Dts.Runtime.Wrapper; 
using Microsoft.SqlServer.Types; 
using System.IO; 
 
[Microsoft.SqlServer.Dts.Pipeline.SSISScriptComponentEntryPointAttribute] 
public class ScriptMain : UserComponent 
{ 
    public override void Input0_ProcessInputRow(Input0Buffer Row) 
    { 
        SqlGeography point = new SqlGeography(); 
        point = SqlGeography.Point(Row.Lat, Row.Lon, 4326); 
        MemoryStream ms = new MemoryStream(); 
        BinaryWriter bw = new BinaryWriter(ms); 
        point.Write(bw); 
        Row.Location.AddBlobData(ms.ToArray()); 
    } 
} 

Save the script (Ctrl + Shift + S) and then select File ➤ Exit to close the script window and return to 
the Script Transformation Editor dialog window. Now Click OK to exit the Script Transformation Editor 
and return to the Data Flow tab of the main SSIS project. 
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Specifying the Destination 
Now that we have added the source and the transformation of our dataflow task, we need to set the 
destination, the SQL Server table into which the task will insert the data. 

1. From the toolbox, under Other Destinations, select and drag a new OLE DB 
Destination to the Data Flow workspace. 

2. Click once on the Script Component item in the workspace, and drag the 
green output connector from the Script Component onto the new OLE DB 
destination item. 

3. Double-click the OLE DB destination item to open the OLE DB Destination 
Editor dialog window. 

4. On the Connection Manager tab, ensure that the OLE DB Connection 
manager dropdown shows the SQL Server connection that you added to the 
project earlier. To distinguish this set of data from the version loaded earlier 
through the SQL Server Import/Export Wizard, wewill create a new table for 
it, so click the New… button next to the Name of the table or the view. 

SSIS will generate a CREATE TABLE script for you based on the datatypes of the 
columns included in the dataflow; the only modification you need to make is 
to name the table and change the type of the Location column from IMAGE to 
geography. The modified script I used is as follows. 

CREATE TABLE [eqs7dayM1_SSIS] ( 
  [Src] CHAR(2), 
  [Eqid] VARCHAR(8), 
  [Version] CHAR(1), 
  [DateTime] VARCHAR(50), 
  [Lat] REAL, 
  [Long] REAL, 
  [Magnitude] REAL, 
  [Depth] REAL, 
  [NST] SMALLINT, 
  [Region] VARCHAR(255), 
  [Location] GEOGRAPHY 
) 

Then click OK. 

5. Click "Mapping" from the left-hand pane of the OLE DB Connection Manager 
window. You should see that all of the columns from the original text file 
together with the new Location column that is created in the script 
component are automatically mapped to the appropriate columns in the 
destination table, as shown in Figure 5-14.  Click OK. 
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Figure 5-14. Columns from the source text file and the Location column created by the script component 
mapped to columns in the SQL Server destination. 

The SSIS project is now finished and ready to run. The complete dataflow task is illustrated in 
Figure 5-15. 
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Figure 5-15. The completed SSIS Spatial Data Flow Task. 

Running the SSIS package 
We have now added all the components of the dataflow, so press F5 to run the project. Once the project 
has executed, you can go back to SQL Server Management Studio and run the following T-SQL 
statement in a query window. 

SELECT  
  Eqid, 
  Region, 
  Location.STAsText() AS WKT 
FROM  
  dbo.Eqs7dayM1_SSIS; 

The results show the rows of data successfully imported from the Eqs7day-M1.txt text file, together 
with a new column, Location, containing the geography Point created by the SSIS script component, as 
follows. 



CHAPTER 5 ■  IMPORTING SPATIAL DATA 

 

135 

Eqid            Region                  WKT 
51204068        Northern California     POINT (-122.8238 38.809) 
10330433        Southern California     POINT (-116.1075 33.7415) 
00048942        Central Alaska          POINT (-150.3075 63.0547) 
2008taaw        Greece                  POINT (21.4639 38.0295) 

This end result is identical to that obtained from importing the text file using the SQL Server 
Import/Export Wizard and then manually adding and populating the geography column with an UPDATE 
query. The difference is that, in this case, the derived column was created by the script component in 
an SSIS package, which can be easily repeated as part of an automated load task. 

Using Third-Party Source Components 
The previous example was relatively simple because it sought only to create Point geometries from a 
pair of numeric coordinate columns in the source dataset. To extend this example to create more 
complex geometries, or to use SSIS to load data from sources such as ESRI shapefiles, we need a more 
flexible data source than a simple text file. 

CodePlex SSIS Shapefile Source 
There's a project on the CodePlex open source repository that aims to provide an SSIS data source for 
loading Points, LineStrings, or Polygons from ESRI shapefiles. You can find the project page at 
http://shapefilesource.codeplex.com/. 

At the time of writing, this project is still very young, and only in beta release. It's also a little bit 
fiddly to set up; instead of being able to directly read shapefile data from the data source into a SQL 
Server destination, you still need to use an intermediate custom script transformation. The custom 
script must take the DT_IMAGE produced by the shapefile reader and turn it into a WKT string, which is 
then used as an input to the STGeomFromText() method on the destination server. Despite its current 
shortcomings, the project shows promise and is probably worth keeping an eye on for the future. 

Safe FME 
If you want to import an ESRI shapefile, MapInfo, or other spatial dataset into SQL Server in a 
production environment, another option is to use a commercial third-party component. The most 
popular tool for this purpose is the Feature Manipulation Engine (FME) from Safe Software 
(http://www.safe.com). 

FME can convert data between a huge range of spatial formats (250+), and it can also transform 
and manipulate that data in various ways as part of a workflow. In addition to providing a stand-alone 
desktop application and server component, FME also provides a set of extensions that integrate with 
SQL Server Integration Services, providing additional source readers and destination writers for 
working with different formats of spatial data as part of an ETL process. 

Figure 5-16 illustrates a simple FME workflow that takes geometry and attribute data from a 
shapefile and loads it directly into SQL Server. 
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Figure 5-16. Loading data from a shapefile to SQL Server using Safe FME. 

It is not my intention to describe Safe FME in any further detail here, but I do recommend that you 
check it out if you have need to load a large amount of spatial data from many different formats into 
SQL Server. 

Summary 
In this chapter, you learned about a variety of data formats in which existing spatial data may be 
provided, and how you can import those data into SQL Server 2012. Specifically, this chapter covered 
the following. 

• There are many alternative file formats in which spatial information is 
commonly stored and shared, including tabular geographic information, the 
ESRI shapefile format, MapInfo files, KML, and many more. 

• There are a number of sources from which you can obtain freely available 
spatial data over the Internet. The data obtained from these sources range in quality 
and in coverage. If you are downloading spatial data for use in a critical 
application, be sure to check the accuracy of that data first! 
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• Simple spatial information provided in tabular gazetteer format can be imported 
using the Import and Export Wizard. You can then create a computed column or 
use the T-SQL UPDATE statement in conjunction with the Point() static method to 
populate a geography or geometry column from the coordinate values of each row 
of data in the table. 

• To construct an item of spatial data from tabular information containing a z-
coordinate, you can manually construct the WKT representation of a geometry 
based on each coordinate value, and then pass that representation to the 
relevant WKT static method, such as STPointFromText(). 

• There are a number of other tools capable of converting and importing spatial 
data that are compatible with SQL Server. OGR2OGR is one such tool, which can 
read from and write to a variety of formats, and you saw examples of how to load 
ESRI shapefiles and MapInfo interchange files into SQL Server, and how to 
export data to KML format. 

• SQL Server Integration Services does not directly support spatial data formats. 
To perform ETL of spatial data, you can write a custom script component, or use a 
commercial add-in such as FME from Safe Software. 
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Geocoding 

Even though the dedicated spatial datatypes, geometry and geography, are a relatively recent addition to 
SQL Server, almost every existing SQL Server database already contains some form of spatial 
information, that is, data that describes the location of some feature or other. This spatial information 
might not be of the sort we have considered so far in this book, being described using coordinates from 
a spatial reference system, but might instead be the addresses of customers or suppliers, postal codes, 
delivery routes, or the names of cities or regions for which a sales manager is responsible. Wouldn’t it 
be useful if you could conduct spatial analysis based on this sort of common, unstructured spatial 
information? That is exactly what geocoding enables you to do. 

The process of geocoding involves taking a text-based description of a location or place, such as a 
street address, the name of a landmark, or a postal code, and deriving a structured spatial representation 
of that feature. In practice, the representation returned by most geocoding methods is a single pair of 
coordinates representing the approximate center of the supplied address, but they may also return a 
bounding box representing the extent of a feature, or even a Polygon representing its precise shape. 

To demonstrate the process of geocoding, let's consider an example. The address of the White 
House, the official residence of the president of the United States, is 1600 Pennsylvania Avenue NW, 
Washington DC, 20500. If you were to geocode this address, you might obtain the coordinates 38.8980 
degrees latitude, –77.0365 degrees longitude, corresponding to a Point located in the WGS84 spatial 
reference system. The geocoding process is illustrated in Figure 6-1. 

 

Figure 6-1. Geocoding an address into latitude and longitude coordinates 

There are a number of different ways to provide geocoding functionality; some geocoding tools are 
desktop-based applications, whereas others are services that you access over the Web. In this chapter, I'll 
show you how to create a .NET geocoding function that calls into the Bing Maps REST geocoding service, 
and how to integrate this function into SQL Server. I'll then discuss some considerations for using 
geocoding in a batch or asynchronous environment, and introduce the concept of reverse-geocoding. 

The Bing Maps Geocoding Service 
Microsoft provides a number of online spatial services under the "Bing Maps" brand. One of these, the 
Bing Maps REST Locations API, exposes a representational state transfer (REST) interface into a 
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geocoding service. You can read more details about the Bing Maps REST Locations API at 
http://msdn.microsoft.com/en-us/library/ff701715.aspx. 

Because the Locations API is free for most applications, and simple to use, I use this service to 
provide geocoding functionality in this chapter. However, you could apply a similar approach to many 
other web-based geocoding services. 

Obtaining a Bing Maps Key 
In order to use the Bing Maps geocoding service, you must provide authenticatation in the form of an 
alphanumeric key. If you want to follow any of the code samples in this chapter, you'll therefore need 
to sign up for a key, which you can do by following the instructions at 
https://www.bingmapsportal.com/. 

Registration is free and quick. You'll first need to log in to the Bing Maps portal site with a 
Windows Live ID and create a new account by filling in the form shown in Figure 6-2.  

 

Figure 6-2. Creating a Bing Maps account 
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Having entered the required registration details, select the menu option to "Create or view keys". 
You'll be prompted to enter a name for your application, as well as the URL at which the application 
will be hosted. You'll also need to select the type of application for which the key will be used. For the 
purposes of this chapter, you can request a "Developer" application key, with an application URL 
pointing to a localhost address, such as http://127.0.0.1, as shown in Figure 6-3. 

 

Figure 6-3. Creating a Bing Maps key 

Keys are used to track usage of the Bing Maps service, and are also used for recording certain 
billable transactions, as described at http://msdn.microsoft.com/en-us/library/ff859477.aspx. 
However, you are only billed for production applications for which you have taken out an enterprise 
license agreement. You won't incur any costs for using Bing Maps in a development environment, or 
for any production applications that are not covered by an enterprise license. For the rest of this 
chapter, I'll assume that you've signed up for a developer key, which will be a 64-character 
alphanumeric string such as this: 

At7aATG4p6LjyQha9TFGduTh15_i5N0t4R341k3y!Uvs3VIE2QhsOSRx_tFoKURkD5vOeRs 

In any of the code samples in this chapter where you see the text ENTERYOURBINGMAPSKEY, be sure to 
substitute your key in the appropriate place to be able to access the Bing Maps service.  

Calling the Bing Maps REST Locations API 
You access the Bing Maps Locations API by making an HTTP request to the URL at 
http://dev.virtualearth.net/REST/v1/Locations (using a web browser, or via the .NET HttpWebRequest 
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class, for example). This request is based on a template that contains a number of parameters for the 
elements of the address to be geocoded, as in the following example (be sure to enter your Bing Maps 
key where indicated): 

http://dev.virtualearth.net/REST/v1/Locations?countryRegion=UK&adminDistrict=Norfolk 
&locality=Norwich&postalCode=NR2 4TE&addressLine=27 Heigham Street&o=xml&key= 
ENTERYOURBINGMAPSKEY  

In this example, the service is called to geocode an address at 27 Heigham Street, Norwich, 
Norfolk, NR2 4TE, UK. The parameter o=xml is provided to specify that the result should be returned in 
XML format (the default is to return results as JSON). The results returned by the service when 
geocoding the preceding address with a valid Bing Maps key are as follows: 

<Response> 
<Copyright>Copyright © 2011 Microsoft and its suppliers. All rights reserved. This API  
cannot be accessed and the content and any results may not be used, reproduced or  
transmitted in any manner without express written permission from Microsoft  
Corporation.</Copyright> 
<BrandLogoUri>http://dev.virtualearth.net/Branding/logo_powered_by.png</BrandLogoUri> 
<StatusCode>200</StatusCode> 
<StatusDescription>OK</StatusDescription> 
<AuthenticationResultCode>ValidCredentials</AuthenticationResultCode> 
<TraceId>ece6495ca47a416f8dc4dad13b64f6a2</TraceId> 
<ResourceSets> 
  <ResourceSet> 
    <EstimatedTotal>1</EstimatedTotal> 
    <Resources> 
      <Location> 
        <Name>NR2 4TE, Norwich, Norfolk, United Kingdom</Name> 
        <Point><Latitude>52.634046</Latitude><Longitude>1.286097</Longitude></Point> 
        <BoundingBox> 
          <SouthLatitude>52.630183282429321</SouthLatitude> 
          <WestLongitude>1.2776115753233459</WestLongitude> 
          <NorthLatitude>52.637908717570674</NorthLatitude> 
          <EastLongitude>1.2945824246766542</EastLongitude> 
        </BoundingBox> 
        <EntityType>Postcode1</EntityType> 
        <Address> 
          <AdminDistrict>England</AdminDistrict> 
          <AdminDistrict2>Norfolk</AdminDistrict2> 
          <CountryRegion>United Kingdom</CountryRegion> 
          <FormattedAddress>NR2 4TE, Norwich, Norfolk, United Kingdom</FormattedAddress> 
          <Locality>Norwich</Locality> 
          <PostalCode>NR2 4TE</PostalCode> 
        </Address> 
        <Confidence>High</Confidence> 
      </Location> 
    </Resources> 
  </ResourceSet> 
</ResourceSets> 
</Response> 

Most geocoding algorithms are approximate. This is because they rely on parsing a number of 
free-text user-supplied fields, and are therefore unlikely to find an exact match for the address 
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entered. Instead, they tend to separate out components of an address and find the best match (or 
matches) for the elements given. 

In the example above, the value of the <EntityType> element, Postcode1, signifies that, in this case, 
the result is based on a match of the supplied postcode value only rather than the full street address. 
This might occur in situations when the full street address could not be located (because it was 
mistyped, for example). The result contains both an approximate center point for the geocode postcode 
match, provided in the <Point> element of the <Location>, as well as a <BoundingBox> representing the 
extent of this area. 

Creating a .NET Geocoding Assembly 
To access the Bing Maps Locations API from within SQL Server, we will use Visual Studio to build a 
custom .NET assembly that will be executed by the SQLCLR. This is another example of the benefits of 
the integration of the .NET CLR within SQL Server: it allows you to extend the functionality of SQL 
Server using any of the methods contained in the .NET Base Class Library, including using classes 
such as HttpWebRequest to access a web-based resource. 

Because this is the first time I've described how to use spatial functionality from within an SQLCLR 
assembly, I'll explain the process in detail, step by step. In subsequent chapters, I'll assume that you're 
familiar with the basic process of assembly creation and deployment given here.   

■ Note  The following steps describe the creation of a .NET assembly using the freely available Visual C# 2010 
Express Edition. You may use a different edition of Visual Studio, but be aware that you may find that some of the 

menu items appear under different headings than described here. 

Creating a New Project 
Your first task is to create a new class library project, by following these steps. 

1. From the Visual Studio menu bar, select File ➤ New Project (or press Ctrl+N). 

2. In the New Project dialog box, shown in Figure 6-4, select the Class Library 
template and type a name for the new project. For the assembly containing 
the code samples in this chapter, I named the project ProSpatialCh6.  

3. Click OK. 
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Figure 6-4. Creating a new project using Visual C# 2010 Express Edition 

Once the project has been created, the project workspace will appear, and the main window will 
show the contents of the default class file within the project.  

Configuring the Project 
Before adding the geocoding function, we need to make a number of changes to configure the project. 
To make these changes, follow these steps. 

1. Open the project properties page by selecting Project ➤ ProSpatialCh6 
Properties from the main menu bar. 

2. From the Application tab, ensure that the Target Framework is set to .NET 
Framework 3.5 or greater. If it is not already, then change the value (which 
might require you to save and reload the project). 

3. Select Build from the list of tabs on the left side of the project properties page. 

4. In the Output path field, enter the location in which you want the compiled 
geocoder assembly to be created. In this example, I set the output path to 
C:\Spatial 

Theses steps are illustrated in Figure 6-5.  
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Figure 6-5. Setting the compile options for the Geocoder project 

Adding a Reference to Microsoft.SqlServer.Types.dll 
The coordinates returned from the Locations API are expressed in geographic coordinates measured 
using the EPSG:4326 spatial reference system. Our geocoding function will create a geography Point 
instance from these coordinates. To be able to do so, we must therefore include a reference to the 
Microsoft.SqlServer.Types.dll library that contains the methods of the SqlGeography and 
SqlGeometry classes. 

1. From the Project menu, select Add Reference. 

2. Click on the Browse tab and navigate to the folder in which the 
Microsoft.SqlServer.Types.dll assembly is installed. On my system, this is 
/Program Files (x86)/Microsoft SQL Server/110/SDK/Assemblies. 

3. Highlight the Microsoft.SqlServer.Types.dll assembly and click OK. 

These steps are illustrated in Figure 6-6. 
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Figure 6-6. Adding a reference to the Microsoft.SqlServer.Types.dll library 

Adding a Simple Geocoding Function 
Now that the project is set up, it’s time to add the method that will perform the geocoding itself. Add a 
new class file to the project by selecting Project ➤ Add new item ➤ Class. Name the new class file 
Geocoder.cs and click Add. 

When the new class file is created, it will contain an empty template. Replace this with the following 
code listing, inserting the value of your Bing Maps key where indicated. 

using System; 
using System.Data; 
using System.Data.SqlClient; 
using System.Data.SqlTypes; 
using Microsoft.SqlServer.Server; 
using Microsoft.SqlServer.Types; 
using System.Collections.Generic; 
using System.Xml; // Used to manipulate XML response 
using System.Net; // Used to make HTTP Request 
using System.IO; // Used to read stream of data 
 
namespace ProSpatial.Ch6 
{ 
  public partial class UserDefinedFunctions 
  { 
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    public static XmlDocument Geocode(  
      string countryRegion,  
      string adminDistrict, 
      string locality,  
      string postalCode, 
      string addressLine 
    ) 
    { 
      // Variable to hold the geocode response 
      XmlDocument xmlResponse = new XmlDocument(); 
 
      // Bing Maps key used to access the Locations API service 
      string key = "ENTERYOURBINGMAPSKEY"; 
 
      // URI template for making a geocode request 
      string urltemplate = "http://dev.virtualearth.net/REST/v1/Locations?countryRegion={0} 
         &adminDistrict={1}&locality={2}&postalCode={3}&addressLine={4}&key={5}&output=xml"; 
 
      // Insert the supplied parameters into the URL template 
      string url = string.Format(urltemplate, countryRegion, adminDistrict, locality, 
                                 postalCode, addressLine, key); 
 
      // Attempt to geocode the provided address 
      try { 
 
        // Initialise web request 
        HttpWebRequest webrequest = null; 
        HttpWebResponse webresponse = null; 
        Stream stream = null; 
        StreamReader streamReader = null; 
 
        // Make request to the Locations API REST service 
        webrequest = (HttpWebRequest)WebRequest.Create(url); 
        webrequest.Method = "GET"; 
        webrequest.ContentLength = 0; 
 
        // Retrieve the response 
        webresponse = (HttpWebResponse)webrequest.GetResponse(); 
        stream = webresponse.GetResponseStream(); 
        streamReader = new StreamReader(stream); 
        xmlResponse.LoadXml(streamReader.ReadToEnd()); 
 
        // Clean up 
        webresponse.Close(); 
        stream.Dispose(); 
        streamReader.Dispose(); 
      } 
      catch(Exception ex) 
      { 
        // Exception handling code here; 
      } 
 
      // Return an XMLDocument with the geocoded results  
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      return xmlResponse; 
    } 
  } 
} 

This code is pretty self-explanatory; It defines a single method, Geocode(), which accepts five 
string parameters, representing the different elements of the address to be geocoded. The Geocode() 
method constructs a URL template for the Locations API service including placeholders for each of the 
address elements, and inserts the supplied values in the appropriate places. An HttpWebRequest is used 
to call the service, and the response is read into an XmlDocument, which is then returned by the method. 

Creating a Geocoding UDF Wrapper  
You might have noticed that there's nothing in the preceding code listing that makes it specific to SQL 
Server;  it's a regular C# method that accepts a number of string parameters (not SqlString 
parameters) representing the elements of an address. It returns an XMLDocument containing the 
response from the Bing Maps Locations API service, again, not anything unusual. 

The reason for creating the code in this manner is to highlight an important fact about working 
with spatial functionality  in .NET (and, in fact, SQLCLR procedures in general); wherever possible you 
should try to encapsulate your code and make it platform-independent rather than tying it to a 
particular tier. The geocoding function illustrated previously can be reused in a number of layers of 
the application architecture—in a SQL Server database, in an ASP.Net website, or in a client 
application, for example—with only a minimal amount of additional coding required. In fact, within 
this chapter I demonstrate the flexibility of this approach by creating two different functions that 
expose the geocoded result to SQL Server in different ways. 

Before we can actually use this function in SQL Server, we therefore need to create an additional 
"wrapper" method around this base geocoding function. The wrapper will accept the address 
parameters in SQL Server's own SqlString format, pass these to the geocoder method, and construct 
and return a geography Point instance from the XML response returned. To keep this example simple, 
our wrapper function will return a single scalar value, representing the first matched location returned 
by the geocode service. (If no matching address can be found then an empty Point is returned.) Here's 
the code, which you should add in to the existing UserDefinedFunctions class in the Geocoder.cs file: 

// Declare a UDF wrapper method 
[Microsoft.SqlServer.Server.SqlFunction(DataAccess = DataAccessKind.Read)] 
public static SqlGeography GeocodeUDF( 
  SqlString addressLine, 
  SqlString locality, 
  SqlString adminDistrict, 
  SqlString postalCode, 
  SqlString countryRegion  
  ) 
{ 
  // Document to hold the XML geocoded location 
  XmlDocument geocodeResponse = new XmlDocument(); 
 
  // Attempt to geocode the requested address 
  try 
  { 
    geocodeResponse = Geocode( 
      (string)countryRegion, 
      (string)adminDistrict, 
      (string)locality, 
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      (string)postalCode, 
      (string)addressLine 
    ); 
  } 
  // Failed to geocode the address 
  catch (Exception ex) 
  { 
    SqlContext.Pipe.Send(ex.Message.ToString()); 
  } 
 
  // Specify the XML namespaces 
  XmlNamespaceManager nsmgr = new XmlNamespaceManager(geocodeResponse.NameTable); 
  nsmgr.AddNamespace("ab","http://schemas.microsoft.com/search/local/ws/rest/v1"); 
 
  // Check that we received a valid response from the Bing Maps geocoding server 
  if (geocodeResponse.GetElementsByTagName("StatusCode")[0].InnerText != "200") 
  { 
    throw new Exception("Didn't get correct response from geocoding server"); 
  } 
 
  // Retrieve the list of geocoded locations 
  XmlNodeList Locations = geocodeResponse.GetElementsByTagName("Location"); 
 
  // Create a geography Point instance of the first matching location 
  double Latitude = double.Parse(Locations[0]["Point"]["Latitude"].InnerText); 
  double Longitude = double.Parse(Locations[0]["Point"]["Longitude"].InnerText); 
  SqlGeography Point = SqlGeography.Point(Latitude, Longitude, 4326); 
 
  // Return the Point to SQL Server 
  return Point; 
} 

Compiling the Assembly 
Having added the necessary methods, you can now compile the assembly by selecting Build ➤ Build 
Solution, or press Ctrl+Shift+B. You should see the following message appear in the output window (if 
you cannot see the output window, select it from the View menu or press Ctrl+Alt+O). 

------ Build started: Project: ProSpatialCh6, Configuration: Release Any CPU ------ 
ProSpatialCh6 -> C:\Spatial\ProSpatialCh6.dll 
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ========== 

That’s all that is required from Visual Studio, so you can go back to SQL Server now. 
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Configuring the Database 
Before we can use the geocoding function, we need to make a few configuration changes to the SQL 
Server Database Engine to allow it to use the assembly correctly. 

Enabling CLR Support 
We know that SQL Server runs the .NET CLR process; that’s how the geometry and geography datatypes 
work. However, although the system-defined CLR datatypes require no additional CLR configuration, 
you cannot normally import and run user-defined CLR functions in SQL Server because this feature is 
disabled by default. This is a deliberate safety mechanism to ensure that a database administrator has 
allowed the use of these powerful (although potentially dangerous) features. In order to use the custom 
.NET geocoding function, you first need to configure the database to enable CLR support. You can do 
this by running the following T-SQL code. 

EXEC sp_configure 'clr enabled', '1'; 
GO 

If the configuration change is successful, you should receive the following message. 

Configuration option 'clr enabled' changed from 0 to 1. 
Run the RECONFIGURE statement to install. 

To complete the change, we need to reconfigure the server to reflect the changed value, by issuing 
a T-SQL query with the RECONFIGURE statement as follows. 

RECONFIGURE; 
GO 

The SQL Server configuration settings will now be updated to allow you to run user-defined CLR 
code, and you should receive the following message. 

Command(s) completed successfully. 

Setting Security Permissions 
Because we will be using our .NET managed code to access information from a web service, we also 
need to set the appropriate security permissions on the database to enable access to external data. The 
simplest way of allowing this is to set the database to be trustworthy. This can be done by running the 
following T-SQL code (note that you should change the name ProSpatial to match the name of your 
database). 

ALTER DATABASE ProSpatial SET TRUSTWORTHY ON; 
GO 

You should receive the following message. 



CHAPTER 6 ■  GEOCODING 

 

151 

Command(s) completed successfully. 

The database is now configured and ready to import the geocoding assembly. 

■ Note  Although setting a database to be trustworthy might be the simplest way to grant access to external 
resources, it is not necessarily representative of security best practice in a production environment. Understanding 

the different security levels and permission sets for .NET assemblies within SQL Server can be complicated. If 
you'd like to learn more on this subject, try reading Chapter 7 of "Expert SQL Server 2008 Development" (by the 

author, Apress, 2009). 

Importing the Assembly 
Having created and compiled our .NET assembly and made the necessary configuration changes to our 
server, we can now import the assembly into the database. You can do this by executing the following 
T-SQL script. 

CREATE ASSEMBLY ProSpatialCh6 
FROM 'C:\Spatial\ProSpatialCh6.dll'   
WITH PERMISSION_SET = EXTERNAL_ACCESS; 
GO 

This creates an assembly in the database called ProSpatialCh6, from the ProSpatialCh6.dll output 
file compiled by Visual Studio. You will need to change the file path specified from 
C:\Spatial\ProSpatialCh6.dll to match the build output location and assembly name that you set in 
Visual Studio earlier. 

The PERMISSION_SET argument specifies the permission level granted to this assembly. By default, 
new SQL Server assemblies are marked as SAFE, which means that they can only access restricted, local 
resources. This is a security feature to ensure that any code cannot access external (potentially 
dangerous) resources to which it is not permitted access. For our geocoding function to work, we need to 
explicitly allow our code to access external resources, by specifying PERMISSION_SET = 
EXTERNAL_ACCESS. 

Once the assembly has been created, it should appear in the SQL Server Management Studio Object 
Explorer, listed under Assemblies within the Programmability  node of the database into which it was 
imported, as shown in Figure 6-7 (you may need to refresh the Object Explorer view before the assembly 
becomes visible, by right-clicking the Assemblies node and selecting Refresh). 



CHAPTER 6 ■  GEOCODING 

 

152 

 

Figure 6-7. The geocoding assemby listed in SQL Server Management Studio Object Explorer 

Creating the Geocode Function 
Now that we have imported our assembly, we need to define a function so that we can access the 
geocoding method from within T-SQL code. The function will specify a number of input parameters 
containing different descriptive fields of an address, and return a geography Point instance representing 
that address, constructed from the coordinates returned from the Bing Maps geocode service. 

To create the function, execute the following T-SQL code. 

CREATE FUNCTION dbo.Geocode( 
  @addressLine nvarchar(max), 
  @locality nvarchar(max), 
  @adminDistrict nvarchar(max), 
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  @postalCode nvarchar(max), 
  @countryRegion nvarchar(max) 
  ) RETURNS geography 
AS EXTERNAL NAME  
ProSpatialCh6.[ProSpatial.Ch6.UserDefinedFunctions].GeocodeUDF; 

This code creates a T-SQL function called Geocode that provides an interface to the GeocodeUDF 
method contained within the ProSpatialCh6 assembly. It specifies that the parameters that must be 
provided when using the Geocode function are an address, the name of a city, the subdivision (i.e., 
county/state),  the postal code (or ZIP code), and the country or region. These parameters correspond 
exactly to the parameters passed by the .NET method to the Locations API geocoding service. The 
return value of the function is a geography instance, containing a Point geometry associated with that 
address. 

■ Note  When creating a function from a .NET assembly, the syntax for the AS EXTERNAL NAME clause is 

AssemblyName.[Namespace.ClassName].FunctionName. 

That’s it! Congratulations, you’ve just used .NET to add a new function to SQL Server, extending 
the existing spatial functionality by allowing you to geocode address data.  

Using the Geocode Function 
Finally, we get to use our geocoding function. To test it out, let’s try retrieving the latitude and 
longitude of a Point at the Apress head office, located at the following postal address: 

Apress, Inc. 
233 Spring Street 
New York,  
NY 10013 

To retrieve the WKT representation of a Point based on the Apress office address, you can execute 
the following query in SQL Server Management Studio. 

SELECT dbo.Geocode('233 Spring Street','New York','NY','10013','USA').ToString(); 

The result is as follows. 

POINT (-74.004799 40.725906) 

To check the accuracy of the function, we can plot this result against a road map of New York city 
using Bing Maps, as shown in Figure 6-8. 



CHAPTER 6 ■  GEOCODING 

 

154 

 

Figure 6-8. Plotting the geocoded address location of the Apress offices on Bing Maps 

Creating a Geocoding TVF Wrapper 
In the previous example, the geocoding wrapper function was created as a scalar UDF; you supply a 
single address, and you get a single geocoded result back. However, this approach has some limitations: 

First, the Locations API service actually returns several columns of 
information about the matched geocoded result. As shown in the example 
given near the beginning of this chapter, the XML response may contain not 
only the coordinates of a single point at the center of the requested location, 
but also the bounding box describing the extent of a feature, and additional 
metadata about the match found. A UDF that returns only a single scalar Point 
value loses this additional information. 

Second, geocoding is not a precise operation: frequently we may find that the 
source address is not completely and exactly specified, and there is some scope 
for ambiguity as to the exact location to which it refers. Consider the example 
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from the beginning of this chapter, referring to the address of the White House. 
Suppose that we had omitted the fact that we were looking for 1600 
Pennsylvania Avenue, Washington D.C. Knowing only the street number and 
name, and that this address was in the United States, we could have been 
referring to Pennsylvania Avenue in Baltimore, or Atlantic City, or one of two 
Pennsylvania Avenues in the state of West Virginia, or one of several others. In 
these cases, the Bing Maps Locations API could return multiple rows of results, 
representing each of the possible matching geocoded locations. Our current 
function automatically returns the first match, but it is not necessarily the 
correct one. 

Because the result of a geocoding operation has the potential to return multiple rows and columns 
of data, it sounds like a suitable situation in which to use a table-valued function (TVF) that returns a 
table of several possible matched locations, allowing the user to choose which one they meant. Such a 
TVF is demonstrated in the following code listing: 

[Microsoft.SqlServer.Server.SqlFunction( 
      Name = "GeocodeTVF", 
      FillRowMethodName = "GeocodeTVFFillRow", 
      DataAccess = DataAccessKind.Read, 
      TableDefinition = @"Name nvarchar(255), 
                          Point geography, 
                          BoundingBox geography")] 
public static System.Collections.IEnumerable GeocodeTVF( 
  SqlString addressLine, 
  SqlString locality, 
  SqlString adminDistrict, 
  SqlString postalCode, 
  SqlString countryRegion 
) 
{ 
 
  // Document to hold the XML geocoded location 
  XmlDocument geocodeResponse = new XmlDocument(); 
 
  try 
  { 
    geocodeResponse = Geocode( 
      (string)countryRegion, 
      (string)adminDistrict, 
      (string)locality, 
      (string)postalCode, 
      (string)addressLine 
    ); 
  } 
  // Failed to geocode the address 
  catch (Exception ex) 
  { 
    SqlContext.Pipe.Send(ex.Message.ToString()); 
  } 
 
  // Define the default XML namespace 
  XmlNamespaceManager nsmgr = new XmlNamespaceManager(geocodeResponse.NameTable); 
  nsmgr.AddNamespace("ab", "http://schemas.microsoft.com/search/local/ws/rest/v1"); 



CHAPTER 6 ■  GEOCODING 

 

156 

 
  // Create a set of all <Location>s in the response 
  XmlNodeList Locations = geocodeResponse.GetElementsByTagName("Location"); 
 
  // Set up a list to hold results 
  List<object[]> items = new List<object[]>(); 
 
  // Loop through each location in the response 
  foreach (XmlNode locationNode in Locations) 
  { 
    // Create a new object for this result 
    object[] item = new object[3]; 
 
    // Retrieve the name of this location 
    string Name = locationNode["Name"].InnerText; 
    item.SetValue(Name, 0); 
 
    // Create a point for this location 
    double Latitude = double.Parse(locationNode["Point"]["Latitude"].InnerText); 
    double Longitude = double.Parse(locationNode["Point"]["Longitude"].InnerText); 
    SqlGeography Point = SqlGeography.Point(Latitude, Longitude, 4326); 
    item.SetValue(Point, 1); 
 
    // Create a polygon for this location's bounding box 
    if (locationNode.SelectSingleNode("ab:BoundingBox", nsmgr) != null) 
    { 
      // Retrieve the latitude/longitude extents of the box 
      double BBSLatitude = double.Parse( 
         locationNode.SelectSingleNode("ab:BoundingBox/ab:SouthLatitude", nsmgr).InnerText); 
       
      double BBNLatitude = double.Parse( 
         locationNode.SelectSingleNode("ab:BoundingBox/ab:NorthLatitude", nsmgr).InnerText); 
       
      double BBWLongitude = double.Parse( 
         locationNode.SelectSingleNode("ab:BoundingBox/ab:WestLongitude", nsmgr).InnerText); 
       
      double BBELongitude = double.Parse( 
         locationNode.SelectSingleNode("ab:BoundingBox/ab:EastLongitude", nsmgr).InnerText); 
 
      // Build a geography polygon of the box 
      SqlGeographyBuilder gb = new SqlGeographyBuilder(); 
      gb.SetSrid(4326); 
      gb.BeginGeography(OpenGisGeographyType.Polygon); 
      gb.BeginFigure(BBSLatitude, BBWLongitude); 
      gb.AddLine(BBSLatitude, BBELongitude); 
      gb.AddLine(BBNLatitude, BBELongitude); 
      gb.AddLine(BBNLatitude, BBWLongitude); 
      gb.AddLine(BBSLatitude, BBWLongitude); 
      gb.EndFigure(); 
      gb.EndGeography(); 
      SqlGeography Polygon = gb.ConstructedGeography; 
      item.SetValue(Polygon, 2); 
    } 
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    // Add this result to the set of results 
    items.Add(item); 
 
  } 
 
  return items; 
} 
 
public static void GeocodeTVFFillRow( 
  object obj, 
  out SqlString Name, 
  out SqlGeography Point, 
  out SqlGeography BoundingBox) 
{ 
  object[] item = (object[])obj; 
  Name = (SqlString)(item[0].ToString()); 
  Point = (SqlGeography)item[1]; 
  BoundingBox = (SqlGeography)item[2]; 
} 

Note that this function still calls exactly the same underlying Geocode method as the scalar 
GeocodeUDF method described previously; it just handles the resulting XMLDocument in a different way, 
returning a table of possible results to SQL Server rather than only the first match. I haven't needed to 
change the actual code that calls the Bing Maps web service at all, which demonstrates the benefits of 
separating out your code into modular reusable units.  

Having added the GeocodeTVF() method to the UserDefinedFunctions class of your geocoding project, 
recompile the assembly in Visual Studio by selecting Rebuild Solution from the Build menu. Then drop 
and re-create the ProSpatialCh6 assembly in SQL Server, and register the new function as follows: 

CREATE FUNCTION dbo.GeocodeTVF( 
  @addressLine nvarchar(255), 
  @locality nvarchar(255),  
  @adminDistrict nvarchar(255), 
  @postalCode nvarchar(255), 
  @countryRegion nvarchar(255) 
  ) RETURNS table (Name nvarchar(255), Point geography, BoundingBox geography) 
AS EXTERNAL NAME 
  ProSpatialCh6.[ProSpatial.Ch6.UserDefinedFunctions].GeocodeTVF; 

Table-valued functions return table result sets, so the syntax for their usage is a bit different than 
that used for inline UDF functions. To demonstrate, let's look at the example stated previously by 
looking for an address of "1600 Pennsylvania Avenue", somewhere in the United States: 

SELECT * FROM dbo.GeocodeTVF('1600 Pennsylvania Avenue', '', '', '', 'USA'); 

The results from the table-valued function now contain not only a single result, but five matching 
results. What's more, we don't only have a single Point geometry associated with each matching 
record, but also a Polygon representing the extent of each instance: 

Name                                              Point        BoundingBox 
1600 Pennsylvania Ave, Colton, CA 92324           0xE610000…   0xE6100000010405… 
1600 Pennsylvania Ave, Fairfield, CA 94533        0xE610000…   0xE6100000010405…  
1600 Pennsylvania Ave, Los Angeles, CA 90033      0xE610000…   0xE6100000010405… 
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1600 Pennsylvania Ave, Richmond, CA 94801         0xE610000…   0xE6100000010405… 
1600 Pennsylvania Ave, West Sacramento, CA 95691  0xE610000…   0xE6100000010405… 

Asynchronous and Batch Geocoding 
So far, we've manually called the geocoding function from a SELECT query to geocode a single address 
at a time. But suppose that you wanted to automatically geocode every new address record that was 
entered into an Addresses table, such as this simple example: 

CREATE TABLE Addresses ( 
  AddressID int identity(1,1), 
  Address nvarchar(255), 
  Location geography 
); 

Ideally, every time a new address is inserted into the Address column of the table, we'd like the 
Location column to be updated with a geography Point record representing the location of that address. 
The logic to do this is not too hard; you could simply create an UPDATE trigger on the table, which calls 
the Geocode procedure and updates the corresponding value: 

CREATE TRIGGER tgGeocodeAddress 
ON Addresses 
FOR INSERT, UPDATE AS 
BEGIN 
  SET NOCOUNT ON; 
  UPDATE Addresses 
  SET Location = dbo.Geocode(Address) 
  WHERE AddressID IN (SELECT AddressID FROM inserted); 
END; 

However, there’s a problem here: CLR UDFs in SQL Server can be slow at the best of times, but 
our Geocode function is going to suffer especially because it relies on waiting for a response from a 
network resource. Every single INSERT transaction is going to be forced to wait for that geocode 
function to return a result before completing, which, depending on the latency of the network, the 
load on the Bing Maps REST service, and other factors, could cause each INSERT transaction on the 
table to take a couple of seconds or more. Even on a database with only a few concurrent users 
issuing single row updates at a time, the potential for deadlocks, concurrency issues, and generally 
bringing the server to its knees is huge. 

One possible solution is to employ an asynchronous trigger, one that will perform the geocoding 
task in the background and update the record in the Addresses table when the web service has returned 
its response. You can do this with SQL Server Service Broker by creating a procedure that listens for 
messages sent to a service queue. Details of addresses to be geocoded are sent to the queue and 
processed asynchronously, updating the corresponding record when a result is returned from the 
Locations API service rather than hold up the transaction waiting for a response at the point the INSERT 
or UPDATE operation is made. For more details on how you can set up such a queueing system using 
Service Broker, I recommend reading "Pro SQL Server 2008 Service Broker" (Apress, 2008). 

 Another point to bear in mind is that, if you are planning to geocode a lot of addresses, it would be 
quite inefficient to process each address one at a time through the Locations API. Instead, you can use a 
service that allows you to upload an entire set of address data and process it as a batch operation, 
downloading the geocoded data when the operation has completed. One such service is the Geocode 
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Dataflow API that is part of the Bing Spatial Data Services, described in more detail at 
http://msdn.microsoft.com/en-us/library/ff701734.aspx. 

Reverse Geocoding 
So far, we've only looked at one-way geocoding, starting with an address and deriving the 
corresponding latitude/longitude coordinates, which enables us to create a geography Point 
representing that location. But what about performing the reverse operation: starting with a set of 
coordinates and returning a description of the closest matching point of interest? 

There are several potential applications of such a function. Suppose that you had collected 
coordinates from a GPS system, or triangulated the location of a mobile phone call, and wanted to 
obtain a description of that location: in what town is this person, for example? Or to what address is this 
delivery vehicle closest? 

The process of reverse-geocoding is illustrated in Figure 6-9. 

(51.5035, -0.1278)
10 Downing Street

London
SW1A 2AA  

Figure 6-9. Reverse geocoding 

Fortunately, the Bing Maps REST services also expose reverse-geocoding functionality. To 
perform a reverse-geocode, rather than providing the address to be looked up, you simply provide the 
(WGS84) latitude and longitude coordinates instead. The following code listing demonstrates the URL 
syntax required to reverse-geocode a Point located at a latitude of 47.64054 degrees and a longitude of 
122.12934 west: 

http://dev.virtualearth.net/REST/v1/Locations/47.64054,-122.12934?o=xml&key=YOURBINGMAPSKEY 

This URL returns the following XML response 

<Response xmlns:xsi="http://www.w3.org/2001/XMLSchema instance"  
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns="http://schemas.microsoft.com/search/local/ws/rest/v1"> 
  <Copyright>Copyright © 2010 Microsoft and its suppliers. All rights reserved. This API 
cannot be accessed and the content and any results may not be used, reproduced or transmitted 
in any manner without express written permission from Microsoft Corporation.</Copyright> 
  <BrandLogoUri>http://dev.virtualearth.net/Branding/logo_powered_by.png</BrandLogoUri> 
  <StatusCode>200</StatusCode> 
  <StatusDescription>OK</StatusDescription> 
  <AuthenticationResultCode>ValidCredentials</AuthenticationResultCode> 
  <TraceId>fbfb8df89423415589eec14c8de7585e</TraceId> 
  <ResourceSets> 
    <ResourceSet> 
      <EstimatedTotal>2</EstimatedTotal> 
      <Resources> 
        <Location> 
          <Name>1 Microsoft Way, Redmond, Washington 98052, United States</Name> 
          <Point> 
            <Latitude>47.640568390488625</Latitude> 
            <Longitude>-122.1293731033802</Longitude> 
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          </Point> 
          <BoundingBox> 
            <SouthLatitude>47.636705672917948</SouthLatitude> 
            <WestLongitude>-122.137016420622</WestLongitude> 
            <NorthLatitude>47.6444311080593</NorthLatitude> 
            <EastLongitude>-122.1217297861384</EastLongitude> 
          </BoundingBox> 
          <EntityType>Address</EntityType> 
          <Address> 
            <AddressLine>1 Microsoft Way</AddressLine> 
            <AdminDistrict>Washington</AdminDistrict> 
            <AdminDistrict2>King</AdminDistrict2> 
            <CountryRegion>United States</CountryRegion> 
            <FormattedAddress>1 Microsoft Way, Redmond, Washington 98052, United 
States</FormattedAddress> 
            <Locality>Redmond</Locality> 
            <PostalCode>98052</PostalCode> 
          </Address> 
          <Confidence>Medium</Confidence> 
        </Location> 
        <Location> 
          <Name>1 Microsoft Way, Redmond, WA 98052 6399</Name> 
          <Point> 
            <Latitude>47.639747</Latitude> 
            <Longitude>-122.129731</Longitude> 
          </Point> 
          <BoundingBox> 
            <SouthLatitude>47.635884282429323</SouthLatitude> 
            <WestLongitude>-122.13737419709076</WestLongitude> 
            <NorthLatitude>47.643609717570676</NorthLatitude> 
            <EastLongitude>-122.12208780290925</EastLongitude> 
          </BoundingBox> 
          <EntityType>Address</EntityType> 
          <Address> 
            <AddressLine>1 Microsoft Way</AddressLine> 
            <AdminDistrict>WA</AdminDistrict> 
            <AdminDistrict2>King County</AdminDistrict2> 
            <CountryRegion>United States</CountryRegion> 
            <FormattedAddress>1 Microsoft Way, Redmond, WA 98052 6399</FormattedAddress> 
            <Locality>Redmond</Locality> 
            <PostalCode>98052 6399</PostalCode> 
          </Address> 
          <Confidence>Medium</Confidence> 
        </Location> 
      </Resources> 
    </ResourceSet> 
  </ResourceSets> 
</Response> 

Because the response returned from the reverse-geocoding service follows exactly the same 
structure as for the geocoding service, this makes it easy to adapt the UDF and TVF functions 
introduced earlier this chapter to cater for reverse-geocoding if required as well. 
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Summary 
In this chapter, you learned how to extend the functionality of SQL Server to geocode address data. 
Specifically, you learned the following: 

• Geocoding can be used to derive a structured spatial representation of a feature 
on the Earth from descriptive information about that feature. 

• The Bing Maps Web Services provide a method that can be used to geocode data, 
accessible via a REST interface over the Web. 

• You can create a reusable .NET method to access the REST service, and then 
create one or more wrapper classes to expose geocoding functionality in SQL 
Server as a UDF or TVF. These methods can be called directly from T-SQL code 
to return geography data from a supplied address value. 

• Reverse-geocoding is the opposite process to geocoding: taking a 
latitude/longitude coordinate pair, and deriving the corresponding street 
address or location. This functionality is also provided by the Bing Maps REST 
service, and can be incorporated into SQL Server using similar methods. 

As a final note, bear in mind that, although I've demonstrated that it is possible to geocode address 
data directly from the database layer, it does not always make sense to do so. I've highlighted the 
benefits of creating modular reusable code, so that if you decide to perform geocoding in an 
application layer instead, you can do so using the same code base as described in this chapter. 
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Precision, Validity, and Errors 

Most software comes supplied with online technical documentation containing examples that describe 
and demonstrate all of that software's features, and SQL Server is no different. Microsoft Books 
Online includes a reference guide to all of the geography and geometry methods available in SQL 
Server 2012, including sample code listings illustrating their usage. You can view the full reference 
guide at http://msdn.microsoft.com/en-us/library/bb933790%28v=SQL.110%29.aspx. 

It's all very well following the code samples provided by the software manufacturer, and Books 
Online is an excellent reference if all you want to know is the syntax required to use each method. 
However, many of the examples are quite artificial, demonstrating each function in isolation, using 
perfect, compact, fully  formed datasets. In the real world, we must accept that the spatial data we are 
given to work with is frequently less perfect than in these idealistic examples. You'll often discover 
that the textbook samples start to fall down when they are applied to the gnarly ugly data that we, as 
developers, all face on a day-to-day basis. 

In this chapter, we’ll examine some of the issues that can affect the quality, accuracy, and 
reliability of spatial information. I'll also show you techniques to minimize or eliminate the negative 
effect of such issues, ultimately leading to more robust, useful spatial applications. 

Precision 
If you were to ask your bank manager how much money you had in your account and she replied 
"somewhere between $800 and $810," you'd probably be a bit concerned. We have come to expect that 
all data held in databases should have an exact known value. If that value can't be determined then we 
assume that there must be an error in the process used to gather the information or a bug in the system 
used to retrieve it. However, one important fact to remember is that all spatial data is only ever an 
approximation. The accuracy of that approximation depends on a number of factors: 

Firstly, there are approximations and assumptions in the underlying 
theoretical approach used to define the data; as explained in Chapter 1, spatial 
data is defined relative to a geodetic model of the earth. That model provides 
only a rough fit around the true shape of the earth, and doesn't match it 
exactly. Projected coordinate systems can introduce further inaccuracies, as 
geodetic features must be distorted in order to be represented on a flat plane. 
Remember also that vector spatial data stores only simple geometric shapes, 
which fail to reflect the true, complex and organic shape of many features on 
the Earth. 

Secondly, precision errors may be introduced as a result of practical 
limitations of the measuring systems and instruments used for collecting and 
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recording spatial data. Location information gathered from consumer GPS 
devices, for example, is generally only accurate to within a few meters. More 
advanced scientific tools and surveying equipment have greater accuracy, but 
inevitably still possess a margin of error. 

Finally, precision errors may be introduced as a result of the way in which 
spatial data is stored, retrieved, and manipulated in systems such as SQL 
Server, and at every subsequent stage at which data passes through layers of 
an application interface. 

It is this last category of errors with which we are most concerned in this chapter, because these 
are generally the errors that we, as developers, are able to control (at least to some degree). 

Storage Precision 
SQL Server stores geography and geometry coordinates as binary values, adhering to the IEEE-754 
standard for binary floating-point arithmetic. Based on this standard, each coordinate is represented 
as a double precision floating point number that is 64 bits (8 bytes) long. By storing coordinates as 
floating point values, SQL Server ensures that a large range of possible coordinate values can be 
accommodated, while requiring only a limited amount of storage. 

Although SQL Server stores coordinates as binary floating point values, WKT, the format in which 
coordinate data is most commonly supplied, is a text-based format in which coordinates are stated in 
decimal format. Not all decimal numbers can be represented exactly in floating-point binary format. 
Whenever you use a static method to create an instance of geography or geometry data from WKT (or 
any other static method that accepts decimal input), the supplied coordinates are therefore implicitly 
converted to the closest equivalent binary floating point value. Essentially, each WKT coordinate 
value is CAST from nvarchar to binary(8). As with conversion of any other type of data between 
datatypes, this presents the possibility of truncation or rounding of the coordinate values. 

The range of possible coordinate values that can be stored in an 8-byte binary value is roughly 
equivalent to 15 digits of decimal precision. So, for example, the x-coordinate of a geometry Point might 
be stored as 0x3FF3C0CA428C59F8, which corresponds to a decimal value of 1.234567890123456. Some of 
the geography and geometry static methods allow you to create instances from coordinate values with 
greater precision than this; the Point() method, for example, will accept decimal coordinate values 
with up to 38 digits of precision. However, those coordinates will ultimately be stored with the same 
fixed 64-bit binary precision, and supplying coordinates with greater precision will not lead to any 
greater precision of the stored geography or geometry value. 

 To demonstrate, consider the following code listing, which creates two geometry Point instances 
using the Point() static method. The y-coordinate of both instances is the same. The value of the x-
coordinate differs, but only following the sixteenth decimal place: 

DECLARE @Precise geometry; 
SET @Precise = geometry::Point(10.23456789012345, 0, 0); 
 
DECLARE @SuperPrecise geometry; 
SET @SuperPrecise = geometry::Point(10.234567890123456789012345678901234567, 0, 0); 
 
SELECT @Precise.STEquals(@SuperPrecise); 

The additional decimal places of precision supplied for the @SuperPrecise Point cannot be 
represented in an 8-byte binary value. As a result, the x-coordinate values that SQL Server stores for 
both the @Precise and @SuperPrecise instances are exactly the same (0x3C8B514819782440). The 
STEquals() method, which compares whether two instances are equal, returns the value 1, which 
confirms that both Points are the same. 
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The preceding example demonstrated that supplying excess precision has no effect on the 
coordinate values of a geometry; they will always be stored in the database as 8-byte binary values. 
Likewise, it is worth remembering that coordinates supplied with less decimal precision will still 
occupy a fixed 8-bytes when converted to binary and saved to the database. Thus, in the following 
example, even though @HighPrecision is instantiated from coordinates with greater precision than 
@LowPrecision, the two Points occupy exactly the same amount of space. 

DECLARE @LowPrecision geometry; 
SET @LowPrecision = geometry::STPointFromText('POINT(1 2)', 0); 
 
DECLARE @HighPrecision geometry; 
SET @HighPrecision = geometry::STPointFromText('POINT(1.2345678901234567890123456789  
2.3456789012345678)', 0); 
 
SELECT 
  DATALENGTH(@LowPrecision), 
  DATALENGTH(@HighPrecision); 

22     22 

The result demonstrates that you do not create simpler geometries, or require less space to repre-
sent geometries created from less precise coordinates. Both Points in this example (and all Points created 
from a single coordinate pair) occupy exactly 22 bytes, as shown by the result of the DATALENGTH function. 

Practical Implications of Fixed Binary Precision 
What effect does the design decision to store coordinates as 8-byte binary values have on the accuracy 
of spatial data stored in SQL Server? The answer to this question depends on whether you are 
referring to the geometry or geography datatype. 

geometry Precision 
Firstly, let's consider the precision of coordinates defined in a planar coordinate system, stored using 
the geometry datatype. Suppose you were given the coordinates of a location measured in the 
EPSG:26913 spatial reference system. This is the spatial reference identifier corresponding to UTM 
Zone 13N, a projected spatial reference system based on the NAD83 datum. The unit of measurement 
for coordinates in this system is the meter. 

Because geometry coordinates represent the distance of a point from an origin in a linear unit of 
measure, it is easy to see the correlation between the precision of the supplied coordinates and the 
accuracy of the stored position. Assuming that coordinates were supplied using the full precision 
capable of being represented in an 8-byte binary value, equivalent to 15 decimal places of accuracy, 
you can be sure that the stored location of any geometry data in SQL Server based on this SRID will be 
accurate to within 0.000000000000001 meters of the supplied value, in both the x- and y-axes. 

geography Precision 
What about the effects of fixed precision in coordinates of the geography datatype? In such cases it's 
less obvious what the magnitude of any error would be because, whereas geographic coordinates are 
expressed in angular degrees, we tend to think of the "accuracy" of a location in terms of meters away 
from its true position. So just how far, in terms of distance measured across the earth’s surface, does 15 
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decimal places of one degree of latitude or longitude correspond? To answer this question, we have to 
consider the error in the longitude and latitude coordinates separately. 

The distance on the Earth’s surface represented by one degree of longitude or one degree of 
latitude varies depending on the corresponding latitude. This is illustrated in Figure 7-1. 

 

Figure 7-1. The distance covered by one degree of longitude varies with latitude 

At the equator, where the distance represented by one degree of longitude is greatest, one degree 
of longitude corresponds to about 111.3 km. We can verify this using SQL Server's STDistance() 
method to measure the distance between two points on the equator separated by one degree of 
longitude, as follows: 

DECLARE @EquatorA geography = geography::Point(0,0,4326); 
DECLARE @EquatorB geography = geography::Point(0,1,4326); 
 
SELECT @EquatorA.STDistance(@EquatorB); 

The result is shown following. As the coordinate values in this case were stated using SRID 4326, 
this result is calculated relative to the WGS84 datum and expressed in meters: 

111319.490735885 

As you approach the poles, the meridian lines representing points of equally spaced longitude 
converge, and the distance represented by one degree of longitude decreases. At the Tropic of Cancer 
(the circle of latitude at which the sun appears directly overhead during the June Solstice), which lies at 
a latitude of approximately 23.5 degrees, the distance covered by one degree of longitude is reduced to 
about 102.1 km, which can be verified using the following code listing: 

DECLARE @TropicOfCancerA geography = geography::Point(23.5,0,4326); 
DECLARE @TropicOfCancerB geography = geography::Point(23.5,1,4326); 
 
SELECT @TropicOfCancerA.STDistance(@TropicOfCancerB); 
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102140.828881171 

At the Arctic circle, which lies at a latitude of approximately 66.5 degrees North, one degree of 
longitude covers only 44.5 km: 

DECLARE @ArcticCircleA geography = geography::Point(66.5,0,4326); 
DECLARE @ArcticCircleB geography = geography::Point(66.5,1,4326); 
 
SELECT @ArcticCircleA.STDistance(@ArcticCircleB); 

44513.5512918299 

At the poles, one degree of longitude covers an infinitely small distance. Figure 7-2 depicts a 
graph illustrating the distance on the Earth's surface represented by one degree of longitude at any 
latitude. 

 

Figure 7-2. The distance on the Earth's surface covered by one degree of longitude at any latitude 
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Due to the oblate shape of the earth, the distance covered by one degree of latitude also varies with 
latitude, although the variance is much less than that of longitude. One degree of latitude at the equator 
corresponds to about 110.6 km whereas at the poles, where the distance is greatest, one degree of 
latitude corresponds to about 111.7 km. 

So, assuming 15 decimal places of precision and a "worst-case" scenario in which one degree of 
latitude/longitude represents 111 km along the ground, coordinates of geography instances are 
capable of describing a location with a precision of 111 km/10E15, which still means that any supplied 
coordinate value can be stored with submillimeter precision, wherever it lies on the globe. It's 
probably safe to say that SQL Server therefore stores spatial data with sufficient accuracy for all but the 
most demanding of spatial applications. 

Balancing Precision Against Transmission Size 
As a general rule, you should always retain the maximum amount of precision possible throughout your 
spatial applications. When creating geometry and geography instances, for example, you should provide 
coordinates with the full, most precise value available from your data. As demonstrated previously, SQL 
Server will represent this as a 64-bit binary value, which will retain the maximum fidelity of your data. 

However, when retrieving coordinate values for display purposes, or to pass to another 
application in decimal format, you may wish to deliberately limit the precision of those values. Unlike 
a fixed-width binary value, WKT strings (or any other text-based representation of decimal 
coordinates) vary in length depending on the number of decimal places with which coordinates are 
stated. There are occasions when you might deliberately want to reduce the precision of these 
coordinate values to reduce the size of data that needs to be transmitted between the database and 
other layers of your application. This is most likely to occur when sending data to an end-user UI 
system over a network, where extreme accuracy (e.g., at the submillimeter level) is not required, and 
performance gains can be made by reducing the transmission size of the data and reducing bandwidth. 

Suppose that you have a web-based mapping application that plots a number of points of interest 
stored in SQL Server. The locations of these points are stored using the geography datatype, so each 
coordinate is natively stored as an 8-byte binary value. However, in order to pass this information to 
the web application, that data is to be represented as WKT, and exposed via a web service. To minimize 
bandwidth, it is decided to round the coordinate values in the WKT string to only display five decimal 
places of precision. The following code listing demonstrates a C# SQLCLR function to achieve this: 

using System; 
using System.Collections.Generic; 
using System.IO; 
using System.Text; 
using Microsoft.SqlServer.Types; 
using System.Data; 
using System.Data.SqlTypes; 
using Microsoft.SqlServer.Server; 
 
namespace ProSQLSpatial.Ch7 
{ 
  class RoundGeography : IGeographySink110 
  { 
    private readonly IGeographySink110 _target;  // the target sink 
    private readonly int _precision;      // the number of fractional digits in the return 
value 
 
    public RoundGeography(int precision, IGeographySink110 target) 
    { 
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      _target = target; 
      _precision = precision; 
    } 
 
    public void SetSrid(int srid) 
    { 
      _target.SetSrid(srid); 
    } 
 
    public void BeginGeography(OpenGisGeographyType type) 
    { 
      _target.BeginGeography(type); 
    } 
 
    // Each BeginFigure call rounds the start point to the required precision. 
    public void BeginFigure(double x, double y, double? z, double? m) 
    { 
      _target.BeginFigure(Math.Round(x, _precision), Math.Round(y, _precision), z, m); 
    } 
 
    // Each AddLine call rounds subsequent points to the required precision. 
    public void AddLine(double x, double y, double? z, double? m) 
    { 
      _target.AddLine(Math.Round(x, _precision), Math.Round(y, _precision), z, m); 
    } 
 
    // Each AddCircularArc call rounds subsequent points to the required precision 
    public void AddCircularArc(double x1, double y1, double? z1, double? m1, double x2, 
                               double y2, double? z2, double? m2)  
    { 
      _target.AddCircularArc(Math.Round(x1, _precision), Math.Round(y1, _precision), z1, m1, 
                            Math.Round(x2, _precision), Math.Round(y2, _precision), z2, m2); 
    } 
 
    public void EndFigure() 
    { 
      _target.EndFigure(); 
    } 
 
    public void EndGeography() 
    { 
      _target.EndGeography(); 
    } 
  } 
 
  // Create a wrapper function 
  public partial class UserDefinedFunctions 
  { 
    [Microsoft.SqlServer.Server.SqlFunction(DataAccess = DataAccessKind.Read)] 
    public static SqlGeography RoundGeography(SqlGeography g, Int32 precision) 
    { 
      SqlGeographyBuilder constructed = new SqlGeographyBuilder(); 
      RoundGeography rounded = new RoundGeography(precision, constructed); 
      g.Populate(rounded);  
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      return constructed.ConstructedGeography.MakeValid(); 
    } 
  } 
} 

The preceding code listing makes use of an IGeographySink110 interface, which is populated with a 
supplied geography instance. When the first point is added to the geography instance (in the 
BeginFigure() method), and as each subsequent point is added (in the AddLine() or AddCircularArc() 
methods), the coordinate values are rounded to the specified number of decimal places. Finally, the 
MakeValid() method is called on the constructed geography instance to ensure that the rounded 
coordinate values have not caused the geometry to degenerate, and the resulting value is returned to the 
caller. 

You can compile this method in an assembly and import it into SQL Server, then register a 
corresponding function as follows: 

CREATE FUNCTION dbo.RoundGeography ( 
  @g geography, 
  @precision int 
) RETURNS geography 
AS EXTERNAL NAME 
ProSpatialCh7.[ProSpatial.Ch7.UserDefinedFunctions].RoundGeography; 

To test the effectiveness of the new RoundGeography function, we'll use it to round the coordinates 
of a Point representing the location of the Eiffel Tower in Paris from 16 decimal places to 5 decimal 
places, as follows: 

DECLARE @EiffelTower geography = 'POINT(2.2945117950439298 48.858259942745526)'; 
DECLARE @RoundedEiffelTower geography = dbo.RoundGeography(@EiffelTower, 5); 
 
SELECT 
  @EiffelTower.ToString() AS WKT, 
  DATALENGTH(@EiffelTower.ToString()) AS Length 
UNION ALL 
SELECT 
  @RoundedEiffelTower.ToString() AS WKT, 
  DATALENGTH(@RoundedEiffelTower.ToString()) AS Length; 

The results are as follows: 

WKT                                            Length 
POINT (2.2945117950439298 48.858259942745526)  90 
POINT (2.29451 48.85826)                       48 

 By rounding the coordinate values to 5 decimal places, we have nearly halved the size of the the 
WKT string to be transferred, from 90 bytes to 48 bytes. What effect has this had on the accuracy of the 
data? By executing the following query, we can see that we have shifted the location of the Eiffel Tower 
by just 13 cm: 

SELECT @EiffelTower.STDistance(@RoundedEiffelTower); 

0.13187268312192 
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Depending on the purpose of the application, this difference of 13 cm may or may not be 
significant. It will be a matter of deciding on an individual case-by-case basis the appropriate tradeoff 
between accuracy and datasize. 

■ Note  Reducing the number of decimal places in a coordinate value will not reduce the size of spatial data stored 

in SQL Server, but may reduce the size of data transferred to and from the database if transmitted in text format. 

Calculation Precision 
In the last section, we looked at issues relating to the precision with which coordinates are supplied, 
stored, and retrieved from SQL Server. In practice, it is relatively unlikely that you will encounter too 
many precision problems here; as long as you do not have a highly specialized application that 
requires greater than 64-bit coordinate accuracy, you can be fairly sure that SQL Server will be able to 
store and retrieve it with full fidelity. 

A separate, and perhaps more important issue to consider relates to the precision with which SQL 
Server perform calculations on coordinates. Every time you use any method that creates or modifies a 
geometry or geography instance, or compares the relationship between two geometries, there is the 
potential for coordinates to be modified slightly, and this is very important to understand, especially if 
you are creating any application that relies on testing for strict equality between two geometries. 

To demonstrate the issue, let’s look at example. Consider the following two lines: 

DECLARE @line1 geometry = 'LINESTRING(0 13, 431 310)'; 
DECLARE @line2 geometry = 'LINESTRING(0 502, 651 1)'; 

You can view these lines in SSMS Spatial Results tab as follows: 

SELECT @line1 
UNION ALL SELECT @line2; 

The result is shown in Figure 7-3. 

 

Figure 7-3. Two intersecting lines viewed in the SSMS spatial results tab 
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The two lines clearly cross each other, and SQL Server will calculate the point at which they 
intersect using the STIntersection() method: 

SELECT 
@line1.STIntersection(@line2).ToString(); 

The calculated result of the point of intersection is POINT (335.23450808497148 244.008466128158). 
So far, there's nothing unusual. But what about if we run the following query instead: 

SELECT 
  @line1.STIntersection(@line2).STIntersects(@line1),   --0 
  @line1.STIntersection(@line2).STIntersects(@line2);   --0 

The STIntersects() method returns 0 in both cases. When expressed in words, the result of this 
query suggests “The point at which line1 intersects line2 does not intersect line1 or line2.” Huh? 

Let’s look at another example, this time involving two overlapping Polygons: 

DECLARE @square geometry = 'POLYGON((0 0, 100 0, 100 100, 0 100, 0 0))'; 
DECLARE @rectangle geometry = 'POLYGON((-10 5, 10 5, 10 15, -10 15, -10 5))'; 
 
SELECT 
  @rectangle.STIntersects(@square), 
  @rectangle.STIntersection(@square).STArea(); 

The preceding code listing creates a simple square Polygon, one hundred units high by one 
hundred units wide, and a smaller rectangular Polygon that overlaps it on the left-hand side. These 
shapes are illustrated in Figure 7-4. 

 

Figure 7-4. Two overlapping Polygon geometries 

The region of the overlap between the two geometries is a square 10 units wide by 10 units high, 
exactly 100 units in area. However, the result returned by the STArea() method when used to calculate 
the area created by the intersection in the preceding code listing is 99.999999999995. 

The numbers involved in this example are hardly complex, so you would probably expect the result 
to be exactly 100, right? What’s interesting is that, if we increase the size of the large square by 
extending it further along the x- and y-axes without changing the region of overlap with the smaller 
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rectangle, the calculated area of intersection between the two geometries becomes less and less 
precise. The following code listing demonstrates the calculated area of intersection between the 
rectangle and increasing-sized square Polygons which it overlaps (the true area of overlap 
maintained consistently at 100 units): 

DECLARE @rectangle geometry = 'POLYGON((-10 5, 10 5, 10 15, -10 15, -10 5))'; 
 
DECLARE @square geometry = 'POLYGON((0 0, 1000 0, 1000 1000, 0 1000, 0 0))'; 
SELECT @rectangle.STIntersection(@square).STArea(); 
-- 99.9999999999713 
 
DECLARE @square2 geometry = 'POLYGON((0 0, 100000 0, 100000 100000, 0 100000, 0 0))'; 
SELECT @rectangle.STIntersection(@square2).STArea(); 
-- 99.9999999962893 
  
DECLARE @square3 geometry = 'POLYGON((0 0, 1e9 0, 1e9 1e9, 0 1e9, 0 0))'; 
SELECT @rectangle.STIntersection(@square3).STArea(); 
-- 99.9999690055833 
  
DECLARE @square4 geometry = 'POLYGON((0 0, 1e12 0, 1e12 1e12, 0 1e12, 0 0))'; 
SELECT @rectangle.STIntersection(@square4).STArea(); 
-- 99.9691756255925 
 
DECLARE @square5 geometry = 'POLYGON((0 0, 1e15 0, 1e15 1e15, 0 1e15, 0 0))'; 
SELECT @rectangle.STIntersection(@square5).STArea(); 
-- 67.03125 

■ Note  Because WKT is a parsed text format, you can state coordinates using scientific notation. In the preceding 

code listing, the coordinate value 1e9 is equal to 1,000,000,000. 

So what’s going on here? It’s not the rounding issues caused by conversion from binary to 
decimal; as explained earlier, that only occurs when a new geometry is instantiated from, or retrieved 
as, WKT. It is, however, another kind of internal coordinate conversion. Although SQL Server stores 
coordinates as floating point binary values, it performs spatial calculations using integer arithmetic. 
Floating point coordinates are, by the very nature of any floating point system, approximate, and 
floating point arithmetic is not “robust;” calculating the difference between two similar floating point 
values, for example, can create results containing errors with large orders of magnitude. Integer 
arithmetic, in contrast, is always exact and reliable, whatever the integer values supplied. 

Therefore, in order to perform spatial calculations in a robust fashion, SQL Server first snaps all 
coordinates to an integer grid. Note that coordinate values are not simply converted to the closest 
integer value (which would lose any fractional precision), but they are scaled to an integer value on a 
dynamically sized grid. This can be tricky to visualize, but I find a helpful analogy is to think back to 
mathematics lessons at school, in the days before MS Excel, when you had to draw graphs by hand on a 
piece of graph paper. The skill in drawing such graphs was to choose an appropriate scale, deciding 
how many units each cell on the grid should represent. The ideal scale is one in which all the data 
values can be plotted exactly on a grid cell boundary, but subject to the fact that you had to get the 
whole range of data to fit on a fixed size piece of paper. 

SQL Server takes a similar approach; every spatial calculation takes place on an integer grid of 
fixed size, equivalent to the fixed size sheet of graph paper.  The geometries involved in the calculation 
are scaled to fit onto this grid, which is equivalent to adjusting the size of the bars for a bar chart  drawn 
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on graph paper, say. Having achieved the optimum scaling possible considering the overall fixed grid 
size, each coordinate is then snapped to the closest cell on the grid. Some results will lie exactly on a 
grid cell boundary, in which case the results returned by SQL Server will be exact but, in other cases, 
the result will be subject to some error. Finally, the result of the integer calculation is then converted 
back into floating-point coordinates again, in the same scale as originally supplied. 

The amount of error introduced in this process is determined by two main factors: 

• The overall size of the grid on which calculations are performed. 

• The extent of the geometries involved in a given calculation. 

With regard to the first of these factors, all spatial calculations in SQL Server 2012 are performed 
on integer values with 42 bits of precision. This 42-bit precision is used across all SQL Server 2012 and 
SQL Azure instances, and represents a considerable increase in precision compared to the 27-bit 
integer grid used by SQL Server 2008/R2. 

As for the second factor, the greater the range of coordinate values that must be covered by the 
integer grid, then the more coarse the grid resolution must become in order to accommodate the full 
set of data. As each cell becomes larger and the distance between cells increases, there is a greater 
distance that coordinates might potentially be snapped. This explains the effect demonstrated in the 
preceding code listing, in which the area of intersection between the square and rectangular Polygon 
became less and less precise as the overall size of the square became larger and larger, because the 
integer grid had to become ever more coarse to accommodate it, leading to less accurate results. 

■ Caution  Because SQL Server 2012 performs calculations using a more precise, 42-bit, integer grid than that 
used in SQL Server 2008/R2, the results of any spatial computations may differ from those obtained under a 
different version of the database server. This is especially important to consider when upgrading a database from 
a previous version, because executing a spatial query in SQL Server 2012 may lead to different results than those 

previously obtained from running exactly the same query under SQL Server 2008/R2. 

Precision and Equality 
The 42-bit integer grid is pretty high accuracy and it will only lead to fractional shifts in coordinates 
that are very unlikely to have any significant impact on all but very large, very detailed geometries. 
The preceding example deliberately used an exaggerated square geometry 1 quadrillion units (1e15) 
in height and width in order to emphasize the effect caused. 

However, it does raise an important point: even if the coordinates have not shifted much, 
performing almost any type of operation can cause the coordinate values of an instance to shift a little. 
This means you must be incredibly careful with any operations that require you to test whether two 
instances are exactly equal (as in the STEquals() method). If one or both instances have been involved 
in a calculation requiring them to be snapped to the integer grid and back, their coordinates may have 
changed fractionally.  

It is therefore best never to test for exact equality between two geometries, but to test whether two 
instances are "equal" within a certain acceptable tolerance. The method for determining an 
acceptable tolerance may differ depending on the geometry types being compared, and on the 
particular application in question. For example, to compare whether two LineStrings are "equal," you 
might check that the start points and end points lie within a certain distance of each other, that the 
length of each LineString is roughly the same, and that the path of one LineString never deviates by 
more than a certain amount from the path of the other. These checks can be incorporated in a function 
as follows: 
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CREATE FUNCTION CompareLineStrings (@l1 geometry, @l2 geometry) 
RETURNS bit AS 
BEGIN 
 
-- Only test LineString geometries 
IF NOT (@l1.STGeometryType() = 'LINESTRING' AND @l2.STGeometryType() = 'LINESTRING') 
RETURN NULL 
 
-- Startpoints differ by more than 1 unit 
IF @l1.STStartPoint().STDistance(@l2.STStartPoint()) > 1 
RETURN 0 
 
-- Endpoints differ by more than 1 unit 
IF @l1.STEndPoint().STDistance(@l2.STEndPoint()) > 1 
RETURN 0 
 
-- Length differs by more than 5% 
IF ABS(@l1.STLength() - @l2.STLength() / @l1.STLength()) > 0.05 
RETURN 0 
 
-- Any part of l2 lies more than 0.1 units from l1 
IF @l1.STBuffer(0.1).STDifference(@l2).STEquals('GEOMETRYCOLLECTION EMPTY') = 0 
RETURN 0 
  
-- All tests pass, so return success 
RETURN 1 
END 

This function compares different aspects of similarity between two LineString geometries. If any 
of the tests fail then the function returns 0, otherwise the function returns 1. 

An alternative method of comparing whether two geometries are equal is to use the STEquals() 
method but, rather than directly compare whether the points in two geometries are the same, use it in 
conjunction with the RoundGeography() method introduced earlier this chapter to compare whether the 
sets of coordinates are the same after having been rounded to a certain number of decimal places. 
Clearly, the fewer the number of decimal places to which values are rounded, the greater is the 
tolerance within which the instances will be considered equal. 

Validity 
Whenever you create a new geometry or geography instance from a static method, such as 
STGeomFromText(), SQL Server performs a number of checks on the created geometry. Examples of some 
of these checks are as follows: 

• A LineString must have at least two distinct points. 

• A Polygon must contain at least four points, and the start point and end point 
must be the same. 

• The spatial reference system in which the coordinates of any geography instance 
are defined must correspond to one of the supported spatial reference systems in 
the sys.spatial_reference_systems table. 

If any of these checks fail, SQL Server will throw an exception. Generally speaking, each rule has 
its own exception number and corresponding exception message. Some examples of specific error 
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messages are demonstrated in the following code listings. Firstly, attempting to create a geometry 
LineString containing only one point: 

DECLARE @LineMustHave2Points geometry; 
SET @LineMustHave2Points = geometry::STLineFromText('LINESTRING(3 2)', 0); 

System.FormatException: 24117: The LineString input is not valid because it does not have  
enough distinct points. A LineString must have at least two distinct points. 

The next code listing demonstrates a Polygon that only contains three points in its exterior ring: 

DECLARE @PolygonMustHave4Points geometry; 
SET @PolygonMustHave4Points = geometry::STPolyFromText('POLYGON((0 0, 10 2, 0 0))', 0); 

System.FormatException: 24305: The Polygon input is not valid because the ring does not have 
 enough distinct points. Each ring of a polygon must contain at least three distinct points. 

And the following example attempts to create a Point from well-formed WKT, but using an invalid 
spatial reference identifier: 

DECLARE @UnsupportedSRID geography; 
SET @UnsupportedSRID = geography::STPointFromText('POINT(52 0)', 123); 

System.FormatException: 24204: The spatial reference identifier (SRID) is not valid. The 
specified SRID must match one of the supported SRIDs displayed in the 
sys.spatial_reference_systems catalog view. 

Each of the preceding examples generates an exception message, and the requested geometry is 
not created. Fortunately, the exception messages state pretty clearly what the problem is, so finding 
and fixing these errors is relatively easy. 

However, even if you were to address these errors so that the static method executes successfully, it 
does not necessarily mean that the resulting geometry is valid. In other words, it is possible to create 
some geometries that do not cause any exceptions to be thrown, but which do not meet the OGC 
requirements for that type of geometry. For example, the following code listing creates a geometry 
Polygon in which the interior rings crosses the exterior ring. This code listing can be executed and will 
successfully create a geometry instance with no exception occurring:  

DECLARE @SelfIntersectingPolygon geometry; 
SET @SelfIntersectingPolygon = 'POLYGON((0 0, 6 0, 3 5, 0 0), (2 2, 8 2, 8 4, 2 4, 2 2))'; 

Another example of an invalid geometry is a LineString that retraces itself, defining certain 
segments of the LineString twice, as shown in the following code listing: 

DECLARE @InvalidLinestring geometry; 
SET @InvalidLinestring = 'LINESTRING(0 0, 10 0, 5 0)'; 

Once again, this geometry can be created and stored in SQL Server, even though it is not valid. 
However, although it is possible to define, store, and retrieve invalid geometries without receiving 
any exception messages, you will receive an exception if you attempt to use them in any spatial 
queries. For example, if you were to try to determine the area of the preceding Polygon using the 
STArea() method: 
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@SelfIntersectingPolygon.STArea(); 

you would get the following result: 

System.ArgumentException: 24144: This operation cannot be completed because the instance is  
not valid. Use MakeValid to convert the instance to a valid instance. Note that MakeValid  
may cause the points of a geometry instance to shift slightly. 

As the message contained within the exception suggests, in order to perform any operations on an 
invalid geometry, you must first make it valid. 

Testing Whether a Geometry Is Valid 
The first step in dealing with invalid geometry data is to identify those geometries that are invalid. To 
do so, you can use the STIsValid() method. The STIsValid() method tests whether a geometry or 
geography instance meets all the criteria required to ensure that instance is valid, based on the OGC 
definition of the type of geometry in question. 

The STIsValid() method requires no parameters, and can be called as follows: 

Instance.STIsValid() 

If the instance is valid, this method returns a bit value of 1 and, if the instance is invalid, it returns 
0. To demonstrate the STIsValid()  method, consider the following example code: 

DECLARE @Spike geometry 
SET @Spike = geometry::STPolyFromText('POLYGON((0 0,1 1,2 2,0 0))', 0) 
SELECT  
  @Spike.STAsText(), 
  @Spike.STIsValid(). 

POLYGON ((0 0, 1 1, 2 2, 0 0)) 0 

In this case, although SQL Server lets us create the Polygon geometry without exception, it is not 
valid according to the OGC specifications because the exterior ring consists of a single spike. Because 
the exterior ring intersects itself it is not simple, which is one of the requirements of the Polygon 
geometry. 

Invalid geometries can only be created by supplying an invalid representation to a static method; 
all geometry instances returned by SQL Server's instance methods (such as the result of the STUnion(), 
STIntersection(), or STBuffer() methods) will always be valid. There is therefore no need to call 
STIsValid() on the results of any of these methods.  

■ Note  All geometries returned as the result of a SQL Server method on an existing instance will be valid. 

Finding Out Why a Geometry Is Invalid 
Having identified that a geometry is invalid, the next logical step is to determine the cause of its 
invalidity. In a simple example such as in the preceding code listing, it is relatively easy to glance at 
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the Well-Known Text and see the cause of the problem. However, this is not the case when dealing with 
invalid geometries constructed from thousands of points, represented in binary format or imported 
programmatically! This was a real headache in SQL Server 2008, when data imported from external 
sources (such as U.S. census TIGER data) would frequently be declared as "invalid," with no further 
information provided as to the cause. 

Fortunately, SQL Server 2012 introduces a new method specifically intended to help diagnose 
problems with invalid geometries, IsValidDetailed(). Rather than simply returning a bit value 
representing if a geometry is valid or not, the IsValidDetailed() method returns a code and text 
description of the cause of any invalidity of a geometry, as demonstrated in the following code listing: 

DECLARE @g geometry = 'LINESTRING(0 0, 5 10, 8 2)'; 
DECLARE @h geometry = 'LINESTRING(0 0, 10 0, 5 0)'; 
DECLARE @i geometry = 'POLYGON((0 0, 2 0, 2 2, 0 2, 0 0), (1 0, 3 0, 3 1, 1 1, 1 0))'; 
 
SELECT 
  @g.STIsValid() AS STIsValid, @g.IsValidDetailed() AS IsValidDetailed 
UNION ALL SELECT 
  @h.STIsValid(), @h.IsValidDetailed() 
UNION ALL SELECT 
  @h.STIsValid(), @i.IsValidDetailed(); 

The results are as follows: 

STIsValid    IsValidDetailed 
1            24400: Valid 
0            24413: Not valid because of two overlapping edges in curve (1). 
0            24404: Not valid because polygon ring (2) intersects itself or some other ring. 

Based on the output of IsValidDetailed(), you can then investigate further the particular problem 
identified with the geometry. For a full list of possible problems identified by IsValidDetailed(), 
please refer to the appendix. 

A final point worth noting is that STIsValid() and IsValidDetailed() check only that a geometry is 
well-formed according to OGC definitions. They do not necessarily ensure that a geometry makes 
logical sense. In the following code listing, the STIsValid() method confirms that the Point geometry is 
valid, even though the coordinates lie outside the bounds of the area of use of the specified spatial 
reference system (the minimum x,y bounds of EPSG:27700 are at 0,0): 

DECLARE @g geometry; 
SET @g = geometry::STGeomFromText('POINT(-300412 -200123)', 27700); 
SELECT @g.STIsValid(); 

Making an Object Valid 
Having used STIsValid() to identify those geometries that are invalid, we can now set about making 
them valid. SQL Server 2012 comes with a dedicated method, MakeValid(), designed to "fix" invalid 
geometry or geography data. The MakeValid() method can be used on any type of geometry, and will 
return a valid geometry based on the set of points specified. However, in order to do so, the resulting 
geometry may be of a different type than that originally supplied, and the coordinate values of that 
geometry may also have shifted fractionally. 

To understand how MakeValid() works, let's examine its output when called on the invalid geometries 
discussed in the previous section. Firstly, let's consider the case of the self-intersecting LineString: 
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DECLARE @InvalidLinestring geometry; 
SET @InvalidLinestring = 'LINESTRING(0 0, 10 0, 5 0)'; 
SELECT @InvalidLinestring.MakeValid().ToString() 

In this example, the reason for the invalidity is that the final coordinate (5,0) causes the path of the 
LineString to retrace itself. The valid geometry returned by the MakeValid() method therefore simply 
omits this line segment, as follows: 

LINESTRING(0 0, 10 0) 

Note that the result is still a LineString, and still represents exactly the same set of points, 
although the end point of the LineString is now different. Now let's consider the example of the 
Polygon consisting of a single spike. 

DECLARE @Spike geometry = 'POLYGON((0 0,1 1,2 2,0 0))'; 
SELECT @Spike.MakeValid().ToString() 

In this case, the appropriate geometry type to represent the three distinct points in the supplied 
WKT is not a Polygon as originally stated, but a LineString. The result of the MakeValid() method in this 
case is therefore a valid LineString, as follows:  

LINESTRING (2 2, 1 1, 0 0) 

■ Caution  Note that in some cases (as demonstrated here), the MakeValid() method may return a different type 

of geometry than that originally supplied. 

Finally, let's consider the case of the Polygon in which the interior ring crossed over the exterior 
ring: 

DECLARE @SelfIntersectingPolygon geometry; 
SET @SelfIntersectingPolygon = 'POLYGON((0 0, 6 0, 3 5, 0 0), (2 2, 8 
 2, 8 4, 2 4, 2 2))'; 
SELECT @SelfIntersectingPolygon.MakeValid().ToString(); 

In this example, the ambiguous areas of space defined by the rings of the original supplied Polygon 
have been divided into four separate Polygons, contained within a MultiPolygon collection. The 
segments of interior ring that lay outside the original exterior ring have been treated as defining new 
Polygons, as shown in Figure 7-5. 

MULTIPOLYGON ( 
((2.4000000000000004 4, 3.6 4, 3 5, 2.4 4, 2.4000000000000004 4)),  
((2 3.3333333333333335, 2.4 4, 2 4, 2 3.3333333333333335)),  
((4.8 2, 8 2, 8 4, 3.6000000000000005 4, 4.8 2)),  
((0 0, 6 0, 4.8 2, 2 2, 2 3.3333333333333335, 0 0)) 
) 
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Notice also that the result of this example demonstrates how precision issues can arise as a result 
of any spatial operations in SQL Server, including the result of the MakeValid() operation (the very 
first coordinate, if calculated using decimal arithmetic, would be 2.4 exactly, not 2.4000000000000004). 

 

Figure 7-5. A MultiPolygon created as a result of calling MakeValid() on an invalid Polygon in which the 
interior ring intersects the exterior ring. 

If called on a existing valid instance, MakeValid() has no effect. Therefore it is a very useful 
method that can be safely called to ensure geography or geometry data is valid before passing it on for 
further calculations. 

INVALID GEOMETRY, OR THE WRONG SORT OF GEOMETRY? 

Issues of invalid data generally only occur when you are creating geometry or geography from raw data 
imported into SQL Server 2012, or created programmatically through one of the builder classes. SQL Server 
will never return invalid geometries from one of its instance methods, so once you've got a set of clean 
valid data in your database, you can generally use it without too many worries as to issues of invalidity. 

Sometimes, problems apparently caused by the requirement of validity are actually due to the fact that the 
wrong geometry type has been selected to represent an item of data. The most common example of this I 
see is when people use LineString geometries to represent routes using data gathered from GPS devices. 
The problem in such cases is that, as discussed previously, if any segment of a LineString geometry 
retraces itself, the LineString will be considered invalid. 

Considering that the GPS data is recorded as a set of distinct readings at separate intervals in time, the 
most appropriate geometry to use in such a case is arguably a MultiPoint rather than a LineString (because 
there is no evidence to suggest that the vehicle actually followed the straight line route between each point 
in the log as indicated by the linear interpolation of a LineString geometry). The M-coordinate of each Point 
in the MultiPoint can be used to store the order in which those points were recorded. Alternatively, a route 
that retraces itself may have to be represented as a number of distinct LineString elements in a 
MultiLineString collection.  



CHAPTER 7 ■  PRECISION, VALIDITY, AND ERRORS 

 

181 

Handling Errors 
The geometry and geography datatypes are CLR datatypes, so spatial operatons are executed within the 
SQLCLR environment, the .NET Framework Common Language Runtime process hosted by SQL 
Server. The .NET Framework provides its own exception-handling mechanism, which is quite separate 
from the mechanism used to deal with T-SQL exceptions typically encountered in SQL Server. So, how 
do the two systems interact when an exception occurs when dealing with geography or geometry data? 

SQL Server automatically wraps an exception handler around any SQLCLR managed code 
executed from within SQL Server. This includes any user-defined CLR procedures or functions as well 
as the system-defined CLR methods used by the geography and geometry datatypes. The purpose of the 
wrapper is that, if any managed code throws an exception, it is caught by the wrapper, which then 
generates an error, rather than allowing the exception to bubble up further through the system. The 
error message created by the wrapper contains details of the SQLCLR exception, together with a stack 
trace of the point at which it occurred. 

Dissecting a SQLCLR Exception 
To understand the way in which SQLCLR errors are handled, let's look at an example by revisiting one 
of the code listings from the previous section: 

DECLARE @LineMustHave2Points geometry; 
SET @LineMustHave2Points = geometry::STLineFromText('LINESTRING(3 2)', 0); 

This code listing raises an exception because the supplied WKT specifies a LineString containing 
only one point. Executing this code listing in SQL Server Management Studio produces the following 
message: 

Msg 6522, Level 16, State 1, Line 2 
A .NET Framework error occurred during execution of user-defined routine or aggregate  
"geometry": 
System.FormatException: 24117: The LineString input is not valid because it does not have  
enough distinct points.  
A LineString must have at least two distinct points. 
System.FormatException:  
   at Microsoft.SqlServer.Types.Validator.Execute(Transition transition) 
   at Microsoft.SqlServer.Types.ForwardingGeoDataSink.EndFigure() 
   at Microsoft.SqlServer.Types.OpenGisWktReader.ParseLineStringText() 
   at Microsoft.SqlServer.Types.OpenGisWktReader.ParseTaggedText(OpenGisType type) 
   at Microsoft.SqlServer.Types.OpenGisWktReader.Read(OpenGisType type, Int32 srid) 
   at Microsoft.SqlServer.Types.SqlGeometry.GeometryFromText(OpenGisType type, SqlChars 
text, Int32 srid) 

There are several components to this error message, so let's dissect it into its separate elements, 
starting with the first line: Msg 6522, Level 16, State 1, Line 2. This line actually contains four 
pieces of information: 

• The value immediately following Msg tells us the error number that has occurred; 
in this case, it is error number 6522. 

• The Level tag informs us that the error in this case has been classified as a level 16 
error. Every error in SQL Server is assigned a level in the range between 1 and 25, 
and this value can be used as an approximate indication of the severity of the 
error. A level 16 error falls into the category of "errors that can be corrected by the 
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user," as described in Microsoft documentation. The majority of exceptions thrown 
by SQL Server are in this category, including constraint violations, parsing and 
compilation errors, and many other runtime exceptions. 

• Each exception also has a State, which contains information about the exception 
that is used internally by SQL Server. This error has a State of 1, but because the 
values that SQL Server uses for this tag are not documented, this information is 
not very helpful! 

• Line 2 informs us that the error occurred in the second line of the submitted 
batch of code, in the attempt to instantiate the geometry LineString. 

The second line of the message contains the description of the error that has occurred. In this case, 
it informs us that A .NET Framework error occurred during execution of user-defined routine or 
aggregate. The important thing to note here is that this message, and the preceding error number, 
level, and state, relate to the generic error raised by SQL Server whenever any unhandled exception 
occurs within SQLCLR. This is exactly the same error as would be raised if an error were encountered 
in any user-defined CLR procedure, or when using the hierarchyid datatype (another system-deifned 
CLR datatype), for example. 

It is only following the generic error description that we get on to the specific details of the SQLCLR 
exception that caused this error to be raised in this case. The next line of the error message reports that 
an exception (of type System.FormatException) 24117 was encountered, and we get an unusually verbose 
and helpful description of the particular error that occurred: The LineString input is not valid because 
it does not have enough distinct points. A LineString must have at least two distinct points. 

Following the error message is the stack trace, which reveals where the error occurred in 
execution;  in this case the exception originally occurred within the Execute() method of the Validator 
class, which had been called from the SqlGeometry GeometryFromText() method. 

Let's now compare this to the message received from another one of the other earlier examples, 
which occurs when trying to use an unsupported SRID for the geography datatype: 

DECLARE @UnsupportedSRID geography; 
SET @UnsupportedSRID = geography::STPointFromText('POINT(52 0)', 123); 

The message received is as follows: 

Msg 6522, Level 16, State 1, Line 2 
A .NET Framework error occurred during execution of user-defined routine or aggregate  
"geography":  
System.FormatException: 24204: The spatial reference identifier (SRID) is not valid. The 
 specified SRID must match one of the supported SRIDs displayed in the  
sys.spatial_reference_systems catalog view. 
System.FormatException:  
   at Microsoft.SqlServer.Types.GeographyValidator.ValidateSrid(Int32 srid) 
   at Microsoft.SqlServer.Types.ForwardingGeoDataSink.SetSrid(Int32 srid) 
   at Microsoft.SqlServer.Types.CoordinateReversingGeoDataSink.SetSrid(Int32 srid) 
   at Microsoft.SqlServer.Types.OpenGisWktReader.Read(OpenGisType type, Int32 srid) 
   at Microsoft.SqlServer.Types.SqlGeography.GeographyFromText(OpenGisType type, SqlChars  
taggedText, Int32 srid) 

Notice that the error number, level, and state, together with the initial part of the error message are 
identical to that received previously,  even though the cause of the error in this case was completely 
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different. It is only by examining the error message in full that we get to see the underlying CLR 
exception that caused the error to be triggered (in this case, System.FormatException 24204). 

Error-Handling Mechanisms 
Generally speaking, it is best to deal with any exceptions in code at the lowest level possible. In the 
case of user-defined CLR functions, this means adding code to handle the exception within the CLR 
function itself, in which case it never needs to be caught at the T-SQL level. However, this is not an 
option for system-defined CLR types; there is no way to add exception-handling code to the sealed 
Microsoft.SqlServer.Types.dll library, so any exceptions will inevitably bubble up and trigger the 
error handler in the SQLCLR wrapper demonstrated in the previous section. 

How, then, should you create specific code paths to handle such exceptions? The general approach 
to error-handling in T-SQL (and in many other programming languages) is to use a TRY/CATCH 
construct, containing two blocks of code. The try block contains exception-prone code that is to be 
"tried." The second block of code, called the catch block, contains code that should be called in the event 
that the code in the try block fails. As soon as any exception occurs within the try block, execution 
immediately jumps into the catch block, which is known as "catching" the exception. Within the catch 
block, different courses of action can be taken depending on the nature of the exception that occurred, 
which can (generally) be determined by examining the value of the ERROR_NUMBER() function as shown 
in the following code listing: 

BEGIN TRY 
  SELECT geometry::STPolyFromText('POLYGON((0 0, 10 2, 0 0))', 0); 
END TRY 
BEGIN CATCH 
  IF ERROR_NUMBER() = 123 
    -- Code to deal with error 123 here 
    SELECT 'Error 123 occurred' 
  ELSE IF ERROR_NUMBER() = 456 
    -- Code to deal with error 456 here 
    SELECT 'Error 456 occurred' 
  ELSE 
    SELECT ERROR_NUMBER() AS ErrorNumber; 
END CATCH 

The problem is that this common approach to selecting conditional code paths based on T-SQL 
error number won't work for the geography and geometry datatypes, because every exception occurring 
within managed code will lead to the same T-SQL error: generic error 6522. 

In order to create different code paths according to the CLR exception that occurred, we must parse 
the contents of ERROR_MESSAGE() to try to identify the original CLR exception number specified in the 
stack trace. The exceptions generated by the system-defined CLR types have five-digit exception 
numbers in the range 24000 to 24999, so can be distilled from the ERROR_MESSSAGE() string using the T-
SQL PATINDEX function. The following code listing demonstrates this approach: 

BEGIN TRY 
  SELECT geometry::STPolyFromText('POLYGON((0 0, 10 2, 0 0))', 0); 
END TRY 
BEGIN CATCH 
  -- Has a SQLCLR error occurred? 
  IF ERROR_NUMBER() = 6522 
  BEGIN 
    -- Retrieve the error message 
    DECLARE @errorMsg nvarchar(max) = ERROR_MESSAGE(); 
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    DECLARE @exc int; 
    -- Distil the SQLCLR exception number from the error message 
    SET @exc = SUBSTRING(@errorMsg, PATINDEX('%: 24[0-9][0-9][0-9]%', @errorMsg) + 2, 5);  
    IF @exc = 24305 
      -- Code to deal with exception 24305 here 
      SELECT 'Exception 24305 occurred'; 
    ELSE IF @exc = 24000 
      -- Code to deal with exception 24000 here 
      SELECT 'Exception 24000 occurred'; 
    ELSE 
      SELECT '...'; 
  END 
END CATCH 

With this revised code, the catch block is able to dictate different courses of action depending on 
the nature of the SQLCLR exception that caused the try block to fail. In this case, the misformed Polygon 
in the try block generates a 24305 exception, and the appropriate code to deal with this is triggered in 
the catch block. 

As an alternative approach to error-handling, you might choose to create your own custom 
wrapper methods around each of the system-defined methods in SqlServer.Types.dll, which check for 
and handle any CLR exceptions before passing the result back to SQL Server. An example of such a 
wrapper placed around the geography Parse() method is shown in the following code listing: 

    [Microsoft.SqlServer.Server.SqlFunction()] 
    public static SqlGeography GeogTryParse(SqlString Input) 
    { 
      SqlGeography result = new SqlGeography(); 
      try 
      { 
        result = SqlGeography.Parse(Input); 
      } 
      catch 
      { 
        // Exception Handling code here 
 
      } 
      return result; 
    } 

The preceding code listing wraps a call to the SqlGeography Parse() method in a try block, which 
allows the possibility to include appropriate exception handling code in the corresponding catch block. 
To use this approach, you could register the GeogTryParse() function in SQL Server and use it in place 
of the built-in geography Parse() method.  

 Table 7-1 lists some of the common exceptions you might want to create code paths to deal with, 
and their corresponding exception numbers. For a full list of all exceptions, please see the appendix of 
this book. 
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Table 7-1. Spatial exception numbers and messages 

Exception Number Description 

24111 The well-known text (WKT) input is not valid. 

24112 The well-known text (WKT) input is empty. To input an empty instance, 
specify an empty instance of one of the following types: Point, LineString, 
Polygon, MultiPoint, MultiLineString, MultiPolygon, or GeometryCollection. 

24114 The label {0} in the input well-known text (WKT) is not valid. Valid labels are 
POINT, LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, 
MULTIPOLYGON, or GEOMETRYCOLLECTION. 

24117 The LineString input is not valid because it does not have enough distinct 
points. A LineString must have at least two distinct points. 

24118 The Polygon input is not valid because the exterior ring does not have enough 
points. Each ring of a polygon must contain at least three distinct points. 

24119 The Polygon input is not valid because the start and end points of the exterior 
ring are not the same. Each ring of a polygon must have the same start and 
end points. 

24120 The Polygon input is not valid because the interior ring number {0} does not 
have enough points. Each ring of a polygon must contain at least three points. 

24121 The Polygon input is not valid because the start and end points of the interior 
ring number {0} are not the same. Each ring of a polygon must have the same 
start and end points. 

24306 The Polygon input is not valid because the start and end points of the ring are 
not the same. Each ring of a polygon must have the same start and end points. 

Summary 
In this chapter, you learned some of the issues that can affect the quality, accuracy, and robustness of 
spatial data in SQL Server, and some of the methods that can be used to prevent the negative effect of 
such issues. 

• SQL Server stores coordinates as 8-byte floating-point binary values, according 
to the IEEE-754 specification. 

• When you create a geography or geometry instance from a static method such as 
STGeomFromText(), the coordinate values are converted from nvarchar to binary(8). 
This has the possibility for truncation or rounding of the supplied values. 

• When you perform calculations involving geometries, SQL Server uses integer 
arithmetic based on a dynamically scaled 42-bit grid. This introduces an 
element of approximation into the results of any spatial methods. 
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• You should avoid attempting to perform tests of exact equality between any two 
geometries, instead testing whether they lie within a certain tolerance of each 
other. 

• It is possible to create invalid geometries, but these can only be stored and 
retrieved. In order to perform other operations, they must be made valid first. 

• The process of making a geometry valid may cause it to change type (e.g., from a 
LineString to a MultiLineString) and may also cause its coordinates to shift 
slightly. 

• Errors encountered when using the geography and geometry datatypes will 
initially trigger a CLR exception. This will in turn be caught by a wrapper and 
lead to a T-SQL error 6522. 

• Although you cannot use ERROR_NUMBER() to switch between alternative code 
paths for CLR exceptions, you can distill the contents of ERROR_MESSAGE() to 
retrieve the number of the underlying CLR exception. 
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Transformation and Reprojection 

SQL Server supports spatial data defined in a wide variety of spatial reference systems used across the 
world. When you create an individual item of geography data, you can use any one of the 392 spatial 
reference systems listed in the sys.spatial_reference_systems table. And if you create geometry data, 
you can use any spatial reference system you like; you can even define your own coordinate system 
that uses coordinates measured from an origin somewhere in your living room. 

Coordinate values are only valid for the spatial reference system in which they were defined, and 
you can only compare two coordinates if they were obtained from the same coordinate system. In SQL 
Server, this means that when you want to perform an operation involving two items of spatial data—to 
work out whether they intersect, to calculate the distance between them, or to join them together, for 
example—both items must be of the same data type (i.e., both geography or both geometry), and both 
must be defined using the same SRID. If you attempt to compare geometry data with geography data you 
will receive an exception. If you attempt to compare two instances of the same type defined using 
different SRIDs you will receive a NULL result. 

The constraint that every item of data must use the same spatial reference system may not 
present too many difficulties if you source your own spatial data; simply choose a reference system 
that is appropriate for your application, and ensure that all coordinates are measured and consistently 
recorded using that system. Unfortunately, as developers we rarely have such control over how our 
data is gathered, and we frequently have to accommodate data provided in a variety of different SRIDs. 
For example, data from the U.S. Census bureau (http://www.census.gov) is provided using geographic 
coordinates based on the NAD83 datum (SRID 4269), but clearinghouses and GIS departments of 
individual states typically use the state plane coordinate system of that state. Government agencies of 
some other countries, such as Great Britain and Finland, use spatial reference systems based on the 
national grid of those particular countries. And then, of course, there is 4326, the most commonly used 
SRID for global applications. 

SQL Server does not include any inbuilt methods to convert data between the two spatial 
datatypes, or to transform coordinates between different spatial reference systems of the same 
datatype. However, in this chapter I'll show you how you can integrate a freely available, open source 
projection library, Proj.NET, into SQL Server, and use the methods of this library to transform 
coordinates between different spatial reference systems suitable for both the geography and geometry 
datatypes. By transforming data from different sources into a common, consistent spatial format, you 
can then use the full range of spatial methods across your whole dataset. 

Datum Transformation 
Every spatial reference system used to define geospatial information is based on an underlying model 
of the Earth: the datum. The datum describes the size and shape of the ellipsoid used to approximate the 
shape of the Earth and the reference points on the surface of the Earth used to realize that model.  
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To compare the definitions of spatial reference systems based on different datums, let's retrieve 
the well-known text (WKT) representation of two geographic spatial reference systems listed in SQL 
Server's sys.spatial_reference_systems table. 

■ Note  The Classical scholars among you may suggest that the plural of datum, referred to in the preceding 
sentence, is data. Although this may be true of the Latin term from which the word is derived, when used in the 
context of a geodetic datum, the correct English plural is datums. Fortunately, this also prevents confusion with the 

more common use of the word "data" with which we are familiar in SQL Server! 

First, let's look at the Luxembourg 1930 spatial reference system, SRID 4181. To retrieve the well-
known text for this system, execute the following query: 

SELECT well_known_text 
FROM sys.spatial_reference_systems 
WHERE spatial_reference_id = 4181; 

The results are shown following (indents added): 

GEOGCS[ 
  "Luxembourg 1930", 
  DATUM[ 
    "Luxembourg 1930", 
    ELLIPSOID["International 1924", 6378388,  297] 
  ], 
  PRIMEM["Greenwich", 0], 
  UNIT["Degree", 0.0174532925199433] 
] 

Now let's compare this to the Deutches Hauptdreiecksnetz system used in Germany, which is SRID 
4314. To retrieve the well-known text for this system, execute the following query: 

SELECT well_known_text 
FROM sys.spatial_reference_systems 
WHERE spatial_reference_id = 4314; 

Again, the results have been formatted and shown as follows: 
GEOGCS[ 
  "DHDN", 
  DATUM[ 
    "Deutsches Hauptdreiecksnetz", 
    ELLIPSOID["Bessel 1841", 6377397.155, 299.1528128] 
  ], 
  PRIMEM["Greenwich", 0], 
  UNIT["Degree", 0.0174532925199433] 
] 

Examining the preceding WKT output, we can see several similarities between the two spatial 
reference systems; they are both geographic coordinate systems, in which coordinates are stated in 
angular degrees measured from the Greenwich prime meridian. However, the datum on which those 
coordinates are applied is different in each system. The Luxembourg 1930 datum defines a set of points 
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relative to the International 1924 ellipsoid, which has a radius of 6,378,388 meters at the equator, and 
6,356,911.946 meters at the Poles. The Deutches Hauptdreiecksnetz system uses the Bessel 1841 
ellipsoid, which is based on a more conservative estimate of the size of the earth, with an ellipsoid of 
equatorial radius 6,377,397.155 meters and polar radius of 6,356,078.965 meters. 

■ Note  Instead of giving the dimensions of both the equatorial and polar axes, the WKT definition of a spatial 
reference gives the length of the larger, semi-major axis together with the inverse flattening ratio. This ratio, which  
generally has a value of around 300, indicates how much larger the earth is assumed to be at the equator than at 

the poles, and can be used to derive the polar axis of the ellipsoid model.  

The different ellipsoid models used in these datums are illustrated in Figure 8-1. 

 

Figure 8-1. Comparing different geodetic datums 

You cannot compare geography data defined using SRID 4181 to geography data defined using SRID 
4314 without first transforming the sets of data to be based on a consistent datum. Failure to do so (i.e., 
treating geographic coordinates defined relative to one datum as if they had been defined on another) 
can lead to coordinate locations being incorrect by several hundred meters. 

Datum transformation involves converting coordinate values defined using one geodetic datum 
into the equivalent coordinate values based on a different datum. In the context of the previous 
example, we could either transform the coordinates defined using the Luxembourg datum to the DHDN 
datum, or vice versa; the important thing is that all the resulting data should be defined relative to the 
same datum. 
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Transformation Algorithms 
The process of datum transformation involves applying a mathematical function to adjust coordinate 
values based on a specified algorithm and set of parameters. There are several alternative 
transformation algorithms available, with varying degrees of complexity and accuracy. Generally 
speaking, the greater the number of parameters used in the transformation, the more complex the 
algorithm, and the greater the accuracy of the results. 

In the following section, I'll examine three different algorithms that can be used to transform 
coordinates between geodetic datums, in increasing order of complexity. 

Coordinate Offsets (Two Parameters) 
The simplest form of transformation involves adding constant values to the latitude and longitude 
coordinate values defined relative to one datum to approximate the corresponding coordinates on a 
second datum. This sort of transformation algorithm can be expressed in generalized form as follows: 

Latitude2 = Latitude1 + �Latitude 
Longitude2 = Longitude1 + �Longitude 

This algorithm is very simplistic and requires only two parameters: the �Latitude  and �Longitude 
offsets to be added to each supplied coordinate value. For a transformation between any two given 
datums, the same latitude and longitude offsets are applied consistently to every coordinate value 
across the whole globe, as illustrated in Figure 8-2. 

 

Figure 8-2. Applying geographic coordinate offsets 

As an example, the location of Cardiff, Wales, has coordinates of (51.4826, –3.18183) relative to the 
WGS84 datum. The same location expressed relative to the OSGB36 datum is (51.4821, –3.18057). Thus 
we can define a set of offsets to convert from WGS84 to OSGB36 as follows: 

��, The change in latitude between "from" datum and "to" datum = 0.0005 
degrees. 

��, The change in longitude between "from" datum and "to" datum = 0.00126 
degrees. 

However, this method is unable to allow for any change in shape between the datums, and is only 
really suitable for low-precision applications in a limited area. The offsets calculated here are based on 
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the differences between datums calculated at a single point and, as the geographic range of coordinates 
to be transformed increases, the accuracy of the results obtained by this method diminishes. 

Molodensky Transformation (Five Parameters) 
The Molodensky transformation, named after Russian geodesist Mikhail Molodensky, is an algorithm 
for converting coordinates between datums based on five parameters. These parameters describe the 
translation of the center of the ellipsoid between the two datums in x-, y-, and z-axes (�x, �y, and �z), 
together with the difference in the length of the semi-major axis (�a) and flattening ratio (�f). Unlike 
the simple geographic coordinate offset approach described previously, the Molodensky 
transformation can account for a change in the shape, size, and position of the ellipsoid model 
between two datums. 

The Molodensky transformation can be expressed in general form as follows: 

Latitude2 = f(Latitude1, �x, �y, �z, �a, �f) 
Longitude2 = f(Longitude1, �x, �y, �z, �a, �f) 

Figure 8-3 illustrates the process of Molodensky transformation of a point between two datums. 

 

Figure 8-3. Molodensky five-parameter transformation applies translation and scaling of datum, but not 
rotation. 

Molodensky transformations using an appropriate set of parameters can generally achieve 
results that are accurate to within a few meters. For example, the following set of parameters can be 
used to transform from the local datum used in the Bahamas to the WGS84 datum: 

�a, Difference in semi-major axis between "from" datum and "to" datum =  –69.4 
meters 

�f, Difference in flattening ratio between datums  = –0.000037264639 

�x, Translation along the x-axis  =  –4 meters 

�y, Translation along the y-axis  = 154 meters 

�z, Translation along the z-axis  = 178 meters 

Because the Molodensky transformation only translates and scales parallel to the plane of the 
existing defined axes, it is not suitable for cases in which the orientation of the ellipsoid has been rotated. 
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Helmert Transformation (Seven Parameters) 
The Helmert transformation, named after German geodesist Friedrich Helmert, requires seven 
parameters to describe the transformation from one datum to another. For this reason, it is also 
commonly known as the seven-parameter transformation. The parameters represent a translation 
along the three coordinate axes (x, y, and z), as well as a rotation about each of the three axes. A final 
parameter provides a scaling factor used across all three axes.  

The process involved in the Helmert transformation is illustrated in Figure 8-4. 

 

Figure 8-4. The Helmert transformation rotates and translates coordinate axes between datums 

For example, the parameters required to perform a Helmert transformation from the Bessel 1841 
datum to the WGS84 datum are as follows: 

cx, Translation along the x-axis = –582 meters 

cy, Translation along the y-axis = −105 meters 

cz, Translation along the z-axis = –414 meters 

rx, Rotation about the x-axis = −1.04 arcseconds 

ry, Rotation about the y-axis = −0.35 arcseconds 

rz, Rotation about the z-axis = 3.08 arcseconds 

s, Scaling factor = −8.3 parts per million    

■ Note  The preceding section does not provide an exhaustive list of transformation algorithms, but describes 
some of those most commonly used in GIS applications. Other more complex algorithms are sometimes used, 

particularly in specialized scientific use, where the degree of accuracy required is much greater. 
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Transforming to and from WGS84 
In theory, it would be possible to compile a list of the transformation parameters required to convert 
between any datum and any other datum, using any of the transformation algorithms listed 
previously. With this knowledge, we could apply the relevant parameters to transform coordinates 
defined using the Luxembourg 1930 datum directly into the DHDN datum, for example. However, to 
specify the explicit conversion between every combination of the 392 geodetic systems supported by 
SQL Server would require 153,272 sets of parameters. This would correspond to over one million 
individual Helmert transformation parameters! 

Fortunately, this is not generally necessary, and there is a much more efficient way of defining 
the parameters required to convert between any two datums. The key to this approach is that all of the 
transformation algorithms described in the preceding section are reversible. That is, if applying a 
given set of parameters transforms from datum A to datum B, then applying the inverse set of 
parameters (i.e., supplying the negative value of each parameter) will transform from datum B back to 
datum A again. (Note that although this is true of all the algorithms described here, it is not true of 
every transformation algorithm. The Molodensky–Badekas algorithm, for example, is not reversible.) 

Therefore, rather than determine the set of parameters to convert from any datum directly into 
any other datum, we need only define the parameters required to convert from any datum to a single 
common datum. We can then transform coordinates between any two datums using a two-step process: 
first applying the parameters to convert from the source datum into the common datum, and then 
applying the inverse set of parameters associated with the target datum to convert from the common 
datum to the target. Of course, if the common datum happens to be the source or target datum desired, 
then one of these steps can be omitted. 

The single common intermediate datum into which datums are generally transformed is, as you 
may have guessed, WGS84, and the transformation most commonly used is the seven-parameter 
Helmert transformation. The seven parameters required to transform into the WGS84 datum are 
commonly included in the WKT definition of a datum, following the TOWGS84 keyword. This is 
demonstrated in the following code listing, which restates the WKT representation of the Luxembourg 
1930 spatial reference system given earlier but now includes the TOWGS84 parameters required to 
convert coordinates from this system to WGS84 (highlighted in bold): 

GEOGCS[ 
  "Luxembourg 1930", 
  DATUM[ 
    "Luxembourg_1930", 
    ELLIPSOID["International 1924", 6378388, 297], 
    TOWGS84[-193, 13.7, -39.3, -0.41, -2.933, 2.688, 0.43], 
    ], 
  PRIMEM["Greenwich", 0], 
  UNIT["Degree",0.01745329251994328] 
] 

The first three values following the TOWGS84 keyword represent the translation in the x-, y-, and z-
axes, measured in meters. The next three parameters represent the rotation around the x-, y-, and z-
axes, measured in seconds of an arc, and the final parameter represents the scale change, measured in 
parts per million. Taken together, these parameters provide all the information required to convert 
from this datum to the WGS84 datum. 

The seven parameters required to perform a Helmert transformation from the Deutsches 
Hauptdreiecksnetz system to WGS84 may be stated as part of the following WKT: 

GEOGCS[ 
  "DHDN", 
  DATUM[ 
    "Deutsches Hauptdreiecksnetz", 
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    ELLIPSOID["Bessel 1841", 6377397.155, 299.1528128] 
    TOWGS84[582, 105, 414, -1.04, -0.35, 3.08, 8.3], 
    ], 
  PRIMEM["Greenwich", 0], 
  UNIT["Degree", 0.0174532925199433] 
] 

Knowing the additional TOWGS84 parameters just given, we can now convert from Luxembourg to 
DHDN using two transformations: first applying the TOWGS84 parameters of the Luxembourg datum to 
convert from Luxembourg to WGS84, and then applying the inverse TOWGS84 parameters from the 
DHDN datum to convert from WGS84 to DHDN. This process is illustrated in Figure 8-5. 

 

Figure 8-5. Applying datum transformation parameters to convert between any two datums via WGS84 

■ Note  There are different conventions regarding how to define the three rotation parameters supplied to the 
Helmert transformation, which essentially differ in their interpretation of what is being rotated. In a position vector 
rotation, the axes remain constant and the frame of points is rotated around the axes. In a coordinate frame 

rotation, the points remain constant while the axes themselves are rotated. The practical difference between these 
two definitions is that the rotation parameters have changed sign. If you obtain Helmert transformation parameters 

it's best to check which convention was used, and reverse the rotation parameters as necessary. 

Projection, Unprojection, and Reprojection 
In the preceding section, we considered how to transform coordinates defined relative to different 
geodetic datums. In SQL Server terminology, this relates to converting geography data defined using 
one spatial reference system to geography data using a different spatial reference system. Let's now 
turn our attention to consider the process involved in converting geometry data between different 
spatial reference systems. 

Remember that while geography data is defined using geographic coordinates of latitude and 
longitude, geometry data uses Cartesian coordinates, which are generally based on a projected spatial 
reference system. You do not normally convert coordinates directly from one projected system into 
another; instead, you first convert projected coordinates back to 3D geographic coordinates on their 
underlying geodetic model (i.e., you "unproject" them, also known as an inverse projection). Then, you 
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reproject them back onto a two-dimensional plane using the set of parameters required by the 
destination coordinate system (known as a forward projection). 

To illustrate these concepts, let’s consider the NAD83 geographic coordinate reference system, 
SRID 4269, which is widely used across North America. The well-known text representation of this 
spatial reference system is as follows: 

GEOGCS["NAD83", 
  DATUM["North American Datum 1983", 
     SPHEROID["GRS 1980", 6378137.0, 298.257222101,  AUTHORITY["EPSG","7019"]], 
     AUTHORITY["EPSG","6269"]], 
  PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], 
  UNIT["degree", 0.017453292519943295], 
  AUTHORITY["EPSG","4269"]] 

The Massachusetts Mainland spatial reference system (EPSG:2249) is a projected spatial reference 
based on a Lambert Conic Conformal projection of the NAD83 datum. The well-known text 
representation of this system is as follows: 

PROJCS["NAD83 / Massachusetts Mainland",  
   GEOGCS["NAD83",  
      DATUM["North_American_Datum_1983",  
         SPHEROID["GRS 1980", 6378137.0, 298.257222101, AUTHORITY["EPSG","7019"]],  
         AUTHORITY["EPSG","6269"]],  
      PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]],  
      UNIT["degree", 0.017453292519943295],  
      AUTHORITY["EPSG","4269"]],  
   PROJECTION["Lambert Conic Conformal (2SP)", AUTHORITY["EPSG","9802"]],  
   PARAMETER["central_meridian", -71.5],  
   PARAMETER["latitude_of_origin", 41.0],  
   PARAMETER["standard_parallel_1", 42.68333333333334],  
   PARAMETER["false_easting", 200000.0],  
   PARAMETER["false_northing", 750000.0],  
   PARAMETER["standard_parallel_2", 41.71666666666667],  
   UNIT["US survey foot", 0.3048006096012192, AUTHORITY["EPSG","9003"]], 
   AXIS["Easting", EAST],  
   AXIS["Northing", NORTH],  
   AUTHORITY["EPSG","2249"] 
] 

The NAD83 Universal Transverse Mercator Zone 18N, SRID 26918, is another projected spatial 
reference system based on the NAD83 datum. It shares the same underlying geodetic model of the 
Earth as the Massachusetts Mainland system. However, it uses a transverse Mercator projection rather 
than a conic projection in which coordinate values are measured in meters rather than feet. 

The well-known text for SRID 26918 is as follows: 

PROJCS["NAD83 / UTM zone 18N", 
   GEOGCS["NAD83", 
       DATUM["North_American_Datum_1983", 
            SPHEROID["GRS 1980", 6378137, 298.257222101, AUTHORITY["EPSG","7019"]], 
            AUTHORITY["EPSG","6269"]], 
       PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], 
       UNIT["degree",0.01745329251994328], 
       AUTHORITY["EPSG","4269"]], 
   PROJECTION["Transverse_Mercator"], 
   PARAMETER["latitude_of_origin",0], 
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   PARAMETER["central_meridian",-75], 
   PARAMETER["scale_factor",0.9996], 
   PARAMETER["false_easting",500000], 
   PARAMETER["false_northing",0], 
   UNIT["metre",1, AUTHORITY["EPSG","9001"]], 
   AXIS["Easting",EAST], 
   AXIS["Northing",NORTH], 
   AUTHORITY["EPSG","26918"] 
] 

To convert coordinate data from the Masachussets State Plane projected system into UTM Zone 
18N projection first requires unprojection into NAD83, the underlying geodetic model on which both 
projections are based, and then reprojection into UTM Zone 18N. This is illustrated in Figure 8-6. 

 

Figure 8-6. Converting between two projected coordinate systems 

In the preceding example, the source and target projected spatial reference systems were both 
based on the same underlying geodetic datum: the North American Datum 1983. But what if you 
wanted to convert between projected spatial reference systems based on different datums? 

To do this, you need to add an additional step to perform a datum conversion. The process is as 
follows: 

• First, unproject from the source projection to geodetic coordinates based on the 
source datum. 

• Then, perform a datum conversion from the source datum to the target datum 
using, for example, the Helmert transformation discussed earlier this chapter. 

• Finally, reproject geographic coordinates from the target datum into the target 
projected spatial reference system. 

To demonstrate, suppose that you wanted to convert coordinates from the Massachussets Mainland 
spatial reference system based on the NAD1983 datum into the CONUS Albers projection based on the 
NAD1927 datum. The process required to perform this conversion is illustrated in Figure 8-7.  
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Figure 8-7. Unprojection, datum transformation, and reprojection from one projected spatial reference 
system to another. 

Performing Manual Calculations 
The processes of datum transformation and projection described previously involve nothing more 
than a series of deterministic mathematical conversions. You could, if you wanted, write your own 
functions to perform the necessary calculations to convert coordinates between any spatial reference 
system of the geography or geometry datatype. 

However, converting between geographic coordinates on a three-dimensional, round model and 
projected coordinates on a two-dimensional flat surface can involve some pretty tricky mathematics. 
For example, the following formulae describe the calculations necessary to project latitude and 
longitude coordinates into x- and y-coordinates in a Lambert conformal conic projection, as used in 
the Massachussetts Mainland system described in the preceding example: 

x = �sin[n(� − �0)] 
y = �0 − �cos[n(� − �0)] 

where 
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Fortunately, understanding and implementing these detailed formulae is completely 
unnecessary. Because clever people have already done the hard work for us, rather than reinvent the 
wheel, we can use one of the many available spatial libraries that handle the conversion between 
datums and projections. This is exactly what we'll do in the next section. 

Creating a Reusable Spatial Conversion Library 
There are several libraries available that provide the necessary algorithms for transforming and 
projecting coordinates between spatial references systems. In this section, I'll show you how to use the 
Proj.NET library, which is an open source project available on the codeplex website at 
http://www.codeplex.com/ProjNET. The Proj.NET library contains all the necessary functions to support 
datum transformations and projection between a number of common map projections, including 
Mercator, Albers, and Lambert Conformal. 

Storing Transformation Parameters 
Before we get onto the issue of the transformation function itself, we need to define a structure in 
which to store the parameters necessary to convert between different spatial reference systems. 
Although SQL Server already contains details of many spatial reference systems in the 
sys.spatial_reference_systems table, this information is not sufficient for transformation and 
projection purposes. Why? Well, firstly, this table stores only those geodetic spatial reference systems 
supported by the geography datatype; it does not contain any details of projected spatial reference 
systems that can be used by the geometry datatype. Secondly, even those spatial reference systems that 
are listed in sys.spatial_reference_systems do not contain the TOWGS84 parameters required to 
transform coordinates into a different geodetic datum. 

We can't modify or insert additional rows into sys.spatial_reference_systems, so instead we'll 
simply create a new table to store this information using a simple structure as follows: 

CREATE TABLE prospatial_reference_systems ( 
  spatial_reference_id int, 
  well_known_text nvarchar(max) 
); 
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To populate this table, you need to provide the EPSG spatial reference identifier and the well-
known text definition of each spatial reference system between which you want to convert data. You 
can find details of spatial reference systems on the Internet, including from http://www.epsg-
registry.org or http://www.spatialreference.org. Once you've obtained the SRID and WKT (including 
the TOWGS84 parameter) of the systems you'd like to support, you can insert them into the 
prospatial_reference_systems table. 

To demonstrate the range of possible conversions between coordinate systems, the following 
code listing inserts three records into the prospatial_reference_systems table: 

• WGS84, a geographic coordinate system based on the WGS84 datum 

• UTM Zone 31N, a projected coordinate system also based on the WGS84 datum 

• The British National Grid, a projected coordinate system based on the OSGB36 
datum. 

INSERT INTO prospatial_reference_systems ( 
  spatial_reference_id, 
  well_known_text 
) 
VALUES 
(4326, 
'GEOGCS["WGS 84", 
   DATUM[ 
     "World Geodetic System 1984", 
     SPHEROID["WGS 84", 6378137.0, 298.257223563, AUTHORITY["EPSG","7030"]], 
     AUTHORITY["EPSG","6326"] 
   ], 
   PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], 
   UNIT["degree", 0.017453292519943295], 
   AXIS["Geodetic longitude", EAST], 
   AXIS["Geodetic latitude", NORTH], 
   AUTHORITY["EPSG","4326"] 
]'), 
(32631, 
'PROJCS["WGS 84 / UTM zone 31N", 
  GEOGCS["WGS 84", 
    DATUM[ 
      "WGS_1984", 
      SPHEROID["WGS 84", 6378137, 298.257223563, AUTHORITY["EPSG","7030"]], 
      AUTHORITY["EPSG","6326"] 
    ], 
    PRIMEM["Greenwich", 0, AUTHORITY["EPSG","8901"]], 
    UNIT["degree", 0.01745329251994328, AUTHORITY["EPSG","9122"]], 
    AUTHORITY["EPSG","4326"] 
  ], 
  PROJECTION["Transverse_Mercator"], 
  PARAMETER["latitude_of_origin",0], 
  PARAMETER["central_meridian",3], 
  PARAMETER["scale_factor",0.9996], 
  PARAMETER["false_easting", 500000], 
  PARAMETER["false_northing",0], 
  UNIT["metre", 1, AUTHORITY["EPSG","9001"]], 
  AUTHORITY["EPSG","32631"] 
]'), 
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(27700, 
'PROJCS["OSGB 1936 / British National Grid", 
  GEOGCS["OSGB 1936", 
    DATUM[ 
      "OSGB 1936", 
      SPHEROID["Airy 1830", 6377563.396, 299.3249646, AUTHORITY["EPSG","7001"]], 
      TOWGS84[446.448, -125.157, 542.06, 0.15, 0.247, 0.842, -4.2261596151967575], 
      AUTHORITY["EPSG","6277"] 
    ], 
    PRIMEM["Greenwich", 0.0, AUTHORITY["EPSG","8901"]], 
    UNIT["degree", 0.017453292519943295], 
    AXIS["Geodetic longitude", EAST], 
    AXIS["Geodetic latitude", NORTH], 
    AUTHORITY["EPSG","4277"] 
  ], 
  PROJECTION["Transverse Mercator"], 
  PARAMETER["central_meridian", -2.0], 
  PARAMETER["latitude_of_origin", 49.0], 
  PARAMETER["scale_factor", 0.9996012717], 
  PARAMETER["false_easting", 400000.0], 
  PARAMETER["false_northing", -100000.0], 
  UNIT["m", 1.0], 
  AXIS["Easting", EAST], 
  AXIS["Northing", NORTH], 
  AUTHORITY["EPSG","27700"] 
]'); 

The code samples that accompany this book contain a script to populate this table with details of 
many other commonly used spatial reference systems. 

Compiling the Proj.NET Assembly for SQL Server 
To perform the transformation and conversion of coordinates between any two systems based on the 
parameters defined in the prospatial_reference_systems table, we’ll leverage the Proj.NET library.  

Because the Proj.NET library is coded in C#, it can be compiled into a .dll assembly that can be 
imported into SQL Server, and its methods exposed via user-defined functions. This is the approach 
we'll follow in the following section. To begin, follow these steps: 

1. First, download the Source Code of the latest Proj.Net build from the codeplex 
website at http://www.codeplex.com/ProjNET. At the time of writing, the latest 
version is changeset 34175, dated May 26th, 2009. Note that you must 
download the source code, not the precompiled binary .dll library, as we must 
first make a few modifications to the code to make it suitable for use in SQL 
Server. 

2. Unzip the downloaded Proj.NET archive, projnet-34175.zip, and load the 
solution file, ProjNET.sln, in Visual Studio. This is a Visual Studio 2008 solution 
so, if you open the file in a more recent edition, the Visual Studio Conversion 
Wizard dialog may appear to upgrade the solution. If prompted, do so. 

The solution contains a number of different projects, including a demo website, a test framework, 
and a Silverlight-compatible library. However, the project that is of interest to us is the ProjNET 
project, highlighted in the Visual Studio Solution Explorer pane shown in Figure 8-8. 
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 Figure 8-8. The ProjNET project highlighted in the Visual Studio Solution Explorer pane 

The ProjNET project is the core assembly containing all the methods required for coordinate 
transformation and conversion. We will create an additional separate assembly that calls into the 
methods of the ProjNET assembly and exposes them in a format suitable for geometry and geography 
data. However, there is a small issue to address before we do so: SQLCLR assemblies do not generally 
allow their methods to be called by any other code, unless they are trusted. There are two possible 
solutions to this problem: 

We could register the calling assembly as an UNSAFE assembly, one that is 
granted full trust to perform pretty much any action in the database. This 
would achieve the objective of allowing it to access the methods in the ProjNET 
assembly, but it would also introduce an unnecessary level of risk. Code in an 
assembly with the UNSAFE permission set has permission to do all sorts of 
things, including accessing the file system and network resources, and 
registering assemblies as UNSAFE should be avoided if at all possible. 

The second, better option is to alter the ProjNET assembly itself to allow 
partially trusted callers. Microsoft recommends that all assemblies registered 
in SQL Server (except those added to the Global Assembly Cache) should be 
decorated with the System.Security.AllowPartiallyTrustedCallers attribute, 
so that they can be accessed from other SAFE or EXTERNAL_ACCESS assemblies, 
preventing the need to grant full trust where it is not required. 

■ Note  For more information about using SQLCLR libraries from partially trusted callers, refer to 

http://msdn.microsoft.com/en-us/library/ms345097%28v=SQL.110%29.aspx 

Fortunately, implementing the necessary change to the Proj.NET library to allow partially trusted 
callers is very simple: 
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1. From the Solution Explorer pane, click to expand the ProjNET Properties 
folder, and then double-click to edit the AssemblyInfo.cs file contained inside. 

2. Decorate the assembly with the AllowPartiallyTrustedCallers attribute, by 
adding the line shown below onto the end of the AssemblyInfo.cs file 
(immediately after the existing attribute declarations): 

 [assembly: System.Security.AllowPartiallyTrustedCallers] 

3. Now, right-click on the ProjNET project in the Solution Explorer pane and 
select "Build" to recompile the assembly. 

4. That's it! A message in the output window should report that the build 
succeeded, and you can now close the ProjNET solution by clicking on the 
Visual Studio File menu and selecting "Close Solution".  

Creating Transformation Sinks 
Having compiled the ProjNET library to allow partially trusted callers, we'll now create methods that 
will call into the ProjNET transformation functions and wrap them in a manner suitable for SQL 
Server's geography and geometry datatypes. These will be contained in a separate project, so begin by 
creating and configuring the new project, as follows: 

1. From the Visual Studio menu bar, select File ➤ New Project. Highlight the 
Class Library template and name the new library, as shown in Figure 8-9. 

 

Figure 8-9. Adding a new project 
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2. Once the project has been created, go to the Project menu and select Add Reference. 

3. In the Add Reference dialog box, click on the Browse tab and navigate to the 
directory in which the recompiled ProjNet.dll library was just created. (By default 
this is in the /SharpMap.CoordinateSystems/Bin/Debug subdirectory of the directory 
in which Proj.NET was unarchived.) Highlight the ProjNET.dll and click OK. 

4. Click Add Reference again, and this time add a reference to the 
Microsoft.SqlServer.Types.dll library. By default, this is installed in the 
/SDK/Assemblies subdirectory of your SQL Server installation folder. 
Highlight the SQLServer.Types.dll library and click OK.  

Having configured the project, the next step is to create the sink interfaces. There are four sink 
interfaces required to cover each combination of possible conversions between the geometry and 
geography datatypes: 

• geography to geometry 

• geography to geography 

• geometry to geography 

• geometry to geometry 

The sinks will all follow essentially identical structures, with the exception of the expected input 
and return types. The following code listing demonstrates the sink to convert coordinates from the 
geography datatype to the geometry datatype, so it implements the IGeographySink110 interface. For 
each method in the sink, the parameter values passed in are used to populate a corresponding 
IGeometrySink110 interface. So, for example, the OpenGisGeographyType used to denote the type of 
geography instance passed to the sink (in the BeginGeography() method) is converted to the 
corresponding OpenGisGeometryType and passed through to the BeginGeometry() method of the 
IGeometrySink110. As each point is passed to the IGeographySink110 BeginFigure() and AddLine() 
methods, the latitude and longitude coordinates are converted using a Proj.NET 
ICoordinateTransformation class into the corresponding x- and y-coordinates, and these are then 
provided to the equivalent IGeometrySink110 BeginFigure() and AddLine() methods.  

Here's the code listing: 

using System; 
using Microsoft.SqlServer.Types; // SqlGeometry and SqlGeography 
using ProjNet.CoordinateSystems.Transformations; // Proj.NET 
 
namespace ProSpatial.Ch8 
{ 
  class TransformGeographyToGeometrySink : IGeographySink110 
  { 
 
    private readonly ICoordinateTransformation _trans; 
    private readonly IGeometrySink110 _sink; 
 
    public TransformGeographyToGeometrySink( 
      ICoordinateTransformation trans, 
      IGeometrySink110 sink 
    ) 
    { 
      _trans = trans; 
      _sink = sink; 
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    } 
 
    public void BeginGeography(OpenGisGeographyType type) 
    { 
      // Begin creating a new geometry of the type requested 
      _sink.BeginGeometry((OpenGisGeometryType)type); 
    } 
 
    public void BeginFigure(double latitude, double longitude, double? z, double? m) 
    { 
      // Use ProjNET Transform() method to project lat,lng coordinates to x,y 
      double[] startPoint = _trans.MathTransform.Transform(new double[]  
                            { longitude, latitude }); 
 
      // Begin a new geometry figure at corresponding x,y coordinates 
      _sink.BeginFigure(startPoint[0], startPoint[1], z, m); 
    } 
 
    public void AddLine(double latitude, double longitude, double? z, double? m) 
    { 
      // Use ProjNET to transform end point of the line segment being added 
      double[] toPoint = _trans.MathTransform.Transform(new double[] 
                         { longitude, latitude }); 
 
      // Add this line to the geometry 
      _sink.AddLine(toPoint[0], toPoint[1], z, m); 
    } 
 
    public void AddCircularArc(double latitude1, double longitude1, double? z1, double? m1, 
                               double latitude2, double longitude2, double? z2, double? m2 
    ) 
    { 
      // Transform both the anchor point and destination of the arc segment 
      double[] anchorPoint = _trans.MathTransform.Transform(new double[]  
                             { longitude1, latitude1 }); 
      double[] toPoint = _trans.MathTransform.Transform(new double[] 
                             { longitude2, latitude2 }); 
 
      // Add this arc to the geometry 
      _sink.AddCircularArc(anchorPoint[0], anchorPoint[1], z1, m1,  
                           toPoint[0], toPoint[1], z2, m2); 
    } 
 
    public void EndFigure() 
    { 
      _sink.EndFigure(); 
    } 
 
    public void EndGeography() 
    { 
      _sink.EndGeometry(); 
    } 
 
    public void SetSrid(int srid) 
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    { 
      //  Just pass through 
    } 
  } 
} 

For the code listings of the corresponding geometry to geography, geometry to geometry, and 
geography to geography sinks, please see the code samples accompanying this book. 

To actually make use of the interfaces, each sink will have a corresponding function, which we will 
expose in SQL Server. The function to accompany the TransformGeographyToGeometrySink interface 
requires two inputs: an item of geography data and the SRID of a projected coordinate system, whose 
parameters are listed in the prospatial_reference_systems table created earlier. The method projects 
the supplied geography input into the appropriate coordinate system and returns the corresponding 
geometry value.  

The method will read the parameters associated with both the source and destination systems 
from the prospatial_reference_systems table, so we need to decorate the function with the 
DataAccessKind.Read attribute. Here's the function signature: 

  [Microsoft.SqlServer.Server.SqlFunction(DataAccess = DataAccessKind.Read)] 
        public static SqlGeometry GeographyToGeometry(SqlGeography geog, SqlInt32 toSRID) 

Once called, the first thing the method must do is to determine the parameters of the source and 
destination reference systems. The source spatial reference identifier is retrieved from the STSrid 
property of the supplied geography instance. The target SRID is the integer value supplied as the second 
parameter to the function. 

The function then retrieves the corresponding WKT for these systems by querying the 
prospatial_reference_systems table via the context connection (if you named your spatial reference 
table something else then be sure to change the query appropriately). 

The well-known text representation of the source and destination systems is used to create a 
CoordinateTransformation instance. This instance is then passed to the appropriate sink interface in 
order to populate a SqlGeometryBuilder instance with transformed values. Finally, the 
ConstructedGeometry instance created by the SqlGeometryBuilder is returned to the client. 

The code listing for the GeographyToGeometry function is shown following: 

using System; 
using System.Collections.Generic; 
using System.Text; 
using System.Data.SqlTypes; 
using System.Data.SqlClient; // Required for context connection 
using Microsoft.SqlServer.Server; // SqlFunction Decoration 
using Microsoft.SqlServer.Types; // SqlGeometry and SqlGeography 
using ProjNet.CoordinateSystems; // ProjNET coordinate systems 
using ProjNet.CoordinateSystems.Transformations; // ProjNET transformation functions 
using ProjNet.Converters.WellKnownText; //ProjNET WKT functions 
 
namespace ProSpatial.Ch8 
{ 
  public partial class UserDefinedFunctions 
  { 
 
    [Microsoft.SqlServer.Server.SqlFunction(DataAccess = DataAccessKind.Read)] 
    public static SqlGeometry GeographyToGeometry(SqlGeography geog, SqlInt32 toSRID) 
    { 
      // Use the context connection to the SQL Server instance on which this is executed 
      using (SqlConnection conn = new SqlConnection("context connection=true")) 
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      { 
        // Open the connection 
        conn.Open(); 
 
        // Retrieve the parameters of the source spatial reference system 
        SqlCommand cmd = new SqlCommand("SELECT well_known_text FROM  
                    prospatial_reference_systems WHERE spatial_reference_id = @srid", conn); 
        cmd.Parameters.Add(new SqlParameter("srid", geog.STSrid)); 
        object fromResult = cmd.ExecuteScalar(); 
 
        // Check that details of the source SRID have been found   
        if (fromResult is System.DBNull || fromResult == null) 
        { return null; } 
         
        // Retrieve the WKT 
        String fromWKT = Convert.ToString(fromResult); 
 
        // Create the source coordinate system from WKT 
        ICoordinateSystem fromCS = CoordinateSystemWktReader.Parse(fromWKT) as 
                                   ICoordinateSystem; 
 
        // Retrieve the parameters of the destination spatial reference system 
        cmd.Parameters["srid"].Value = toSRID; 
        object toResult = cmd.ExecuteScalar(); 
 
        // Check that details of the destination SRID have been found   
        if (toResult is System.DBNull || toResult == null) 
        { return null; } 
 
        // Execute the command and retrieve the WKT 
        String toWKT = Convert.ToString(toResult); 
 
        // Clean up 
        cmd.Dispose(); 
 
        // Create the destination coordinate system from WKT 
        ICoordinateSystem toCS = CoordinateSystemWktReader.Parse(toWKT) as 
                                 ICoordinateSystem; 
 
        // Create a CoordinateTransformationFactory instance 
        CoordinateTransformationFactory ctfac = new CoordinateTransformationFactory(); 
 
        // Create the transformation between the specified coordinate systems 
        ICoordinateTransformation trans = ctfac.CreateFromCoordinateSystems(fromCS, toCS); 
 
        // Create a geometry instance to be populated by the sink 
        SqlGeometryBuilder b = new SqlGeometryBuilder(); 
 
        // Set the SRID to match the destination SRID 
        b.SetSrid((int)toSRID); 
 
        // Create a sink for the transformation and plug it in to the builder 
        TransformGeographyToGeometrySink s = new TransformGeographyToGeometrySink(trans, b); 
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        // Populate the sink with the supplied geography instance 
        geog.Populate(s); 
 
        // Return the transformed geometry instance 
        return b.ConstructedGeometry; 
      } 
    } 
  } 
} 

As with the sink interfaces, the functions required for the other conversions from geometry to 
geography, geometry to geometry, and geography to geography, are included in the code listings that 
accompany this book, which can be downloaded from the Apress website at http://www.apress.com. 

Having added all the necessary sinks and functions, save the project and compile the assembly by 
selecting Project ➤ Build Solution. 

Registering the Transformation Assembly and Functions 
At this stage, you should have two compiled .dll assemblies: 

• The ProjNET project library (modified to allow partially trusted callers) 

• An assembly containing SqlFunction methods that expose the ProjNET 
transformations, operating on geometry and geography data 

Before registering the assemblies in SQL Server, if you have not already done so, ensure that your 
SQL Server instance is configured to enable user-defined CLR routines by executing the following T-
SQL code in SQL Server Management Studio: 

EXEC sp_configure 'clr enabled', '1'; 
GO 

To complete the configuration change, reconfigure the server to reflect the new value, by issuing a 
T-SQL query with the RECONFIGURE statement as follows: 

RECONFIGURE; 
GO 

You can then register the transformation assemblies into your chosen database by issuing the 
following T-SQL command, substituting the name and location where you compiled the custom dll 
library: 

CREATE ASSEMBLY ProSpatialCh8 
FROM 'C:\ProSQLSpatial\Ch8_Transformation\bin\Release\Ch8_Transformation.dll' 
WITH PERMISSION_SET = SAFE; 
GO 

■ Note  You do not need to explicitly register the ProjNET library in SQL Server, only the library containing the 
custom SQL functions. Since the ProjNET library is referenced from this assembly, SQL Server will automatically 

locate and import the ProjNET assembly at the same time. You only need to make sure that both dlls are present in 

the same folder on the server, or deployed to the Global Assembly Cache. 
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Having imported the assembly, the next step is to register the corresponding function. Here's the 
T-SQL code required to create the GeographyToGeometry function: 

CREATE FUNCTION dbo.GeographyToGeometry(@geog geography, @srid int) 
RETURNS geometry 
EXTERNAL NAME ProSpatialCh8.[ProSpatial.Ch8.UserDefinedFunctions].GeographyToGeometry; 
GO 

Transforming Spatial Data in T-SQL 
With the assemblies and functions registered, our transformation functionality is ready to go. To 
transform any item of geography or geometry data into another spatial reference system, first ensure 
that the prospatial_reference_systems table is populated with the correct parameters corresponding to 
both the source and target spatial reference systems. Then call the transformation method, supplying 
the instance to be transformed, and the SRID of the desired target system. 

For example, the following code listing demonstrates how to convert a geography Point defined 
using the EPSG:4326 system into a geometry Point defined using UTM Zone 31N (EPSG:32631): 

DECLARE @Norwich geography; 
SET @Norwich = geography::STPointFromText('POINT(1.369338 53.035498)', 4326); 
 
SELECT dbo.GeographyToGeometry(@Norwich, 32631).ToString(); 

The GeographyToGeometry() method reads in the parameters of the source and target spatial 
reference system from the well_known_text column of the prospatial_reference_systems table. In this 
example, the requested destination system, 32631, is based on a projection of the same datum used by the 
source reference system, 4326. Therefore, no datum conversion is necessary, and conversion involves 
only projecting the coordinates based on a transverse Mercator projection. The coordinates of each 
point in the supplied geography instance (in this case, there is only one) are projected to the destination 
reference system, and the well-known text of the resulting geometry instance is returned as follows:  

POINT (390659.51922243327 5877462.7522814982) 

We can also try another example, this time converting a point from WGS84 to the British National 
Grid system, which is based on the OSGB36 datum. In this case, conversion involves both a datum 
transformation and also projection. Fortunately, ProjNET determines and performs the required 
actions automatically behind the scenes, so no further steps need be added to the code listing:   

DECLARE @Oxford geography; 
SET @Oxford = geography::STPointFromText('POINT(-1.256804 51.752143)', 4326); 
 
SELECT dbo.GeographyToGeometry(@Oxford, 27700).ToString(); 

POINT (451400.00276604667 206200.52991363779) 

You can confirm both of the preceding results using one of a number of online coordinate 
conversion tools, such as that available at http://nearby.org.uk. 

As a graphical demonstration of this transformation function, Figure 8-10 illustrates a side-by-
side comparison of three versions of the same MultiPolygon geometry representing Great Britain and 



CHAPTER 8 ■  TRANSFORMATION AND REPROJECTION 

 

209 

Northern Ireland. The left image shows the original geography instance using SRID 4326, displayed in 
the Management Studio Spatial Results tab using a Bonne projection; the center image displays the 
result of the GeographyToGeometry() method when used to transform into a geometry MultiPolygon 
using SRID 32631; the right image displays the same MultiPolygon when transformed into SRID 27700. 

 

Figure 8-10. Three different projections of Great Britain. From left to right: geographic (EPSG:4326) using 
Bonne projection, UTM Zone 31N (EPSG:32631), Ordnance Survey National Grid of Great Britain 
(EPSG:27700) 

Architecture and Design Considerations 
So far in this chapter I've shown you both the theory behind spatial transformation and reprojection, 
and also demonstrated a technical solution enabling you to convert spatial data between spatial 
reference systems directly in SQL Server. In this final section, I'd like briefly to discuss some practical 
considerations to bear in mind when dealing with spatial transformations in a real-world application. 

The first thing I'd like to point out is that reprojection or conversion of spatial data, particularly of 
complex geometries comprised of many points, is a computationally intensive operation. I therefore 
do not recommend that you try to convert data on the fly at runtime, but rather precalculate and store 
reprojected versions of each shape in the database in all those systems in which it is likely to be used. 

The second fact is that reprojection and transformation inevitably cause a slight loss in fidelity of 
the original coordinate data, and each subsequent conversion degrades the accuracy still further. 
Therefore, if you are supplied with data that uses a different spatial reference system from the rest of 
your data, and therefore needs converting, there may be some value in also retaining the full fidelity 
original data (for performing isolated calculations of STArea(), for example), alongside a reprojected 
version that is consistent with the spatial reference system used by the rest of your application. 

So, you may have several versions of the same geometry: one in the geography datatype, using the 
North American Datum 1983 (SRID 4269), and one in the geometry datatype, using the New York Long 
Island State Plane Coordinate System (SRID 2263), for example. When using this approach, I tend to 
maintain separate columns in my table for each datatype/SRID combination, only storing instances of 
the same SRID in that column, and name them according to the pattern <datatype><srid>. For the 
example given previously, I might therefore use a table structure such as this: 

CREATE TABLE SampleSpatialData ( 
  Id int, 
  Geog4326 geography, 
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  Geom2263 geometry 
); 

By adding triggers to the table that  call the necessary transformation functions you can ensure 
that, should any of the spatial columns be updated, all of the other spatial columns are updated with 
transformed versions of the updated geometry, keeping the data in sync. Different stored procedures 
can utilize different spatial columns as appropriate, and separate indexes can be added to the columns 
to optimize performance. 

The final point to note is that, while the SQLCLR makes it possible to perform spatial 
transformations within SQL Server, you should always consider whether this is the most appropriate 
place at which to do so. CLR procedures are easily moved between tiers of the application hierarchy, 
and the Proj.NET library used in this chapter could be leveraged just as readily in a front-end 
Silverlight application, or in a middle-tier web service, for example, rather than directly in the 
database layer. 

If the only time at which you find it necessary to convert data is at the point it is first imported into 
SQL Server, you might want to investigate one of the ETL tools that can perform conversion and 
reprojection of spatial data as an integrated part of a load process, such as Safe FME or OGR2OGR 
discussed in Chapter 5, or create a custom component that calls Proj.NET as part of an SSIS data 
transformation instead. 

Summary 
In this chapter, you learned about the process involved in transforming coordinate data between 
different spatial reference systems. 

• Converting data between spatial reference systems based on different 
underlying geodetic models of the earth requires datum transformation. 

• There are various algorithms used for datum transformation. The most common 
method is the Helmert transformation, which requires seven parameters. 

• Helmert transformation parameters that convert to the WGS84 datum can be 
included with the well-known text representation of a datum, following the 
TOWGS84 keyword. 

• By applying the inverse set of TOWGS84 parameters, you can convert from WGS84 
into the target datum. 

• Proj.NET is an open source projection library that implements a variety of 
projections and can create transformations between any two datums given the 
corresponding WKT. 

• Custom CLR functions can be written that call into the Proj.NET library, and 
expose its functionality to create transformation functions for the geometry and 
geography datatypes in SQL Server. 

• These functions can also be called from CLR code in other layers of an 
application: in the client, a web layer, or as part of an SSIS ETL load, for example. 
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Examining Spatial Properties 

There are many questions that we might ask about an individual item of spatial data: Where is it? How 
big is it? What sort of object is it? Where does it start and end? Where does its center lie? In this chapter, 
you'll learn about the methods that SQL Server provides to answer questions such as these. Note that 
all of the content in this chapter relates to examining individual items of spatial data, considered in 
isolation. Methods that analyze the properties of, or relationship between, two or more items of data 
will be covered in later chapters. 

Property and Method Syntax—A Reminder 
Before examining any specific methods or properties, it's worth having a quick reminder about the 
general syntax used when writing queries involving the geography and geometry datatypes. All of the 
topics in this chapter involve instance methods or properties that are applied directly to an individual 
item or column of data. Some can be retrieved directly using property syntax, as follows: 

SELECT Instance.Property; 

Examples of such properties include STX, Lat, and STSrid. However, other aspects of information 
must be retrieved via a method, in which case the appropriate syntax is: 

SELECT Instance.Method(); 

Methods that use this syntax include STNumPoints() and STGeometryType(). Some methods require 
one or more parameters, which should be supplied in parentheses following the method name: 

SELECT Instance.Method( parameter ); 

One example of a method that requires a parameter is STPointN(n), which returns the nth point 
from a geometry. I'll include code listings in each section that demonstrate the appropriate syntax to 
use when retrieving a specific piece of information. 

As with the static methods discussed in Chapter 4, many of the instance methods discussed in this 
chapter are based on the standards defined by the Open Geospatial Consortium. For such methods, the 
name of the method is prefixed by the latters "ST", as in STX, STLength(), and STCentroid(). Additional 
methods that SQL Server implements on top of the OGC standards are called extended methods, and 
have no prefix before the method name. 

Some OGC methods describe particular aspects of a geometry by asking a single question that 
leads to a yes/no answer: "Is a geometry simple?", "Is it closed?" or "Is it empty?", for example. Methods 
that test these sorts of question follow the naming convention STIsXXX(), where XXX is the property or 
behavior being tested. The preceding questions can be asked using the methods STIsSimple(), 
STIsClosed(), and STIsEmpty(), for example. The result returned is a Boolean value: either 0 (i.e., false, 
the instance does not exhibit the behavior in question) or 1 (i.e., true, the instance does exhibit the 
behavior in question). 
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■ Caution  Although many of the methods and properties discussed in this chapter apply to both the geometry 
and geography datatypes, some methods are implemented by only one type. For each method I introduce, I’ll tell 

you which datatype (or datatypes) implements it and how it can be used on instances of that type. 

Examining the Type of Geometry Used to Represent a Feature 
Every item of geography or geometry data is based on an underlying geometry: Point, LineString, 
Curve, Polygon, or a collection containing combinations of these. The type of geometry used dictates 
not only the accuracy with which that instance approximates the feature it represents, but also affects 
the behavior of certain methods when called on that instance. The STX and STY properties discussed 
later in this chapter, for example, can only be used on Point instances of the geometry datatype, and 
will return NULL if used on an instance of any other type of geometry. Likewise, STIsRing() returns 
NULL if called on any type of geometry other than a LineString or other type of Curve. 

One of the basic facts you might want to establish, therefore, is what type of geometry is used to 
represent a feature. This might appear obvious from a visual examination of a WKT or GML string, 
however, it is certainly not obvious from the WKB representation or SQL Server's own binary format. 

SQL Server 2012 provides three methods that can be used to describe programmatically the type of 
geometry used to represent an instance: 

• STGeometryType() 

• InstanceOf() 

• STDimension()  

All three of these methods can be used on either the geometry or the geography datatype. 

Returning the Type of Geometry 
STGeometryType() can be used to return a text description of the type of geometry used to represent an 
instance of data. STGeometryType() requires no parameters and can be called on an item of geography 
or geometry data as follows: 

Instance.STGeometryType() 

The value returned by the STGeometryType() method is an nvarchar(4000) string that contains the 
name of the type of geometry represented by the instance in question. The possible values returned by 
STGeometryType() are as follows: 

• Point 

• LineString 

• CircularString 

• CompoundCurve 

• Polygon 

• CurvePolygon 

• MultiPoint 

• MultiLineString 

• MultiPolygon 
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• GeometryCollection 

• FullGlobe 

To demonstate, the following code listing creates a LineString geometry instance, @Line, and then 
uses the STGeometryType() method to return the name of the type of geometry it represents: 

DECLARE @Line geometry; 
SET @Line = 'LINESTRING(0 0, 5 2, 8 3)'; 
SELECT @Line.STGeometryType(); 

The result follows: 

LineString 

Testing the Type of Geometry 
The InstanceOf() method complements the functionality of the STGeometryType() method. Whereas 
STGeometryType() is used as a descriptive method to return the name of the type of geometry, the 
InstanceOf() method is used to test whether an instance is a specified type of geometry. 

The syntax for using the InstanceOf() method is as follows: 

Instance.InstanceOf(geometry_type) 

The parameter geometry_type, which is an nvarchar(4000) string, specifies a type of geometry to which 
Instance is compared. The list of possible geometry_type parameter values that can be supplied to 
InstanceOf() is similar to the list of possible values returned by the STGeometryType() method, although 
not identical. One of the reasons why the set of values does not match exactly is because 
InstanceOf(geometry_type) can not only be used to determine if an instance is the exact type of 
geometry specified by geometry_type, but also if it is any of the types of geometry descended from 
geometry_type. Therefore, the set of geometry_type values against which an instance can be tested 
includes not only the 11 instantiable object types returned by STGeometryType(), but also the abstract 
Curve, Surface, MultiCurve, and MultiSurface geometry types from which LineStrings, Polygons, 
MultiLineStrings, and MultiPolygons are descended, respectively. You can also specify the generic 
Geometry type from which all other geometry types are descended. 

The full list of possible values for the geometry_type parameter supplied to the InstanceOf() 
method is as follows:  

• Geometry 

• Point 

• Curve 

• LineString 

• CircularString 

• CompoundCurve 

• Surface 

• Polygon 

• CurvePolygon 

• MultiPoint 

• MultiCurve 
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• MultiLineString 

• MultiSurface 

• MultiPolygon 

• GeometryCollection 

• FullGlobe 

The following code listing creates a CircularString geometry, and then tests whether that 
geometry is an instance of a Curve, a CircularString, and a LineString.  

DECLARE @CircularString geometry; 
SET @CircularString = 'CIRCULARSTRING(0 0, 3 5, 6 1)'; 
 
SELECT 
  @CircularString.InstanceOf('Curve'),           -- 1 
  @CircularString.InstanceOf('CircularString'),  -- 1 
  @CircularString.InstanceOf('LineString');      -- 0 

The results confirm that @CircularString is a CircularString geometry (which is derived from the 
Curve geometry type), and not an instance of a LineString. 

Determining the Number of Dimensions Occupied by a Geometry 
Rather than determining the specific type of geometry represented by a geography or geometry instance, 
as returned by STGeometryType() or tested by InstanceOf(), it is sometimes helpful to consider only the 
number of dimensions occupied by a geometry. For example, when creating an application that draws 
features on a map, we may want to create a section of code that determines the fill color with which 
different items of data should be shaded. This code path is only relevant to two-dimensional features—
Polygons, CurvePolygons, and MultiPolygons (or a GeometryCollection containing any of these 
elements)—because only two-dimensional objects contain an area that can be filled. Likewise, zero-
dimensional features—Points and MultiPoints—commonly represent points of interest on a map and 
may be plotted using pushpin icons that are only relevant to these types of features. 

In order to switch between code paths in an application such as this, you can use the STDimension() 
method, which returns an integer value representing the number of dimensions occupied by a 
particular item of geometry or geography data. The STDimension() method does not require any 
parameters and can be used against an item of geography or geometry data as follows: 

Instance.STDimension() 

The result of the STDimension() method is an integer value representing the number of 
dimensions occupied by Instance, as follows: 

• For a Point or MultiPoint, STDimension() returns 0. 

• For a LineString, CircularString, CompoundCurve, or MultiLineString, 
STDimension() returns 1. 

• For a Polygon, CurvePolygon, MultiPolygon, or FullGlobe, STDimension() returns 2. 

• For empty geometries of any type (i.e., a geometry that contains no points in its 
definition), STDimension() returns –1. 

• For a Geometry Collection containing several different types of geometry, 
STDimension() returns the maximum number of dimensions of any element 
contained within that collection. 
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■ Note  Single-element and multielement instances of the same type of geometry occupy the same number of 

dimensions. 

Table 9-1 illustrates a comparison of the results obtained from the STGeometryType(), STDimension(), 
and InstanceOf() methods for various types of geometry. The STGeometryType() and STDimension() 
columns show the result obtained from calling each method on instances of the type of geometry 
shown in the Geometry column. The InstanceOf() column shows the values of geometry_type that will 
return a value of 1 (true) when called on that type of geometry.  

Table 9-1. Comparing the Results of STGeometryType(), InstanceOf(), and STDimension() 

Geometry STGeometryType() STDimension() InstanceOf() 

Point Point 0 Geometry, Point 

LineString LineString 1 Geometry, Curve, LineString 

CircularString CircularString 1 Geometry, Curve, CircularString 

CompoundCurve CompoundCurve 1 Geometry, Curve, CompoundCurve 

Polygon Polygon 2 Geometry, Surface, Polygon 

CurvePolygon CurvePolygon 2 Geometry, Surface, CurvePolygon 

MultiPoint MultiPoint 0 Geometry, GeometryCollection, 
MultiPoint 

MultiLineString MultiLineString 1 Geometry, GeometryCollection, 
MultiCurve, MultiLineString 

MultiPolygon MultiPolygon 2 Geometry, GeometryCollection, 
MultiSurface, MultiPolygon 

GeometryCollection GeometryCollection –1, 0, 1, 2a Geometry, GeometryCollection 

FullGlobe FullGlobe 2 Geometry, FullGlobe 

Empty Point Point –1 Geometry, Point 

Empty LineString LineString –1 Geometry, Curve, LineString 

Empty Polygon Polygon –1 Geometry, Surface, Polygon 

a When you use the STDimension() method on a GeometryCollection instance, it returns the greatest 
number of dimensions of any element in that particular collection. For instance, for a Geometry Collection 
containing only Point and LineString elements, the result of STDimension() would be 1. 

An illustration of the results of some common geometry types is shown in Figure 9-1. 
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Figure 9-1. Comparing results of the STGeometryType(), STDimension(), and InstanceOf() methods 
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■ Note  You can download the code sample to create and test the geometries shown in Figure 9-1 (and all the 

remaining examples in this chapter) from the Apress website, http://www.apress.com 

Testing for OGC Properties 
The Open Geospatial Consortium specifications define attributes that can be assigned to types of 
geometry: they may be simple or closed. These attributes may be tested using the STIsSimple() and 
STIsClosed() methods, respectively. 

Testing for Simplicity 
The requirement for simplicity is essentially that a geometry cannot self-intersect; that is, it cannot 
contain the same point more than once (except in the case of the start/end point of a LineString or 
other curve). Some specific examples are as follows: 

• Point geometries are always simple. MultiPoints are simple, so long as they do 
not contain the same Point more than once. 

• LineStrings, Curves, and MultiLineStrings are simple so long as the path drawn 
between the points does not cross itself. 

• Polygons, CurvePolygons, and MultiPolygons are always simple. (Assuming that 
they are valid; see Chapter 7 for information about validity) 

• GeometryCollections are simple if all of the elements contained within the 
collection are themselves simple, and that no two elements within the collection 
intersect each other (other than touching at their boundaries).  

The STIsSimple() method can be used to test whether a given geometry instance meets the criteria 
for simplicity. If the geometry represented by the instance is simple, the STIsSimple() method returns 
the value 1. If the geometry fails to meet the criteria required for simplicity, then the method returns 0. 
Figure 9-2 illustrates the results obtained from the STIsSimple() method when used on different types 
of geometries. 
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MultiPoint.STIsSimple() = 1

MultiPoint.STIsSimple() = 0

MultiLineString.STIsSimple() = 1

Point.STIsSimple() = 1

LineString.STIsSimple() = 1

LineString.STIsSimple() = 0

Polygon.STIsSimple() = 1 MultiPolygon.STIsSimple() = 1

x2

 

Figure 9-2. Testing whether a geometry is simple by using STIsSimple() 

To demonstrate the usage of STIsSimple() consider the following code listing, which creates a 
LineString geometry representing the route taken by a delivery van through the center of New York City. 
The LineString contains six points, representing the individual locations at which the van stops to 
make a delivery (for the purposes of illustration, we’ll assume that the van takes the shortest straight-
line journey between each location). The STIsSimple() method is then used to test whether the 
LineString geometry is simple. 

DECLARE @DeliveryRoute geometry; 
SET @DeliveryRoute = geometry::STLineFromText( 
  'LINESTRING(586960 4512940, 586530 4512160, 585990 4512460, 
  586325 4513096, 587402 4512517, 587480 4512661)', 32618); 
SELECT  
  @DeliveryRoute AS Shape, 
  @DeliveryRoute.STIsSimple() AS IsSimple; 

The STIsSimple() method in this example returns the value 0, indicating that the LineString 
geometry @DeliveryRoute is not simple; during its journey, the van must cross back over part of the route 
it has previously traveled. This might be an indication that the route represented by @DeliveryRoute is 
not the optimal route between the destinations. Now suppose that the van had started from the same 
point as before, but then had taken a different route between the remaining points, as follows: 

DECLARE @DeliveryRoute geometry; 
SET @DeliveryRoute = geometry::STLineFromText( 
  'LINESTRING(586960 4512940, 587480 4512661, 587402 4512517, 
  586325 4513096, 585990 4512460, 586530 4512160)', 32618); 
SELECT  
  @DeliveryRoute AS Shape, 
  @DeliveryRoute.STIsSimple() AS IsSimple; 

In this case, the LineString connects the same six points, but does not cross back on itself. The 
result of the STIsSimple() method used on this geometry is therefore 1.  
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By making the route simple, we have eliminated the need for the van to recross its path, reducing 
the total distance traveled from 3.6 km to 3.3 km (you can confirm the distance traveled using the 
STLength() method, which is introduced later in this chapter). 

■ Note  The STIsSimple() method applies to the geometry datatype only. There is no equivalent method for the 

geography datatype. 

Testing if a Geometry Is Closed 
A geometry can be defined as closed based on the following rules:  

• A Point geometry is not closed. 

• A LineString, CircularString, or CompoundCurve is closed only if the start and 
end points are the same. 

• All Polygon instances are closed. 

• A Geometry Collection or multi-element geometry in which every individual 
geometry is closed is, itself, closed. A Geometry Collection or multi-element 
geometry containing any unclosed geometry (a Point, or an unclosed 
LineString) is not closed. 

The STIsClosed() method can be used to test whether a geometry or geography instance meets the 
criteria specified above. The STIsClosed() method requires no parameters, and returns the value 1 if 
the instance is closed, or 0 if the instance is not closed. Figure 9-3 illustrates the results of the 
STIsClosed() method when used on examples of different types of geometry. 

Point.STIsClosed() = 0 MultiPoint.STIsClosed() = 0

CircularString.STIsClosed() = 0 MultiLineString.STIsClosed() = 1

LineString.STIsClosed() = 1 GeometryCollection.STIsClosed() = 0

Polygon.STIsClosed() = 1 MultiPolygon.STIsClosed() = 1  

Figure 9-3. Comparing closed and not closed geometries using STIsClosed() 
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To demonstrate the STIsClosed() method in a real-life context, consider the following example. 
The summit of Mount Snowdon (Yr Wyddfa, in Welsh) is the highest mountain peak in Wales, at an altitude 
of just over 3,500 ft above sea level. To model the terrain of the mountain, we could create a MultiLineString 
geometry representing contour lines around the summit. A contour line is a line that connects points 
of equal elevation, so, in addition to stating longitude and latitude coordinates, the points of each 
LineString contain a z-coordinate value equal to the height of the contour which that LineString 
represents (measured in feet above sea level). The STIsClosed() method is then used to test whether 
the MultiLineString instance is closed. 

DECLARE @Snowdon geography; 
SET @Snowdon = geography::STMLineFromText( 
'MULTILINESTRING( 
 (-4.07668 53.06804 3445,  -4.07694 53.06832 3445,  -4.07681 53.06860 3445, 
  -4.07668 53.06869 3445,  -4.07651 53.06860 3445,  -4.07625 53.06832 3445, 
  -4.07661 53.06804 3445,  -4.07668 53.06804 3445), 
 (-4.07668 53.06776 3412,  -4.07709 53.06795 3412,  -4.07717 53.06804 3412, 
  -4.07730 53.06832 3412,  -4.07730 53.06860 3412,  -4.07709 53.06890 3412, 
  -4.07668 53.06898 3412,  -4.07642 53.06890 3412,  -4.07597 53.06860 3412, 
  -4.07582 53.06832 3412,  -4.07603 53.06804 3412,  -4.07625 53.06791 3412, 
  -4.07668 53.06776 3412), 
 (-4.07709 53.06768 3379,  -4.07728 53.06778 3379,  -4.07752 53.06804 3379, 
  -4.07767 53.06832 3379,  -4.07773 53.06860 3379,  -4.07771 53.06890 3379, 
  -4.07728 53.06918 3379,  -4.07657 53.06918 3379,  -4.07597 53.06890 3379, 
  -4.07582 53.06879 3379,  -4.07541 53.06864 3379,  -4.07537 53.06860 3379, 
  -4.07526 53.06832 3379,  -4.07556 53.06804 3379,  -4.07582 53.06795 3379, 
  -4.07625 53.06772 3379,  -4.07668 53.06757 3379,  -4.07709 53.06768 3379))', 
  4326); 
SELECT 
  @Snowdon AS Shape, 
  @Snowdon.STIsClosed() AS IsClosed; 

The shape of the @Snowdon MultiLineString geometry, as displayed in SQL Server Management 
Studio's Spatial Results tab, is illustrated in Figure 9-4. 

 

Figure 9-4. A MultiLineString geometry representing contour rings around the summit of Mount Snowdon. 
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Because each LineString element contained within the MultiLineString ends at the same point 
from which it started, @Snowdon is a closed geometry, and the result returned by the STIsClosed() 
method is 1. 

■ Tip  Remember that you can use the optional z-coordinate to state the elevation, or height, of each point in a 

geometry. 

Testing Whether a LineString or Curve Is a Ring 
Rings are Curve geometries that are both simple and closed. The STIsRing() method is the OGC-
compliant method for testing whether a geometry instance is an example of a ring. 

When used on a LineString, CircularString, or CompoundCurve instance, STIsRing() returns a 
value of 1 if the instance meets the criteria for a ring, or 0 if the instance is not a ring. When used 
against any sort of geometry other than a Curve, the method returns NULL. 

■ Tip  Since a ring is a closed simple LineString, STIsRing() = 1 is logically equivalent to 

InstanceOf('Curve') = 1 AND STIsClosed() = 1 AND STIsSimple() = 1. 

To demonstrate the usage of STIsRing(), the following code listing creates a LineString geometry 
representing the track of the Indianapolis Motor Speedway, home of the Indy 500 race. It then uses the 
STIsRing() method to test whether the geometry created is a ring. 

DECLARE @Speedway geometry; 
SET @Speedway = geometry::STLineFromText( 
   'LINESTRING(565900 4404737, 565875 4405861, 565800 4405987, 565670 4406055, 
     565361 4406050, 565222 4405975, 565150 4405825, 565170 4404760, 565222 4404617, 
     565361 4404521, 565700 4404524, 565834 4404603, 565900 4404737)', 32616); 
SELECT  
  @Speedway AS Shape, 
  @Speedway.STIsRing() AS IsRing; 

The result of the STIsRing() method is 1, which confirms that the geometry representing the oval-
shaped track is a ring; it starts and ends at the same point, and does not cross itself. 

Counting the Number of Points in a Geometry 
Having established the type of geometry used to represent a feature, and the OGC properties of that 
geometry, another common requirement is to count the number of points used to define that geometry. 
There are two methods that return information relating to the number of points in a geometry 
definition – STNumPoints() and STIsEmpty(). 
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Returning the Number of Points in a Geometry 
The STNumPoints() method returns the number of points used to define a geography or geometry instance. 
Every point listed in the geometry definition is counted; if the geometry definition includes the same 
point several times, it will be counted multiple times. For example, the start and end point of each ring in a 
Polygon are the same. Because these points are duplicated, when used against a Polygon geometry, the 
result of STNumPoints() will always be greater than the number of sides of the shape. 

The STNumPoints() method does not take any parameters and can be used on an item of geography 
or geometry data as follows: 

Instance.STNumPoints() 

The result of the method is an integer value representing the number of points used to define the 
instance. Figure 9-5 illustrates the results of the STNumPoints() method when used against a variety of 
geometry types. 

Point.STNumPoints() = 1 MultiPoint.STNumPoints() = 3

LineString.STNumPoints() = 4 MultiLineString.STNumPoints() = 7

CircularString.STNumPoints() = 3 CompoundCurve.STNumPoints() = 4

Polygon.STNumPoints() = 5 MultiPolygon.STNumPoints() = 20  

Figure 9-5. Counting the number of points in a geometry using STNumPoints() 

As an example of the STNumPoints() method, consider the Bermuda Triangle, an area of the Atlantic 
Ocean famed for causing the unexplained disappearance of ships and aircraft that pass through it. 
Although the exact location of the triangle varies between different sources, it is popularly defined as 
being the area contained within the points of Miami, Florida; San Juan, Puerto Rico; and the island of 
Bermuda. The following code listing creates a geography Polygon representing the Bermuda Triangle 
based on these points, and then calls the STNumPoints() method on the resulting instance: 

DECLARE @BermudaTriangle geography; 
SET @BermudaTriangle = geography::STPolyFromText( 
  'POLYGON((-66.07 18.45, -64.78 32.3, -80.21 25.78, -66.07 18.45))', 
  4326); 
 
SELECT 
  @BermudaTriangle AS Shape, 
  @BermudaTriangle.STNumPoints() AS NumPoints; 
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The result of the STNumPoints() method in this example is 4. 

■ Caution  The definition of a three-sided Polygon, such as the Bermuda Triangle, contains four points, not three, 
as you might think! This is because the STNumPoints() method counts the point at the start and end of each 

Polygon ring twice.  

Testing Whether a Geometry Is Empty 
An empty geometry is one that does not contain any points. Empty geometries are not generally 
created directly, but are often returned in the results of a spatial query. In such cases, they can be 
thought of as meaning "No location exists that matches the criteria of this query." For example, the 
STIntersection() method can be used to return a geometry that represents the set of points shared 
between two geometries. If those instances have no points in common (they are disjoint), then the 
result returned by the STIntersection() method will be an empty geometry. 

■ Note  An empty geometry is not the same as NULL. A NULL value in a geometry or geography column suggests 
that a result has not been evaluated. An empty geometry suggests that a result has been evaluated, but the 

corresponding location does not exist on the earth.  

The STIsEmpty() method can be used to test whether a given geometry is empty. It does not require 
any parameters and can be used against an instance of either the geometry or geography datatype as 
follows: 

Instance.STIsEmpty() 

If the geometry represented by Instance does not contain any points, then the result of 
STIsEmpty() will be 1. Otherwise, the result will be 0. 

■ Tip  STIsEmpty() = 1 is logically equivalent to STNumPoints() = 0. 

To demonstrate, the following example creates two parallel LineString geometries, @LineString1 and 
@LineString2. It then uses the STIntersection() method to create the geometry formed from the 
intersection of the two LineStrings, before calling the STIsEmpty() method on the resulting geometry. 

DECLARE @LineString1 geometry; 
DECLARE @LineString2 geometry; 
SET @LineString1 = geometry::STLineFromText('LINESTRING(2 4, 10 6)', 0); 
SET @LineString2 = geometry::STLineFromText('LINESTRING(0 2, 8 4)', 0); 
SELECT  
  @LineString1.STUnion(@LineString2) AS Shape, 
  @LineString1.STIntersection(@LineString2).STIsEmpty() AS IsEmpty; 
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The result of the STIsEmpty() method is 1, which shows that the geometry created by the 
STIntersection() method in this case is an empty geometry, containing no points. In other words, 
@LineString1 and @LineString2 do not have any points in common with each other. 

Returning Individual Points from a Geometry 
With the exceptions of an empty geometry (which has no points) and a Point geometry (which contains 
only one point), every other geometry or geography instance is defined by a set of many individual 
points. It is often the case that we want to identify or retrieve these points individually from the 
geometry. SQL Server provides several methods that return individual points from a geometry, which 
we'll examine in this section. 

Retrieving a Point by Index 
The STPointN() method can be used to isolate and return any individual point from the definition of a 
geometry. STPointN() must be supplied with an integer parameter n, which specifies the ordinal 
number of the point that should be returned from the geometry. The syntax is as follows:  

Instance.STPointN(n) 

Instance.STPointN(n) returns the nth point of the geometry defined by Instance. Valid values for 
the parameter n range from 1 (the first point of the geometry) to the result returned by STNumPoints() 
(the final point in the geometry). The return value of the STPointN() method is a geography or geometry 
Point, matching the datatype of the instance on which the method was called. 

PointN() is frequently used inside a loop construct in which the iterator ranges from 1 to the value 
of STNumPoints(), to loop through and perform some action with every point in a geometry as shown in 
the following C# code listing: 

for (int n = 1; n <= geometry.STNumPoints(); n++) { 
 
  SqlGeometry x = geometry.STPointN(n); 
 
  // Do something with Point x… 
} 

Figure 9-6 illustrates the results of the STPointN() method when used on a variety of different 
types of geometry. 
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Figure 9-6. Isolating a particular point from a geometry using STPointN() 

■ Note  To use the STPointN() method effectively, you must understand the order in which the points of a 
geometry are defined. If the geometry was created by a user, the points are listed in the order in which they were 

passed to the static method that created the instance. If the geometry was created by SQL Server (from the result of 
another method), points are ordered first by instance, then by ring within the instance, and then by point within 

each ring. 

To demonstrate the usage of STPointN(), the following example creates a MultiPoint geography 
instance, in which each point represents the location of a mile marker spaced equally at every mile 
along the course of the London Marathon. The STPointN() method is used to select the fourteenth point 
in the MultiPoint, which represents the approximate halfway point of the race. 

DECLARE @LondonMarathon geography; 
SET @LondonMarathon = geography::STMPointFromText( 
  'MULTIPOINT(0.0112 51.4731, 0.0335 51.4749, 0.0527 51.4803, 0.0621 51.4906, 
  0.0448 51.4923, 0.0238 51.4870, 0.0021 51.4843, -0.0151 51.4814, 
  -0.0351 51.4861, -0.0460 51.4962, -0.0355 51.5011, -0.0509 51.5013, 
  -0.0704 51.4989, -0.0719 51.5084, -0.0493 51.5098, -0.0275 51.5093, 
  -0.0257 51.4963, -0.0134 51.4884, -0.0178 51.5003, -0.0195 51.5046, 
  -0.0087 51.5072, -0.0278 51.5112, -0.0472 51.5099, -0.0699 51.5084, 
  -0.0911 51.5105, -0.1138 51.5108, -0.1263 51.5010, -0.1376 51.5031)', 
  4326); 
 
SELECT  
  @LondonMarathon AS Shape, 
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  @LondonMarathon.STPointN(14) AS Point14, 
  @LondonMarathon.STPointN(14).STAsText() AS WKT; 

The WKT representation of the result returned by the STPointN() method is as follows: 

POINT (-0.0719 51.5084) 

Returning the Start and End Point of a Geometry 
STStartPoint() and STEndPoint() are “shortcut” methods that provide the same result as STPointN() 
when used in the specific cases of returning the first point and the last point of a geometry, 
respectively: 

• Instance.STStartPoint() is equivalent to Instance.STPointN(1) 

• Instance.STEndPoint() is equivalent to 
Instance.STPointN(Instance.STNumPoints()) 

STStartPoint() and STEndPoint() can be used on any geography or geometry instances, although they 
are most useful when applied to nonclosed LineStrings or Curves, because these have separate and distinct 
endpoints, and are commonly directed (i.e., they have a logical "start" and "end"). The result of the 
STStartPoint() and STEndPoint() methods is a Point instance of either geography or geometry datatype, 
matching the type of the instance on which the method was called. 

To demonstrate the use of these methods, let's consider an example. In May 1919, a crew of five 
aviators completed the first successful transatlantic flight, under the command of Lieutenant 
Commander Albert Read. Starting in Rockaway Naval Air Station, Read first piloted his NC-4 aircraft to 
Halifax, Nova Scotia, then on to Trepassey, Newfoundland, before crossing to the island of Horta in 
the Azores. From the Azores, the crew then set off to Lisbon, Portugal, and made a short stop in Spain 
before finally completing the journey at Plymouth, England. The following code listing creates a 
LineString geometry representing the approximate route taken, and then uses the STStartPoint() 
and STEndPoint() methods to return the points at the start and end of the journey. 

DECLARE @TransatlanticCrossing geography; 
SET @TransatlanticCrossing = geography::STLineFromText(' 
LINESTRING(  
  -73.88 40.57, -63.57 44.65, -53.36 46.74, -28.63 38.54, 
  -28.24 38.42, -9.14 38.71,  -8.22 43.49,  -4.14 50.37)', 
  4326 
); 
SELECT 
  @TransatlanticCrossing AS Shape, 
  @TransatlanticCrossing.STStartPoint().STAsText() AS StartPoint, 
  @TransatlanticCrossing.STEndPoint().STAsText() AS EndPoint;  

The results, two Point geometries representing the locations of Rockway Naval Air Station and 
Plymouth, are as follows: 

StartPoint            EndPoint 
POINT (-73.88 40.57)  POINT (-4.14 50.37) 



CHAPTER 9 ■  EXAMINING SPATIAL PROPERTIES 

 

227 

Determining the Center of a Geometry 
There are many ways to define the "center" of a shape. In SQL Server, different methods are provided 
for determining the center of a geometry instance and for a geography instance. 

Calculating the Centroid of a geometry Instance 
For determining the center of a geometry Polygon, CurvePolygon, or MultiPolygon instance, you can 
use the STCentroid() method to calculate its centroid. The centroid of a Polygon can be thought of as its 
“center of gravity,” the point around which the area contained by the Polygon is evenly distributed. 
The position of the centroid is derived mathematically from a calculation based on the overall shape of 
the geometry. 

The STCentroid() method requires no parameters and can be used on any geometry instance that 
contains at least one Polygon or CurvePolygon element, as follows: 

Instance.STCentroid() 

The result is a single geometry Point instance, defined using the same SRID as the instance on 
which it was called. Note that STCentroid() can be used only on Polygon or MultiPolygon geometries; if 
used on a Point or LineString, the method will return NULL. Figure 9-7 illustrates the centroid of several 
Polygons of the geometry datatype. 

■ Caution  The centroid of a Polygon is not necessarily contained inside the Polygon itself; it is the point around 

which the Polygon is evenly distributed. 

Polygon.STCentroid() Point

Polygon.STCentroid() Point

CurvePolygon.STCentroid() Point

MultiPolygon.STCentroid() Point  

Figure 9-7. Centroids of different Polygon geometries obtained using STCentroid() 
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The following example creates a Polygon geometry representing the state of Colorado, and then 
uses the STCentroid() method to determine the centroid of that Polygon: 

DECLARE @Colorado geometry; 
SET @Colorado = geometry::STGeomFromText('POLYGON((-102.0423 36.9931, -102.0518  
41.0025, -109.0501 41.0006, -109.0452 36.9990, -102.0423 36.9931))', 4326); 
SELECT  
  @Colorado AS Shape, 
  @Colorado.STCentroid() AS Centroid, 
  @Colorado.STCentroid().STAsText() AS WKT; 

The WKT representation of the result of the STCentroid() method in this example is as follows: 

POINT (-105.54621375420314 38.998581021101813) 

In this example, I've used the geometry datatype, but supplied WGS84 geographic coordinates (SRID 
4326). The centroid is therefore calculated by treating longitude and latitude as mapped directly to the 
x- and y-axis of a two-dimensional plane, and the resulting location is calculated as being a few miles 
north of Elevenmile Canyon Reservoir, in the geometric center of the state. This is illustrated in 
Figure 9-8. 

 

Figure 9-8. Calculating the geometric center of a Polygon using STCentroid(). 

Calculating the Envelope Center of a geography Instance 
The STCentroid() method cannot be applied to the geography datatype. However, similar functionality is 
provided by the EnvelopeCenter() method. EnvelopeCenter() averages the position vectors that 
describe the location of each point in the geometry from the center of the earth, and returns a Point 
geometry plotted at the resulting position. This is a very simple approximation of the center point of 
any type of geometry. In contrast to the STCentroid() method of the geometry datatype, which can be 
used only on Polygon instances, the EnvelopeCenter() method can be used on any instance of the 
geography datatype, as follows: 

Instance.EnvelopeCenter() 

The result of the method is a geography Point instance, defined using the same spatial reference 
system as that in which the original instance was supplied.  

■ Note  The result of the EnvelopeCenter() method is based on the average of each unique point in a geometry. 
If the same point is defined twice in a geography instance, such as the start point and end point of a closed ring, 

this point is included only once in the calculation. 
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Figure 9-9 illustrates the method by which the result of EnvelopeCenter() is calculated for a 
geography Polygon defined by the points P1, P2, P3, and P4. The position vectors describing the location 
of each point from the center of the earth are averaged (with the point P1, which represents both the 
start and end points of the Polygon ring, included only once), and the method returns the Point located at 
the resulting position.  

 

Figure 9-9. Using the EnvelopeCenter() method to calculate the center point of a geography instance 

The following example creates a geography Polygon representing the state of Utah, and then uses 
the EnvelopeCenter() method to return the point at the center of the Polygon: 

DECLARE @Utah geography; 
SET @Utah = geography::STPolyFromText( 
  'POLYGON((-109 37, -109 41, -111 41, -111 42, -114 42, -114 37, -109 37))', 4326); 
SELECT  
  @Utah AS Shape, 
  @Utah.EnvelopeCenter() AS EnvelopeCenter, 
  @Utah.EnvelopeCenter().STAsText() AS WKT; 

The WKT representation of the Point returned by the EnvelopeCenter() method is as follows: 

POINT (-111.33053985766453 40.018634026864916) 

Figure 9-10 illustrates the location of this point relative to the Polygon representing the overall 
shape of Utah state, projected using the Mercator projection. Unlike STCentroid(), the centerpoint 
obtained from EnvelopeCenter() lies slightly to the northeast of the simple geometric center obtained 
from averaging the minimum and maximum coordinate values. This is due to the fact that the Polygon 
definition contains a greater density of points defining the concave corner at the northeast of the state 
than the single point at each of the other three corners. This causes the average vector calculated by 
EnvelopeCenter() to be weighted to the northeast. 
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Figure 9-10. Using the EnvelopeCenter() method on a Polygon representing the state of Utah 

Returning an Arbitrary Point from a Geometry 
STPointN(), STStartPoint(), and STEndPoint() return one of the points used to define a geometry. By 
definition, the result of any of these methods will therefore be a point that lies on the edge of the 
geometry in question (because the shape of a geometry is defined by its edges). Sometimes, however, you 
might want to return a point that lies somewhere inside a geometry, not at its extremes. One example of 
this might be when determining the appropriate location to place a label on a map describing a feature. 
You wouldn't want the label to appear on the edge of the Polygon representing an area, but somewhere 
inside it. In these circumstances, you might want to use the STPointOnSurface() method. 

The STPointOnSurface() method can be used on any instance of the geometry datatype to return an 
arbitrary point that lies within the interior of that geometry. The result of the STPointOnSurface() 
method depends on the type of geometry on which the method is called: 

• For LineStrings, Curves, or MultiLineStrings, the result is a Point that lies 
somewhere on the path of the LineString / Curve.  

• For Polygons and CurvePolygons, the result is a Point within the exterior ring 
(and not contained within an interior ring).  

• For Points, the result is the Point itself, or in the case of MultiPoints, any one 
Point contained within the MultiPoint collection. 

• For empty geometries, the STPointOnSurface() method returns NULL. 

“Why would you want to return a single arbitrary point from a geometry?” you might be 
wondering. “Surely, if you wanted to choose a single location to represent the overall shape of a 
Polygon geometry you'd be better off determining the center of the shape using the STCentroid() 
method, because that will return a point in the middle of the shape?” The answer to this question is 
that, although the STCentroid() method can be used to determine the point representing the centroid of 
a geometry, the resulting Point is not necessarily contained within the geometry itself. In contrast, the 
result of the STPointOnSurface() method will always be a single Point that is guaranteed to lie in the 
interior of the geometry on which the method is called. 

The STPointOnSurface() method can be used only with instances of the geometry datatype as 
follows: 

Instance.STPointOnSurface() 
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The following example creates a Polygon geometry, and then uses the STPointOnSurface() method 
to return an arbitrary point contained within that Polygon: 

DECLARE @Polygon geometry; 
SET @Polygon = geometry::STGeomFromText('POLYGON((10 2,10 4,5 4,5 2,10 2))',0); 
SELECT 
  @Polygon AS Shape, 
  @Polygon.STPointOnSurface() AS PointOnSurface, 
  @Polygon.STPointOnSurface().STAsText() AS WKT; 

The WKT representation of the result of the STPointOnSurface() method in this example is as 
follows: 

POINT (8.3333333333333339 3.3333333333333335) 

■ Note  The STPointOnSurface() method returns an arbitrary point, not a random point. If you were to execute 

the preceding code listing several times, you would receive the same result on each occasion. 

Returning Coordinate Values 
Having used one of the methods in the preceding section to isolate an individual point from a 
geometry (or, in the case of a Point geometry, the point itself), we can then examine the coordinate 
values assigned to that point. 

Coordinate values for instances of the geometry and geography datatypes are defined using 
different sorts of coordinate system: planar and geographic, respectively. This difference is also 
reflected in different methods you use to access those coordinate values between the two datatypes. 

Returning geometry Coordinates 
To retrieve the x and y Cartesian coordinates used to define a geometry instance, you use the STX and 
STY properties, respectively. These properties both return a floating-point number representing the 
appropriate coordinate value. 

For example, the following example creates a Point geometry from projected coordinates 
representing the location of Johannesburg, South Africa, using the UTM projection (Zone 35, 
Southern Hemisphere). It then uses the STX and STY properties to retrieve the x- (Easting) and y- 
(Northing) coordinates of that Point. 

DECLARE @Johannesburg geometry; 
SET @Johannesburg = geometry::STGeomFromText('POINT(604931 7107923)', 32735); 
SELECT 
  @Johannesburg.STX AS X,  
  @Johannesburg.STY AS Y; 
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The results are as follows: 

X         Y 
604931  7107923 

Returning geography Coordinates 
When using the geography datatype, the equivalent functionality of the STX and STY properties is 
provided by the Lat and Long properties. These properties work in exactly the same way as STX and STY, 
except that, instead of relating to x and y planar coordinate values of a geometry Point, they retrieve the 
geographic coordinates of latitude and longitude from a geography Point. 

The following example creates a Point using the geography datatype from a well-known binary 
representation, corresponding to the location of Colombo, Sri Lanka. It then uses the Long and Lat 
properties to retrieve the longitude and latitude coordinates of that Point. 

DECLARE @Colombo geography; 
SET @Colombo = 
  geography::STGeomFromWKB(0x01010000006666666666F65340B81E85EB51B81B40, 4326); 
SELECT 
  @Colombo.Long AS Longitude, 
  @Colombo.Lat AS Latitude; 

The results are as follows: 

Longitude   Latitude 
79.85         6.93 

Returning Extended Coordinate Values 
In addition to the required x- and y-coordinates of every point in a geometry instance, or the equivalent 
longitude and latitude coordinates in the geography datatype, each point may also be defined as having 
optional z- and m-coordinates. The z-coordinate is used to store the height, or elevation, of a point. The 
m-coordinate is any measure that can be associated with the point, expressed as a floating-point number.  

To test whether a geometry contains z- or m-coordinate values, you can examine the HasZ and 
HasM properties of the instance. These properties return 1 if the instance contains at least one z- or m-
coordinate, respectively, or 0 if they do not. Then to retrieve these additional coordinate values for 
either a geometry or geography instance, you can use Z and M properties of a Point geometry. The result 
is a floating-point number representing the appropriate z- or m-coordinate value. If no coordinate 
value is defined, the result is NULL. These properties apply to both the geography and geometry datatype. 

For example, The Federal Communications Commission maintains a database of antenna structures 
registered for wireless telecommunications communication within the United States. The database 
contains a variety of fields, including the latitude and longitude of each antenna and the overall height 
above ground level. You can search the database online at 
http://wireless2.fcc.gov/UlsApp/AsrSearch/asrRegistrationSearch.jsp. The following code listing 
creates a Point geometry representing one such antenna, located at a latitude of 39°49'54"N and a 
longitude of 89°38'52"W, using the EPSG:4269 spatial reference system. The antenna extends to 34.7 m above 
ground level, which is represented by the z-coordinate of the point. The m-coordinate is assigned a value of 
1000131, which represents a reference number assigned to this antenna. The example then demonstrates 
how the Z and M properties can be used to retrieve the corresponding coordinate values of the Point. 
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DECLARE @Antenna geography; 
SET @Antenna =  
  geography::STPointFromText('POINT(-89.64778 39.83167 34.7 1000131)', 4269); 
SELECT 
  @Antenna.HasM AS HasM, 
  @Antenna.M AS M, 
  @Antenna.HasZ AS HasZ, 
  @Antenna.Z AS Z; 

The results are as follows: 

HasM       M         HasZ       Z 
1          1000131   1          34.7 

For a dataset where each record has only a single associated z- or m-value (such as a dataset 
containing only Point geometries, or a set of Polygons in which every point of a given Polygon is at a 
constant elevation), you may prefer to store those z- and m-coordinate values as separate numeric 
columns in your table rather than using the Z and M properties of a geometry/geography instance. 
Storing the additional coordinate values in separate columns makes it easier to set and retrieve those 
coordinate values without having to address the entire geometry instance. Adding indexes to those 
columns then allows you to query, say, all those antennae that are between 40 m and 50 m in height 
more efficiently than trying to query the Z and M properties of instances in a spatial column directly.  

However, you may need to deal with more complex geometries such as LineStrings or MultiPoints 
where the z- and m-coordinates vary with each point in the geometry; in this case, it is more 
convenient to use the Z and M properties to serialize the additional coordinates of each point as part of 
the geometry/geography instance itself. Using Z and M properties ensures that all the coordinate values 
of a feature are serialized as part of a single contained instance, which might also enhance portability 
when you come to export that data from SQL Server into another system. 

Properties Describing the Extent of a Geometry 
So far, we have considered a number of properties that describe aspects of a geometry as a single 
Point—its center, start, end, or nth point—and the methods to retrieve the individual coordinate values 
associated with each of those points. Certain other properties are best described not by Points, but by 
Polygons or LineStrings describing the geographic extent of a feature. In this section, we'll examine 
some of these methods used to calculate the boundary and envelope of a geometry. 

Calculating the Boundary of a Geometry 
The STBoundary() method returns the geometry representing the boundary of a geometry instance. In 
spatial data, the word boundary does not mean the outer perimeter of the geometry, as you might 
expect, but has a specific definition depending on the type of geometry in question: 

• Point and MultiPoint instances do not have a boundary. 

• LineStrings and MultiLineStrings have a boundary formed from the start points 
and end points of the geometry, removing any points that occur an even number 
of times. 

• The boundary of a Polygon is formed from the LineStrings that represent each of 
its rings. 
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The STBoundary() method does not require any parameters, so it can be invoked on an instance of 
the geometry datatype as follows: 

Instance.STBoundary() 

The result will be a geometry instance, the exact type of which will depend on the type of geometry 
of the instance on which it was called. Figure 9-11 illustrates the result of the STBoundary() method 
when used on a variety of different types of geometry. 

■ Tip  If used against a Polygon containing no interior rings, the geometry created by STBoundary() is the same 

as the ExteriorRing() method. However, whereas STExteriorRing() returns the points of the ring in the order 

they were defined, STBoundary() returns points starting with the smallest coordinate value. 

Point.STBoundary() Empty GeometryCollection

MultiPoint.STBoundary() Empty GeometryCollection

LineString.STBoundary() Empty GeometryCollection

Polygon.STBoundary() LineString

Polygon.STBoundary() MultiLineString

LineString.STBoundary() MultiPoint

 

Figure 9-11. Examples of geometries created by the STBoundary() method 

To demonstrate, the following example creates a Polygon geometry in the shape of a capital letter 
A, and then uses the STBoundary() method to identify the boundary of the Polygon: 
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DECLARE @A geometry; 
SET @A = geometry::STPolyFromText( 
  'POLYGON((0 0, 4 0, 6 5, 14 5, 16 0, 20 0, 13 20, 7 20, 0 0), 
    (7 8,13 8,10 16,7 8))', 0); 
SELECT 
  @A AS Shape, 
  @A.STBoundary() AS Boundary, 
  @A.STBoundary().STAsText() AS WKT; 

The following is the WKT representation of the result of the STBoundary() method in this example, 
which is illustrated in Figure 9-12. 

MULTILINESTRING ((7 8, 10 16, 13 8, 7 8), (0 0, 4 0, 6 5, 14 5, 16 0, 20 0, 13 20, 
7 20, 0 0)) 

 

Figure 9-12. Identifying the boundary of a Polygon geometry of the capital letter A using STBoundary() 

Calculating the Envelope of a Geometry 
The envelope of a geometry represents the smallest axis-aligned rectangle that completely 
encompasses every part of the geometry. It is also referred to as a bounding box, although care should be 
taken not to confuse the "bounding box" of a geometry with its "boundary" as described in the preceding 
section. 

If MinX, MaxX, MinY, and MaxY are the minimum and maximum x- and y-coordinates of any point 
contained in the geometry, then the bounding box is the Polygon defined by the following WKT 
representation: 

POLYGON((MinX MinY, MaxX MinY, MaxX MaxY, MinX MaxY, MinX MinY)) 

The STEnvelope() method can be used to return the bounding box of any type of instance of the 
geometry datatype. It requires no parameters and can be called as follows: 

Instance.STEnvelope() 

The result of the STEnvelope() method will always be a Polygon, defined using the same SRID as 
the geometry instance on which it was invoked. Figure 9-13 illustrates the bounding boxes created by the 
STEnvelope() method when used on a variety of geometry instances. 



CHAPTER 9 ■  EXAMINING SPATIAL PROPERTIES 

 

236 

Point.STEnvelope() Polygon

MultiPoint.STEnvelope() Polygon

LineString.STEnvelope() Polygon

Polygon.STEnvelope() Polygon  

Figure 9-13. Creating envelopes of different types of geometry using STEnvelope() 

■ Note  If you use the STEnvelope() method on a Point instance, SQL Server will create the Polygon of smallest 
area around that point. For example, the result of STEnvelope() around a Point at POINT(30 20) is POLYGON 

((29.999999 19.999999, 30.000001 19.999999, 30.000001 20.000001, 29.999999 20.000001, 

29.999999 19.999999)). 

The following code creates a Polygon geometry in the shape of a capital letter A, and then creates 
the bounding box around the Polygon using the STEnvelope() method: 

DECLARE @A geometry; 
SET @A = geometry::STPolyFromText( 
  'POLYGON((0 0, 4 0, 6 5, 14 5, 16 0, 20 0, 13 20, 7 20, 0 0), 
  (7 8,13 8,10 16,7 8))', 0); 
SELECT 
  @A AS Shape, 
  @A.STEnvelope() AS Envelope, 
  @A.STEnvelope().STAsText() AS WKT; 

The following is the result of the STEnvelope() method in WKT format, which is illustrated in 
Figure 9-14: 

POLYGON ((0 0, 20 0, 20 20, 0 20, 0 0)) 
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Figure 9-14. Creating a bounding box of a geometry Polygon of the capital letter A using STEnvelope() 

Calculating the Bounding Circle of a geography Instance 
The STEnvelope() method cannot be used on instances of the geography datatype, since the straight 
axis-aligned lines of a simple rectangular bounding box cannot be applied to an elliptical model of the 
earth. However, SQL Server provides an alternative method to describe the extent of a geography 
instance, through the use of the EnvelopeCenter() and EnvelopeAngle() methods. 

You have already been introduced to the EnvelopeCenter() method earlier in this chapter, where it was 
used to determine the Point calculated from the vector average of all the points in a geography instance as 
an approximation of the center of any type of geometry. The EnvelopeAngle() method returns the angle 
between the point obtained from the EnvelopeCenter() method and the point in the geometry that lies 
furthest from the EnvelopeCenter() point. The resulting value is a measure of the maximum extent to which 
a geography instance spreads out from its central point. Figure 9-15 illustrates the method by which 
EnvelopeCenter() is calculated. 

 

Figure 9-15. Calculating the extent of a geography instance using EnvelopeAngle() 

The EnvelopeAngle() method does not require any parameters and can be called on an instance of 
the geography datatype as follows: 

Instance.EnvelopeAngle() 

The result of the EnvelopeAngle() method is a floating-point number. For geography instances that 
occupy less than a hemisphere, the value will be between 0 and 90, representing an angle measured in 
degrees. For any instances larger than a hemisphere, EnvelopeAngle() always returns 180 rather than 
the true obtuse angle. 
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The following example creates a geography Polygon, @NorthernHemisphere, representing the 
Northern Hemisphere. @NorthernHemisphere is defined as the area contained within an exterior ring of 
points lying just above the equator, at a latitude of 0.1 degrees north. The example then uses the 
EnvelopeAngle() method to calculate the greatest angle between any point in the @NorthernHemisphere 
Polygon and the center of the envelope.  

DECLARE @NorthernHemisphere geography 
SET @NorthernHemisphere =  
  geography::STGeomFromText('POLYGON((0 0.1,90 0.1,180 0.1, -90 0.1, 0 0.1))',4326) 
SELECT 
  @NorthernHemisphere AS Shape, 
  @NorthernHemisphere.EnvelopeAngle() AS EnvelopeAngle; 

Since as the center of the envelope is the North Pole, and the Polygon extends to just above the 
equator, the result shows an angle close to 90°: 

89.90000000000014 

If we were to repeat this code listing, but moving the ring of points to lie exactly on the equator, the 
Polygon would no longer be contained within a single hemispehere and EnvelopeAngle() would 
instead return 180: 

DECLARE @NorthernHemisphere geography 
SET @NorthernHemisphere =  
  geography::STGeomFromText('POLYGON((0 0,90 0,180 0, -90 0, 0 0))',4326) 
SELECT 
  @NorthernHemisphere AS Shape, 
  @NorthernHemisphere.EnvelopeAngle() AS EnvelopeAngle; 

180 

■ Note  The result of the EnvelopeAngle() method for any geography instance larger than a hemisphere will 

always be 180. 

I hope by now that you have a good appreciation of the difference between the geometry and 
geography datatypes, and understand the reason that you cannot calculate a simple bounding box on 
the ellipsoidal surface of the geography datatype. However, calculating the center and angle of a 
bounding circle using the alternative EnvelopeCenter() and EnvelopeAngle() methods provided by the 
geography datatype often don't give us the information we're after either. 

A common requirement is to calculate a simple, four-sided Polygon that encompasses the extent of 
a geography instance, without worrying too much about the strict technicalities of defining straight 
lines on a smooth surface. In such cases, one approach is to treat the geographic coordinates of an 
instance as geometric coordinates, calculate the bounding box using the geometry STEnvelope() 
method, and then interpret the results back as a geography instance again. Here's an example: 
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-- Declare a geography instance 
DECLARE @geog geography; 
SET @geog = geography::STPolyFromText('POLYGON((-4 50, 2 52, -1 60, -4 50))', 4326); 
 
-- Interpret as a geometry instance 
DECLARE @geom geometry; 
SET @geom = geometry::STPolyFromWKB(@geog.STAsBinary(), @geog.STSrid); 
 
-- Create the (geometry) bounding box 
DECLARE @geomboundingbox geometry; 
SET @geomboundingbox = @geom.STEnvelope(); 
 
-- Interpret results as geography 
DECLARE @geogboundingbox geography; 
SET @geogboundingbox = geography::STPolyFromWKB(@geomboundingbox.STAsBinary(), 
@geomboundingbox.STSrid); 

 
SELECT @geogboundingbox.ToString(); 

The result is as follows: 

POLYGON ((-4 50, 2 50, 2 60, -4 60, -4 50)) 

Note that this result is only an approximation, and the method will fail in certain cases (such as 
geometries that cross the 180th meridian of the poles). Nevertheless, this approach can still be used to 
provide a reasonable "bounding box" for geography instances in many circumstances. 

Properties Related to Surfaces 
Polygons and CurvePolygons, which are both descended from the abstract Surface type, are formed 
from one or more rings. These rings define the boundaries of the areas of space either included by or 
excluded from the geometry. There are a number of properties specific to working with the rings of 
surfaces, which will be discussed in this section.  

Isolating the Exterior Ring of a Geometry Polygon 
As previously discussed, Polygons and CurvePolygons may contain a number of internal rings that 
define holes: areas of space cut out of the main geometry. Sometimes, however, it can be useful to 
consider just the exterior ring of a Polygon, ignoring any interior rings that might be defined within it. 
The STExteriorRing() method can be used in this case. 

STExteriorRing() returns a LineString or Curve geometry representing the exterior perimeter 
boundary of a Polygon or CurvePolygon. Figure 9-16 illustrates the results of the STExteriorRing() 
method when used against different geometry Polygon instances. 
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Polygon.STExteriorRing() LineString

Polygon.STExteriorRing() LineString

CurvePolygon.STExteriorRing() CircularString  

Figure 9-16. Isolating the exterior ring of a Polygon geometry 

The following code listing creates a geometry Polygon in the shape of a capital letter A. The 
STExteriorRing() method is then used to return the exterior ring of the Polygon. 

DECLARE @A geometry; 
SET @A = geometry::STPolyFromText( 
  'POLYGON((0 0, 4 0, 6 5, 14 5, 16 0, 20 0, 13 20, 7 20, 0 0), 
            (7 8,13 8,10 16,7 8))', 
   0); 
SELECT  
  @A AS Shape, 
  @A.STExteriorRing() AS ExteriorRing, 
  @A.STExteriorRing().STAsText() AS WKT; 

The following WKT representation of the STExteriorRing() method is illustrated in Figure 9-17: 

LINESTRING (0 0, 4 0, 6 5, 14 5, 16 0, 20 0, 13 20, 7 20, 0 0) 

 

Figure 9-17. Using STExteriorRing() to isolate the exterior ring of the capital letter A 
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■ Note  The STExteriorRing() method returns a LineString or Curve geometry of the exterior ring itself, not the 
Polygon that encloses the area within that ring. It does not simply “fill in the holes” created by the internal rings 

within a Polygon. 

Counting the Interior Rings of a geometry 
The STNumInteriorRing() method is used to return an integer value that represents the total number of 
internal rings defined within a Polygon or CurvePolygon geometry. If a Polygon contains no interior rings, 
then the result of the method is 0. STNumInteriorRing() requires no parameters and can be used against a 
geometry Polygon or CurvePolygon instance as follows: 

Instance.STNumInteriorRing() 

The result is an integer value, equal to or greater than zero, representing the number of interior 
rings defined by the geometry. 

■ Caution  Unlike the naming convention used for similar methods that count the number of geometries or 
number of points in an instance (STNumGeometries() and STNumPoints(), respectively), the method to count the 
number of interior rings is named STNumInteriorRing() (not the plural STNumInteriorRings(), as you may 

expect). This seems to be an oversight of the OGC rather than of Microsoft, as this is the way in which the method 

is defined in the OGC specifications. 

Figure 9-18 illustrates the results of the STNumInteriorRing() method when used on two different 
MultiPolygon instances. 

Polygon.STNumInteriorRing() = 1 MultiPolygon.STNumInteriorRing() = 3  

Figure 9-18. Counting the number of interior rings in a Polygon geometry 

To demonstrate, the following code listing creates a Polygon and then uses the 
STNumInteriorRing() method to confirm the number of interior rings contained within the Polygon: 

DECLARE @Polygon geometry; 
SET @Polygon = geometry::STPolyFromText(' 
  POLYGON( 
    (0 0, 20 0, 20 10, 0 10, 0 0), 
    (3 1,3 8,2 8,3 1), 
    (14 2,18 6, 12 4, 14 2))', 
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    0); 
SELECT 
  @Polygon AS Shape, 
  @Polygon.STNumInteriorRing() AS NumInteriorRing; 

The result of the STNumInteriorRing() method is as follows: 

2 

Isolating an Interior Ring from a geometry Polygon 
The STInteriorRingN() method isolates the nth interior ring from a Polygon or CurvePolygon. Because the 
rings of a Polygon are made up of closed LineStrings or Curves, the result of the method will always be a 
simple closed LineString or Curve. The syntax for the STInteriorRingN() method, used on an instance of 
a geometry Polygon, is as follows: 

Instance.STInteriorRingN(n) 

This will return the geometry that represents the nth ring of Instance. Valid values for n range 
from 1 (the first interior ring) to the result of STNumInteriorRing() (the final interior ring). 

Figure 9-19 illustrates the resulting geometry created by the STInteriorRingN() method when used 
on a variety of different geometry instances. 

CircularStringCurvePolygon.STInteriorRingN(1)

LineStringPolygon.STInteriorRingN(2)

LineStringPolygon.STInteriorRingN(1)

21

 

Figure 9-19. Isolating an interior ring from a Polygon geometry 

To demonstrate the use of the STInteriorRingN() method, the following example creates a geometry 
Polygon in the shape of a capital letter A. It then uses the STInteriorRingN() method to isolate the first 
(and only) interior ring from the geometry. 

DECLARE @A geometry; 
SET @A = geometry::STPolyFromText( 
  'POLYGON((0 0, 4 0, 6 5, 14 5, 16 0, 20 0, 13 20, 7 20, 0 0), 
    (7 8,13 8,10 16,7 8))', 0); 
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SELECT  
  @A AS Shape, 
  @A.STInteriorRingN(1) AS InteriorRing1, 
  @A.STInteriorRingN(1).STAsText() AS WKT; 

The result of the STInteriorRingN() method, expressed in WKT here, is illustrated in Figure 9-20: 

LINESTRING (7 8, 13 8, 10 16, 7 8) 

 

Figure 9-20. Isolating the interior ring from a geometry Polygon of the capital letter A 

Counting the Rings in a geography Polygon 
When using the geography datatype, which defines positions on a round model of the Earth, you cannot 
sensibly assign the rings of a Polygon into the categories of “interior” and “exterior;” every ring divides 
space into those areas contained within the Polygon and those excluded from it. For this reason, the 
geography datatype does not implement the STNumInteriorRing() method, but rather has a separate 
method, NumRings(). The NumRings() method counts the total number of rings in a geography Polygon 
instance, without making any distinction between whether they are “interior” or “exterior.”  

The NumRings() method can be used on a geography Polygon instance as follows: 

Instance.NumRings() 

The result is an integer value representing the total number of defined rings for the Polygon. 
Figure 9-21 illustrates the results of the NumRings() method on two different geography Polygons. 

Polygon.NumRings() = 1 Polygon.NumRings() = 2  

Figure 9-21. Counting the total number of rings in a geography Polygon using NumRings() 

To demonstrate, the following code creates a geography Polygon containing two rings, 
representing the U.S. Department of Defense Pentagon building. It then uses the NumRings() method to 
count the number of rings in the instance. 
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DECLARE @Pentagon geography; 
SET @Pentagon = geography::STPolyFromText( 
  'POLYGON( 
    ( 
      -77.0532 38.87086, 
      -77.0546 38.87304, 
      -77.0579 38.87280, 
      -77.0585 38.87022, 
      -77.0555 38.86907, 
      -77.0532 38.87086  
    ), 
    ( 
      -77.0558 38.87028, 
      -77.0569 38.87073, 
      -77.0567 38.87170, 
      -77.0554 38.87185, 
      -77.0549 38.87098, 
      -77.0558 38.87028  
    ) 
  )', 
  4326 
); 
SELECT  
  @Pentagon AS Shape, 
  @Pentagon.NumRings() AS NumRings; 

The result of the NumRings() method confirms that the Polygon, @Pentagon, contains two rings: 

2 

Isolating a Ring from a geography Polygon 
Just as the geography datatype implements the NumRings() method rather than STNumInteriorRing(), it also 
defines its own method for isolating any given ring from a Polygon, without classification of “interior” 
or “exterior.” The method used to isolate any ring from a geography Polygon is RingN().  

The RingN() method must be supplied with a parameter n, which specifies the ring to return from 
the geography instance, as follows:  

Instance.RingN(n) 

The value of n must be an integer between one and the total number of rings contained by the 
instance (which can be determined using the NumRings() method). The result of the method will be a 
LineString of the geography datatype, defined using the SRID of Instance. 

Figure 9-22 illustrates the result of the RingN() method when used on a Polygon of the geography 
datatype. 
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Polygon.RingN(2)

1 2

LineString  

Figure 9-22. Isolating a particular ring from a geography Polygon using RingN() 

To demonstrate, the following code creates a geography Polygon containing two rings, once again 
representing the U.S. Department of Defense Pentagon building. It then uses the RingN() method to 
isolate just the first ring from the definition, before returning the WKT representation of the result. 

DECLARE @Pentagon geography; 
SET @Pentagon = geography::STPolyFromText( 
  'POLYGON( 
    ( 
      -77.05322 38.87086, 
      -77.05468 38.87304, 
      -77.05788 38.87280, 
      -77.05849 38.87022, 
      -77.05556 38.86906, 
      -77.05322 38.87086  
    ), 
    ( 
      -77.05582 38.87028, 
      -77.05693 38.87073, 
      -77.05673 38.87170, 
      -77.05547 38.87185, 
      -77.05492 38.87098, 
      -77.05582 38.87028  
    ) 
  )', 
  4326 
); 
SELECT 
  @Pentagon AS Shape, 
  @Pentagon.RingN(1) AS Ring1, 
  @Pentagon.RingN(1).STAsText() AS WKT; 

The WKT representation of the result of the RingN() method is as follows: 

LINESTRING (-77.05322 38.87086, -77.05468 38.87304, -77.05788 38.8728, -77.05849 38.87022,  
-77.05556 38.86906, -77.05322 38.87086) 

Properties Related to GeometryCollections 
There are two properties specifically used when dealing with geometry collections: STNumGeometries() 
and STGeometryN(). Conceptually, they mirror the behavior of STNumPoints() and STPointN() but, rather 
than counting or retrieving a particular point from a geometry, they count and retrieve a particular 
geometry from a geometry collection. 
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Counting the Number of Geometries in a Collection 
The STNumGeometries() method operates in much the same way as the STNumPoints() method 
introduced earlier in this chapter, except that instead of counting the number of points within a 
geometry, STNumGeometries() returns an integer value equal to the number of geometries contained 
within a geometry or geography instance. When used against a GeometryCollection, the result will be 
the number of elements contained within the collection. If used against a single-element instance—
Point, LineString, or Polygon—the result of STNumGeometries() will be 1. If used on an empty instance 
of any type, the result will be 0. 

Figure 9-23 illustrates the results of the STNumGeometries() method when used on a variety of 
geometry instances. 

Point.STNumGeometries() = 1 MultiPoint.STNumGeometries() = 4

MultiPolygon.STNumGeometries() = 2MultiLineString.STNumGeometries() = 2

GeometryCollection.STNumGeometries() = 2  

Figure 9-23. Counting the number of geometries in an instance using STNumGeometries() 

The STNumGeometries() method does not require any parameters and can be called on a geography 
or geometry instance as follows: 

Instance.STNumGeometries() 

In the following example, a GeometryCollection is created that contains a MultiPoint element 
(consisting of two Points), a LineString, and a Polygon. The STNumGeometries() method is then used to 
count the total number of elements in the collection. 

DECLARE @Collection geometry; 
SET @Collection = geometry::STGeomFromText(' 
  GEOMETRYCOLLECTION( 
    MULTIPOINT((32 2), (23 12)), 
    LINESTRING(30 2, 31 5), 
    POLYGON((20 2, 23 2.5, 21 3, 20 2)) 
  )', 
  0); 
 
SELECT  
  @Collection AS Shape, 
  @Collection.STNumGeometries() AS NumGeometries; 
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The result of the STNumGeometries() method is three. Note that, even though the MultiPoint element 
contains two Point geometries, the result of STNumGeometries() for the entire collection is three, because 
the MultiPoint geometry is counted as only one element in the GeometryCollection. STNumGeometries() 
counts single-element geometries (Point, LineString, and Polygon), multielement geometries (MultiPoint, 
MultiLineString, and MultiPolygon), and empty geometries of any type contained within a collection as 
single items. 

Retrieving an Individual Geometry from a Collection 
The STGeometryN() method returns the nth geometry from a Geometry Collection. It can be used on 
either the generic Geometry Collection object or one of the specific subtypes of collection: MultiPoint, 
MultiLineString, or MultiPolygon.  

The STGeometryN() method must be supplied with a single parameter n, using the following syntax, 

Instance.STGeometryN(n) 

where n is the ordinal number of the geometry from the collection that you want to retrieve. The value 
of n must be between one and the total number of elements in the Geometry Collection (which you can 
obtain from the value of STNumGeometries()). 

Figure 9-24 illustrates the use of the STGeometryN() method to isolate individual elements from a 
range of geometries. 

Point.STGeometryN(1)

1

1

1

3 3

3

2

2

2

4

Point

Point

LineString

Polygon

MultiPoint.STGeometryN(3)

GeometryCollection.STGeometryN(1)

MultiPolygon.STGeometryN(2)  

Figure 9-24. Isolating an individual geometry from a collection 

■ Note  You can use STGeometryN(1) on a single-element geometry, in which case the result of the method is 

the geometry itself. 
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The following example creates a MultiLineString geometry representing the seven runways  
at Dallas/Fort Worth International Airport, which has the greatest number of runways of any airport in 
the world. It then uses the STGeometryN() method to isolate and return a LineString geometry 
representing a single runway. 

DECLARE @DFWRunways geography; 
SET @DFWRunways = geography::STMLineFromText( 
  'MULTILINESTRING( 
    (-97.0214781 32.9125542, -97.0008442 32.8949814), 
    (-97.0831328 32.9095756, -97.0632761 32.8902694), 
    (-97.0259706 32.9157078, -97.0261717 32.8788783), 
    (-97.0097789 32.8983206, -97.0099086 32.8749594), 
    (-97.0298833 32.9157222, -97.0300811 32.8788939), 
    (-97.0507357 32.9157992, -97.0509261 32.8789717), 
    (-97.0546419 32.9158147, -97.0548336 32.8789861) 
  )', 4326); 
SELECT 
  @DFWRunways AS Shape, 
  @DFWRunways.STGeometryN(3) AS Geometry3, 
  @DFWRunways.STGeometryN(3).STAsText() AS WKT; 

The WKT representation of the result of the STGeometryN() method is as follows: 

LINESTRING (-97.0259706 32.9157078, -97.0261717 32.8788783) 

Calculating Metrics 
There are two broad metrics that can be defined for a geometry:  namely, how long is the geometry, 
and what area does it contain? SQL Server provides methods to answer both of these questions. 

Measuring the Length of a Geometry 
STLength() returns the length of a geometry. When used on a LineString or Curve, this gives the total 
length of the line or curve segments joining the points. When used on a Polygon, this represents the 
total length of all defined rings of the Polygon. For a Polygon or CurvePolygon containing only one ring, 
STLength() therefore returns the length of the perimeter of the Polygon. If used on a multielement type 
such as MultiLineString, the STLength() method returns the total length of all elements in an instance, 
or of all the instances within a GeometryCollection. 

The STLength() method can be used on any type of geometry or geography instance as follows: 

Instance.STLength() 

The result is a floating-point number representing the length of the geometry in question. For 
geography instances, the result will be stated in the units in the unit_of_measure column of the 
sys.spatial_reference_systems table corresponding to the SRID in which the coordinates were stated. 
For geometry instances, the result will be stated in the same units of measure as the coordinates of the 
geometry themselves. 

Figure 9-25 illustrates the result of the STLength() method when used on different types of 
geometry. 
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Figure 9-25. Calculating the length of various types of geometry 

To demonstrate the use of STLength(), consider the following example; the Royal Mile is the 
straight route connecting Edinburgh Castle with the Palace of Holyrood House, which runs along some 
of the oldest streets in Edinburgh. The following code listing creates a LineString geometry representing 
the Royal Mile, and then uses the STLength() method to determine its length: 

DECLARE @RoyalMile geography; 
SET @RoyalMile = geography::STLineFromText( 
  'LINESTRING(-3.20001 55.94821, -3.17227 55.9528)', 4326); 
SELECT 
  @RoyalMile AS Shape, 
  @RoyalMile.STLength() AS Length; 

The result of the STLength() method is as follows: 

1806.77067641223 

Because the coordinates of the @RoyalMile LineString were defined using the EPSG:4326 spatial 
reference system, the result is stated in the unit of measurement for that system, which is the meter. 
Prior to 1824, the result of 1,807 meters, as measured along the length of the Royal Mile, was the 
definition of a Scottish mile. This is longer than the mile in common usage today, which is equal to 
approximately 1,609 meters. 

Calculating the Area Contained by a Geometry 
The STArea() method is used to calculate and return the total area occupied by an object. If used on a 
zero- or one-dimensional object (i.e., a Point or a LineString), then the STArea() method will return 0. 

When used with the geography datatype, the results of the STArea() method will be returned in the 
square of the unit of measure defined by the spatial reference system of the geography instance. For 
example, when used against a geography object specified with SRID 4326, the result returned by STArea() 
will be expressed in square meters, whereas when using SRID 4157, the unit of measure will be square 
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feet. When used against a geometry object, the unit of measure will be the square of the unit in which 
the coordinates were supplied. 

The STArea() method can be called on any item of geography or geometry as follows: 

Instance.STArea() 

Figure 9-26 illustrates the result of the STArea() method when used against different types of 
geometry. 

Point.STArea() = 0 MultiPoint.STArea() = 0

LineString.STArea() = 0

Polygon.STArea() = 26

LineString.STArea() = 0

6 6

6

5 52

2

226
3

3

3
Polygon.STArea() = 27  

Figure 9-26. Calculating the area of various types of geometry using STArea() 

■ Note  The result of STArea() will be 0 for any geometry unless it contains at least one Polygon or CurvePolygon 

geometry. 

To demonstrate, the following code listing creates a geometry Polygon representing a plot of land 
in the south of France, using the UTM Zone 31N projection (EPSG:32631). The plot has an associated 
cost, represented by the variable @Cost. By dividing the total cost of the plot by the result of the STArea() 
method applied to the geometry, we can work out the cost per square meter of land. 

DECLARE @Cost money = 80000; 
DECLARE @Plot geometry; 
SET @Plot = geometry::STPolyFromText( 
  'POLYGON((633000 4913260, 633000 4913447, 632628 4913447, 632642 4913260,  
    633000 4913260))', 
  32631); 
SELECT 
  @Plot AS Shape, 
  @Cost / @Plot.STArea() AS PerUnitAreaCost; 

Because the coordinate values supplied in EPSG:32631 are measured in meters, the result 
represents the cost per square meter of land, as follows: 
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1.1720753058384 

Setting or Retrieving the Spatial Reference Identifier (SRID) 
Every instance of either the geography or geometry datatype has an associated spatial reference 
identifier. This specifies the system in which the coordinates are defined, enabling them to identify a 
unique location on the earth. The STSrid property can be used to return, or set, the SRID of any instance.  

STSrid is unusual in that, whereas every other property discussed in this chapter is read-only, 
STSrid can be used to retrieve the current SRID assigned to an instance or set it to a new value. 

For example, suppose you wanted to import some spatial data stated in projected coordinates from 
an unknown source, for which you did not know the spatial reference system in which the coordinates 
had been defined. Because projected coordinates operate on a flat plane, you can initially import the 
data into a field of geometry datatype using SRID 0, as follows: 

CREATE TABLE #Imported_Data ( 
  Location geometry 
); 
 
INSERT INTO #Imported_Data VALUES 
 (geometry::STGeomFromText('LINESTRING(122 74, 123 72)', 0)), 
 (geometry::STGeomFromText('LINESTRING(140 65, 132 63)', 0)); 

You can check the SRID of the items contained in the Location column of the #Imported_Data table 
by selecting the STSrid property, as follows: 

SELECT  
  Location.STAsText(), 
  Location.STSrid 
FROM #Imported_Data; 

The following are the results: 

LINESTRING (122 74, 123 72)    0 
LINESTRING (140 65, 132 63)    0 

Now suppose that, having inserted the data, you discover that it relates to projected coordinates 
based on the EPSG:32731 reference system. You therefore want to update the SRID of all your records 
to reflect this. To do so, you can set the value of the STSrid property using an UPDATE statement, as 
follows: 

UPDATE #Imported_Data 
 SET Location.STSrid = 32731; 

If you now select the value of the STSrid property once more, you find that the SRID of each 
geometry in the table has been updated to the correct value: 

SELECT  
  Location.STAsText(), 
  Location.STSrid 
FROM #Imported_Data; 
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The results are as follows: 

LINESTRING (122 74, 123 72)    32731 
LINESTRING (140 65, 132 63)    32731 

■ Note  Specifying a different SRID does not cause the coordinate values of a geometry to be reprojected into that 

system. It only provides the description of the system in which those coordinates have been defined. 

Summary 
In this chapter, you learned about various properties of the geometry and geography datatypes, and the 
methods used to access them. 

• Some methods are used to isolate and retrieve individual parts of a geometry; 
they return geography or geometry instances matching the datatype and SRID of 
the instance on which the method was called. Examples include STStartPoint() 
(which returns a Point), STRingN() (which returns a Curve or LineString ring), 
and STEnvelope() (which returns a Polygon). 

• Other methods return text or numeric values that describe some aspect of a 
geometry: the name of the type of geometry used to represent a feature 
(STGeometryType()), or the number of points it contains (STNumPoints()), for 
example. 

• Some methods can only be applied to instances of either the geometry or 
geography datatype. In most cases, similar functionality is available in the other 
datatype using a different method. 

Having a solid understanding of the properties available for each datatype and how to access them 
will help you to create spatial applications that analyze spatial data appropriately. 
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Modification and Simplification 

In this chapter, we'll examine the methods that can be used to create new geometries by modifying 
existing instances of geography or geometry data. Such modifications include enlarging or shrinking a 
geometry (STBuffer()), inverting it (ReorientObject()), straightening its curved edges 
(STCurveToLine()), or simplifying it (Reduce()). 

Each of the methods discussed in this chapter acts upon only a single instance. Some methods, such 
as STConvexHull() and ReorientObject(), require no parameters. Others require one or more parameters, 
such as STBuffer() and Reduce(). As is the case with all the spatial functionality in SQL Server, the 
geometry and geography datatypes do not necessarily have the same set of methods available, or are 
implemented in exactly the same way. For each method introduced in this chapter, I’ll show you how 
and when it can be used. 

■ Note  The methods discussed in this chapter do not alter the original instance on which they are invoked. 

Rather, they create a new instance based on a modification of that geometry. 

Simplifying a Geometry 
Spatial data is frequently complex; a single Polygon or LineString geometry may be constructed from 
tens of thousands of individual points. While possessing a large number of points increases the detail 
and accuracy of a shape, it also makes it cumbersome to deal with, and makes any queries involving 
that geometry less efficient. 

In many cases, we may prefer to generalize spatial data so that it can be analyzed at a macro level 
without unnecessary detail. When considering a Polygon representing an entire country, for example, 
we rarely need to take account of every individual crag and cove that lies along its coastline. For large 
countries, a simple shape that approximates the national border to within 10, or even 100, meters may 
be sufficient for many purposes, and may lead to significant performance benefits compared to a more 
detailed geometry, accurate to the nearest millimeter. 

One particular situation in which simplification should be considered is when retrieving spatial 
data for visual display, either on a screen or in print. As noted in Chapter 7, the coordinates of each 
point in a geometry or geography instance are stored with highly accurate, 64-bit precision. But, when 
you come to plot those coordinates on a display, you are generally limited to a fixed resolution; 72 or 
96 dots per inch (DPI) are common resolutions for computer displays, while 300 DPI is a common 
standard for print. 
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When displayed, each point in the geometry must be plotted exactly at one of those dot locations; it 
is not possible to subdivide a pixel on a monitor, for example, and, depending on the scale at which it is 
displayed, the pixel location of coordinates in a highly detailed shape can coincide. 

It is clearly a waste of computational resources to plot multiple overlapping points on the same 
pixel location, since they will not be distinguishable by the viewer, and rendering them will not lead to 
any greater detail in the displayed image. When retrieving spatial data for display with a small 
resolution (i.e., "zoomed out" from the shape), simpler features will therefore contain just as much 
visual detail as more complex features.  

SQL Server's Reduce() method can be used to simplify a geometry: reducing the number of points 
in its definition, while still attempting to maintain its overall shape. The resulting simplified shape is 
useful both for performing fast approximate calculations, and also for displaying geometries at low 
resolutions. The Reduce() method uses a standard mathematical algorithm called the Douglas–Peucker 
algorithm, which is described in the following section. 

The Douglas–Peucker Algorithm 
The Douglas–Peucker algorithm, first published in an article in Canadian Cartographer in 1973 and 
named after its authors, David Douglas and Thomas Peucker, is an iterative algorithm that simplifies a 
shape based on a single parameter, tolerance. On its first iteration, the algorithm creates a very basic 
approximation of a shape by simply joining the start and end points directly with a straight line. On the 
second iteration, the points of the original geometry are examined to determine whether any lie 
farther away from this line than the specified tolerance value. If so, the point that lies farthest away is 
added back to the simplified geometry, creating a more refined approximation. On subsequent 
iterations this process is repeated: examining the remaining original points and, if any lie outside the 
stated tolerance, adding them back to refine the approximation further until, eventually, all of the 
points contained within the original geometry lie within the accepted tolerance from the 
approximation created. At this point the algorithm stops, and the approximation created by the last 
iteration is returned. 

Figure 10-1 depicts the process by which the Douglas–Peucker algorithm simplifies a LineString 
geometry. In the example depicted, the algorithm requires three iterations before all the points in the 
simplified approximation lie with the specified tolerance value of the original LineString geometry. 

i.) Original Geometry ii.) First pass approximation

tolerance

iv.) Final pass approximationiii.) Second pass approximation  

Figure 10-1. The Douglas–Peucker reduction algorithm 
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The Reduce() Method 
The Reduce() method allows you to apply the Douglas–Peucker algorithm to simplify any item of either 
geography or geometry data. The simplified approximation returned by the Reduce() method depends on 
the type of geometry on which it is used: 

• For Point geometries, the algorithm has no effect. The result returned by 
Reduce() is exactly the same as the original supplied geometry. 

• For LineString, CircularString, and CompoundCurve geometries, the algorithm 
maintains the direction of the geometry; that is, it retains the original start and 
end points. However, the coordinates of any other points in the simplified 
geometry may differ from those in the original supplied geometry due to 
rounding occurring during calculation. 

• For Polygon and CurvePolygon geometries, neither the exact location of any of the 
points, nor the direction of the simplified instance will necessarily be maintained. 

• For GeometryCollections, the Reduce() method acts on each element contained 
within the collection in isolation, and returns a collection consisting of the 
individual simplified geometries. 

The Reduce() method can be used on an instance of either the geometry or geography datatype, using 
syntax as follows: 

Instance.Reduce(tolerance) 

The single parameter, tolerance, is applied by the Douglas–Peucker algorithm. This value 
represents the maximum allowed deviation between any point in the resulting simpler geometry 
compared to the original geometry. tolerance must be a positive, floating-point value, measured in 
linear units. When used on an instance of the geography datatype, tolerance is measured in the units 
defined by the unit_of_measure column of the sys.spatial_reference_systems table corresponding to 
the SRID in which the instance is defined. When used on an instance of the geometry datatype, tolerance 
is measured in the same unit of measure as the coordinate values of the instance.  

The greater the tolerance, the greater is the degree of simplification in the geometry returned by the 
Reduce() method. Figure 10-2 illustrates the effect of supplying different tolerance values to the 
Reduce() method acting upon a MultiPolygon geometry representing Australia. 

Original Geometry
600 Points

Reduce(50000)
104 Points

Reduce(25000)
248 Points

Reduce(250000)
13 Points  

Figure 10-2. Comparing the geometry created by the Reduce() method with different levels of tolerance 



CHAPTER 10 ■  MODIFICATION AND SIMPLIFICATION 

 

256 

■ Note  Point and MultiPoint geometries cannot be simplified. When used on an instance of these types of 

geometries, the Reduce() method returns a copy of the original unmodified geometry. 

The following code listing creates a LineString geometry containing eight points, and then uses the 
Reduce() method to obtain a simplified reduction of that geometry that deviates by no more than one 
unit from any point in the original geometry: 

DECLARE @LineString geometry; 
SET @LineString =  
'LINESTRING(130 33, 131 33.5, 131.5 32.9, 133 32.5, 135 33, 137 32, 138 31, 140 30)'; 
 
SELECT 
  @LineString.Reduce(1).ToString() AS SimplifiedLine; 

The simpler geometry obtained from the Reduce() method contains only three points, as 
represented by the following well-known text: 

LINESTRING (130 33, 135 33, 140 30) 

Converting Curves to Lines 
When representing a curved feature—a meandering river, a bend in a road, or other arc, for example—
the most suitable geometry type is generally the CircularString or, for an area contained by such an arc, 
a CurvePolygon. These geometries are capable of representing the shape of smoothly curved features 
with maximum accuracy, while requiring only a relatively small number of points to do so. 

However, curved geometries were only introduced in SQL Server 2012 and are not supported by many 
other spatial systems or previous editions of SQL Server. To ensure that your data is portable to other 
spatial applications, and to maintain backward compatability with SQL Server 2008/R2, you may want to 
convert curved geometries to an approximation based on the equivalent linear geometry type; that is: 

• CircularStrings and CompoundCurves can be approximated by LineStrings. 

• CurvePolygons can be approximated by Polygons. 

In order to maintain the shape of curved geometries, additional points need to be inserted along 
each arc segment, with the straight line segments between them approximating the smooth path of the 
curve. SQL Server provides two methods that can be used to perform these conversions to linear 
geometry types: STCurveToLine() and CurveToLineWithTolerance(). 

Linearization with STCurveToLine() 
The OGC-compliant method for converting curved geometries to their equivalent linear geometry 
type is STCurveToLine(). It requires no parameters, and can be used on instances of either the 
geography or geometry datatype. 

If used on geometry types other than a CircularString, CompoundCurve, or CurvePolygon, 
STCurveToLine() returns the unchanged instance on which it was called. Otherwise, it returns a 
LineString or Polygon (or collection of those types) representing a straight-edged approximation of 
the supplied curved geometry. 
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The following code listing creates a CircularString that forms a complete circle of radius 10 units 
about an origin at (0, 0). It then creates a linear approximation of that circle using the STCurveToLine() 
method.  

DECLARE @CircularString geometry; 
SET @CircularString = 'CIRCULARSTRING(10 0, 0 10, -10 0, 0 -10, 10 0)';  
 
DECLARE @LineString geometry; 
SET @LineString = @CircularString.STCurveToLine();  
 
SELECT 
  @CircularString.STLength(), 
  @LineString.STLength(), 
  @CircularString.STNumPoints(), 
  @LineString.STNumPoints(); 

The results demonstrate that the length of the original curve and the corresponding LineString 
approximation created by STCurveToLine() are very similar (62.8318530717959 compared to 
62.806623139095). However, whereas the CircularString required only 5 points, the LineString 
definition contains 65. 

Approximate Linearization 
While the STCurveToLine() method achieves the objective of creating a linear approximation of a 
curved geometry, there is no control over the accuracy of the resulting approximation. In the example 
demonstrated previously, the LineString returned by STCurveToLine() contained 65 points, a 1,200% 
increase on the number of points in the original CircularString instance! 

On some occasions you may want to retain all of the points in the resulting geometry in order to 
create the closest approximation of the original curved feature. However, in other situations you may 
prefer to make a tradeoff, sacrificing some of that accuracy for a simpler linear approximation. One 
method of doing so would be to use a two-step process: first, using STCurveToLine() to create a detailed 
linear approximation of the feature, and then using the Reduce() method (described earlier this 
chapter) to remove some of the points from the resulting LineString or Polygon. However, SQL Server 
also provides a way to combine both these steps in one go, by using CurveToLineWithTolerance(). 

The CurveToLineWithTolerance() method can be used to create a linear approximation of a curved 
geometry in much the same way as STCurveToLine(), except that it requires two additional 
parameters—tolerance and relative—that affect how closely the resulting geometry matches the 
shape of the original geometry. The syntax is as follows: 

Instance.CurveToLineWithTolerance(tolerance, relative) 

The parameters are as follows: 

• tolerance is the maximum allowed deviation between the resulting linear 
geometry and the original curved geometry. It is conceptually the same as the 
tolerance parameter supplied to the Reduce() method. 

• relative is a Boolean flag that specifies whether the tolerance used to determine 
the simplified result should be treated as an absolute value, or whether the 
degree of simplification should be relative to the size of the geometry. If relative 
is set to false, the supplied tolerance is considered to be an absolute tolerance, 
expressed in the same unit of measurement as the coordinates themselves (or 
the linear unit of measurement corresponding to geographic coordinates). If 
relative is set to true, the allowed tolerance is calculated as the product of the 
supplied tolerance value and the diameter of the bounding box of the original 
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instance. Thus, when relative is true, the result of CurveToLineWithTolerance() 
when called on geographically larger shapes will be allowed to deviate more 
than for smaller, more precise geometries. 

Figure 10-3 compares the results of STCurveToLine() and LineToCurveWithTolerance() when 
invoked on a CircularString instance. 

 

Figure 10-3. Linear approximations of a CircularString created using STCurveToLine() and 
CurveToLineWithTolerance() 

Reorienting a geography Polygon 
For the geography datatype, the order of the vertices in a Polygon ring determines the area of space 
contained within the Polygon. SQL Server applies the "left-hand rule" (or "left-foot rule"), so that areas 
lying to the left-hand side of the line drawn between the points are considered to be inside the 
Polygon, whereas areas to the right of the line are excluded. 

Unfortunately, not all spatial systems follow this convention; some systems and spatial data 
formats employ the "right-hand rule" instead, which applies exactly the same logic as the left-hand 
rule but in reverse. Under the right-hand rule, areas on the right-hand side of the path between the 
points of a Polygon ring are included, whereas areas on the left are excluded. 

In order to import data into SQL Server that has been defined using the right-hand rule 
convention, you need to reverse the order in which the points are defined. This will change the 
orientation of each ring and have the effect of inverting the Polygon; any area previously included 
will be excluded, and any area previously in the exterior of the Polygon will now be in the interior. 

To perform this inversion operation, you can use the ReorientObject() method.  ReorientObject() 
can be invoked only on instances of the geography datatype (since ring orientation is not significant 
for the geometry datatype), as follows: 

Instance.ReorientObject() 

ReorientObject() affects only two-dimensional geometries: Polygons, CurvePolygons, or 
collections containing either of those geometry types (Points, LineStrings, and other curves are 
returned by the ReorientObject() method as-is). The rings of each Polygon or CurvePolygon supplied 
are reversed, so that the resulting geometry represents the complementary shape on the Earth's 
surface. Logically, for an individual geography Polygon, @polygon: 

DECLARE @polygon geography = 'POLYGON((-2 50, 4 52, -1 60, -2 50))'; 
SELECT @polygon.ReorientObject(); 

gives the same result as: 

DECLARE @polygon geography = 'POLYGON((-2 50, 4 52, -1 60, -2 50))'; 
DECLARE @world geography = geography::STGeomFromText('FULLGLOBE', @polygon.STSrid); 
SELECT @world.STDifference(@polygon); 
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Figure 10-4 illustrates a geography Polygon containing an interior ring, and the corresponding 
inverted Polygon created by the ReorientObject() method.  

 

Figure 10-4. Inverting a geography Polygon with ReorientObject() 

Sometimes, you might have a set of data that has been created with a mixture of rules regarding 
ring orientation. For example, suppose that you had a front-end application that allowed users to 
define areas by clicking on a map to place the vertices of a Polygon. Some users may have 
encompassed an area by placing points in a counterclockwise direction (following the "left-hand 
rule"), whereas others may have placed the points in a clockwise fashion (following the "right-hand 
rule"). How do you know whether these instances should be reoriented? 

One useful technique for dealing with such cases is to combine ReorientObject() with 
EnvelopeAngle() (discussed in Chapter 9). Assuming that, as in most applications, the areas of interest 
defined by users of the application are always smaller than a hemisphere, the value of EnvelopeAngle() 
for those geometries should always be less than 90. If the Polygon defined by a user is greater than a 
hemisphere (i.e., EnvelopeAngle() returns 180), then we assume that the ring orientation is incorrect, 
and call ReorientObject() to invert the geometry. The following code listing demonstrates this 
approach in a simple SELECT statement, although this same logic could easily be applied to a stored 
procedure called at the point that user-created data was inserted into a table: 

DECLARE @g geography; 
-- SET @g to be polygon defined by user 
 
-- Reorient the polygon if it has been defined as larger than a hemisphere 
-- Assume that this indicates incorrect ring orientation 
SELECT 
CASE  
  WHEN @g.EnvelopeAngle() <= 90 THEN @g 
  ELSE @g.ReorientObject() 
END AS Oriented; 
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Densification 
Densification can be thought of as the opposite of simplification. Whereas simplification seeks to 
remove points from the definition of a geometry while maintaining its overall general shape, 
densification inserts additional points that lie on the path of the existing shape. 

For example, the geometry LineString LINESTRING(0 0, 10 0) can be densified by inserting 
additional points that lie along the x-axis between the two points, such as LINESTRING (0 0, 4 0, 8 0, 
10 0). This is illustrated in Figure 10-5. 

LINESTRING(0 0, 10 0) LINESTRING(0 0, 2 0, 6 0, 10 0)  
Figure 10-5. Additional points inserted as a result of densifiying a LineString geometry 

Inserting these additional points does not change the shape of the geometry, nor does it have any 
effect on the length or area contained by the shape, so why do it? 

Densification of a geometry, in isolation, isn't very useful. However, it becomes important when 
you want to reproject that geometry into a different spatial reference system. In Chapter 8, I showed 
you how to create functions that could convert coordinates between different spatial reference 
systems. These functions can convert individual coordinate values, making them suitable for use in 
either the geometry or geography datatype. However, simply converting the coordinates of each point to 
a suitable spatial reference system does not create a logically equivalent geometry; the geometry and 
geography datatypes operate on different types of surfaces, with different assumptions about the shape 
of the earth. Although you can convert the individual points that form the vertices of a Polygon, say, the 
path followed between those points differs in different spatial reference systems. In the geometry 
datatype, for example, the path between any two points is a straight line. Using the geography datatype, 
in contrast, the path between any two points is a great elliptic arc. Therefore, the midpoint of a 
LineString calculated between two points on the Earth's surface using the geometry datatype is not the 
same as the midpoint of the LineString between those same two points in the geography datatype (even 
after accounting for coordinate conversion). 

To demonstrate this concept, consider the border between the United States and Canada, which 
was defined in the Anglo-American Treaty of 1818 as the ". . . line drawn from the most northwestern 
point of the Lake of the Woods, along the 49th parallel of north latitude . . . to the Stony Mountains." The 
49th parallel is the circle around the Earth formed from all those points at a latitude of 49 degrees 
North of the equator. You can see the section of the 49th parallel drawn as a straight line on Microsoft 
Bing Maps, as shown in Figure 10-6. 
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Figure 10-6. The straight line path between two points on the 49th parallel 

Bing Maps uses a projected spatial reference system, EPSG: 3857, in which coordinates are 
measured in meters on a spherical Mercator projection of the WGS84 datum. Using this system, the 
section of the 49th parallel highlighted in Figure 10-6 can be represented as a single LineString 
between two points of the geometry datatype, as follows: 

DECLARE @49thParallel geometry; 
SET @49thParallel = geometry::STLineFromText('LINESTRING (-13727919 6274861, -10592049 
6274861)', 3857); 

However, since the American–Canadian border is defined with respect to a latitude coordinate, 
you might find it more natural to use the geography datatype instead. Using the coordinate conversion 
function described in Chapter 6, we can convert the coordinates of this LineString to EPSG:4326 
suitable for the geography datatype. This results in the following: 

DECLARE @49thParallel_geo geography; 
SET @49thParallel_geo = geography::STLineFromText('LINESTRING (-123.32 49, -95.15 49)', 4326); 

As you might expect, the geography LineString connects two points with a latitude of 49 degrees. The 
problem is that the resulting shape drawn between these two points is actually quite different from that 
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in the preceding example. The path between two points in the geography datatype does not follow the 
straight line of constant latitude shown in Figure 10-6, but rather follows the great elliptic arc between 
the points. Since the two points at either end of this LineString lie north of the equator, the shortest path 
between them does not follow a line of constant latitude 49 degrees, but bends up towards the North 
Pole. In fact, if the United States–Canada border were defined using this geography LineString, the new 
border between Canada and the United States would look something like that shown in Figure 10-7. 

 

Figure 10-7. The geodesic LineString path between two points on the 49th parallel 

In order to define a geography LineString that follows a straight line on a Mercator projected map 
(a "rhumb line," or loxodrome), as in Figure 10-6, the LineString should first be densified, creating 
additional anchor points that lie along the 49th parallel to fix the geography LineString to the 
appropriate path. Likewise, if you define a geography LineString representing the great elliptic arc 
between two points and want to maintain that geodesic property when converting to the geometry 
datatype, you should first densify the geography instance. 

SQL Server does not include a built-in method to densify geometry or geography instances, but there 
is a densification sink included as part of the SQLSpatialTools codeplex project available at 
http://sqlspatialtools.codeplex.com. The logic for calculating where to place the additional points in 
the densified instance is contained in the AddLine() method, which converts the start and end points of 
each line segment in the supplied geography instance into a unit vector on a plane. If the angle between 
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the vectors exceeds a stated minimum angle then additional points are inserted until the angle 
between each subsequent line segment is less than the chosen value. This process is illustrated in the 
following code listing: 

public void AddLine(double latitude, double longitude, double? z, double? m) 
{ 
  // Transform from geodetic coordinates to a unit vector 
  Vector3 endPoint = Util.SphericalDegToCartesian(latitude, longitude); 
 
  double angle = endPoint.Angle(_startPoint); 
  if (angle > MinAngle) 
  { 
    // _startPoint and endPoint are the unit vectors that correspond to the input 
    // start and end points. In their 3D space we operate in a local coordinate system 
    // where _startPoint is the x axis and the xy plane contains endPoint. Every 
    // point is now generated from the previous one by a fixed rotation in the local 
    // xy plane, and converted back to geodetic coordinates. 
 
    // Construct the local z and y axes 
    Vector3 zAxis = (_startPoint + endPoint).CrossProduct(_startPoint - endPoint).Unitize(); 
    Vector3 yAxis = (_startPoint).CrossProduct(zAxis); 
 
    // Calculate how many points are required 
    int count = Convert.ToInt32(Math.Ceiling(angle / Util.ToRadians(_angle))); 
 
    // Scale the angle so that points are equally placed 
    double exactAngle = angle / count; 
 
    double cosine = Math.Cos(exactAngle); 
    double sine = Math.Sin(exactAngle); 
 
    // Set the first x and y points in the local coordinate system 
    double x = cosine; 
    double y = sine; 
 
    for (int i = 0; i < count - 1; i++) 
    { 
      Vector3 newPoint = (_startPoint * x + yAxis * y).Unitize(); 
 
      // Add the point 
      _sink.AddLine(Util.LatitudeDeg(newPoint), Util.LongitudeDeg(newPoint), null, null); 
 
      // Rotate to get next point 
      double r = x * cosine - y * sine; 
      y = x * sine + y * cosine; 
      x = r; 
    } 
  } 
  _sink.AddLine(latitude, longitude, z, m); 
 
  // Remember last point we added 
  _startPoint = endPoint; 
} 

To register the DensifyGeography function that utilizes this sink interface, you can download and 
install the SqlSpatialTools package from http://sqlspatialtools.codeplex.com. 
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Buffering 
In addition to identifying points that are completely contained within the interior of a geometry or 
those that lie on its boundary, there are often situations in which you want to consider those points 
that lie in the area of space immediately surrounding a particular object. To do so, you can create a 
“buffer.” A buffer, in this context, refers to the area formed from all of the points that lie within a given 
distance of a geometry. There are several methods for creating buffers around a geometry, as will be 
discussed in the following sections. 

Creating a Buffer 
The STBuffer() method is the OGC standard method for buffering a geometry. When used on a single-
element instance—a Point, LineString, CircularString, CompoundCurve, or Polygon—the result of 
STBuffer() is a Polygon geometry whose perimeter is defined by all those points that lie a given 
distance away from the original geometry. When creating the buffer of a multielement instance, the 
buffer of each element in the collection is calculated separately, and then the union of all the 
individual buffered geometries is returned. Figure 10-8 illustrates the buffered geometries created by 
calling STBuffer() on a range of different types of geometry. 

Point.STBuffer() Polygon

Polygon

Polygon

Polygon

MultiPolygon

CurvePolygon

LineString.STBuffer()

CompoundCurve.STBuffer()

Polygon.STBuffer()

MultiPoint.STBuffer()

MultiLineString.STBuffer()  

Figure 10-8. Buffers created around different types of geometries 
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The STBuffer() method can be invoked on any instance of the geography or geometry datatype, 
supplying a single parameter, distance, as follows: 

Instance.STBuffer(distance) 

The distance parameter is a floating-point value that represents the radius of the buffer zone to be 
created. When used on items of the geography datatype, the value of this parameter is specified in the 
linear unit of measurement defined by the spatial reference of the instance on which the method is 
called. For example, the radius of the buffer zone for any instance of the geography datatype defined 
with SRID 4296 must be specified in meters. When used on items of geometry data, the distance 
parameter is specified in the same unit of measure as the coordinate values of the geometry itself. 

■ Tip  To check the linear unit of measure used by any geographic spatial reference system, you can look at the 

value in the unit_of_measure column of the sys.spatial_reference_systems table. 

The result of the STBuffer() method is a geometry or geography instance, using the same datatype 
and SRID as the original instance, enlarged to contain all those points that lie within the provided 
distance. Alternatively, if you provide a negative value for the distance parameter the resulting 
geometry created by STBuffer() removes all those points lying within the stated distance from the 
geometry. By providing different values for distance, you can vary the amount by which a geometry is 
enlarged or contracted. 

To demonstrate, suppose that you run a pizza delivery business that offers a free home-delivery 
service to all customers who live within a 5 km distance from the restaurant. You could use the 
STBuffer() method to define the area within which customers are entitled to receive free delivery. The 
following code illustrates this example, creating a 5 km buffer around a Point representing a 
restaurant located at a latitude of 52.6285N, longitude of 1.3033E, using SRID 4326: 

DECLARE @Restaurant geography; 
SET @Restaurant = geography::STGeomFromText('POINT(1.3033 52.6285)', 4326); 
 
DECLARE @FreeDeliveryZone geography; 
SET @FreeDeliveryZone = @Restaurant.STBuffer(5000); 
 
SELECT  
  @FreeDeliveryZone, 
  @FreeDeliveryZone.STAsText() AS WKT; 

Since @Restaurant is a Point geometry defined using EPSG:4326, the size of the buffer zone 
created in this example is 5,000 meters, the 5 km radius zone in which we are interested. Executing this 
query gives the following results (truncated): 

POLYGON (( 
  1.2295142928970047 52.630278502274521, 1.2295472461369081 52.638137614778167,   … 
1.2295142928970047 52.630278502274521)) 

This represents an approximately circular Polygon of radius 5 km, centered on the location of the 
restaurant. 
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Creating a Simpler Buffer 
In the last example, the STBuffer() method was used to create a “circular” Polygon around a Point 
geometry. The resulting geometry contained a lot of points, too many to count. Fortunately, we don’t 
need to count them; we can use the STNumPoints() method to do that for us, by adding the following line 
to the end of the code: 

SELECT @FreeDeliveryZone.STNumPoints() 

The result is as follows: 

72 

The buffer object created by the STBuffer() method centered around the restaurant contains 72 
points, defining a regular 71-sided polygon (a heptacontakaihenagon!). If you needed to maintain the 
maximum accuracy of the buffer around any geometry, you could use this Polygon shape definition as it is. 
However, for the particular application demonstrated in this example—offering free pizza delivery—we 
probably don’t need our buffer to be that accurate. Performing computations on a complex geometry 
takes more processing resources than doing so on a simpler shape with fewer point definitions, and 
in this case we could obtain sufficient accuracy of the free delivery zone from a “circular” Polygon 
containing many fewer points.  

To create a simpler buffered shape, you can subsequently use Reduce() on the buffered geometry 
created by STBuffer(). However, similar to the CurveToLineWithTolerance() method discussed earlier 
this chapter, SQL Server provides an extended method that will create a simple buffer all in one 
process. In this case, the method is BufferWithTolerance(). 

You can use the BufferWithTolerance() method on any item of geography or geometry data as follows: 

Instance.BufferWithTolerance(distance, tolerance, relative) 

This method requires the following three parameters: 

• The distance parameter is a floating-point value defining the radius of the 
created buffer, measured using the linear unit of measure for the spatial 
reference system of a geography instance, or using the same unit of measure as the 
coordinate values of a geometry instance. This is the same as required by the 
distance parameter of the STBuffer() method. 

• The tolerance parameter is a floating-point value that specifies the maximum 
variation allowed between the “true” buffer distance as calculated by STBuffer() 
and the simpler approximation of the buffer returned by the BufferWithTolerance() 
method. In the example of creating a buffer around a Point, this represents how 
closely the buffer created by BufferWithTolerance() resembles a true circle 
around the point. The smaller the tolerance value, the more closely the resulting 
Polygon buffer will resemble the actual buffer, but also the more complex it will be. 

• The relative parameter is a bit value specifying whether the supplied tolerance 
parameter of the buffer is relative or absolute. If relative is "true" (or 1), then the 
tolerance of the buffer is determined relative to the extent of the geometry in 
question. For the geometry datatype, this means that the buffer is calculated from 
the product of the tolerance parameter and the diameter of the bounding box of the 
instance. For geography instances (where bounding boxes do not apply), the relative 
tolerance is instead calculated as the product of the tolerance parameter and the 
angular extent of the object multiplied by the equatorial radius of the reference 
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ellipsoid of the spatial reference system. If relative is "false" (or 0), then the value 
of the tolerance parameter is treated as an absolute value and applied uniformly 
as the maximum tolerated variation in the buffer created.  

The tolerance and relative parameters, used together, define the acceptable level of tolerance by 
which the simpler buffer created by BufferWithTolerance() may deviate from the “true” buffer as created 
by STBuffer(). Only those points that deviate by more than the accepted tolerance are included in the 
resulting geometry. When determining an appropriate tolerance value to use with the 
BufferWithTolerance() method, remember that a greater tolerance will lead to a simpler geometry, but 
will result in a loss of accuracy. A lower tolerance will lead to a more complex, but more accurate, 
buffer. 

Let’s recalculate the free delivery area from the STBuffer() example using the 
BufferWithTolerance() method instead. We will keep the same buffer radius of 5 km around the 
restaurant, but this time we will specify an absolute tolerance of 250 m; any points from the “true” 
buffer that deviate by less than this accepted tolerance will not be included in the resulting geometry. 

DECLARE @Restaurant geography; 
SET @Restaurant = geography::STGeomFromText('POINT(1.3033 52.6285)', 4326); 
 
DECLARE @FreeDeliveryZone geography; 
SET @FreeDeliveryZone = @Restaurant.BufferWithTolerance(5000, 250, 'false'); 
 
SELECT 
  @FreeDeliveryZone, 
  @FreeDeliveryZone.STAsText() AS WKT; 

The result of the BufferWithTolerance() method is represented by the following WKT: 

POLYGON ((1.2334543773235034 52.643101987508025, 1.2326771600618118  
52.615398722587805, 1.2587899052764109 52.592656472913966, 1.3019631745506761  
52.583575201434648, 1.3456512565414915 52.591700111972628, 1.3730991328944517  
52.613856932852478, 1.3739649138786716 52.641559233221273, 1.3478827812694929  
52.664326601552453, 1.3046395628365322 52.673424441701911, 1.2608777319130935  
52.665284532304732, 1.2334543773235034 52.643101987508025))  

It is clear from examining the WKT representation that the Polygon geometry created using 
BufferWithTolerance() contains fewer points than the geometry previously created using the 
STBuffer() method. Using STNumPoints(), we can confirm that the simpler geometry created using 
BufferWithTolerance() actually contains 11 points, which define a regular decagon. This still provides a 
reasonable approximation of the circular zone we are interested in for this application, and has the benefit 
that any methods that operate on the simpler resulting geometry will perform more efficiently. 

Creating a Curved Buffer 
The buffered geometry created by either the STBuffer() and BufferWithTolerance() methods always 
results in a Polygon or MultiPolygon instance. However, as can be seen in Figure 10-8, buffering the 
edges of a geometry normally results in a shape with round edges. The reason why the result of 
STBuffer() representing the free delivery area of our pizza restaurant calculated previously contained so 
many points was because it required a large number of small line segments, attempting to approximate 
the shape of a circle. Given that buffering leads to round edges, would it not be better to return a curved 
geometry as the result of a buffering operation? That is exactly what the BufferWithCurves() method does. 
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BufferWithCurves(), like STBuffer(), requires only a single parameter, distance. As with the 
STBuffer() method, this parameter represents the absolute distance away from original geometry to 
which the buffer should extend. Unlike the STBuffer() and BufferWithTolerance() methods, which 
return only linear geometry types, the result of BufferWithCurves() is a set of one or more 
CurvePolygons. 

In the following code listing, the BufferWithCurves() method is used to create a curved buffer area 
of radius 5 km around the Point geometry representing the restaurant: 

DECLARE @Restaurant geography; 
SET @Restaurant = geography::STGeomFromText('POINT(1.3033 52.6285)', 4326); 
 
DECLARE @FreeDeliveryZone geography; 
SET @FreeDeliveryZone = @Restaurant.BufferWithCurves(5000); 

The result is a CurvePolygon, as follows: 

CURVEPOLYGON (CIRCULARSTRING (1.2294685878974647 52.629287128767807, 1.2501759176720646  
52.597333781891479, 1.3019631745281746 52.583575200673891, 1.377128678068027  
52.627666637068607, 1.3046395628322454 52.673424441557223, 1.2519903734599585  
52.660789017463344, 1.2294685878974647 52.629287128767807)) 

■ Tip  When you use the BufferWithCurves() method on a Point geometry, you create a CurvePolygon with a 

fixed radius, centered about that point. This is a useful way of quickly creating circular CurvePolygons. 

Figure 10-9 compares the results obtained using the STBuffer(), BufferWithTolerance(), and 
BufferWithCurves() methods to create a buffer zone of set radius around a Point geometry. 

STBuffer() BufferWithTolerance() BufferWithCurves()  

Figure 10-9. Comparing the resultsof STBuffer() , BufferWithTolerance(), and BufferWithCurves() when 
creating a buffer around a Point geometry 
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Creating the Convex Hull of a Geometry 
The STConvexHull() method returns the smallest convex geometry that completely encompasses all the 
points in a given instance. A convex geometry is one in which no interior angle is greater than 180 
degrees, so that the sides do not ever bend inwards or contain indentations. Convex hulls are useful in 
describing the geographic extent of a geometry since they generally offer a more precise fit than a 
simple bounding box and yet, unlike concave hulls, there is only one, unique convex hull around any 
given shape. Figure 10-10 illustrates the convex hull of a variety of different types of geometries. 

Point.STConvexHull() Point

Polygon

Polygon

Polygon

CurvePolygon

LineString

MultiPoint.STConvexHull()

LineString.STConvexHull()

LineString.STConvexHull()

CompoundCurve.STConvexHull()

Polygon.STConvexHull()  

Figure 10-10. Creating the convex hull of a geometry 

■ Tip  To help visualize a convex hull, consider an elastic band stretched around the outside of a geometry. When 

the elastic band is released, the shape that it snaps back into represents the convex hull of that geometry. 

The STConvexHull() method requires no parameters, and can be invoked on any instance of geography or 
geometry datatype as follows: 

Instance.STConvexHull() 
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The type of geometry returned by STConvexHull() will be the smallest convex geometry that 
contains all of the points contained in an instance. If used on a single Point instance, the convex hull 
will be the Point itself. If used on a MultiPoint or LineString in which all the individual points lie in a 
straight line, the convex hull will be a LineString. In all other cases, the convex hull of a geometry will 
be a Polygon. 

Creating and analyzing the convex hull of a geometry can be a useful way of examining the 
geographical spread of an object on the Earth. To demonstrate this, the following example creates a 
convex hull representing the spread of reported cases of the H5N1 virus (commonly known as “bird flu”). 

In the following code listing, @H5N1 is a MultiPoint geometry, containing a point at each location 
where a case of the H5N1 virus had been recorded in humans, as reported by the World Health 
Organization between September 2003 and December 2004. We then use the STConvexHull() method of 
the geography datatype to create the convex hull Polygon that encompasses each point in the MultiPoint 
geometry to describe the overall spread of the disease. 

DECLARE @H5N1 geography; 
SET @H5N1 = geography::STMPointFromText( 
  'MULTIPOINT( 
    105.968 20.541, 105.877 21.124, 106.208 20.28, 101.803 16.009, 99.688 16.015, 
    99.055 14.593, 99.055 14.583, 102.519 16.215, 100.914 15.074, 102.117 14.957, 
    100.527 14.341, 99.699 17.248, 99.898 14.608, 99.898 14.608, 99.898 14.608, 
    99.898 14.608, 100.524 17.75, 106.107 21.11, 106.91 11.753, 107.182 11.051, 
    105.646 20.957, 105.857 21.124, 105.867 21.124, 105.827 21.124, 105.847 21.144, 
    105.847 21.134, 106.617 10.871, 106.617 10.851, 106.637 10.851, 106.617 10.861, 
    106.627 10.851, 106.617 10.881, 108.094 11.77, 108.094 11.75, 108.081 11.505, 
    108.094 11.76, 105.899 9.546, 106.162 11.414, 106.382 20.534, 106.352 20.504,  
    106.342 20.504, 106.382 20.524, 106.382 20.504, 105.34 20.041, 105.34 20.051,  
    104.977 22.765, 105.646 20.977, 105.646 20.937, 99.688 16.015, 100.389 13.927, 
    101.147 16.269, 101.78 13.905, 99.704 17.601, 105.604 10.654, 105.817 21.124,  
    106.162 11.404, 106.362 20.504)', 
  4326); 
 
SELECT  
  @H5N1 AS Shape 
UNION ALL SELECT 
  @H5N1.STConvexHull() AS Shape; 

The resulting convex Polygon of the STConvexHull() method and the MultiPoint @H5N1 geometry from 
which it was created are illustrated in Figure 10-11, overlaid onto a map illustrating the affected area. 
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Figure 10-11. Using a convex hull to illustrate the spread of the H5N1 virus 

One interesting fact to note is that, for the period of time that this data represents (from 
September 2003 through December 2004), individual cases of H5N1 had only been reported in the 
countries of Thailand and Vietnam. However, as shown in Figure 10-9, the convex hull around those 
points also covers most of Laos and Cambodia, which indicates that they lie within the area in which 
the disease had spread, and were at significant risk of exposure to the disease. Indeed, by January 21, 
2005, less than one month after the last date recorded in this dataset, the first case of human infection 
of H5N1 had been reported in Cambodia itself. 

■ Note  In SQL Server 2008/R2, the STConvexHull() method could be applied only to instances of the geometry 

datatype. In SQL Server 2012, this method is now implemented by both the geometry and geography datatypes. 

Summary 
In this chapter, you have learned various methods of constructing new geometries by altering existing 
geography or geometry instances. Every method introduced in this chapter acts upon only a single 
instance, and returns an instance of the same datatype and SRID as the instance on which they are 
called. 
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Aggregation and Combination 

In this chapter, we'll look at various ways of combining spatial data. This could be, for example, 
collating a column of Points together into a single MultiPoint geometry (using UnionAggregate()) or 
joining two touching LineStrings together into a single LineString (using STUnion()). Combinations 
do not have to be additive; you can also, for example, subtract the area of space occupied by one 
Polygon from another, using STDifference(), or obtain the unique parts of two geometries using 
STSymDifference(). The common feature of all the methods discussed in this chapter is that they take 
two or more inputs and combine them in some way to produce a single output. 

Creating a Union of Two Items of Spatial Data 
To start with, let's consider combining just two individual items of geography or geometry data. The 
most common way of combining two geometries is to create the union between them, which defines 
the shape formed from all those points contained by the first geometry together with all those points 
contained by the second geometry. 

The STUnion() method returns the union of two geometry or two geography instances. The method 
is invoked on one instance, GeomA, and the other instance with which it should be united, GeomB, must 
be supplied as a parameter to the method, as in GeomA.STUnion(GeomB). Since the union of two 
geometries contains the pointset of each geometry added together, you can think of the STUnion() 
method as being roughly equivalent to the plus (+) operator that adds together two numerical values, 
or concatenates two strings. 

In other words, 

SELECT geometry::Point(51, 1, 4326).STUnion(geometry::Point(52, 2, 4326)); 

Is conceptually similar to: 

SELECT 1 + 3; 

Or: 

SELECT 'foo' + 'bar'; 

STUnion() can be used to combine two instances of the geometry datatype or two instances of the 
geography datatype but, as with all other spatial methods, cannot operate on instances of different 
types. Both geometries must be of the same datatype and be defined using the same SRID. If the two 
instances are defined using different spatial reference identifiers, STUnion() will return NULL. 

To demonstrate, the following code listing creates two simple Polygon geometries representing 
the approximate shape of North Island and South Island of New Zealand. The STUnion() method is then 
used to create a MultiPolygon instance representing the combined landmasses: 
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DECLARE @NorthIsland geography; 
SET @NorthIsland = geography::STPolyFromText( 
  'POLYGON((175.3 -41.5, 178.3 -37.9, 172.8 -34.6, 175.3 -41.5))', 
  4326); 
 
DECLARE @SouthIsland geography; 
SET @SouthIsland = geography::STPolyFromText( 
  'POLYGON((169.3 -46.6, 174.3 -41.6, 172.5 -40.7, 166.3 -45.8, 169.3 -46.6))', 
  4326); 
 
DECLARE @NewZealand geography = @NorthIsland.STUnion(@SouthIsland); 
 
SELECT @NewZealand; 

The result returned by GeomA.STUnion(GeomB) is the simplest geometry that contains all of the 
points from both GeomA and GeomB, which, in this example, is a MultiPolygon as follows: 

MULTIPOLYGON (((172.8 -34.6, 175.3 -41.5, 178.3 -37.9, 172.8 -34.6)),  
((166.3 -45.8, 169.3 -46.6, 174.3 -41.6, 172.5 -40.7, 166.3 -45.8))) 

Now let’s consider some other situations: the following code listing creates a table containing two 
geometry columns containing a range of different geometry types. The SELECT statement returns the 
union created from the geometries in both columns: 

DECLARE @table TABLE ( 
  geomA geometry, 
  geomB geometry 
); 
INSERT INTO @table VALUES 
('POINT(0 0)', 'POINT(2 2)'), 
('POINT(0 0)', 'POINT(0 0)'), 
('POINT(5 2)', 'LINESTRING(5 2, 7 9)'), 
('LINESTRING(0 0, 5 2)', 'CIRCULARSTRING(5 2, 6 3, 9 2)'), 
('POLYGON((0 0, 3 0, 3 3, 0 3, 0 0))', 'POLYGON((0 3, 3 3, 1 5, 0 3))'), 
('POINT(0 0)', 'LINESTRING(2 2, 5 4)'); 
 
SELECT 
  geomA.ToString(), 
  geomB.ToString(), 
  geomA.STUnion(geomB).ToString() 
FROM @table; 

Remember that STUnion() always returns the simplest geometry type that contains all of the points 
from the input geometries. For the examples above, the results are as follows: 

MULTIPOINT ((2 2), (0 0)) 
POINT (0 0) 
LINESTRING (7 9, 5 2) 
COMPOUNDCURVE (CIRCULARSTRING (9 2, 6 3, 5 2), (5 2, 0 0)) 
POLYGON ((0 0, 3 0, 3 3, 1 5, 0 3, 0 0)) 
GEOMETRYCOLLECTION (LINESTRING (5 4, 2 2), POINT (0 0)) 
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These results can be explained as follows: 

1. The two points are distinct, and so require a MultiPoint collection to contain 
them both. 

2. The two points are coincident, and so the resulting union is equal to the 
single Point itself. 

3. The Point lies on the LineString (it is the start point of the LineString), and so 
the union returns just the LineString. 

4. The LineString and CircularString share a boundary point at (5 2), and so can 
be combined into a single CompoundCurve. 

5. The two Polygons share a common edge, and can be combined into a single 
Polygon. 

6. The two geometries are of different types, and are physically disjoint from 
each other, so their union can only be represented by the least specific 
geometry type: a GeometryCollection. 

The result of STUnion() when called on a range of different types of geometry is graphically 
illustrated in Figure 11-1. 

Point.STUnion(Point) MultiPoint

GeometryCollection

MultiLineString

CompoundCurve

Polygon

MultiPolygon

Point.STUnion(LineString)

LineString.STUnion(LineString)

LineString.STUnion(CircularString)

Polygon.STUnion(Polygon)

Polygon.STUnion(Polygon)  

Figure 11-1. Using STUnion() to create the union of two geometries. 
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Appending One Geometry onto Another 
Note that, while the result of STUnion() contains the combined set of points from two geometries, it 
does not simply append one geometry onto the other, and any sense of orientation in the original 
geometries is not necessarily preserved. 

For example, suppose that you had one LineString, a_to_b, that connected the points from A to B, 
and another, b_to_c, that went from B to C; you might reasonably then expect that the result of 
a_to_b.STUnion(b_to_c) would be a single LineString that started at A and went, via B, to C. However, 
this is not necessarily the case, as demonstrated in the following code listing. 

DECLARE @a_to_b geometry = geometry::STLineFromText('LINESTRING(0 0, 5 2)', 0); 
DECLARE @b_to_c geometry = geometry::STLineFromText('LINESTRING(5 2, 8 6)', 0); 
SELECT @a_to_b.STUnion(@b_to_c).ToString(); 

LINESTRING (8 6, 5 2, 0 0) 

The result in this case is a LineString that starts at C and goes to A. This result conforms to the 
expected behavior of the STUnion() method, since it does indeed contain all of the points from both 
supplied LineStrings, but, as in this case, they may not be listed in the desired order. 

To solve this problem, you can create a SQLCLR function that loops through and appends each of 
the points from the second geometry onto the first, retaining the order in which they were originally 
specified. While you could apply this method for any type of geometry, it has the greatest practical use 
in appending new line segments onto the end of a LineString or other Curve, since these are the 
geometries for which maintaining a sense of direction is generally most important. 

The following C# code listing demonstrates a method, Extend, that requires three parameters: 
Segment1, Segment2, and Offset. The method uses the SqlGeometryBuilder() class to build a new 
LineString geometry, first adding all of the points from Segment1, and then appending all of the points 
from Segment2, in order, skipping the number of points specified in the Offset parameter from the 
beginning of the second segment. The Offset parameter can be used if, say, the end point of Segment1 
coincides with the start point of Segment2, to avoid that point being duplicated in the constructed 
LineString. 

public static SqlGeometry Extend( 
  SqlGeometry @Segment1,  
  SqlGeometry @Segment2,  
  SqlInt32 @Offset) 
  { 
    SqlGeometryBuilder gb = new SqlGeometryBuilder(); 
    gb.SetSrid((int)(@Segment1.STSrid)); 
    gb.BeginGeometry(OpenGisGeometryType.LineString); 
    gb.BeginFigure( 
      (double)@Segment1.STStartPoint().STX, 
      (double)@Segment1.STStartPoint().STY 
    ); 
    for (int x = 2; x <= (int)@Segment1.STNumPoints(); x++) { 
      gb.AddLine((double)@Segment1.STPointN(x).STX, (double)@Segment1.STPointN(x).STY); 
    } 
    for (int x = 1 + (int)@Offset; x <= (int)@Segment2.STNumPoints(); x++) { 
      gb.AddLine((double)@Segment2.STPointN(x).STX, (double)@Segment2.STPointN(x).STY); 
    } 
    gb.EndFigure(); 
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    gb.EndGeometry(); 
    return gb.ConstructedGeometry; 
  } 

When imported and registered in the database, this function can be called as follows: 

SELECT dbo.Extend(@a_to_b, @b_to_c, 1); 

The result creates a single LineString, joining all those points from @a_to_b and @b_to_c in the 
order in which they were defined in the original geometries. The Offset parameter is set to 1 in order 
to avoid double counting the shared point at which the two LineStrings touch. The result is as follows: 

LINESTRING (0 0, 5 2, 8 6) 

Subtracting One Geometry from Another 
If STUnion() provides the union created by two instances—the conceptual equivalent of adding two 
geometries together—you may be wondering what the reverse operation is. That is, how do we 
subtract one geometry instance from another? For this type of operation, we can use the 
STDifference() method. 

STDifference() can be used with two instances of either the geometry or geography datatype, using 
syntax as follows: 

GeomA.STDifference(GeomB); 

The result is a geometry, of the same datatype and spatial reference system as both GeomA and 
GeomB, formed from all those points contained in GeomA that are not also in GeomB. 

■ Note  Unlike STUnion(), STDifference() is not a symmetric method. That is to say, 

GeomA.STDifference(GeomB) is not the same as GeomB.STDifference(GeomA). 

The effect of calling STDifference() on different types of geometry is shown in Figure 11-2. 
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Ø

Point.STDifference(Point) Empty

Point

MultiLineString

CurvePolygon

MultiPolygon

Point.STDifference(Point)

LineString.STDifference(Polygon)

Polygon.STDifference(CurvePolygon)

Polygon.STDifference(Polygon)  

Figure 11-2. Using STDifference() to subtract one geometry from another 

As an example demonstrating the use of the STDifference() method, the British Meteorological 
Office (commonly referred to as the “Met Office”) operates a network of 16 radars used to continuously 
monitor and predict weather throughout the British Isles. Each radar is capable of providing high-
quality qualitative rainfall and hydrological data within a range of approximately 75 km. The coverage 
provided by this radar network is illustrated in Figure 11-3. 



CHAPTER 11 ■  AGGREGATION AND COMBINATION 

 

279 

 

Figure 11-3. Weather radar coverage of the British Isles (one radar station, located on the island of Jersey, 
is not shown on the map) 

To demonstrate the use of the STDifference() method, the following code listing defines a 
MultiPoint instance representing the location of all the Met Office radars. It then uses 
BufferWithCurves() to create a set of circular CurvePolygons of radius 75 km centered around each 
radar station, representing the area covered by that radar. Finally, it uses the STDifference() method 
to calculate the difference between a MultiPolygon representing the British Isles and the 
GeometryCollection representing the area covered by radar. 

-- Set the point locations of each weather radar station 
DECLARE @Radar geography; 
SET @Radar = geography::STMPointFromText( 
  'MULTIPOINT( 
    -2.597 52.398, -2.289 53.755, -0.531 51.689, -6.340 54.500, -5.223 50.003, 
    -0.559 53.335, -4.445 51.980, -4.231 55.691, -2.036 57.431, -6.183 58.211, 
    -3.453 50.963, 0.604 51.295,  -1.654 51.031, -2.199 49.209, -6.259 53.429, 
    -8.923 52.700)', 4326); 
-- Buffer each station to obtain the 75km coverage area 
DECLARE @RadarCoverage geography 
SET @RadarCoverage = @Radar.BufferWithCurves(75000); 
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-- Declare an approximate shape of the British Isles 
DECLARE @BritishIsles geography; 
SET @BritishIsles = geography::STMPolyFromText( 
  'MULTIPOLYGON( 
    ((0.527 52.879, -3.164 56.0197, -1.626 57.631, -4.087 57.654, -2.989 58.582,  
    -5.0977 58.514, -6.504 56.240, -4.746 54.670, -3.516 54.848, -3.252 53.432,  
    -4.614 53.301, -4.922 51.697, -3.12 51.505, -5.625 50.032, 1.626 51.286,  
    0.791 51.423, 1.890 52.291, 1.274 52.959, 0.527 52.879)), 
    ((-6.548 52.123, -5.317 54.518, -7.734 55.276, -9.976 53.354, -9.888 51.369,  
    -6.548 52.123)))', 4326); 
 
-- Calculate the difference between the British Isles and the area of radar coverage 
SELECT  
  @BritishIsles.STDifference(@RadarCoverage); 

The resulting GeometryCollection returned by the STDifference() method in this example 
represents the area of land in the British Isles not covered by radars operated by the Met Office, as 
illustrated in Figure 11-4.  

 

Figure 11-4. The area of the British Isles not covered by Met Office radar, created using the STDifference() 
method 
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Note that order is important; the geometry supplied as a parameter to the STDifference() method 
is subtracted from the geometry instance on which it is called. If you were to calculate 
@RadarCoverage.STDifference(@BritishIsles), you would instead obtain the area covered by radar that 
was not part of the British Isles. 

Determining the Unique Parts of Two Geometries 
Whereas GeomA.STDifference(GeomB) calculates the difference between GeomA and GeomB, 
GeomA.STSymDifference(GeomB) returns the symmetric difference between two geometries. This is the 
set of all those points that lie in either GeomA or GeomB, but not in both. 

GeomA.STSymDifference(GeomB) 

is logically equivalent to: 

GeomA.STDifference(GeomB).STUnion(GeomB.STDifference(GeomA)) 

Because STSymDifference() calculates the symmetric difference between two geometries, it does 
not matter which is supplied as GeomA and which is GeomB. Figure 11-5 illustrates the results of 
calling STSymDifference() on different combinations of geometry types. 

Ø

Point.STSymDifference(Point) Empty

MultiPoint

MultiLineString

MultiPolygon

Point.STSymDifference(Point)

LineString.STSymDifference(LineString)

Polygon.STSymDifference(Polygon)  

Figure 11-5. Using STSymDifference() to determine the unique parts of two geometries. 

STSymDifference() can be used to compare and isolate the unique point sets of any two geometry or 
geography instances defined using the same spatial reference system. As an example, consider a city that 
has two competing radio stations, KWEST and KEAST. Each station is broadcast from its own transmitter, 
located in different parts of the city. The KWEST transmitter is located at a longitude of –87.88 and a 
latitude of 41.86 (using the EPSG:4269 spatial reference system). It broadcasts over a range of 10 km. The 
KEAST transmitter is located at longitude –87.79, latitude 41.89, and transmits over a range of 8 km. 

By creating a circular buffer zone around each transmitter to represent the area of coverage of 
each station and using the STSymDifference() method to calculate their symmetric difference, we can 
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determine those parts of the city that can receive one station or the other, but not both. This is 
demonstrated in the following code listing: 

DECLARE @KWEST geography, @KEAST geography; 
SET @KWEST = geography::Point(41.86, -87.88, 4269).BufferWithCurves(10000); 
SET @KEAST = geography::Point(41.89, -87.79, 4269).BufferWithCurves(8000); 
 
SELECT  
  @KEAST.STSymDifference(@KWEST); 

This symmetric difference of the two broadcasting coverage areas is illustrated by the region 
shaded gray in Figure 11-6. 

KWEST

KEAST

 

Figure 11-6. Visualizing the coverage areas of two radio stations 

Defining the Intersection Between Two Geometries 
The intersection of two geometries is defined as those points that both instances share in common. It is 
the logical opposite to their symmetric difference, as returned by the STSymDifference() method, which 
identifies those parts that exist in only one geometry or the other. 

If the points contained within the intersection of two geometries lie in a single congruous area 
then the intersection can be represented as a single-element geometry, such as a Polygon. However, if 
the intersecting points are physically separate then the resulting intersection will be a multielement 
instance or geometry collection. 

Figure 11-7 illustrates the intersection created between various types of geometry. 
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Point.STIntersection(Point) Point

Point

Point

MultiPoint

LineString

Polygon

MultiPolygon

Point.STIntersection(LineString)

Point.STIntersection(Polygon)

LineString.STIntersection(Polygon)

Polygon.STIntersection(Polygon)

Polygon.STIntersection(Polygon)

CircularString.STIntersection(LineString)

 

Figure 11-7. The intersection created between different types of geometry 

The STIntersection() method can be used to return the intersection between any two geometry or 
geography instances of the same datatype and SRID. The resulting value will be a geometry of 
matching datatype and spatial reference system. 

As an example, consider the Appian Way (or Via Appia), which was an ancient Roman road that ran 
from Rome to the city of Brindisi in southeast Italy. It is arguably one of the most important roads in 
world history because the Roman army used the route to quickly deploy men and supplies throughout 
Italy, and it undoubtedly contributed to their consequent military success. Along the route, the Via 
Appia passed through the Pontine Marshes, which were infested with mosquitoes carrying the deadly 
malaria disease. 

The following code listing creates a LineString representing the Via Appia, and a Polygon 
representing the malaria-infested marsh area. It then uses the STIntersection() method to determine 
the treacherous section of route that intersects the marsh area. 
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-- Create the Pontine marshes 
DECLARE @Marshes geography; 
SET @Marshes = geography::STPolyFromText( 
  'POLYGON((  
    12.94 41.57, 12.71 41.46, 12.91 41.39, 13.13 41.26, 13.31 41.33, 12.94 41.57))', 
  4326); 
-- Declare the road 
DECLARE @ViaAppia geography; 
SET @ViaAppia = geography::STLineFromText( 
  'LINESTRING( 
    12.51 41.88, 13.25 41.28, 13.44 41.35, 13.61 41.25, 13.78 41.23, 13.89 41.11,  
    14.22 41.10, 14.47 41.02, 14.79 41.13, 14.99 41.04, 15.48 40.98, 15.82 40.96,  
    17.19 40.51, 17.65 40.50, 17.94 40.63)', 
  4326); 
 
-- Determine that section of road that passes through the marshes 
SELECT @ViaAppia.STIntersection(@Marshes); 

Figure 11-8 illustrates the features used in this example superimposed on a map of Italy. The result 
of the STIntersection() method corresponds to the section of LineString that passes through the 
Polygon representing the marshes. 

Rome

Brindisi

Pontine
Marshes

 

Figure 11-8. Using STIntersection() to determine the section of the Appian Way that intersects the Pontine 
marshes 

Aggregating Columns of Spatial Data 
STUnion(), STDifference(), STIntersection(), and STSymDifference() are instance methods that can be 
applied to combine two variables, or perform a row-wise operation using the values contained in two 
columns of a table. However, what if you wanted to calculate the union of all the values in a single 
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column of spatial data? In other words, if SELECT GeomA.STUnion(GeomB) is conceptually equivalent to 
SELECT A + B, then what is the spatial equivalent of SELECT SUM(A)? 

In previous versions of SQL Server, the only way to calculate such an aggregate was to make use of 
some kind of loop that iterated through each value in the column and joined them onto the previous 
result one at a time, using STUnion(). For example, consider the following code listing, which creates a 
table containing four geography LineStrings: 

CREATE TABLE #BunchOLines ( 
  line geography 
); 
INSERT INTO #BunchOLines VALUES 
  ('LINESTRING(0 52, 1 53)'), 
  ('LINESTRING(1 53, 1 54, 2 54)'), 
  ('LINESTRING(2 54, 4 54)'), 
  ('LINESTRING(2 54, 0 55, -1 55)'); 

These LineStrings are shown in the Spatial Results tab of SQL Server Management Studio, 
buffered by 5,000 for ease of display, as shown in Figure 11-9: 

 

Figure 11-9. Visualizing four geography LineStrings from a table 

To create a union aggregating all of the values in the line column in SQL Server 2008, one could 
first declare a variable as an empty geometry, and then STUnion() each row from the table to that 
geometry as part of an SELECT statement, as follows: 

DECLARE @g geography = 'LINESTRING EMPTY'; 
SELECT @g = @g.STUnion(line) FROM #BunchOLines; 
 
SELECT @g.STAsText(); 

MULTILINESTRING ((4 54, 2 54), (0 52, 1 53, 1 54, 2 54, 0 55, -1 55)) 
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However, this approach quickly ran into difficulties if you attempted to use it on anything but the 
most basic table containing a small number of values. Other solutions, such as those involving cursors, 
also had their own difficulties. Fortunately, SQL Server 2012 provides a much more robust alternative, 
in the form of spatial aggregate functions. 

You are probably familiar with the concept of an aggregate function, one that performs a 
calculation on a column of data or a set of values and returns a single result. Common T-SQL 
aggregate functions include SUM, MAX, and AVG, which are generally used to summarize columns of 
numeric data. Aggregate functions are frequently used together with a GROUP BY clause, to calculate 
subtotals based on different dimensions of the data. However, these common aggregate functions do 
not apply to the spatial datatypes. You cannot AVG a set of Points to find the midpoint. Nor can you SUM a 
set of touching Polygons together to create a single large Polygon. Instead, you must use one of the 
dedicated spatial aggregate functions, as follows: 

• UnionAggregate()  

• EnvelopeAggregate() 

• CollectionAggregate() 

• ConvexHullAggregate() 

All of these aggregate methods act upon a column of geography or geometry data, and return a 
single geometry defined using the same datatype and SRID as the values in that column (if the column 
contains values of mixed spatial reference identifiers, the method will return NULL. 

The syntax for calling these methods differs from those we have looked at so far this chapter since, 
unlike STUnion(), STDifference(), or STSymDifference(), aggregate functions are not instance methods; 
rather they are static methods and therefore must be invoked on the geography or geometry datatypes 
themselves, using syntax as follows (for a column of geography data): 

SELECT geography::UnionAggregate(GeogColumn); 

or, to aggregate a column of geometry data: 

SELECT geometry::UnionAggregate(GeomColumn); 

None of the aggregate methods require any parameters, but their results differ because they 
create different kinds of aggregate. In the following sections we'll look at each in turn: 

UnionAggregate 
The UnionAggregate() returns the simplest geometry that contains every point of every item in a 
column of geometry or geography data. As such, it is the column-wise operator that logically 
complements STUnion()'s row-wise functionality. 

It can be used to determine the union aggregate of the LineStrings created in the earlier example 
as follows: 

SELECT 
  geography::UnionAggregate(line).STAsText() 
FROM 
  #BunchOLines; 

And the result is exactly the same as created by using STUnion() to union each geometry together 
in turn: 

MULTILINESTRING ((4 54, 2 54), (0 52, 1 53, 1 54, 2 54, 0 55, -1 55)) 
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EnvelopeAggregate 
EnvelopeAggregate() is a simpler aggregate than UnionAggregate() in that, rather than returning the 
geometry created from the union of all the points of every geometry in a column, EnvelopeAggregate() 
merely returns the envelope that encompasses all those points. When used on a column of geometry 
data, the resulting envelope will be an axis-aligned, rectangular Polygon.  When used on a column of 
the geography datatype (which, remember, operates on a curved ellipsoidal surface), the resulting 
envelope will instead be a CurvePolygon. 

Used against the preceding table of LineStrings, EnvelopeAggregate() returns the following: 

SELECT 
 geography::EnvelopeAggregate(line).STAsText() 
FROM 
 #BunchOLines; 

CURVEPOLYGON (CIRCULARSTRING (3.8133501948535957 55.3015861207065, -1.5641318684829271 
 55.301586120706496, -1.3755694169916859 52.242811272182934, 3.6247877433623552 
 52.242811272182934, 3.8133501948535957 55.3015861207065))  

CollectionAggregate 
The CollectionAggregate() aggregate returns a GeometryCollection containing each of the values 
contained in the source column of data. Note that, unlike some other methods, the 
CollectionAggregate() does not attempt to choose the simplest geometry type to represent the 
combined set of geometries; it always returns a GeometryCollection type. This is the case even when 
the column of values being aggregated represents a set of homogeneous geometry types that could 
have been represented as a MultiPoint, or MultiPolygon, say. 

You can create a CollectionAggregate() on the preceding table of LineStrings as follows: 

SELECT 
  geography::CollectionAggregate(line) 
FROM 
  #BunchOLines; 

The result is as follows: 

GEOMETRYCOLLECTION ( 
  LINESTRING (0 52, 1 53), 
  LINESTRING (1 53, 1 54, 2 54), 
  LINESTRING (2 54, 4 54), 
  LINESTRING (2 54, 0 55, -1 55) 
) 

■ Note  Even when aggregating a column of data in which every value is of a homogeneous geometry type, 
CollectionAggregate() will always return a generic Geometry Collection rather than the more specific 

multilelement collection. 
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ConvexHullAggregate 
The final type of aggregate is the ConvexHullAggregate(). The ConvexHullAggregate() returns the 
smallest convex Polygon that encompasses all the geometry or geography objects in a given column. Just 
as the UnionAggregate() aggregate provides the column-wise equivalent of the STUnion() method, the 
ConvexHullAggregate() provides the column-wise equivalent of the STConvexHull() method discussed 
in the last chapter. 

You can create the convex hull of the set of LineStrings in the preceding table as follows: 

SELECT 
  geography::ConvexHullAggregate(line) 
FROM 
  #BunchOLines; 

The result, in this case, is a four-sided Polygon: 

POLYGON ((0 52, 4 54, 0 55, -1 55, 0 52)) 

Note that the same result could have been achieved by first creating a UnionAggregate() of the 
geometries in the column, and then creating the convex hull of this union: 

SELECT 
  geography::UnionAggregate(line).STConvexHull() 
FROM 
  #BunchOLines; 

POLYGON ((0 52, 4 54, 0 55, -1 55, 0 52)) 

However, this is a more resource-intensive method. If you require only to know the convex hull of 
a column of data you should use the dedicated ConvexHullAggregate() instead. 

Combining Spatial Result Sets 
In this chapter, we first looked at instance methods that combined two items of spatial data; then, we 
examined aggregates that operated on a column of the geography or geometry datatype. But what about 
combining two or more entire result sets containing spatial data? It is a fairly common requirement to 
merge the output of two or more SELECT statements into a single result set, or to create a view that 
combines data from two or more tables, for example. In these cases, there are a few special 
considerations to bear in mind with relation to spatial data. 

To demonstrate, suppose that you had two tables of data: the first containing the names and 
locations of cities that have hosted the Olympic Games, while the second contained the names and 
locations of cities that hold annual marathons. The following code listing creates such tables and 
populates them with some sample data: 

DECLARE @MarathonCities table( 
  City varchar(32), 
  Location geography 
); 
 
INSERT INTO @MarathonCities VALUES 
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('Amsterdam', 'POINT(4.9 52.4)'), 
('Athens', 'POINT(23.7 38)'), 
('Berlin', 'POINT(13.4 52.5)'), 
('Boston', 'POINT(-71.1 42.4)'), 
('Chicago', 'POINT(-87.7 41.9)'), 
('Honolulu', 'POINT(-157.85 21.3)'), 
('London', 'POINT(-0.15 51.5)'), 
('New York', 'POINT(-74 40.7)'), 
('Paris', 'POINT(2.34 48.8)'), 
('Rotterdam', 'POINT(4.46 4.63)'), 
('Tokyo', 'POINT(139.7 35.7)');  
 
DECLARE @OlympicCities table( 
  City varchar(32), 
  Location geography 
); 
 
INSERT INTO @OlympicCities VALUES 
('Sydney', 'POINT(151.2 -33.8)'), 
('Athens', 'POINT(23.7 38)'), 
('Beijing', 'POINT(116.4 39.9)'), 
('London', 'POINT(-0.15 51.5)'); 

Clearly, these are not exhaustive lists, but they should provide sufficient data for this 
demonstration! Now, suppose that you wanted to write a query to select the names and locations of all 
those cities that either hold an annual marathon, or had been host to the Olympic Games. To do so, you 
might try the following query: 

SELECT City, Location FROM @MarathonCities 
UNION 
SELECT City, Location FROM @OlympicCities; 

Unfortunately, attempting to execute this query results in the following error: 

Msg 421, Level 16, State 1, Line 30 
The geography data type cannot be selected as DISTINCT because it is not comparable. 

The problem here is that the default behavior of the UNION operator is to select distinct values in 
the result set. However, as the error message states, geography data is not comparable (and nor is 
geometry data). 

As you have found out in recent chapters, you can't use normal operators to compare spatial 
instances; it doesn't make sense to say whether one geometry is bigger or smaller than another, for 
example. You can't even use the equals operator (=) to compare whether two geometries are the same; 
instead you have to use the dedicated STEquals() method of the geometry or geography datatype. So, 
when you try to perform a UNION between two result sets, you will get an error because SQL Server 
cannot make the comparison between the values in the result set to identify only those unique records. 
The same is true if you try to SELECT DISTINCT values from a geography or geometry column. 

One alternative is to use UNION ALL, which will select all records from both SELECT statements as 
follows: 

SELECT City, Location FROM @MarathonCities 
UNION ALL 
SELECT City, Location FROM @OlympicCities; 



CHAPTER 11 ■  AGGREGATION AND COMBINATION 

 

290 

The query now executes, returning the following results: 

Amsterdam     0xE6100000010C3333333333334A409A99999999991340 
Athens        0xE6100000010C00000000000043403333333333B33740 
Berlin        0xE6100000010C0000000000404A40CDCCCCCCCCCC2A40 
Boston        0xE6100000010C33333333333345406666666666C651C0 
Chicago       0xE6100000010C3333333333F34440CDCCCCCCCCEC55C0 
Honolulu      0xE6100000010CCDCCCCCCCC4C35403333333333BB63C0 
London        0xE6100000010C0000000000C04940333333333333C3BF 
New York      0xE6100000010C9A9999999959444000000000008052C0 
Paris         0xE6100000010C6666666666664840B81E85EB51B80240 
Rotterdam     0xE6100000010C85EB51B81E851240D7A3703D0AD71140 
Tokyo         0xE6100000010C9A99999999D941406666666666766140 
Sydney        0xE6100000010C6666666666E640C06666666666E66240 
Athens        0xE6100000010C00000000000043403333333333B33740 
Beijing       0xE6100000010C3333333333F343409A99999999195D40 
London        0xE6100000010C0000000000C04940333333333333C3BF 

Note that, because the result set of a UNION ALL query contains every row from both SELECT 
statements, London is included twice in the results since it is both an Olympic host city and holds an 
annual marathon. However, this is not the behavior we really want. In order to be able to present a 
distinct list of cities together with their location, you need to structure your tables slightly differently, 
so as to prevent the need ever to try to determine distinct geography or geometry data. 

For example, you can normalize your table structure, maintaining geography or geometry data of 
each city in a separate table referenced by key, and having the @OlympicCities and @MarathonCities 
tables store only those keys of the cities in question. You can then determine the unique list of cities by 
performing a UNION join on the keys field, and only bringing in the corresponding spatial fields after the 
UNION operation has been performed. One such structure is demonstrated in the following code listing: 

DECLARE @Cities table ( 
 CityId int, 
 CityName varchar(32), 
 CityLocation geography 
 ); 
 INSERT INTO @Cities VALUES 
(1, 'Amsterdam', 'POINT(4.9 52.4)'), 
(2, 'Athens', 'POINT(23.7 38)'), 
(3, 'Berlin', 'POINT(13.4 52.5)'), 
(4, 'Boston', 'POINT(-71.1 42.4)'), 
(5, 'Chicago', 'POINT(-87.7 41.9)'), 
(6, 'Honolulu', 'POINT(-157.85 21.3)'), 
(7, 'London', 'POINT(-0.15 51.5)'), 
(8, 'New York', 'POINT(-74 40.7)'), 
(9, 'Paris', 'POINT(2.34 48.8)'), 
(10, 'Rotterdam', 'POINT(4.46 4.63)'), 
(11, 'Tokyo', 'POINT(139.7 35.7)'), 
(12, 'Sydney', 'POINT(151.2 -33.8)'), 
(13, 'Athens', 'POINT(23.7 38)'), 
(14, 'Beijing', 'POINT(116.4 39.9)'); 
 
DECLARE @MarathonCities table( 
  CityId int 
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); 
INSERT INTO @MarathonCities(CityId) VALUES 
(1), (2), (3), (4), (5), (6), (7), (8), (9), (11);  
 
DECLARE @OlympicCities table( 
  CityId int 
); 
INSERT INTO @OlympicCities(CityId) VALUES 
(12), (13), (14), (7); 
 
SELECT 
  CityName, 
  CityLocation 
FROM 
  (SELECT CityId FROM @MarathonCities 
   UNION 
   SELECT CityId FROM @OlympicCities) AS DistinctList 
 JOIN @Cities c ON DistinctList.CityId = c.CityId; 

The results now correctly list each distinct city that either holds an annual marathon or has hosted 
the Olympic Games. 

Joining Tables Using a Spatial Column 
Just as geometry and geography data is not comparable when used in a SELECT DISTINCT statement, nor 
can you define a JOIN between two tables using a column of the geometry or geography datatype. 
Attempting to execute a query such as this: 

SELECT * FROM TableA JOIN TableB ON TableA.GeomField = TableB.GeomField; 

will result in the following error: 

Msg 403, Level 16, State 1, Line 34 
Invalid operator for data type. Operator equals equal to, type equals geography. 

Instead, you can join tables based on a comparison between two spatial columns, but you must use 
one of the dedicated spatial methods. For the example above, the equivalent operator to test the equality 
of two geometries is provided by the STEquals() method, so you can rewrite the query as follows: 

SELECT * FROM TableA JOIN TableB ON TableA.GeomField.STEquals(TableB.GeomField) = 1; 

However, joining two tables in this manner is rarely a good idea. As discussed in Chapter 7, you 
should avoid comparing exact equality between two spatial instances. But this is not the only join type 
possible: you can join two tables on a spatial column using any spatial method that acts upon two 
geometry or geography instances. For example, let's create a new table that divides the earth's surface 
into four quadrants: north-west, north-east, south-west, and south-east relative to an origin at (0,0). 
You can create such a table using the following code listing: 

DECLARE @Quadrants table ( 
  Quadrant varchar(32), 
  QuadrantLocation geography 
); 
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INSERT INTO @Quadrants VALUES 
('NW', 'POLYGON((0 0, 0 90, -179.9 90, -179.9 0, 0 0))'), 
('NE', 'POLYGON((0 0, 179.9 0, 179.9 90, 0 90, 0 0))'), 
('SW', 'POLYGON((0 0, -179.9 0, -179.9 -90, 0 -90, 0 0))'), 
('SE', 'POLYGON((0 0, 0 -90, 179.9 -90, 179.9 0, 0 0))'); 

Now suppose that we wanted to obtain a set of results stating in which quadrant each of the cities 
in our previous @Cities table was located. To do so, we can join the tables together using the 
STIntersection() method to determine the QuadrantLocation in which each CityLocation lies: 

SELECT 
  CityName, 
  Quadrant 
FROM 
  @Cities 
  JOIN @Quadrants ON CityLocation.STIntersects(QuadrantLocation) = 1; 

Because every city lies in one and only one quadrant, the results contain exactly the same number 
of rows as in the original @Cities table, with the Quadrant column showing the respective quadrant of 
the earth in which each city is located: 

Boston     NW 
Chicago    NW 
Honolulu   NW 
London     NW 
New York   NW 
Amsterdam  NE 
Athens     NE 
Berlin     NE 
Paris      NE 
Rotterdam  NE 
Tokyo      NE 
Athens     NE 
Beijing    NE 
Sydney     SE  

Summary 
In this chapter, you learned about various methods to combine two or more items, columns, or tables of 
spatial data. Combining geometries frequently involves an additive operation—creating a merged 
geometry that is greater than the sum of its parts—but this does not always have to be the case; it is also 
possible to subtract one geometry from another, or to select only those elements that exist in one 
geometry but not another. 

The methods discussed in this chapter can be applied to either the geometry or geography datatypes, 
but all inputs to a given function must be of the same datatype. It is not possible to create the union of a 
geometry and geography instance together, for example. 
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Testing Spatial Relationships 

The key objective for most spatial queries is to try to understand the relationship between two or more 
features on the Earth in order to answer specific questions: for example, how far is it from a to b? Does 
the route between x and y pass through z? Does p share a common border with q? In this chapter, I’ll 
introduce the methods that SQL Server provides to answer these questions by comparing different 
aspects of the relationship between two items of spatial data.  

Calculating the Distance Between Two Geometries 
The STDistance() method can be used to calculate the shortest distance between any two geometries. 
When used on instances of the geometry datatype, this is the length of the shortest straight line that can 
be drawn between the two instances. For the geography datatype, it is instead the length of the shortest 
great elliptic arc drawn between any two points contained in the two geometries, following the 
surface of the reference ellipsoid between them. Figure 12-1 illustrates the distance d returned by the 
STDistance() method when called on a variety of different types of geometries. 

Point.STDistance(Point) = d Point.STDistance(LineString) = 0

Linestring.STDistance(Point) = d

Polygon.STDistance(Polygon) = d

CircularString.STDistance(Point) = d

d

d

d

dd

Point.STDistance(Polygon) = 0

LineString.STDistance(LineString) = d

MultiPoint.STDistance(LineString) = d

d

 

Figure 12-1. Calculating the distance d between two geometries 
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The STDistance() method may be used to calculate the distance between two items of either the 
geometry or geography datatype, using syntax as follows: 

Instance1.STDistance(Instance2); 

Instance1 and Instance2 may be any type of geometry, but both must be instances of the same 
datatype, and defined using the same SRID. When used to calculate the distance between two instances 
of the geometry datatype, the result of the STDistance() method is returned in the same unit of 
measurement in which the coordinates were defined. When used to calculate the distance between two 
instances of the geography datatype, the result is expressed in the linear unit of measure defined in the 
unit_of_measure column of the sys.spatial_reference_systems table for the spatial reference system 
in question. Note that, for intersecting geometries, the result of STDistance() will always be 0. 

One common use case for the STDistance() method is to identify the feature that lies closest to a 
given location or, in the more general case, to find the nearest n features to a location. This type of 
query is commonly called a "nearest-neighbor" query. To demonstrate how you might use the 
STDistance() method to perform a nearest-neighbor query in SQL Server, let’s suppose that you are 
operating a disaster response service based in the state of Massachusetts. When you are notified of a 
major fire, you need to identify and contact the closest fire station to the incident so that it can send 
out a response unit. For this example, let’s first create a table containing details of fire stations in the 
state of Massachusetts: 

CREATE TABLE MA_Firestations( 
  Id int IDENTITY(1,1) NOT NULL, 
  Name varchar(255) NULL, 
  Address varchar(255) NULL, 
  City varchar(255) NULL, 
  Location geometry NULL, 
  CONSTRAINT [PK_MA_Firestations] PRIMARY KEY CLUSTERED  
  ( Id ASC ) 
); 

■ Note  I’ve added a unique integer id to each record in the MA_Firestations table, and then created a clustered 

primary key on the Id column. Having a clustered primary key on a table is a prerequisite for creating a spatial 

index, which we'll be doing shortly. 

To populate the MA_Firestations table, let’s create a few records representing individual fire 
stations. The location of each fire station is represented by a Point geometry defined using the 
Massachusetts State Plane Coordinate System, which is a projected coordinate system denoted by the 
SRID 26986: 

INSERT INTO MA_Firestations (Name, Address, City, Location) VALUES 
('SANDWICH FIRE DEPARTMENT', 
'115 Rt. 6A', 
'SANDWICH', 
geometry::STPointFromText('POINT(283441 835235)', 26986)), 
 
('BROCKTON FIRE DEPARTMENT', 
'560 West Street', 
'BROCKTON', 
geometry::STPointFromText('POINT(237729 869074)', 26986)), 
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('SWANSEA FIRE DEPARTMENT', 
'50 New Gardner Neck Road', 
'SWANSEA', 
geometry::STPointFromText('POINT(225000 831055)', 26986)), 
 
('ASHLAND FIRE DEPARTMENT', 
'70 Cedar Street', 
'ASHLAND', 
geometry::STPointFromText('POINT(205108 889508)', 26986)); 

Although you can test out the following example using just these four records, it is easier to see 
how a nearest-neighbor query works when selecting records from a dataset containing thousands, or 
millions, of records. If you want to add more records to the MA_Firestations table, you can download 
the full dataset of fire stations in Massachusetts as part of the code archive accompanying this book, 
available in the Source Code/Download area of the Apress web site (http://www.apress.com). 

For this example, suppose that we have been informed of a fire at coordinates (210000, 890000), 
these coordinates being defined, like the location of the fire stations, using EPSG:26986. This 
corresponds to a point about 15 miles southwest of Boston. Now that we have a table detailing the 
location of every fire station, and we know the whereabouts of the fire, how do we go about identifying 
the nearest station to respond to the incident? In the following sections, we'll look at a few different 
approaches for this common scenario. 

Finding Nearest Neighbors: Basic Approach 
The most straightforward method of identifying the nearest neighbor is to use the STDistance() 
method in the ORDER BY clause of a SELECT statement to sort all of the fire stations in ascending order of 
their distance from the fire. Once the records have been sorted, you can use the SELECT TOP n syntax to 
return only the top n nearest neighbors. This approach is demonstrated in the following code listing: 

-- Set the location of the fire 
DECLARE @Fire geometry; 
SET @Fire = geometry::STPointFromText('POINT (210000 890000)', 26986); 
 
-- Sort all records and select the closest 
SELECT TOP 1 
  Name, 
  Address, 
  City, 
  Location.STDistance(@Fire) AS Distance 
FROM 
  MA_Firestations 
ORDER BY 
  Location.STDistance(@Fire) ASC; 

The single result is as follows: 

Name                     Address          City     Distance 
ASHLAND FIRE DEPARTMENT  70 Cedar Street  ASHLAND  4916.60186549405 
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Although this query will correctly identify and return the nearest n neighboring fire stations to the 
fire (in this example, just the single nearest fire station is chosen), there is a problem with this 
approach. Consider the execution plan for this query, as shown in Figure 12-2: 

 

Figure 12-2. Execution plan for a basic nearest-neighbor query 

In order to find the single nearest neighbor, SQL Server must perform a scan, compute the result 
of STDistance(), and then sort every row in the table. When performing a nearest-neighbor search 
like this on a table containing millions of rows, the sort operation will become very expensive and yet 
all but one of the records will be subsequently discarded. This approach can therefore only be 
practically applied for the smallest of datasets. 

■ Note  The execution plans for the queries shown in this section are based on those calculated on my test 
server. The plan chosen by SQL Server's query optimizer depends on a number of factors, and you may get slightly 

different execution plans than me. Don't worry about this; the discussion here is still relevant. 

Finding Nearest Neighbors Using a Spatial Index 
In versions of SQL Server prior to SQL Server 2012, there was no way to increase the efficiency of the 
previous query; a simple nearest-neighbor search always involved a full scan and sort operation. 
However, SQL Server 2012 introduces a new query plan that can significantly improve the speed of a 
nearest-neighbor query by making use of a spatial index. Spatial indexes will be discussed in more 
detail in a later chapter but, for now, create an index on the Location column of the MA_Firestations 
table by executing the following code listing: 

CREATE SPATIAL INDEX idx_Spatial 
  ON MA_Firestations ( Location ) 
  USING GEOMETRY_GRID 
  WITH ( 
    BOUNDING_BOX =(40000, 780000, 330000, 960000) 
  ); 

In order to utilize the index in a nearest-neighbor search, your query must be structured according 
to a particular pattern. In order to conform to this pattern, modify the previous SELECT query to include 
a new condition in the WHERE clause to filter only those records where the result of STDistance() IS NOT 
NULL, as highlighted in the following code listing: 

SELECT TOP 1 
  Name, 
  Address, 
  City, 
  Location.STDistance(@Fire) AS Distance 
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FROM 
  MA_Firestations 

WHERE 
  Location.STDistance(@Fire) IS NOT NULL 

ORDER BY 
  Location.STDistance(@Fire) ASC; 

■ Note  The only situations in which STDistance() returns NULL is where either one of the geometries involved 
is an empty geometry, or where the two geometries between which the distance is being calculated are defined 

using different SRIDs. Adding the condition WHERE Location.STDistance(@Fire) IS NOT NULL will therefore not 
change the results of the query in this case (nor in most other situations), but will prompt SQL Server to use the 

optimized nearest-neighbor execution plan. 

The execution plan for this query now appears substantially more complicated, as illustrated in 
Figure 12-3. You should notice that the plan includes an element called Clustered Index Seek (Spatial), 
which indicates that instead of scanning the entire table, the query processor now makes use of the 
spatial index to identify nearest neighbors. This should lead to better query performance, especially 
when dealing with large datasets, when a table scan would be very costly. 

 

Figure 12-3. Nearest Neighbor Query utilizing a spatial index.The Clustered Index Seek (Spatial) is shown 
towards the right-hand side, feeding into a nested loop. 

If the query plan you obtain from executing this code listing doesn't contain an item called 
Clustered Index Seek (Spatial) then you may have to add an explicit index hint to tell SQL Server to use 
the spatial index. You can do so by modifying the query as follows: 

SELECT TOP 1 
  Name, 
  Address, 
  City, 
  Location.STDistance(@Fire) AS Distance 
FROM 
  MA_Firestations WITH(index(idx_Spatial)) 
WHERE 



CHAPTER 12 ■  TESTING SPATIAL RELATIONSHIPS 

 

298 

  Location.STDistance(@Fire) IS NOT NULL 
ORDER BY 
  Location.STDistance(@Fire) ASC; 

This new query plan for nearest-neighbor queries was only introduced in SQL Server 2012, so 
basic nearest-neighbor queries in SQL Server 2008/R2 could not make use of a spatial index even 
using this query template. Consequently, inventive users of previous versions of SQL Server 
developed a number of alternative ways to write efficient nearest-neighbor queries. While the need 
for these alternative methods has largely been deprecated in SQL Server 2012, it is still worthwhile 
understanding the logic behind these earlier approaches, which is described in the following sections.  

Finding Nearest Neighbors Within a Fixed Search Zone 
One way of refining the basic nearest-neighbor query described previously is to try to reduce the 
number of rows that need to be sorted. This can be done by using a two-stage approach: firstly, 
identifying a set of likely nearest-neighbor candidates by selecting only those records that lie within a 
predetermined radius of the feature in question; then, calculating the n nearest neighbors from this 
candidate subset only, which prevents the need to sort the entire dataset. 

To determine the subset of candidate nearest neighbors, a search area can be created using the 
STBuffer() method (or BufferWithTolerance() or BufferWithCurves()). The size of the buffer should be 
chosen to be sufficiently large so that it contains the required number of nearest neighbors, but not so 
large that it includes many additional rows of data that exceed the desired number of results. Features 
lying within the search area are selected in a CTE using the efficient Filter() method, which uses a 
spatial index to identify the set of possible candidates. The STDistance() method is then used to 
calculate the distance associated with only those candidate records, rather than processing and sorting 
the whole table. 

The following code listing demonstrates this approach, using STBuffer(25000) to identify candidate 
records that lie within a 25 km search area around the fire in which to search for nearest neighbors: 

DECLARE @Fire geometry; 
SET @Fire = geometry::STPointFromText('POINT (210000 890000)', 26986); 
 
DECLARE @SearchArea geometry; 
SET @SearchArea = @Fire.STBuffer(25000); 
 
WITH Candidates AS ( 
  SELECT 
    Name, 
    Address, 
    City, 
    Location.STDistance(@Fire) AS Distance 
  FROM 
    MA_Firestations 
  WHERE 
    Location.Filter(@SearchArea) = 1 
) 
SELECT TOP 1 * FROM Candidates ORDER BY Distance; 

As in the last example, this query correctly identifies the closest fire station as follows: 

Name                     Address          City     Distance 
ASHLAND FIRE DEPARTMENT  70 Cedar Street  ASHLAND  4916.60186549405 
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The advantage of the fixed search zone approach is that the initial Filter() operation, which 
identifies those candidate records that lie within the vicinity of the fire, can make use of a spatial index 
seek. Once the candidate records are retrieved, STDistance() is called fewer times, and the dataset 
requiring sorting is much smaller, making the query significantly faster than the basic nearest-
neighbor approach described previously. The execution plan for this query, shown in Figure 12-4, is 
similar to the dedicated nearest-neighbor query plan described earlier: 

 

Figure 12-4. Execution plan for a nearest-neighbor query within a fixed search radius 

However, the problem with this approach is that you must choose an appropriate fixed value to pass 
to the STBuffer() method as the radius of the search area. If you set the value too high, then there will 
be too many possible candidates returned and the filter will not be efficient. If you set the buffer size 
too small, then there is a risk that the search area will not contain any candidates, resulting in the 
query failing to identify any nearest neighbors at all. 

For example, the fire station located the shortest distance from the fire in this example is Ashland 
Fire Department, which lies 4.9 km away. If we had narrowed our nearest-neighbor query to search 
only for candidates lying within a 4 km distance, using SET @SearchArea = @Fire.STBuffer(4000), the 
query would not have returned any results. 

The fixed search zone approach is most useful in situations where you are able to reliably set an 
appropriate buffer size in which to select a set of candidate nearest neighbors. This might be based on 
known uniform distribution of your data; for example, you know that any item in the dataset will never 
lie more than 25 km from its nearest neighbor. Alternatively, you might want to obtain nearest 
neighbors within a particular distance constraint, for example, to answer the query “Show me the three 
closest gas stations within 10 miles of this location.” 

Finding Nearest Neighbors with an Expanding Search Zone 
This method, like the previous one, uses a two-stage approach to identify nearest neighbors, where a set 
of possible nearest-neighbor candidates is first identified before selecting the actual nearest neighbor 
from the set of possible candidates. However, rather than identifying candidates that lie within a fixed 
buffer search zone (which faces the risk of failing to identify any nearest neighbors at all), this approach 
creates a series of expanding search ranges, which is ultimately guaranteed to find the nearest neighbor. 

■ Note  The approach described here was first proposed by Isaac Kunen, a program manager on the SQL Server 
team. You can read the blog entry in which he describes this method at: 

http://blogs.msdn.com/b/isaac/archive/2008/10/23/nearest-neighbors.aspx 
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To create the expanding ranges, an additional numbers table (or "tally table") is used, containing 
a single column of consecutive integers. Although at first it may seem unnecessary to create a table 
containing nothing more than a sequential list of numbers, numbers tables can prove very useful 
when it comes to solving certain problems in a set-based environment, as you will see in this example. 
To create and populate a numbers table with the integers between 0 and 1,000, execute the following 
code: 

CREATE TABLE Numbers ( 
  Number int PRIMARY KEY CLUSTERED 
); 
SET NOCOUNT ON; 
DECLARE @i int = 0; 
WHILE @i <= 1000 
BEGIN 
  INSERT INTO Numbers VALUES (@i); 
  SET @i = @i + 1; 
END; 

■ Note  There are many different ways to populate a numbers table; a quick search of the Internet will reveal 
endless debates about the relative performance of methods using a CROSS JOIN versus an IDENTITY column, a 
CTE or the CLR. Seeing as this table contains only 1,000 rows, I'm opting for the most straightforward—a simple 

WHILE loop—and then we can get on with the matter at hand! 

The Numbers table will be joined to the MA_Firestations table to create a series of expanding search 
ranges. The distance to which each successive search extends increases exponentially until a search 
area of sufficient size is found that contains the requisite number of nearest neighbors. All of the 
features in this search area are returned as candidates, and then the TOP 1 is selected as the true 
nearest neighbor. This approach is demonstrated in the following code: 

DECLARE @Fire geometry; 
SET @Fire = geometry::STPointFromText('POINT (210000 890000)', 26986); 
 
WITH Candidates AS ( 
  SELECT TOP 1 WITH TIES 
    Name, 
    Address, 
    City, 
    Location.STDistance(@Fire) AS Distance, 
    1000*POWER(2, Number) AS Range 
  FROM 
    MA_Firestations 
    INNER JOIN Numbers 
    ON MA_Firestations.Location.STDistance(@Fire) < 1000*POWER(2, Numbers.Number) 
    ORDER BY Number   
) 
SELECT TOP 1 * FROM Candidates ORDER BY Range DESC, Distance ASC; 

The result obtained is as follows: 
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Name                     Address          City     Distance          Range 
ASHLAND FIRE DEPARTMENT  70 Cedar Street  ASHLAND  4916.60186549405  8000 

This query is a little more complicated than the last, and probably warrants some more 
explanation. Remember that the Numbers table contains consecutive integers, starting at zero. So, the 
condition MA_Firestations.Location.STDistance(@Fire) < 1000*POWER(2,Numbers.Number) specifies 
that the initial criterion for a feature to be considered a nearest-neighbor candidate is that the 
distance to that feature is less than 1000 * 2^0. Since the EPSG:26986 spatial reference system defines 
distances in meters, this equates to a 1 km search area; if you want to specify an alternative starting 
search radius, you may do so by changing the value of 1000 to another value (remember to use the unit 
of measure appropriate to the datatype and SRID of the data in question). 

If the requisite number of neighbors (in this case, we are searching only for the TOP 1) are not 
found within the specified distance, then the search range is increased in size. Successive search 
ranges are obtained by raising 2 to the power of the next number in the Numbers table. Thus, the first 
range extends to 1 km around the fire, the second range extends to 2 km, then 4 km, 8 km, 16 km, and 
so on. By adopting an exponential growth model, this method is guaranteed to find the nearest 
neighbor within a relatively short number of iterations, however dispersed the distribution of the 
underlying features. 

Once the search range has been sufficiently increased to contain at least the required number of 
candidate nearest neighbors, all of the features lying within that range are selected as candidates, by 
using a SELECT statement with the WITH TIES argument. Finally, the candidates are sorted by ascending 
distance from the fire, and the TOP 1 record is selected as the true nearest neighbor. The Range column 
included in the results states the distance to which the search range was extended to find the nearest 
neighbor, in this case, 8 km. 

A typical execution plan for this query is as shown in Figure 12-5: 

 

Figure 12-5. Execution plan for a nearest-neighbor query within an expanding search range 

While it is slightly more complex to implement, this approach generally provides a consistently 
fast-performing solution (faster, often, than the dedicated nearest-neighbor query plan introduced 
earlier). Although it is sometimes not quite as fast as the fixed search area technique, it does not suffer 
from the limitations associated with having to specify a fixed search radius. 

Nearest Neighbor Query Plan Comparison 
In order to compare the efficiency of the various approaches to nearest-neighbor queries described 
previously, I decided to run a few tests. While I hope the previous scenario of firestations in 
Massachussetts provided a real-world example of when you might want to use a nearest-neighbor 
query, in order to conduct controlled performance tests I decided that an artificial dataset might be 
more appropriate. So I created a simple test table as follows: 

CREATE TABLE TestNearestNeighbors ( 
  id int IDENTITY(1,1), 
  point geometry, 
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  CONSTRAINT [PK_TestNearestNeighbors] PRIMARY KEY CLUSTERED  
  ( id ASC ) 
); 

A set of geometry Points would be inserted into this table, ranging between coordinates at (0, 0) 
and (100000, 100000). Therefore, I created the following spatial index, with a bounding box of sufficient 
size to ensure that all the points would be covered by the index: 

CREATE SPATIAL INDEX sidx_point 
  ON TestNearestNeighbors ( point ) 
  USING GEOMETRY_GRID 
  WITH ( 
    BOUNDING_BOX =(0, 0, 100000, 100000) 
  ); 

To start with, I added 10,000 random points to the table: 

SET NOCOUNT ON; 
DECLARE @i int = 0; 
WHILE @i < 10000 BEGIN 
  INSERT INTO TestNearestNeighbors(point) 
  VALUES (geometry::Point(RAND()*100000, RAND()*100000, 0)); 
 
  SET @i = @i + 1; 
END; 

Now, with the test data primed, I created generic versions of each of the methods described above 
into stored procedures, as follows: 

-- Basic Nearest Neighbor 
CREATE PROCEDURE uspBasicNearestNeighbor ( 
  @Point geometry 
) 
AS BEGIN 
SELECT TOP 1 
  id 
FROM 
  TestNearestNeighbors 
ORDER BY 
  Point.STDistance(@Point) ASC; 
END; 
GO 
 
-- Nearest Neighbor With Index 
CREATE PROCEDURE uspNearestNeighborWithIndex ( 
  @Point geometry 
) 
AS BEGIN 
SELECT TOP 1 
  id 
FROM 
  TestNearestNeighbors WITH(index(sidx_point)) 
WHERE 
  Point.STDistance(@Point) IS NOT NULL 
ORDER BY 
  Point.STDistance(@Point) ASC; 
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END; 
GO 
 
-- Fixed Search Area 
CREATE PROCEDURE uspNearestNeighborFixedSearchRadius ( 
  @Point geometry, 
  @Radius float 
) 
AS BEGIN 
DECLARE @SearchArea geometry; 
SET @SearchArea = @Point.STBuffer(@Radius); 
 
WITH Candidates AS ( 
  SELECT 
    id, 
    Point.STDistance(@Point) AS Distance 
  FROM 
    TestNearestNeighbors 
  WHERE 
    Point.Filter(@SearchArea) = 1 
) 
SELECT TOP 1 * FROM Candidates ORDER BY Distance; 
END; 
GO 
 
-- Expanding Search Area 
CREATE PROCEDURE uspNearestNeighborExpandingSearchRadius ( 
  @Point geometry 
) 
AS BEGIN 
WITH Candidates AS ( 
  SELECT TOP 1 WITH TIES 
    Id, 
    Point.STDistance(@Point) AS Distance, 
    1000*POWER(2, Number) AS Range 
  FROM 
    TestNearestNeighbors 
    INNER JOIN Numbers 
    ON TestNearestNeighbors.Point.STDistance(@Point) < 1000 * POWER(2, Numbers.Number) 
    ORDER BY Number   
) 
SELECT TOP 1 * FROM Candidates ORDER BY Range DESC, Distance ASC; 
END; 
GO 

Each procedure was called repeatedly, and the time taken for each query recorded. After 
completing the batch of tests, I increased the number of rows in the base table to 100,000 and then 
1,000,000, repeating the series of tests each time. 

The results I obtained (on a fairly humble, dual-core laptop) are shown in Table 12-1. 
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Table 12-1. Comparing Performance of Nearest-Neighbor Queries 

Method Number of Rows in Base Table Average Execution Time (ms) 

Basic 10,000 389 

Spatial Index 10,000 24 

Fixed Search Zone 10,000 17 

Expanding Search Zone 10,000 326 

Basic 100,000 1,789 

Spatial Index 100,000 74 

Fixed Search Zone 100,000 22 

Expanding Search Zone 100,000 30 

Basic 1,000,000 18,360 

Spatial Index 1,000,000 13 

Fixed Search Zone 1,000,000 45 

Expanding Search Zone 1,000,000 32,000 

  For this particular sample of data, the most consistently fast performing solution is the fixed 
search zone. However, the marginal speed advantage it offers over the nearest neighbor spatial index 
plan is probably more than offset by the risk of not finding any results. The Expanding Search Zone 
can produce good performance, but it is unreliable and difficult to maintain. These results should only 
be considered as illustrative: the actual performance times will depend on many factors, including the 
hardware configuration of your server, the nature and distribution of data in your base table, and the 
exact results required from your query. Having seen the different approaches available, I highly 
encourage you to perform your own tests to determine what is best for your particular circumstances. 

Calculating the Shortest Path Between Two Geometries 
STDistance(), as described in the preceding section, will give you a linear value representing the 
shortest distance between any two geometries. For nearest-neighbor queries, this is generally all that 
is required. We don't care exactly where, or in what direction the nearest neighbor is located relative 
to our chosen feature, as long as it is the shortest distance away. 

In certain situations, however, we may want to know not only the shortest distance between two 
geometries but also the path along which that distance is measured. In other words, referring back to 
Figure 12-1, what is the line along which length d was calculated? For this, we can use the 
ShortestLineTo() method. 

ShortestLineTo() returns the line segment of the shortest distance between any two points of two 
geometries. For two Point geometries, this is pretty intuitive: the shortest path between two points is the 
straight LineString that starts and ends at the two points in question. For example, in the following code 
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listing, two geography Points are created representing the locations of Warsaw, Poland, and Kiev, in 
Ukraine. The ShortestPathTo() method is then used to return the shortest path between the two 
locations: 

DECLARE @Warsaw geography = 'POINT(17 51.1)'; 
DECLARE @Kiev geography = 'POINT(30.5 50.5)'; 
 
SELECT 
@Warsaw.ShortestLineTo(@Kiev).ToString(); 

The result is as follows (notice the effect that computation has had on the precision of the supplied 
coordinate values): 

LINESTRING (17.000000000000007 51.100000000000009, 30.499999999999993 50.5) 

As expected, the shortest line between the two cities is the LineString that directly connects them. 
Since, in the example above, the two points are of the geography datatype, this LineString is an elliptic 
arc. To visualize the results, you can add a buffer around each geometry and label them as follows: 

DECLARE @Warsaw geography = 'POINT(17 51.1)'; 
DECLARE @Kiev geography = 'POINT(30.5 50.5)'; 
 
SELECT 
  @Warsaw.STBuffer(40000), 'Warsaw' 
UNION ALL SELECT 
  @Kiev.STBuffer(40000), 'Kiev' 
UNION ALL SELECT 
  @Warsaw.ShortestLineTo(@Kiev).STBuffer(1000), 'ShortestLineTo'; 

The result of this query is displayed in the SSMS Spatial Results tab as shown in Figure 12-6. 

 

Figure 12-6. Visualizing the ShortestLineTo() between two geography Points 
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A situation in which ShortestLineTo() becomes more useful is where one or both of the geometries 
involved is of a more complex type than a simple Point. To demonstrate this, let's consider a practical 
example: trying to escape from the island of Alcatraz. Alcatraz Island was the site of one of the world's 
most famous prisons, which housed many notorious criminals, including Al Capone and Robert Stroud 
(the "Birdman of Alcatraz"), and has featured in many films, books, and other popular culture. In its 29 
years of operation, it is claimed that no prisoner ever successfully escaped from the prison. One of the 
reasons for this is that the island itself stands isolated in San Francisco Bay, surrounded by freezing 
cold, hazardous ocean currents. Any escapees who did manage to escape from the prison were almost 
certain to drown before they made it to the mainland. 

But let's suppose that you were going to make that escape attempt, that you'd evaded the guards, 
and were going to swim to freedom. To have the best chance of survival, you'd probably want to take 
the shortest direct line route across the water to the mainland. The following code listing recreates 
this situation, using a Polygon to represent Alcatraz Island, and a MultiLineString to represent 
various sections of the nearby mainland coastline, defined using the UTM Zone 10N spatial reference 
system, EPSG:32610. The ShortestLineTo() method is used to determine the shortest path from the 
island to safety: 

DECLARE @Alcatraz geometry; 
SET @Alcatraz = geometry::STPolyFromText('POLYGON ((550601 4186887, 550725 4186710,  
550717 4186666, 550885 4186556, 551042 4186668, 550813 4186777, 550724 4186921, 550601 
4186887))', 32610); 
 
DECLARE @Mainland geometry; 
SET @Mainland = geometry::STMLineFromText('MULTILINESTRING ( 
  (543439 4176527, 542823 4181517, 545168 4182528, 546212 4184864, 547360 4184205,  
   552814 4184793, 554797 4177926),  
  (542209 4192942, 546636 4187640, 544006 4185850, 541366 4185837, 536416 4190584,  
   536063 4190804),  
  (559959 4194939, 562216 4187077, 559076 4183237, 558998 4181794, 567307 4178019))', 
 32610); 
 
SELECT @Alcatraz, 'Alcatraz' 
UNION ALL SELECT @Alcatraz.ShortestLineTo(@Mainland), 'Escape Route' 
UNION ALL SELECT @Mainland, 'Freedom'; 

The route is shown in the Spatial Results tab as illustrated in Figure 12-7. 
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Figure 12-7. Using ShortestLineTo() to plot an escape from Alcatraz Island 

Having determined the shortest path, we can also deduce some other useful information. The 
point at which we need to leave the island, for example, is given by 
@Alcatraz.ShortestLineTo(@Mainland).STStartPoint(), which is located at POINT (550885 4186556). 
The point at which we expect to reach freedom as we arrive on the mainland is 
@Alcatraz.ShortestLineTo(@Mainland).STEndPoint(), which is at approximately POINT (551095 
4184607). Applying a bit of high school trigonometry to these points, we can also work out the bearing 
at which we'd have to travel across the sea: 

DECLARE @Alcatraz geometry; 
SET @Alcatraz = geometry::STPolyFromText('POLYGON ((550601 4186887, 550725 4186710,  
550717 4186666, 550885 4186556, 551042 4186668, 550813 4186777, 550724 4186921, 550601 
4186887))', 32610); 
 
DECLARE @Mainland geometry; 
SET @Mainland = geometry::STMLineFromText('MULTILINESTRING ( 
  (543439 4176527, 542823 4181517, 545168 4182528, 546212 4184864, 547360 4184205,  
   552814 4184793, 554797 4177926),  
  (542209 4192942, 546636 4187640, 544006 4185850, 541366 4185837, 536416 4190584,  
   536063 4190804),  
  (559959 4194939, 562216 4187077, 559076 4183237, 558998 4181794, 567307 4178019))', 
 32610); 
 
DECLARE @Start geometry = @Alcatraz.ShortestLineTo(@Mainland).STStartPoint(); 
DECLARE @End geometry = @Alcatraz.ShortestLineTo(@Mainland).STEndPoint(); 
 
DECLARE @dx float = @End.STX - @Start.STX; 
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DECLARE @dy float = @End.STY - @Start.STY; 
 
DECLARE @Bearing decimal(18,9) = ATN2(@dx, @dy); 
SELECT (DEGREES(@Bearing) + 360) % 360; 

The result, 173.85, represents a compass direction in degrees (in which North is 0, East is 90, South 
is 180 and West is 270). In other words, we would need to set off from the island at an angle just east of 
due south. The distance that we would have to swim is 
@Alcatraz.ShortestLineTo(@Mainland).STLength(), which is the same result as would be obtained by 
@Alcatraz.STDistance(@Mainland): 1,959.61 (meters). 

Testing for Intersection 
Two geometries are said to intersect if they share at least one point in common. That common point (or 
points) may lie either on the boundary or the interior of the geometries concerned. Testing to see 
whether one geometry intersects another is one of the most commonly used methods to identify 
objects that have some generalized spatial relationship to each other, for instance, identifying all the 
features that intersect a particular area of interest. 

Accurate Testing for Intersection 
The STIntersects() method tests whether two instances have at least one point in common. It is not 
specific as to how much of each geometry intersects the other, or in what manner they do so, just that 
one or more points is shared between the geometries. Figure 12-8 illustrates the results of the 
STIntersects() method when used to test the intersection between different types of geometries. 

Point.STIntersects(Point) = 1 Point.STIntersects(LineString) = 1

Point.STIntersects(Polygon) = 1 MultiPoint.STIntersects(LineString) = 1

Polygon.STIntersects(Polygon) = 1

CurvePolygon.STIntersects(Point) = 1

LineString.STIntersects(Polygon) = 1

CircularString.STIntersects(LineString) = 1  

Figure 12-8. Results of the STIntersects() method when testing the intersection of different geometries 
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■ Note  STIntersects() is used to test whether two geometries intersect. If you want to return the shape 

created by the intersection of two geometries, you should use the STIntersection() method instead. 

STIntersects() can be used to test whether two instances of the geometry or geography datatype 
intersect as follows: 

Instance1.STIntersects(Instance2) 

The result of the STIntersects() method is 1 if the instances share any point in common, or 0 if they 
do not. To demonstrate, the following example code creates a table containing a Point, a LineString, 
and a Polygon geometry representing three well-known landmarks in Sydney: the Sydney Opera 
House, the Sydney Harbour Bridge, and the Royal Botanic Gardens. It then defines a Polygon 
geometry representing a 1 km square area of interest in the center of the city, and determines which 
of the geometries in the table intersect that area. 

DECLARE @SydneyFeatures TABLE ( 
  Name varchar(32), 
  Shape geometry 
  ); 
 
INSERT INTO @SydneyFeatures VALUES 
('Sydney Opera House', geometry::STPointFromText('POINT(334900 6252300)', 32756)), 
('Sydney Harbour Bridge', geometry::STLineFromText( 
  'LINESTRING(334300 6252450, 334600 6253000)', 32756)), 
('Royal Botanic Garden', geometry::STPolyFromText(' 
  POLYGON ((334750 6252030, 334675 6251340, 335230 6251100, 335620 6251700, 
  335540  6252040,335280 6251580, 335075 6251650, 335075 6251960, 334860 6252120, 
  334750 6252030))', 32756)); 
 
DECLARE @AreaOfInterest geometry = geometry::STPolyFromText(' 
  POLYGON((334400 6252800, 334400 6251800, 335400 6251800, 335400 6252800, 
  334400 6252800))', 32756); 
 
SELECT 
  Name 
FROM 
  @SydneyFeatures 
WHERE 
  Shape.STIntersects(@AreaOfInterest) = 1; 

Executing this code listing gives the following results: 

Sydney Opera House 
Sydney Harbour Bridge 
Royal Botanic Garden 

All three features are returned, since they all intersect the area of interest in some way. Note that 
STIntersects() does not require the features to be completely contained within the area of interest; 
they simply need to intersect some part of it (this contrasts with the STWithin() method, discussed later 
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in this chapter). To visualize the relationship between the particular features in this example, add the 
following code immediately after the end of the previous query: 

SELECT Shape FROM @SydneyFeatures 
UNION ALL SELECT @AreaOfInterest; 

After executing the query, click the Spatial Results tab and you will see the results illustrated in Figure 
12-9. 

 

Figure 12-9. Using the Spatial Results tab to confirm the intersection of geometries representing features in 
Sydney 

The large square geometry represents the area of interest. The Point geometry representing the 
Sydney Opera House is fully contained and located roughly in the center of the square. The LineString 
geometry representing the Sydney Harbour Bridge crosses the northwest corner of the area, and the 
Polygon geometry representing the Royal Botanic Gardens overlaps on the south side. All three 
geometries intersect the area of interest in some way, and are therefore included in the results 
returned by the condition STIntersects(@AreaOfInterest) = 1. 

Approximate Testing for Intersection 
The Filter() method provides similar functionality to the STIntersects() method; it too is used to test 
for any kind of intersection between two geometry or geography instances, returning the value 1 if 
intersection occurs, or 0 if no intersection occurs. However, instead of directly testing the two 
geometries in question to establish whether they share any points in common (as STIntersects() 
does), the Filter() method tests whether the two geometries intersect any common grid cells defined 
by the spatial index placed on one of the columns of data. Depending on the complexity of the 
geometries in question, this means that testing for the intersection between two geometries using the 
Filter() method can be much faster than using the STIntersects() method. 
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■ Note  Spatial indexes store a record of the generalized extent of a geometry by creating a grid of cells, and 
recording those cells in the grid required to completely cover each geometry. This can be used as a primary filter 

to approximate the area of space that the geometry itself occupies. The topic of spatial indexes is covered fully in 

Chapter 18. 

The Filter() method can be applied to perform a quick test of intersection between two instances 
of the geometry or geography datatype as follows: 

Instance1.Filter(Instance2) 

In order for Filter() to be effective, either Instance1 or Instance2 must be a column of spatial data 
on which a spatial index has been created. If no spatial index is present, the behavior of the Filter() 
method reverts to match that of the STIntersects() method. 

THE FILTER() METHOD AND INDEX-DEPENDENCY 

The behavior of the Filter() method is rather unusual, in that it operates differently in the presence of a 
spatial index than without; When an index exists, Filter() performs only a primary filter of the results, 
whereas in the absence of an index, Filter() performs a secondary filter just like STIntersects().  

This creates an interesting situation in which the results returned by a query that uses Filter() can be 
made to change through nothing more than the addition or modification of an index on that table. 

If you want to perform a fast, approximate test of intersection then you may find Filter() useful. If, 
however, you want accurate results that remain consistent regardless of the presence or configuration of a 
spatial index, you should use STIntersects() instead. 

Like the STIntersects() method, the Filter() method returns the value 1 if the instances intersect, 
or 0 if they do not. Although Filter() may be faster than STIntersects(), one disadvantage of the 
Filter() method is that there is a risk of returning false positive results; that is, the Filter() method 
might return the value 1 in some cases where the cell in the spatial index intersects the geometry in 
question, even if the instance itself does not. 

One of the most useful applications of the Filter() method is therefore when you want to perform 
a fast approximate query of all those geometries that intersect a particular instance, in order to pass 
the data to a client that can then perform more detailed analysis of those geometries. 

■ Note  If used on a column of data that does not have a defined spatial index, the Filter() method defaults to 

exactly the same behavior as the STIntersects() method. 

To demonstrate the Filter() method, you first need to create a table with a spatial index as follows: 

CREATE TABLE #Geometries ( 
  id int IDENTITY(1,1) PRIMARY KEY, 
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  geom geometry 
  ); 
CREATE SPATIAL INDEX [idx_Spatial] 
  ON [dbo].[#Geometries] ( geom ) 
  USING GEOMETRY_GRID 
  WITH ( 
    BOUNDING_BOX =(-180, -90, 180, 90), 
    GRIDS =( 
      LEVEL_1 = MEDIUM, 
      LEVEL_2 = MEDIUM, 
      LEVEL_3 = MEDIUM, 
      LEVEL_4 = MEDIUM), 
    CELLS_PER_OBJECT = 4 ); 

Then, execute the following code to insert two Polygon geometries into the table: 

INSERT INTO #Geometries (geom) VALUES 
('POLYGON((52.09 -2.14, 51.88 -2.15, 51.89 -1.89,52.12 -1.99, 52.09 -2.14))'), 
('POLYGON((52.1 -2, 52.05 -2.01, 51.9 -1.9, 52.11 -2.15, 52.15 -1.9, 52.1 -2))'); 

Let’s try to find out which Polygons in the #Geometries table intersect a Point geometry at 
coordinates (52.07, –2). First, we’ll try using the Filter() method. To ensure that the Filter() method 
performs only an approximate test based on a primary filter, we'll add an explicit query hint to use the 
idx_Spatial index, as follows: 

DECLARE @Point geometry = geometry::STGeomFromText('POINT(52.07 -2)', 0); 
 
SELECT id 
FROM #Geometries 
WITH(INDEX(idx_Spatial)) 
WHERE geom.Filter(@Point) = 1; 

The results of the Filter() method suggest that both Polygons contain this Point: 

1 
2 

Now let’s ask the same question using the STIntersects() method. To do so, we'll simply amend 
the query predicate, replacing the Filter() method with the STIntersects() method: 

DECLARE @Point geometry = geometry::STGeomFromText('POINT(52.07 -2)', 0); 
 
SELECT id 
FROM #Geometries 
WITH(INDEX(idx_Spatial)) 
WHERE geom.STIntersects(@Point) = 1; 

In this case, the result of STIntersects() correctly shows that the Point is contained only in the first 
Polygon: 

1 
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Why do the Filter() method and the STIntersects() method give different results in this example? 
Although the Point @Point lies very close to the edge of the second Polygon, it is not contained within it. 
However, the index grid cells provide only a loose fit around the shape of the Polygon, so they do contain 
the Point in question. Since the Filter() method obtains an approximate answer based on the cells 
representing each object in the spatial index, it can therefore create false positive results, as in this case. 

■ Note  The degree of accuracy with which the results of the Filter() method represents the actual intersection 
between two geometries depends on the properties of the spatial index that it uses, such as the bounding box, 

number of cells per object, and resolution of each grid level. These concepts will be discussed in detail in  

Chapter 18. 

Testing for Disjointness 
Whereas STIntersects() tests whether two instances intersect each other, STDisjoint() tests whether 
two instances are disjoint: that is, they have no points in common. STIntersects() and STDisjoint() are 
complementary methods, so that, for any given pair of geometries, if the result of one of these 
methods is true, the result of the other must be false. A.Intersects(B) = 1 is logically equivalent to 
A.Disjoint(B) = 0. 

■ Tip  STIntersects() returns 1 if the instances intersect, and 0 if they are disjoint. STDisjoint() returns 1 if 

the instances are disjoint, and 0 if they intersect. 

Figure 12-10 illustrates the results of the STDisjoint() method when used to test whether various 
geometries are disjoint. 

Point.STDisjoint(Point) = 1 Point.STDisjoint(LineString) = 1

MultiPoint.STDisjoint(LineString) = 1

Polygon.STDisjoint(Polygon) = 1

Point.STDisjoint(Polygon) = 1

CircularString.STDisjoint(LineString) = 1  

Figure 12-10. Testing whether different geometries are disjoint by using STDisjoint() 
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The STDisjoint() method can be used on any two instances of the geometry or geography datatype 
as follows: 

Instance1.STDisjoint(Instance2) 

If the two instances are disjoint (i.e., they share no points in common), then the result of the 
STDisjoint() method is 1. If the two instances have any point in common, the STDisjoint() method 
returns the value 0. 

Let's consider an example to demonstrate the STDisjoint() method. In order to protect and 
preserve the natural environment, many countries designate specific areas of outstanding natural 
beauty, such as national parks, which are governed by special planning restrictions that prevent 
industrial development in those areas. In the following code listing, a Polygon geometry is created 
representing an area of protected countryside in Dorset, England. A LineString geometry is then 
defined representing the proposed route of a new road being developed in the area. The STDisjoint() 
method is used to test whether the road avoids the designated area of countryside. 

DECLARE @Countryside geography; 
SET @Countryside = geography::STPolyFromText( 
  'POLYGON((-2.66 50.67, -2.47 50.59, -2.39 50.64, -1.97 50.58, 
  -1.94 50.66, -2.05 50.69, -2.02 50.72, -2.14 50.75, -2.66 50.67))',  4326); 
 
DECLARE @Road geography; 
SET @Road = geography::STGeomFromText( 
  'LINESTRING(-2.44 50.71, -2.46 50.66, -2.45 50.61 )', 4326); 
 
SELECT 
@Road.STDisjoint(@Countryside); 

The result of the STDisjoint() method is as follows: 

0 

This indicates that, in this case, the road is not disjoint to the protected countryside area, and the 
proposed route must be reconsidered. 

Identifying Specific Types of Intersection 
STIntersection(), Filter(), and STDisjoint() are all generalized tests of intersection between two 
geometries. They do not distinguish the manner or degree in which the geometries intersect; only 
whether they have at least one point in common. In this section, we'll examine methods that test for 
specific types of intersection that can occur between two geometries. 

Determining Whether One Geometry Crosses Another 
The STCrosses() method can be used to test the specific case of intersection where one geometry crosses 
another. In spatial terms, geometry A crosses geometry B when either of the following conditions is met: 

• Geometry B is a Polygon (or CurvePolygon) and geometry A intersects both the 
interior and exterior of that Polygon. Note that this only applies when geometry A 
is a MultiPoint, LineString, Curve, or MultiLineString. If geometry A is also a 
Polygon or CurvePolygon, then this condition would be described as the two 
geometries overlapping. 
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• Geometry A and geometry B are both either LineStrings, Curves, or 
MultiLineStrings, and the geometry created by their intersection occupies zero 
dimensions (i.e., the two geometries intersect each other at a single point, or at 
multiple points, but do not follow each other along a continuous stretch). 

■ Note  A Point cannot cross any object. Two Polygons cannot cross each other, but they may overlap (for more 

information, see the discussion of the STOverlaps() method, later in this chapter). 

Figure 12-11 illustrates a number of scenarios where one geometry crosses another, as tested by 
the STCrosses() method. 

MultiPoint.STCrosses(Polygon) = 1 MultiPoint.STCrosses(LineString) = 1

LineString.STCrosses(Polygon) = 1LineString.STCrosses(CircularString) = 1  

Figure 12-11. Testing cases where one geometry crosses another by using STCrosses() 

■ Caution  The STCrosses() method is not symmetric. For example, a LineString can cross a Polygon, but a 
Polygon cannot cross a LineString. Be sure to specify the instances in the correct order when using the 

STCrosses() method. 

The STCrosses() method can only be used to test whether one geometry instance crosses another. It 
cannot be used to compare two instances of the geography datatype. The syntax for its usage is as 
follows: 

Instance1.STCrosses(Instance2) 

If the two geometry instances satisfy the conditions described previously, then they are deemed to 
cross, and the STCrosses() method returns the value 1. Otherwise, the STCrosses() method returns the 
value 0. 

To demonstrate the use of the STCrosses() method, consider the following example based on the 
London congestion charging zone. In order to reduce traffic in the city, in 2003 the mayor of London 
introduced a congestion zone covering an area in the center of London. Any vehicles entering the zone 
between 07:00 and 18:00 on a weekday are subject to a charge. 

In this example, we will define a Polygon representing the zone in which the charge applies. Then we 
will create a LineString representing the route that a delivery van takes across the city, such as might 
be recorded by a GPS tracking system. We will then use the STCrosses() method to determine whether 
the route taken by the vehicle crosses the congestion zone and thus is subject to the charge. 



CHAPTER 12 ■  TESTING SPATIAL RELATIONSHIPS 

 

316 

DECLARE @LondonCongestionZone geometry; 
SET @LondonCongestionZone = geometry::STPolyFromText( 
  'POLYGON ((-0.12367 51.48642, -0.07999 51.49773, -0.07256 51.51593, 
             -0.08115 51.52472, -0.10977 51.53168, -0.17644 51.51512, 
             -0.21495 51.52631, -0.22672 51.51943, -0.18149 51.48174, 
             -0.12367 51.48642))', 
  4326); 
 
DECLARE @DeliveryRoute geometry; 
SET @DeliveryRoute = geometry::STLineFromText( 
  'LINESTRING( 
    -0.1428  51.5389, -0.1209 51.5190, -0.1171 51.5129, -0.1187 51.5112, 
    -0.1136 51.5047, -0.1059 51.4983, -0.1043 51.4986, -0.1003 51.4946, 
    -0.0935 51.4850, -0.0945 51.4827, -0.0929 51.4713 
  )', 4326); 
 
SELECT 
@DeliveryRoute.STCrosses(@LondonCongestionZone); 

The result of the STCrosses() method, confirming that the route does cross the congestion charging 
zone, is as follows: 

1 

To illustrate the geometries used in this example, you can add the following statement to the end 
of the query: 

SELECT @LondonCongestionZone 
UNION ALL SELECT @DeliveryRoute; 

Switching to the Spatial Results tab displays the illustration shown in Figure 12-12. The LineString 
representing the route taken by the delivery van clearly crosses the Polygon representing the 
congestion charging zone. 

 

Figure 12-12. Illustrating the results of the STCrosses() method for a route across the London congestion 
charging zone 
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Finding Out Whether Two Geometries Touch 
In order for two geometries to touch each other, the intersection between them must contain at least 
one point from the boundary of the geometries in question, but no interior points. You can test whether 
two geometries touch each other by using the STTouches() method. Figure 12-13 illustrates some 
examples of touching geometries. 

Point.STTouches(Polygon) = 1 Point.STTouches(LineString) = 1

LineString.STTouches(Polygon) = 1

MultiPoint.STTouches(LineString) = 1

CircularString.STTouches(LineString) = 1

Polygon.STTouches(Polygon) = 1  

Figure 12-13. Examples of different geometries that touch each other, confirmed by the  
STTouches() method 

Like STCrosses(), the STTouches() method can be used only to compare two instances of the 
geometry datatype, using the following syntax: 

Instance1.STTouches(Instance2) 

If Instance1 touches Instance2, then the STTouches() method returns the value 1, otherwise it 
returns the value 0. 

■ Note  STTouches() is a symmetric method; that is, for any two given instances, 

Instance1.STTouches(Instance2) = Instance2.STTouches(Instance1). 

As an example, Metropolitan France is divided into 21 administrative regions (not including the island of 
Corsica). In the following code listing, Polygon geometries are created to represent the regions of 
Aquitaine and Limousin, using coordinates defined in the Réseau Géodésique Français (RGF) spatial 
reference system, EPSG:2154. The STTouches() method is then used to test whether the two regions touch 
each other. 

DECLARE @Aquitaine geometry; 
SET @Aquitaine = geometry::STPolyFromText('POLYGON ((312120 6262629, 422584 6195898,  
457270 6257031, 435167 6283717, 441086 6321733, 529746 6342627, 539728 6388817,  
568689 6410364, 575744 6438769, 553092 6499585, 523687 6505245, 507807 6508498,  
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459341 6450634, 377913 6498699, 341793 6294740, 312120 6262629))', 2154); 
 
DECLARE @Limousin geometry; 
SET @Limousin = geometry::STPolyFromText('POLYGON ((523687 6505245, 553092 6499585,  
575744 6438769, 605180 6427143, 630819 6434136, 659392 6477532, 653597 6528547,  
668822 6546774, 645133 6588032, 609788 6593674, 537447 6579630, 541419 6542754,  
523687 6505245))', 2154); 
 
SELECT 
@Aquitaine.STTouches(@Limousin); 

The result of the STTouches() method is as follows: 

1 

The geometries created in this example do touch each other, and are illustrated in Figure 12-14, shown 
in relation to an outline map of France. 

Limousin

Aquitaine

 

Figure 12-14. Illustrating the touching French regions of Limousin and Aquitaine 

Testing for Overlap 
Two geometries, A and B, are considered to overlap if the following criteria are all met: 

• Both A and B are the same type of geometry. 

• A and B share some, but not all, interior points in common. 

• The geometry created by the intersection of A and B occupies the same number of 
dimensions as both A and B themselves. 

Figure 12-15 illustrates some scenarios of overlapping geometries. 
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MultiPoint.STOverlaps(MultiPoint) = 1 LineString.STOverlaps(LineString) = 1

CurvePolygon.STOverlaps(Polygon) = 1Polygon.STOverlaps(Polygon) = 1  

Figure 12-15. Examples of geometries that overlap one another, as confirmed using the  
STOverlaps() method 

The STOverlaps() method can be used to test whether two instances of the geography datatype or 
geometry datatype overlap, using the following syntax: 

Instance1.STOverlaps(Instance2) 

The result is a value of 1 (true) if the instances do overlap, or 0 (false) if they do not. 
To demonstrate the STOverlaps() method, consider the U.S. states of Arizona, Colorado, Utah, and 

New Mexico, which all meet at a single point known as the Four Corners. The Four Corners Monument is 
located at this spot, marked by a large circular bronze disk that lies partially in each of the four states, the 
only location in the United States where it is possible to do so. In this example, Polygon instances are 
created to represent each of the four states, and a further CurvePolygon instance is used to represent 
the circular Four Corners Monument (defined by creating a circular buffer of radius 1 meter about a 
Point). The STOverlaps() method is then used to test whether the monument overlaps each of the states. 

DECLARE @States TABLE ( 
  Name varchar(32), 
  Shape geometry 
); 
INSERT INTO @States(Name, Shape) VALUES 
  ('Arizona', geometry::STPolyFromText('POLYGON((500000 4094872, 54963 4106576, 
   -45243 3610718, 309650 3464577, 500000 3462850, 500000 4094872))', 9999)), 
  ('Colorado', geometry::STPolyFromText('POLYGON((500000 4094872, 1123261 4117851, 
   1088915 4562422, 500000 4538757, 500000 4094872))', 9999)), 
  ('Utah', geometry::STPolyFromText('POLYGON((500000 4094872,500000 4538757, 
    331792 4540684, 334361 4651711,85856 4661884, 54963 4106576, 500000 4094872))', 
   9999)), 
  ('New Mexico', geometry::STPolyFromText('POLYGON((500000 4094872, 500000 3462850, 
    576134 3463126, 575729 3518546, 736683 3520990, 726722 3542965, 1067189 3556209, 
    1034127 4111739, 500000 4094872))', 9999)); 
 
DECLARE @Monument geometry 
  SET @Monument = geometry::STPointFromText('POINT(500000 4094872)', 
  9999).BufferWithCurves(1); 
 
SELECT 
Name FROM @States WHERE 
@Monument.STOverlaps(Shape) = 1; 

The result confirms that the monument does overlap all four states: 
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Arizona 
Colorado 
Utah 
New Mexico 

■ Note  It is not easy to choose a projection that can accurately portray the combined areas of Arizona, Colorado, Utah, and 

New Mexico; they do not lie in the same UTM zone, and each one has its own state plane projection system. In order to 
portray the four states with the least amount of distortion, the coordinates in this example are based on a 

transverse Mercator projection as used in the UTM system, but centered on a central meridian of 109° west 
longitude, the line of longitude on which the Four Corners point itself lies. This projection lies between UTM Zones 
12N and 13N and is not a recognized EPSG spatial reference system. Since it does not have an associated spatial 

reference identifier, the SRID 9999 is used instead. 

Testing Whether One Geometry Is Contained Within Another  
Geometry A is said to be within geometry B if the interior of A is completely contained within B. 
Specifically, the two geometries must meet the following criteria: 

• The interiors of both geometries must intersect. 

• No point from geometry A may lie in the exterior of geometry B (although points 
from geometry A may lie in the boundary of B). 

You can use the STWithin() method to test whether one geometry is contained within another 
geometry, as illustrated in the examples in Figure 12-16. 

Point.STWithin(MultiPoint) = 1 Point.STWithin(LineString) = 1

MultiPoint.STWithin(MultiLineString) = 1

Polygon.STWithin(Polygon) = 1

Point.STWithin(CurvePolygon) = 1

LineString.STWithin(Polygon) = 1  

Figure 12-16. Examples of geometries contained within other geometries, as tested using the STWithin() 
method 
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The syntax for the STWithin() method is as follows: 

Instance1.STWithin(Instance2) 

Instance1 and Instance2 may be instances of either the geometry or geography datatype, but they 
both must be of the same type, and defined using the same SRID. The result is the value 1 if Instance1 
lies within Instance2, or 0 if it does not. 

The following example uses a Polygon geometry representing the political ward of Stormont, Belfast. 
A ward is a district of local government in Northern Ireland, for which an individual councilor is 
elected. The points of the Polygon representing the Stormont ward are defined using the Irish 
National Grid system (SRID 29901). The example then demonstrates how the STWithin() method can 
be used to test whether the residents of a particular house represented by a Point, @Constituents, are 
constituents within that ward. 

DECLARE @Stormont geometry; 
SET @Stormont = geometry::STPolyFromText('POLYGON ((338109 373760, 341057 
373912, 341208 375079, 338560 376107, 338109 373760))', 29901); 
 
DECLARE @Constituents geometry; 
SET @Constituents = geometry::STPointFromText('POINT(340275 375032)', 29901); 
 
SELECT @Constituents.STWithin(@Stormont); 

The result indicates that the Point representing the house does lie within the Polygon geometry 
representing the Stormont ward. The residents of that house are therefore constituents of that ward. 

1 

Testing Whether One Geometry Contains Another 
STContains() can be used to test whether one geometry contains another geometry. Geometry A 
contains geometry B if the following criteria are met: 

• The interior of both geometries intersects. 

• None of the points of geometry B lies in the exterior of geometry A. 

The STContains() method provides complementary functionality to the STWithin() method, such 
that a.STContains(b) is logically equivalent to b.STWithin(a). 

■ Caution  In order for geometry A to contain geometry B, it is not sufficient that no point of geometry B lies 
outside of geometry A; to suffice, at least one point of the interior of B must lie in the interior of A. For example, the 

LineString geometry that defines the exterior ring of a Polygon is not contained within that Polygon, since none of 

the points in the LineString lies in the interior of the Polygon, only in its boundary. 

Figure 12-17 illustrates a variety of examples of spatial objects that contain other objects. 
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Figure 12-17. Testing whether one object contains another by using STContains() 

The STContains() method can be used to test whether one instance of the geometry or geography 
datatype, Instance1, contains another geometry of the same datatype and SRID, Instance2, as follows: 

Instance1.STContains(Instance2) 

The result is the value 1 if Instance1 contains Instance2, or 0 if it does not. 
The following example creates a Polygon geometry representing the jurisdiction of the 

Oxfordshire Local Education Authority (LEA)—the local authority responsible for education and library 
services within the county of Oxfordshire, England. It then creates a Point geometry representing a 
school, and uses the STContains() method to determine whether or not the area for which the LEA has 
responsibility contains the school. 

DECLARE @OxfordshireLEA geometry; 
SET @OxfordshireLEA = geometry::STPolyFromText('POLYGON ((478150 178900, 446250 
252400, 419900 209050, 428200 180250, 478150 178900))', 27700); 
 
DECLARE @School geometry; 
SET @School = geometry::STPointFromText('POINT(431400 214500)', 27700); 
 
SELECT @OxfordshireLEA.STContains(@School); 

The result of the STContains() method, confirming that the area for which the authority is 
responsible does contain the school, is as follows: 

1 

Defining Custom Relationships Between Geometries 
For the majority of spatial applications, all of the necessary functionality to compare the relationships 
between two items of spatial data can be provided using the predefined SQL Server methods already 
discussed: STIntersects(), STContains(), STCrosses(), and so on. However, some applications require 
you to define and test for specific, custom spatial relationships between two instances that are not 
catered for by existing methods. In such cases, you can use STRelate(). 
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The STRelate() method allows you to test for a user-defined relationship between two geometry 
instances, using a Dimensionally Extended 9-Intersection Model (DE-9IM) pattern. The DE-9IM model 
is a mathematical matrix that represents each of the possible intersections that can occur between the points 
located in the interior, boundary, and exterior of two geometries. A pattern from the DE-9IM model 
defines the relationship between two geometries based on whether intersection occurs between the 
geometries at each possible intersection and, if so, what the dimension of the resulting intersection is. 
By using one or more of these patterns, it is possible to reproduce the functionality of any of the other 
methods introduced in this chapter, as well as define your own custom relationships. 

The STRelate() function can be used only to compare two instances of the geometry datatype, using 
the following syntax:: 

Instance1.STRelate(Instance2, Pattern) 

Instance1 and Instance2 are instances of the geometry datatype. Pattern is a nine-character string 
pattern from the DE-9IM model that describes the relationship that you want to test. Each character in 
the Pattern string represents the type of intersection allowed at one of the nine possible intersections 
between the interior, boundary, and exterior of the two geometries. The values used in the pattern are 
as follows: 

• T: An intersection must occur between the geometries. 

• F: An intersection must not occur. 

• 0: An intersection must occur that results in a zero-dimensional geometry (i.e., a 
Point or MultiPoint). 

• 1: An intersection must occur that results in a one-dimensional geometry (i.e., a 
LineString, Curve, or MultiLineString). 

• 2: An intersection must occur that results in a two-dimensional geometry (i.e., a 
Polygon, CurvePolygon, or MultiPolygon). 

• *: It does not matter whether an intersection occurs or not. 

To demonstrate how to construct a DE-9IM pattern for use with the STRelate() method, consider 
the intersections between two geometries that must exist for the STWithin() method to return true: 

• The interior of geometry 1 must intersect the interior of geometry 2. It does not 
matter what the dimensions of this intersection are. 

• Neither the interior nor the boundary of geometry 1 is allowed to intersect the 
exterior of geometry 2. 

Using the DE-9IM model, this relationship can be represented by the matrix shown in Table 12-2. 
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Table 12-2. DE-9IM Matrix Representing the STWithin() Method 

 Geometry 2 Interior Geometry 2 Boundary Geometry 2 Exterior 

Geometry 1 Interior T * F 

Geometry 1 Boundary * * F 

Geometry 1 Exterior * * * 

In order to use the relationship stated in this matrix in combination with the STRelate() method, 
we first need to express the values contained in the cells of the matrix as a nine-character string. To do 
this, start at the top-left cell of the matrix and read the values from left to right and from top to bottom. 
For the relationship shown in the matrix in Table 12-2, this produces the pattern: T*F**F***. 

You can test two geometries to see if they exhibit the relationship specified by supplying this 
pattern to the STRelate() method as follows: 

Instance1.STRelate(Instance2, 'T*F**F***') 

If the relationship of the two geometries meets the criteria specified in the pattern, then the 
STRelate() method returns 1. Otherwise, the method returns 0. In this example, the pattern T*F**F*** 
represents the intersections that must exist for one geometry to be contained within another, so 
Instance1.STRelate(Instance2, 'T*F**F***') is equivalent to Instance1.STWithin(Instance2). 

As a practical example, suppose that we want to define and test for a specific type of intersection 
between two geometries, whether two instances are “connected,” let’s say. We’ll define the conditions 
for two geometries to be connected as follows: 

• The boundaries of the two geometries must intersect at one or more points, but 
they must not share a common side. In other words, the intersection between the 
two boundaries must be zero-dimensional. 

• No parts of the interior of either geometry may intersect the other. 

This relationship can be expressed in the DE-9IM matrix shown in Table 13-3. 

Table 12-3. DE-9IM Matrix to Determine Whether Two Geometries Are Connected 

 Geometry 2 Interior Geometry 2 Boundary Geometry 2 Exterior 

Geometry 1 Interior F F * 

Geometry 1 Boundary F 0 * 

Geometry 1 Exterior * * * 
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From this matrix, we can obtain the following DE-9IM pattern: FF*F0****. To demonstrate a 
situation in which you might use this pattern to test whether two geometries are connected, the 
following example creates two LineString geometries representing gas pipelines in Utah, expressed 
using the UTM Zone 12N projection based on the NAD 83 datum (SRID 26912). By supplying the DE-
9IM pattern FF*F0**** to the STRelate() method, the example then checks whether the two pipelines 
are connected or not. 

DECLARE @Pipe1 geometry; 
SET @Pipe1 = geometry::STLineFromText('LINESTRING (446683 4441938, 446878 4442269, 
  447236 4447851, 448057 4448802, 448060 4449019, 447303 4450244, 446746 4450760)', 
  26912); 
 
DECLARE @Pipe2 geometry; 
SET @Pipe2 = geometry::STLineFromText('LINESTRING (437751 4438849, 443022 4438830, 
  444164 4439588, 445240 4439580, 446683 4441938)', 26912); 
 
SELECT 
  @Pipe1.STRelate(@Pipe2,'FF*F0****'); 

The result of the STRelate() method is as follows: 

1 

This result confirms that, in this case, the two geometries satisfy the conditions specified by the 
pattern FF*F0****: the boundaries of both geometries intersect each other, leading to a zero-
dimensional (Point) geometry, and neither the interior nor the boundary of either geometry intersects 
the interior of the other. 

Summary 
In this chapter, you learned about the various methods that can be used to define and test relationships 
between spatial features, including intersection- and proximity-based queries. Most of these methods are 
implemented by both the geometry and geography datatype, but some methods that test for specific sorts of 
intersection, such as STCrosses(), STTouches(), and STRelate(), are implemented only by the geometry 
datatype. 

Remember that, even if a method is implemented in both the geography and geometry datatypes, 
you cannot test the spatial relationships between objects using a different datatype. For example, the 
STDistance() method can be used to calculate the distance between two geometry instances, or between 
two geography instances, but not the distance between a geography and a geometry instance. 

 
 
 
 
 
 
 
 
 
 
 



C H A P T E R  13 
 

■ ■ ■ 

 

327 

Clustering and Distribution 
Analysis 

When dealing with large sets of spatial data (as with other sorts of data) we frequently don't want to 
consider each individual item at its most granular level. A dataset containing the details of hundreds 
of thousands of individual points is not particularly useful for business intelligence or analysis 
purposes, for example. Instead, what is generally required is a way of understanding trends in that 
data, by identifying patterns in the geographic spread and distribution of the underlying items. 

In this chapter, we'll consider ways in which you can create such a summarized view of the 
distribution of a set of spatial data, and also look at methods to cluster that data. Clustering is a 
technique used to collate elements based on their physical proximity and other common attributes so 
that they may be assigned to a discrete collection, or “cluster.” Having grouped a set of data, you can 
then analyze the properties and distribution of clusters rather than the individual items of data 
contained within the clusters. This is one way of facilitating distribution analysis. 

Figure 13-1 illustrates an example of clustering. In the case illustrated, a set of 12 individual 
points is grouped into 4 clusters. 

Clustering

 

Figure 13-1. Clustering a set of points. 

■ Tip  In Chapter 11, we considered spatial aggregates such as UnionAggregate(), which I likened to the SUM 

operator. Using a similar analogy, you can think of clustering as a way to GROUP a set of points. 
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Generally speaking, clustering is performed only on Point data. Since a Point represents a 
singular location in space, every Point in a given set of data can be assigned to one, and only one, 
cluster. However, clustering algorithms can theoretically be applied to any type of geometry, so long 
as care is taken to handle cases where a single item of data might be placed into two or more clusters. 

There are many different clustering algorithms and methods of distribution analysis, with 
varying degrees of complexity and suitability for different datasets. In this chapter we'll consider just a 
few common algorithms and show some of the situations in which they can be used. 

■ Note  “Clustering” referred to in this chapter concerns the allocation of spatial features to distinct groups. It has 

nothing to do with clustering of SQL Server instances! 

SQL Server’s Spatial Histogram Procedures 
Let's start off by considering the tools that come supplied with SQL Server “out-of-the-box.” SQL Server 
includes two system stored procedures that can be used to analyze the physical distribution of a set of 
values of spatial data; these procedures are sp_help_spatial_geography_histogram and its sister, 
sp_help_spatial_geometry_histogram. 

sp_help_spatial_geometry_histogram 
The sp_help_spatial_geometry_histogram procedure can be used to analyze the data contained in a 
specified geometry column of a table. The process it uses is as follows: 

1. Create a rectangular, axis-aligned grid. The extents of the grid are specified by 
the xmin, ymin, xmax, and ymax parameters supplied to the procedure. The size 
of the grid can be chosen to cover the entire geographic extent of a set of data, 
or it can instead be chosen to focus only on just a particular area of interest.  

2. Divide the grid into a number of cells based on the supplied resolution 
parameter. resolution may be any value between 10 and 5,000, and represents 
the number of times the grid will be divided in both the x- and y-dimensions. 
Supplying a resolution parameter of 16 will divide the grid into 256 cells, for 
example. Each resulting cell is a regular-sided geometry Polygon. 

3. Compare the grid of cells to the elements contained in the geometry column of 
a particular table, as specified by the colname and tabname parameters. 

4. Return a table of results in which each row contains the shape of a grid cell and 
an associated cell identifier, together with the count of items from the chosen 
table that intersect the cell in question.  

To consider this process in more detail, let's look at a practical example. Consider what happens 
when you call the sp_help_spatial_geometry_histogram procedure to analyze the distribution of a small 
number of points in a table, as created in the following code listing: 

CREATE TABLE HistogramPoints ( 
  Location Geometry 
); 
INSERT INTO HistogramPoints VALUES 
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  ('POINT(1.5 2.5)'), 
  ('POINT(3 7)'), 
  ('POINT(4 5)'), 
  ('POINT(4.5 5.2)'), 
  ('POINT(4 6)'), 
  ('POINT(5 5)'), 
  ('POINT(9 8)'), 
  ('POINT(7.5 2.5)'), 
  ('POINT(8.2 7.5)'), 
  ('POINT(8.5 6.5)'); 

To visualize the distribution of these Points in the SQL Server Spatial Results tab, add a small 
buffer around each as follows: 

SELECT Location.STBuffer(0.1) FROM HistogramPoints; 

The result is shown in Figure 13-2. 

 

Figure 13-2. Visualizing the distribution of a set of Point geometries 

We can use the sp_help_spatial_geometry_histogram procedure to analyze the distribution of the 
Points in the HistogramPoints table, using a grid that extends between (0,0) and (10,10), divided into 
100 cells as follows: 

EXEC sp_help_spatial_geometry_histogram 
  @tabname = HistogramPoints, 
  @colname= Location, 
  @resolution = 10, 
  @xmin=0, 
  @ymin=0, 
  @xmax=10, 
  @ymax=10; 
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The sp_help_spatial_geometry_histogram procedure will return a table of results containing three 
columns: a unique CellId and geometry Polygon representing the shape of each cell, and a tally of the 
number of elements from the Location column of the HistogramPoints table that intersect that cell. An 
extract of the results follows: 

CellId     Cell                IntersectionCount 
63         0x00000000010405…   1 
73         0x00000000010405…   1 
44         0x00000000010405…   1 
54         0x00000000010405…   2 
64         0x00000000010405…   2 

Having obtained the results, switch to the Spatial Results tab and choose the IntersectionCount 
field to label each Polygon. This allows you to quickly visualize the distribution of data in each grid cell, 
as shown in Figure 13-3. 

 

Figure 13-3. Visualizing the distribution of a set of points using sp_help_spatial_geometry_histogram 

There are a couple of points to note about the output created by sp_help_spatial_geometry_histogram: 

Firstly, although the grid in Figure 13-3 has been divided into 10 columns and 
10 rows (as requested), only those cells that intersect one or more features are 
returned in the results. In this example, the result set contains only 17 out of a 
possible 100 cells. 

Secondly, the count returned for each cell is the count of intersecting features: 
the number of items in the Location column that touch, overlap, or cross, are 
contained within, or completely contain each grid cell. A Point geometry 
placed at the corner where four cells meet will be included in the intersection 
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count of all four cells that it touches. This is demonstrated in this example by 
the four cells at the top right corner of Figure 13-3, all of which intersect the 
same single Point located at (9,8). Therefore, even when dealing with a column 
of only Point data, the sum of the IntersectionCount column returned by 
sp_help_spatial_geometry_histogram may differ from the number of rows in 
the base table. 

The sp_help_spatial_geometry_histogram procedure is helpful in providing a quick overview of the 
distribution of a set of geometry data. The results can also be used as the basis for visualization of the 
distribution; imagine, for example, creating a heatmap from the data shown in Figure 13-3, in which 
cells were colored different shades depending on the count of intersecting items. This would be a very 
effective way of presenting, at a glance, those areas where data was most concentrated. 

Another application where this function can be useful is when analyzing and performance-tuning 
a spatial index placed on a geometry column. By setting the xmin, xmax, ymin, and ymax properties to 
match that of the index bounding box, and setting the resolution parameter to match the grid 
resolution at a particular level of the index grid, you can determine exactly how many items of data fall 
into each grid cell, which is a key principle in creating an effective selective index. Spatial indexes are 
discussed in more detail in Chapter 18. 

sp_help_spatial_geography_histogram 
The sp_help_spatial_geography_histogram procedure, as you've probably guessed, fulfills the same 
purpose as the preceding sp_help_spatial_geometry_histogram procedure, except that it operates on a 
column of geography data. This necessitates a few changes in behavior: 

You do not supply explicit xmin, ymin, xmax or ymax parameters to specify the 
geographic extents of the histogram. Instead, the grid of cells is implicitly 
assumed to cover the entire globe. 

Like with sp_help_spatial_geometry_histogram, you supply a resolution 
parameter that determines how the grid will be divided into a set of cells. 
However, unlike its geometry sister, the grid cells created by 
sp_help_spatial_geography_histogram are not simple rectangular Polygons. 
Owing to the ellipsoidal nature of the geography datatype, before a grid can be 
created the surface of the ellipsoid must be projected onto a plane. The method of 
projection used by sp_help_spatial_geography_histogram first divides the globe 
into two hemispheres. The hemispheres are projected onto separate quadrilateral 
pyramids. These pyramids are then flattened and joined together to make a single 
planar surface, and it is on this surface that the grid of cells is created. This process 
of projection is illustrated in Figure 13-4. It is worth noting that, if you then display 
these cells using another projection of the geography datatype, such as a Mercator 
or Equirectangular projection, they will not appear to form a regular grid. 
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Figure 13-4. Projecting the ellipsoidal surface of the geography datatype onto a plane in order to create a 
grid of cells. 

■ Note  The projection process described here is exactly the same process by which SQL Server creates cells 
used in a spatial index of a column of geography data, which makes sp_help_spatial_geography_histogram a 

useful function for performance-tuning of geography indexes. 

To demonstrate the sp_help_spatial_geography_histogram method, let's consider another practical 
example. Pongamia Pinnata is a species of tree related to the pea family. Unlike its familiar legume 
cousin, the Pongamia Pinnata is highly toxic, although its seeds and fruits are used for other purposes 
including soap-making and the manufacture of oils and other lubricants. 

The following table records a subset of occurrences of Pongamia Pinnata, as published by the 
LifeMapper biodiversity research site (http://www.lifemapper.org). The locations are recorded as 
geography Points, with coordinates measured using the EPSG:4326 spatial reference system. 

CREATE TABLE LifeMapper_PongamiaPinnata ( 
  localId int, 
  location geography 
); 
 
INSERT INTO LifeMapper_PongamiaPinnata VALUES 
(122991120, 'POINT(-81.8266 26.693)'), 
(217094166, 'POINT(-159.8 22.2)'), 
(98482948, 'POINT(143.3 -13.8)'), 
(94907937, 'POINT(143.333 -4.75)'), 
(238638940, 'POINT(121.873 24.9125)'), 
(207685693, 'POINT(121.873 24.9125)'), 
(217095748, 'POINT(-66.0469 18.4065)'), 
(217095749, 'POINT(-66.0469 18.4065)'); 

■ Note  The full LifeMapper dataset for this species is included in the code samples that accompany this book, 

available from the downloads section of the Apress website, http://www.apress.com 
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To analyze the global geographic distribution of the Pongamia Pinnata species as recorded in the 
preceding table, you can use the sp_help_spatial_geography_histogram procedure, as follows: 

EXEC sp_help_spatial_geography_histogram  
  @tabname=LifeMapper_PongamiaPinnata, 
  @colname=location, 
  @resolution=10; 

As with the sp_help_spatial_geometry_histogram procedure, the 
sp_help_spatial_geography_histogram procedure requires the name of the table and column to be 
examined, together with the resolution of the created grid. Notice that you do not supply parameters 
for the extent of the grid; it will always cover the entire globe. Also notice that, as in the example 
earlier, in this code listing I've set the resolution parameter to be 10. The abridged set of results 
obtained from executing this procedure against the full set of Pongamia Pinnata data are as follows: 

CellId   Cell       IntersectionCount 
1        0xE61000…  7 
2        0xE61000…  9 
94       0xE61000…  1 
56       0xE61000…  4 
12       0xE61000…  10 
… 

As with the sp_help_spatial_geometry_histogram procedure, only those cells that intersect at least 
one feature are included in the results. In this case, that's 15 cells. Considering that the grid covers the 
whole globe, and the stated resolution of the grid was set to 10, you might therefore expect each of these 
cells to span (180/10) = 18 degrees of longitude and (90/10) = 9 degrees of latitude. However, switching 
to the Spatial Results tab quickly reveals that this is not the case, as shown in Figure 13-5. 

 

Figure 13-5. The Spatial Results tab view of the distribution analysis created by 
sp_help_spatial_geography_histogram 
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As can clearly be seen in Figure 13-5, when viewed using the Mercator projection the size of the 
cells created by sp_help_spatial_geography_histogram are neither regularly sized nor regularly 
spaced. In fact, because only those cells that intersect features are included in the output, it is quite 
hard to see any pattern in how the cells are arranged at all.  

In order to make sense of the output, it would be helpful if we could visualize the complete grid of 
cells considered by the histogram procedure, even those that did not contain any occurrences of 
Pongamia Pinnata. To do this, we can insert an extra dummy record into the LifeMapper_PongamiaPinnata 
table, containing a single FullGlobe geometry. Since every geography Polygon is guaranteed to intersect 
the FullGlobe, this will ensure that every cell is included in the output. The following T-SQL will insert a 
new record into the LifeMapper_PongamiaPinnata table: 

INSERT INTO LifeMapper_PongamiaPinnata VALUES 
(-1, 'FULLGLOBE'); 

Calling the sp_help_spatial_geography_histogram as before now reveals all 100 of the cells as 
shown in Figure 13-6 (remember also that the count of intersecting items for every cell will now be 
one greater than the true count!): 

 

Figure 13-6. The complete set of cells created by sp_help_spatial_geography_histogram 

It is now much easier to see the geometric pattern of cells created by 
sp_help_spatial_geography_histogram, with the IntersectionCount of each cell giving an indication of 
the geographic spread of the Pongami Pinnata species. 

However, because of the specific nature of the way the grid is created, the results are not necessarily 
of that much use for general distribution analysis because the area covered by each grid cell varies. 
Using a resolution of 10, as in this case, the smallest grid cell occupies 2,481,819 km2 while the largest 
occupies 7,958,745 km2. When performing geographic distribution analysis, we generally want to ensure 
that we quantize the data to a regular-sized set of areas, or else risk skewing the results of any analysis. 

One particular application where sp_help_spatial_geography_histogram is useful (and, in fact, the 
principal reason it was added to SQL Server) is in understanding indexes placed on geography 
columns. The cells in an index of a column of geography data are created using the same technique as 
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used by sp_help_spatial_geography_histogram.  By setting the resolution parameter to match the 
resolution of the grids of an index, you can create and visualize each individual cell, which aids in 
performance tuning, as will be discussed in a later chapter. 

Creating a Customized Distribution Analysis 
The histogram functions described in the preceding section are helpful for giving a broad overview of 
the distribution of the values in a column of spatial data, but they offer little ability to customize that 
analysis. The only way to customize the grid cells used by sp_help_spatial_geometry_histogram and 
sp_help_spatial_geography_histogram is the single resolution parameter, so there is no way to specify 
separate widths and heights for each cell, or to define irregularly shaped grid cells, for example. What's 
more, the only metric returned is the count of items that intersect each cell, and there is no way to link 
the results back to identify the source geometries included in each cell's count. 

In this section, I'll attempt to overcome these shortcomings by creating a custom distribution 
analysis procedure. Rather like sp_help_spatial_geometry_histogram or 
sp_help_spatial_geography_histogram, this function will examine the distribution of values in a 
column of a specified table. However, in order to make the function more customizable and reusable, 
I'll allow the user to specify any pattern of cells against which to tessellate the values in the column. 

The pattern of cells against which the data will be analyzed will be supplied as a Table Valued 
Parameter (TVP) to the procedure. The first step is to define a simple structure for this parameter, as 
follows: 

CREATE TYPE dbo.CellPattern AS TABLE ( 
  CellID int NOT NULL, 
  Cell geometry NOT NULL, 
  PRIMARY KEY(CellID) 
); 

To analyze the distribution of features relative to the supplied pattern of cells, we'll create a 
procedure that uses the STIntersects() method to join from the geometry column of the selected table to 
the table of grid cells. Since the table name and column name will be supplied as parameters to the 
procedure, we'll construct the SQL statement dynamically in the procedure and then execute the query 
using sp_executesql. Dynamically generated SQL statements are very useful when you want to allow the 
flexibility to reuse the same procedure against different columns and tables but they do pose some risks, 
especially if, as in this case, the statement is generated from user-supplied input. In order to prevent 
accidental (or deliberate!) misuse, I've inserted a check that looks into the Information_Schema.Columns 
system view to ensure that the specified table and column exists and is of the geometry type, and that the 
current user has sufficient access to that column. Here's the full procedure: 

CREATE PROCEDURE usp_geometry_distribution_analysis ( 
  @tablename sysname, 
  @columnname sysname, 
  @grid dbo.CellPattern READONLY 
) 
AS 
BEGIN 
  SET NOCOUNT ON; 
 
  -- Ensure the specified geometry column exists in the table 
  IF NOT EXISTS(SELECT 1 FROM Information_Schema.Columns 
    WHERE Table_Name = @TableName 
    AND Column_Name = @ColumnName 
    AND DATA_TYPE = 'geometry' 
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  ) 
  BEGIN 
    RAISERROR('Cannot access geometry column %s in table %s',16,1, @ColumnName, @TableName) 
    RETURN -1; 
  END 
 
  -- Construct a dynamic SQL statement to count the number of items intersecting each 
  -- grid cell 
  DECLARE @sql nvarchar(max) = ''; 
  SET @sql = 'SELECT g.CellId,  
              g.Cell, 
              count.IntersectionCount 
              FROM ( 
                SELECT g.CellId,  
                COUNT(c.' + QUOTENAME(@ColumnName) + ') AS IntersectionCount 
                FROM ' + QUOTENAME(@TableName) + ' c 
                JOIN @grid g ON c.' + QUOTENAME(@ColumnName) + '.STIntersects(g.Cell) = 1 
                GROUP BY g.CellId) count 
              JOIN @grid g ON count.CellId = g.CellId;'; 
 
  -- Execute the statement 
  EXEC sp_executesql @sql, N'@grid dbo.CellPattern READONLY', @grid; 
 
END; 

To use the usp_geometry_distribution_analysis function, you provide three parameters: the name 
of an existing geometry column in a table to be analyzed, and a table parameter containing the cells 
against which you want the distribution to be compared. The example above is for the geometry 
datatype, but it could easily be adapted for the geography datatype as well. 

Before we use the function, we now need a method to create the pattern of cells against which 
features in the table will be compared. This can be a regular grid of cells, such as that used by the 
sp_help_spatial_geometry_histogram procedure, or it could be something more complicated. In the 
following sections, we'll look at a couple of different examples of cell patterns that work well in 
different situations. 

Creating a Regular Grid 
The simplest method of distribution analysis is to consider a regular grid of cells, much like that used 
by SQL Server's own sp_help_spatial_geometry_histogram function. The following code listing 
demonstrates a SQLCLR function that will create a grid of geometry cells covering the full extent of a 
provided geometry Polygon. However, unlike the single resolution parameter of SQL Server's inbuilt 
histogram, this procedure will allow you to specify resolutions for the x- and y-dimensions of each cell 
independently, by dividing the grid into separately specified number of rows and columns. This allows 
you to create a grid of tall thin cells, or wide short cells, for example. Here's the code: 

[Microsoft.SqlServer.Server.SqlProcedure] 
public static void CreateGeometryGrid (SqlGeometry geom, int columns, int rows) 
{ 
 
  // Create a rectangular envelope around the supplied geometry 
  SqlGeometry envelope = geom.STEnvelope(); 
 
  // Get the corner points of the envelope 
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  double minX = (double)envelope.STPointN(1).STX; 
  double minY = (double)envelope.STPointN(1).STY; 
  double maxX = (double)envelope.STPointN(3).STX; 
  double maxY = (double)envelope.STPointN(3).STY; 
 
  // Work out the height and width of the full grid 
  double gridwidth = maxX - minX; 
  double gridheight = maxY - minY; 
 
  // Calculate the width and height of each individual cell 
  double cellwidth = gridwidth / columns; 
  double cellheight = gridheight / rows; 
 
  // Create a new List<> to hold each cell in the grid 
  List<SqlGeometry> Cells = new List<SqlGeometry>(); 
   
  // Loop through rows/columns to create each cell in the grid 
  int x = 0, y = 0; 
  while (y < rows) 
  { 
    while (x < columns) 
    { 
      // Create the polygon grid cell 
      SqlGeometryBuilder gb = new SqlGeometryBuilder(); 
      gb.SetSrid((int)geom.STSrid); 
      gb.BeginGeometry(OpenGisGeometryType.Polygon); 
      gb.BeginFigure(minX + (x * cellwidth), minY + (y * cellheight)); 
      gb.AddLine(minX + ((x + 1) * cellwidth), minY + (y * cellheight)); 
      gb.AddLine(minX + ((x + 1) * cellwidth), minY + ((y + 1) * cellheight)); 
      gb.AddLine(minX + (x * cellwidth), minY + ((y + 1) * cellheight)); 
      gb.AddLine(minX + (x * cellwidth), minY + (y * cellheight)); 
      gb.EndFigure(); 
      gb.EndGeometry(); 
 
      // Add this grid cell to the list 
      Cells.Add(gb.ConstructedGeometry); 
 
      // Move onto the next column 
      x++; 
    } 
 
    // Move onto the next row 
    y++; 
 
    // Reset to the first column 
    x = 0; 
  } 
 
  // Define the metadata of the output table 
  SqlDataRecord record = new SqlDataRecord( 
    new SqlMetaData("CellID", SqlDbType.Int), 
    new SqlMetaData("Cell", SqlDbType.Udt, typeof(SqlGeometry)) 
    ); 
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  // Send the metadata 
  SqlContext.Pipe.SendResultsStart(record); 
 
  // Loop through the completed grid cells 
  for (int c = 0; c < Cells.Count; c++) 
  { 
    // Populate the record with this cell's information 
    record.SetValues(c, Cells[c]); 
 
    // Send the record back to the client 
    SqlContext.Pipe.SendResultsRow(record); 
  } 
 
  SqlContext.Pipe.SendResultsEnd(); 
} 

The geom parameter is used to determine the extent of the grid that will be created. If supplied as a 
rectangular, axis-aligned polygon, geom will define the exact extents of the grid. However, geom can be 
any shaped geometry, in which case the grid will be created based on the extent of the envelope 
around geom. The SRID of the supplied geom parameter must match the SRID of the geometries in the 
column of data that it will be used to analyze.  

Having compiled the function, you can register it in SQL Server as follows: 

CREATE PROCEDURE dbo.CreateGeometryGrid(@geom geometry, @columns int, @rows int) 
AS EXTERNAL NAME Ch13_Clustering.[ProSQLSpatial.StoredProcedures].CreateGeometryGrid; 

You can now use the CreateGeometryGrid procedure to populate a table with a grid of cells. This table 
can then be supplied to the usp_geometry_distribution_analysis function, which will determine how 
many of the features in the base table lie within each of the cells in the provided grid. To test this out, 
let’s start by mirroring the earlier sp_help_spatial_geometry_histogram example, in which we analyzed 
the points in the HistogramPoints table by creating a grid covering the extent from (0,0) to (10,10), 
divided into a resolution of 10 in both dimensions. We can recreate this using the following code listing: 

-- Create a 10x10 grid 
DECLARE @Grid CellPattern; 
DECLARE @BoundingBox geometry = 'POLYGON((0 0, 10 0, 10 10, 0 10, 0 0))'; 
INSERT INTO @Grid 
EXEC dbo.CreateGeometryGrid 
  @geom        = @BoundingBox, 
  @columns     = 10, 
  @rows        = 10; 
 
-- Plug the grid into the distribution analysis procedure 
EXEC usp_geometry_distribution_analysis 
@tablename  = 'HistogramPoints', 
@columnname = 'Location', 
@grid       = @Grid; 

With the exception of the CellId value and the ordering of the records, the result of executing this 
code is exactly the same as achieved earlier using the sp_help_spatial_geometry_histogram procedure, 
and is illustrated in Figure 13-7. 
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Figure 13-7. Results of the usp_geometry_distribution_analysis procedure when applied to a regular grid 
of cells. 

"Why did we go to so much effort to recreate exactly the same result as could be achieved using an 
inbuilt method?" you may well ask. The answer is that our function can now be customized; suppose 
that, instead of using a 10 x 10 grid of cells, you wanted instead to analyze the distribution of the data 
in the HistogramPoints table in a set of horizontal bands. To do so, you could create a grid by calling the 
CreateGeometryGrid procedure with the @columns parameter set to 1, and @rows set to 5, say. Plugging the 
resulting table of cells into usp_geometry_distribution_analysis would then give the result illustrated 
in Figure 13-8. (Note that, although the bounding box is divided into five horizontal bands, no points in 
the HistogramPoints table intersect the lowest band, from (0,0) to (10,2), so this is not displayed in the 
results.) Here's the code listing: 

-- Create a 1x5 grid 
DECLARE @Grid CellPattern; 
DECLARE @BoundingBox geometry = 'POLYGON((0 0, 10 0, 10 10, 0 10, 0 0))'; 
INSERT INTO @Grid 
EXEC dbo.CreateGeometryGrid 
  @geom        = @BoundingBox, 
  @columns     = 1, 
  @rows        = 5; 
 
-- Plug the grid into the distribution analysis procedure 
EXEC usp_geometry_distribution_analysis 
@tablename  = 'HistogramPoints', 
@columnname = 'Location', 
@grid       = @Grid; 
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Figure 13-8. Analyzing the distribution of points into a set of horizontal bands. 

To create even more customized analyses, you don't have to be limited by the regular pattern of 
cells as returned by the CreateGeometryGrid function. Instead, you can create other sorts of pattern, as 
we'll explore in the next section. 

Creating a Bullseye Grid 
Aside from the regular arranged grid pattern of cells as created by CreateGeometryGrid there are other 
common patterns used to analyze the distribution of features in a dataset. Since we designed the 
usp_geometry_distribution_analysis procedure to accept a table of any arrangement of cells as a 
parameter, we can try passing it more exciting types of grid. One alternative possible cell 
arrangement is a dartboard or "bullseye" pattern. 

A bullseye pattern is formed from a series of concentric circles that expand outwards from a 
designated center. The parameters required to create such a pattern are the central point, the total 
number of rings to be created, and the radius by which each subsequent ring extends. The following 
code listing demonstrates a SQLCLR procedure that can be used to create a set number of circular 
geometry CurvePolygons expanding around a point. 

[Microsoft.SqlServer.Server.SqlProcedure] 
public static void CreateGeometryDartboard(SqlGeometry centre, int radius, int numrings) 
{ 
  // Create a List<> to hold the cells 
  List<SqlGeometry> Cells = new List<SqlGeometry>(); 
 
  // Insert the rings into the list 
  for (int x = 0; x < numrings; x++) 
  { 
    // Calculate the "outer" extent of this ring 
    SqlGeometry Ring = centre.BufferWithCurves(radius*(x+1)); 
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    // Calculate the "inner" extent of this ring 
    SqlGeometry Hole = centre.BufferWithCurves(radius * x); 
     
    // Subtract the inner hole from the polygon 
    Ring = Ring.STDifference(Hole); 
 
    // Add this ring onto the list 
    Cells.Add(Ring); 
  } 
 
  // Define the metadata of the output table 
  SqlDataRecord record = new SqlDataRecord( 
    new SqlMetaData("CellID", SqlDbType.Int), 
    new SqlMetaData("Cell", SqlDbType.Udt, typeof(SqlGeometry)) 
    ); 
 
  // Send the metadata 
  SqlContext.Pipe.SendResultsStart(record); 
 
  // Loop through the cells 
  for (int c = 0; c < Cells.Count; c++) 
  { 
    // Populate the record with this cells's information 
    record.SetValues(c, Cells[c]); 
 
    // Send the record back to the client 
    SqlContext.Pipe.SendResultsRow(record); 
  } 
 
  SqlContext.Pipe.SendResultsEnd(); 
} 

You can register the function to create the dartboard of cells as follows: 

CREATE PROCEDURE dbo.CreateGeometryDartboard(@centre geometry, @radius float, @numrings int) 
AS EXTERNAL NAME Ch13_Clustering.[ProSQLSpatial.StoredProcedures].CreateGeometryDartboard; 

As an example of when you might want to use a bullseye grid, consider the example of the 
Fukushima Daiichi nuclear power plant in Japan, which was severely damaged by an earthquake and 
subsequent tsunami in March 2011. The Japanese authorities enforced a 20 km evacuation zone 
immediately surrounding the plant, and encouraged those living within 20 km–30 km of the plant also 
to evacuate. The International Atomic Energy Agency tested levels of radiation at the village of Iitate, 
some 40 km from the site of the plant, which they advised still reached levels exceeding those required 
for evacuation. The U.S. military enforced a rigorous exclusion zone, preventing any personnel from 
going within 80 km of the damaged plant. 

In order to categorize the levels of risk of features located at different distances from the nuclear 
plant, you can use the CreateGeometryDartboard procedure to create a dartboard of cells centered on the 
location of the reactor, with eight expanding circular rings each 10 km apart, as follows: 

DECLARE @Fukushima geometry = geometry::Point(502912, 4141796, 32754); 
 
EXEC CreateGeometryDartboard 
  @centre   = @Fukushima, 
  @radius   = 10, 
  @numrings = 8; 
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The result created by executing this code listing is illustrated in Figure 13-9. 

 

Figure 13-9. A dartboard cell pattern 

The resulting pattern of cells could be plugged into the usp_geometry_distribution_analysis 
procedure in order to identify those settlements that lay within high risk zones, based on their 
proximity to the power plant, for example. 

Defining a Custom Pattern of Cells 
Both the regular grid and dartboard examples demonstrated so far create a programmatically defined 
set of cells based on a set of input parameters: for the grid, this is the bounding box, and the number of 
rows and columns; for the dartboard, the parameters are the center point and number of rings. 
However, sometimes, you might want to define custom irregular areas against which to analyze 
distribution of a set of features. One example of such a custom analysis is a drivetime polygon analysis. 
A drivetime polygon is the area containing all those places that can be reached within a certain time 
from a given point. Due to the irregular nature of the road network, the effect of speed limits on 
different roads, and other factors, these polygons are often far from regular in shape.   

SQL Server does not contain any inbuilt methods to create drivetime polygons (although you 
certainly could create your own custom method to do so if you had the road data available). However, 
you can create drivetime polygons using other tools, such as Microsoft MapPoint, which can then be 
imported into SQL Server. The following C# code listing demonstrates how you can automate 
Microsoft MapPoint (via its COM interface) to create a geography Polygon of all those points within one 
hour's drive of an address at 85 Albert Embankment, London: 

MapPoint.ApplicationClass app = new MapPoint.ApplicationClass(); 
MapPoint.Map map = app.ActiveMap; 
  
object index = 1; 
MapPoint.Location location = 
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(MapPoint.Location)map.FindResults("85 Albert Embankment, London").get_Item(ref index); 
  
// Use Mappoint to create a 60 minute drivetime zone around a location 
MapPoint.Shape shape = map.Shapes.AddDrivetimeZone( 
                         location, 
                         60 * MapPoint.GeoTimeConstants.geoOneMinute); 
 
// Create a new geography builder 
SqlGeographyBuilder gb = new SqlGeographyBuilder(); 
 
// Microsoft Mappoint uses WGS84 coordinates 
gb.SetSrid(4326); 
 
// Start creating a polygon 
gb.BeginGeography(OpenGisGeographyType.Polygon); 
 
// Loop through the vertices for this polygon 
bool firstpoint = true; 
object[] vertices = shape.Vertices as object[]; 
foreach (object vertex in vertices) 
{ 
  MapPoint.Location loc = vertex as MapPoint.Location; 
 
  // First point of polygon must be added with BeginFigure() 
  if(firstpoint) { 
    gb.BeginFigure(loc.Longitude, loc.Latitude); 
    firstpoint = false; 
  } 
  // Subsequent points are added using AddLine() 
  else { 
    gb.AddLine(loc.Longitude, loc.Latitude); 
  } 
} 
 
// Close the polygon by inserting the first point as the last point 
MapPoint.Location endloc = vertices[0] as MapPoint.Location; 
gb.AddLine(endloc.Longitude, endloc.Latitude); 
 
gb.EndFigure(); 
gb.EndGeography(); 
 
return gb.ConstructedGeography; 

The address "85 Albert Embankment, London," used in this example, is the headquarters of the 
British Secret Intelligence Service (MI6). So, let's suppose that the British spy James Bond, codename 
007, is evaluating different properties he's interested in buying, and one of the factors he wants to 
consider is how long it will take him to commute into the office each day. By executing the preceding 
code listing with different parameter values for the AddDrivetimeZone function, he could create a set of 
geography Polygons representing the area within 30-minutes' drive, 60-minutes' drive, 90-minutes' 
drive, and so on of the MI6 building. If he were to do this, he'd get the results as shown in Figure 13-10. 
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Figure 13-10. Drivetime polygon zones of 30 minutes, 60 minutes, and 90 minutes around the MI6 office 
in London. 

By supplying a table containing the drivetime polygon zones as cells to the 
usp_geometry_distribution_analysis procedure, James Bond could identify the number of properties 
falling within each area, for example, which would narrow down his search for the perfect London home. 

k-Means Clustering 
So far in this chapter, we've considered methods that analyze the distribution of values in a column of 
spatial data by comparing them to a set of "cells," either in a regular pattern such as a grid or 
dartboard, or defined by a user. In all these methods, the location, size, and pattern of cells are 
determined independently of, and with no respect to, the distribution of the data itself. It is therefore 
perfectly possible to imagine a situation in which every data item lies within the same grid cell, or 
perhaps within its own unique cell, neither of which are particularly useful outcomes when trying to 
create a descriptive summary of the distribution of the data. 

An alternative method of analyzing a large set of data is to cluster items into groups. One well-
known algorithm for clustering is called k-means clustering. Under this method, a set number (k) of 
initially empty clusters are created. Rather than defining the specific location and bounds within 
which the clusters lie, the clusters are created at arbitrary locations, and every point is assigned to the 
cluster point to which it lies closest. The location of the cluster center point is recalculated as points are 
added to the cluster. In fact, the center of each cluster is defined as the mean average location of all the 
points in that cluster. (Since there are k clusters, this leads to the name, "k-means.") Therefore the 
location of clusters will gravitate towards the locations of the points in the set, and there will generally 
be more clusters in densely populated areas of data and fewer in more sparse areas. This makes k-
means a very useful method for analyzing unevenly distributed datasets. 

The process for allocating points to clusters using k-means clustering is as follows: 

1. Define a chosen number (k) of randomly distributed clusters. 



CHAPTER 13 ■  CLUSTERING AND DISTRIBUTION ANALYSIS 

 

345 

2. Loop through each point in the dataset and allocate it to its nearest cluster. 

3. Once all points have been allocated, calculate the centroid of the points 
allocated to each cluster and set this to be the new center for that cluster. 

4. Repeat Steps 2 and 3 until convergence is reached: that is, when, after all the 
points have been considered, no cluster has been recalculated. 

 To implement this approach in practice, I'll once again turn to a SQLCLR procedure. Before 
getting onto the clustering algorithm itself, let's define a few classes that will be required. Rather than 
store each point in a cluster as a full-blown SqlGeometry instance, we only need a simple structure to 
record the x- and y-coordinates of each point, as follows: 

public class kPoint 
{ 
  public double x, y; 
  public kPoint(double x, double y) 
  { 
    this.x = x; 
    this.y = y; 
  } 
  public kPoint() 
  { 
    this.x = double.NaN; 
    this.y = double.NaN; 
  } 
} 

Operating on each point as a pair of double coordinates in this simple, lightweight kPoint class will 
make the procedure more efficient than representing each point as an unnecessarily complex 
SqlGeometry instance. 

We also need a class structure to represent each cluster. A cluster is defined by the location of its 
centroid and a List<> of the points it contains. It also requires methods to add and remove points from 
the cluster, and to recalculate the centroid location after the set of points has changed. Here's the full 
class definition: 

public class kCluster 
{ 
  public kPoint Centroid; 
  public List<kPoint> Points; 
 
  public kCluster() 
  { 
    this.Centroid = new kPoint(); 
    this.Points = new List<kPoint>(); 
  } 
  public List<kPoint> GetPoints() 
  { 
    return this.Points; 
  } 
  public kPoint GetCentroid() 
  { 
    return this.Centroid; 
  } 
  public void SetCentroid(kPoint p) 
  { 
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    this.Centroid = p; 
  } 
  public void AddPoint(kPoint p) 
  { 
    this.Points.Add(p); 
    this.RecalculateCentroid(); 
  } 
  public void RemovePoint(kPoint p) 
  { 
    this.Points.Remove(p); 
    this.RecalculateCentroid(); 
  } 
  public int NumPoints() 
  { 
    return this.Points.Count; 
  } 
  public kPoint PointN(int n) 
  { 
    return this.Points[n]; 
  } 
  public void RecalculateCentroid() 
  { 
    double n = (double)this.NumPoints(); 
    if (n > 0) 
    { 
      double avgx = (from p in this.Points select p.x).Sum() / n; 
      double avgy = (from p in this.Points select p.y).Sum() / n; 
      this.Centroid = new kPoint(avgx, avgy); 
    } 
  } 
} 

With those class definitions in place, we can get on with the logic of the clustering function itself. 
Rather than supplying a table and a column name, as with the previous distribution analysis function, 
the k-means clustering procedure will operate on a supplied MultiPoint geometry instance 
representing the collection of  points to be clustered, together with an int parameter, k, representing 
the number of clusters into which they should be separated. The procedure returns a table containing a 
unique ID for each cluster, a geometry Point representing its center, and a geometry MultiPoint column 
containing each of the points contained within that cluster. Here's the code for the procedure: 

[Microsoft.SqlServer.Server.SqlProcedure] 
public static void GeometrykMeans(SqlGeometry MultiPoint, int k) 
{ 
  // Check that we aren't creating more clusters than points 
  if (MultiPoint.STNumPoints() < k) 
  { 
    throw new Exception("Number of clusters cannot be greater than number of points"); 
  } 
 
  /** 
   * 1.) Initialisation Step 
   */ 
 
  // Create k empty clusters 
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  List<kCluster> Clusters = new List<kCluster>(); 
  for (int c = 0; c < k; c++) 
  { 
    // Each cluster starts as an empty collection 
    Clusters.Add(new kCluster()); 
  } 
 
  // Assign each point to an arbitrary initial cluster 
  int C = 0; 
  for (int n = 1; n <= MultiPoint.STNumPoints(); n++) 
  { 
    kPoint p = new kPoint( 
      (double)MultiPoint.STPointN(n).STX,  
      (double)MultiPoint.STPointN(n).STY 
    ); 
    Clusters[C].AddPoint(p); 
    C++; 
    if (C >= Clusters.Count) { C = 0; } 
  } 
     
  // Print some debug information 
  SqlContext.Pipe.Send( 
    "There are " + Clusters.Count + " clusters, containing a total of " +  
     MultiPoint.STNumPoints() + " points."); 
 
 
  /** 
   * 2.) Assignment Step 
   * Loop through every point and assign them to their closest cluster 
   */ 
 
  // Keep track of when to break the loop 
  bool convergancereached = false; 
 
  while (!convergancereached) 
  { 
    // On each iteration, assume points won't move clusters 
    convergancereached = true; 
 
    // Loop through every cluster 
    for (int c = 0; c < k; c++) 
    { 
      // Loop through every point in this cluster 
      for (int pointIndex = 0; pointIndex < Clusters[c].NumPoints(); pointIndex++) 
      { 
        // Retrieve the next point  
        kPoint Point = Clusters[c].PointN(pointIndex); 
 
        // Determine the closest cluster for this point 
        int nearestCluster = GetNearestCluster(Point, Clusters); 
 
        // If this is not the cluster in which the point currently lies... 
        if (nearestCluster != c) 
        { 
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          // Add the point to its nearest cluster 
          Clusters[nearestCluster].AddPoint(Point); 
 
          // And remove it from its previous cluster 
          Clusters[c].RemovePoint(Point); 
 
          // A point has changed clusters, so we need to continue iterating 
          convergancereached = false; 
        } 
      } 
    } 
 
    /** 
     * 3.) Update Step 
     * Compute the new centres of each cluster 
     */ 
    for (int c = 0; c < Clusters.Count; c++) 
    { 
      Clusters[c].RecalculateCentroid(); 
    } 
  } 
 
  /** 
   * OUTPUT 
   */ 
  // Set the SRID of the output to match the SRID of the supplied MultiPoint 
  int srid = (int)MultiPoint.STSrid; 
 
  // Define the metadata 
  SqlMetaData[] columns = new SqlMetaData[3]; 
  columns[0] = new SqlMetaData("ClusterID", SqlDbType.Int); 
  columns[1] = new SqlMetaData("Centroid", SqlDbType.Udt, typeof(SqlGeometry)); 
  columns[2] = new SqlMetaData("Points", SqlDbType.Udt, typeof(SqlGeometry)); 
 
  // Create a record to represent an individual row in the output 
  SqlDataRecord record = new SqlDataRecord(columns); 
 
  SqlContext.Pipe.SendResultsStart(record); 
 
  for (int c = 0; c < Clusters.Count; c++) 
  { 
    // Set the ID for this cluster 
    record.SetValue(0, c); 
 
    // Set the Centroid for this cluster 
    SqlGeometry Centroid = SqlGeometry.Point( 
      Clusters[c].GetCentroid().x, 
      Clusters[c].GetCentroid().y, 
      srid); 
    record.SetValue(1, Centroid); 
 
    // Create a MultiPoint containing each point in this cluster 
    SqlGeometry Points = SqlGeometry.STGeomFromText( 
      new SqlChars("GEOMETRYCOLLECTION EMPTY"), srid); 
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    foreach (kPoint p in Clusters[c].GetPoints()) 
    { 
      Points = Points.STUnion(SqlGeometry.Point(p.x, p.y, srid)); 
    }  
    record.SetValue(2, Points); 
 
    // Add this row to the output 
    SqlContext.Pipe.SendResultsRow(record); 
  } 
  SqlContext.Pipe.SendResultsEnd(); 
} 
 
/** 
 * Get the index of the closest cluster to a given point 
 */ 
public static int GetNearestCluster(kPoint p, List<kCluster> Clusters) 
{ 
  double minDistance = double.MaxValue; 
  int nearestClusterIndex = -1; 
 
  for (int x = 0; x < Clusters.Count; x++) 
  { 
    // Calculate the distance to the current cluster 
    double distance = Math.Sqrt(Math.Pow(p.x - Clusters[x].Centroid.x, 2.0) +  
                                Math.Pow(p.y - Clusters[x].Centroid.y, 2.0)); 
 
    // If this Cluster is closer than the previous closest 
    if (distance < minDistance) 
    { 
      // Set this cluster as the closest 
      nearestClusterIndex = x; 
      minDistance = distance; 
    } 
  } 
  return nearestClusterIndex; 
}  

■ Tip  You can download this code listing (together with all the other examples used in the book) in the 

accompanying code samples available from the Apress website, http://www.apress.com 

You can register the GeometrykMeans function in SQL Server as follows: 

CREATE PROCEDURE dbo.GeometrykMeans( 
  @multipoint geometry, 
  @k int) 
AS EXTERNAL NAME Ch13_Clustering.[ProSQLSpatial.StoredProcedures].GeometrykMeans; 

To test out the function, in the code sample that accompanies this book, you'll find a script that 
creates a table containing details of all antisocial behavior incidents reported to the Norfolk Police 
Constabulary during the month of June 2011. The table structure and first few rows of data look like this: 
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CREATE TABLE CrimeReports ( 
  CrimeId int identity(1,1), 
  Location varchar(50), 
  CrimeType varchar(50), 
  Point geometry 
); 
 
INSERT INTO CrimeReports(Location, CrimeType, Point) VALUES 
('On or near Abbey Close', 
  'Anti-social behaviour', 
  geometry::Point(621589,314916,27700)), 
('On or near Abbey Road', 
  'Anti-social behaviour', 
  geometry::Point(579778,322936,27700)), 
('On or near Abbeygate', 
  'Anti-social behaviour', 
  geometry::Point(586696,283429,27700)); 

In order to cluster this data into discrete clusters using the GeometrykMeans procedure, we must first 
create a MultiPoint geometry by aggregating each of the individual point instances in the CrimeReports 
table. This can be done easily using the geometry UnionAggregate() method. Then, execute the 
GeometrykMeans procedure to cluster the aggregated MultiPoint geometry into 10 clusters, as follows: 

DECLARE @ASB geometry; 
SELECT @ASB = geometry::UnionAggregate(Point) FROM CrimeReports; 
EXEC GeometrykMeans 
@multipoint = @ASB, 
@k = 10; 

The result set contains one row for each of the 10 clusters created, as follows: 

ClusterId   Centroid      Points 
0           0x346C000…    0x346C000… 
1           0x346C000…    0x346C000… 
2           0x346C000…    0x346C000… 
3           0x346C000…    0x346C000… 
4           0x346C000…    0x346C000… 
5           0x346C000…    0x346C000… 
6           0x346C000…    0x346C000… 
7           0x346C000…    0x346C000… 
8           0x346C000…    0x346C000… 
9           0x346C000…    0x346C000… 

Unfortunately, since both the centroid at the center of each cluster and the individual items 
contained within each cluster are represented as Point geometries, there isn't a whole lot to see when 
you switch to the spatial results tab. To gain a slightly better understanding of the results, rather than 
returning the results from the GeometrykMeans procedure directly, we can insert them into an 
intermediate table variable, and from there select the convex hull around the points of each cluster 
together with a buffer around the points in each cluster, which will make them distinguishable. This is 
demonstrated in the following code listing: 

-- Create a MultiPoint containing all the points to be clustered 
DECLARE @ASB geometry; 
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SELECT @ASB = geometry::UnionAggregate(Point) FROM CrimeReports; 
 
-- Cluster the points and insert the results into a table variable 
DECLARE @kMeans table ( 
  ClusterID int, 
  Centroid geometry, 
  Points geometry 
  ); 
INSERT INTO @kMeans 
EXEC GeometrykMeans 
@multipoint = @ASB, 
@k = 10; 
 
-- Select the convex hull of the points in each cluster, and buffer the points themselves 
SELECT 
  CAST(ClusterID AS varchar(32)) AS Label, 
  Points.STConvexHull() 
FROM @kMeans 
UNION ALL 
SELECT 
  ' ', 
  Points.STBuffer(200) 
  FROM @kMeans; 

The result is illustrated in Figure 13-11. For those readers not familiar with the geography of 
Norfolk, I can tell you that the k-means algorithm in this case has created clusters around each of the 
main towns and cities in the region—Norwich (Cluster 5), Great Yarmouth (Cluster 0), King's Lynn (8), 
and Thetford (Cluster 1)—suggesting that these are discrete areas in which occurrences of antisocial 
behavior have occurred. Further clusters capture the distribution of antisocial behavior offenses in the 
more remote parts of the county. 

 

Figure 13-11. Clustering achieved as a result of the k-means algorithm. 
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It is worth noting that, although k-means clustering is an effective method to identify discrete 
geographic collections of items from a set of data, there are still subjective elements and possible 
weaknesses with the approach. The most obvious of these is in the selection of an appropriate k value 
for the number of clusters. Using the wrong value for k could lead to clusters being created that don't 
naturally correspond to the spread of the data, or failing to identify clusters that should be recognized 
as separate. You should always exercise care when interpreting results to ensure that you do not try to 
infer trends in the data that don't really exist. 

Summary 
In this chapter you learned about clustering and distribution analysis, ways to analyze and summarize 
the geographic spread of a set of spatial data. 

• SQL Server provides two system stored procedures, 
sp_help_spatial_geography_histogram and sp_help_spatial_geometry_histogram, 
which can be used to determine the number of items from a column of spatial 
data that intersect certain cells in a regular grid. 

• While SQL Server's histogram functions are helpful in providing a basic 
overview, they offer limited customization options. They are most helpful for 
recreating the grids used by geometry and geography indexes in order to aid in 
performance-tuning. 

• I showed you how to create your own distribution analysis procedure that could 
accept any kind of patterned cell input—a regular grid, dartboard pattern, or 
custom polygonal areas—and return the number of items that intersected each cell. 

• Finally, you considered k-means clustering, which is a method to assign every 
point in a dataset to one of a number of discrete clusters. The location of each 
cluster is dynamically determined with respect to the distribution of the points, 
which makes this a good method to group together unevenly distributed data. 
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Route Finding 

Route finding is the process of finding the optimum path through a network from one chosen location 
to another. The most familiar examples of route finding are the journey planning features found on 
in-car satellite navigation systems and travel websites. In such cases, the network in question is 
normally a public road network, and the optimum path is the route from A to B that takes the least 
amount of time, or covers the least distance. 

However, route finding algorithms also have practical uses in many other areas; for example, they 
can be used to plan the most efficient layout of components on a printed circuitboard (where the 
optimum route may be defined as the circuit that generates least resistance), or in designing the most 
effective user interface on a website (where the optimum route may be measured by the navigation 
between two pages that requires the least number of clicks). 

In this chapter, we'll take a look at some of the different methods that can be used to determine 
and evaluate routes in SQL Server, and the ways in which spatial data can be modeled in a network to 
support such an application. 

Graph Theory 
Before getting into the practical details of how to code a route finding algorithm in SQL Server, it is 
worth spending a bit of time considering how to model the network through which that algorithm is 
expected to navigate. 

The way in which data is typically modeled in a route finding system requires graphs. Note that 
the word "graph" used in this sense does not refer to the line graph or bar chart that you might use to 
present data in a report but, rather, to a mathematical model used in the discipline of graph theory. A 
graph, in this context, is defined as a set of nodes connected by edges. 

The edges in a graph can either be directed (i.e., one-way) or undirected, meaning that they can be 
traversed in both directions. Graphs can also have cycles, sets of edges that, when traversed in order, 
take you back to the node where you started. A graph without cycles is called an acyclic graph. Figure 
14-1 shows some examples of simple graphs. 

 

Figure 14-1. Undirected, directed, undirected cyclic, and directed acyclic graphs 
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Graphs of nodes and edges can be used to model lots of different systems: the steps used in a 
manufacturing process, the path taken by packets of data across a computer network, or the 
relationship between people in an organizational hierarchy. In the context of spatial data, the most 
familiar example of a graph is a street map, in which each street is an edge, and the intersections 
between streets are nodes. One-way streets are directed edges, and if you take a walk around the 
block you’ve illustrated a cycle. Therefore, the set of streets used in a route-finding algorithm can be 
modeled as a cyclic directed graph. Graphs can equally be used to model any other transportation 
network; a railway network can be modeled as a graph in which train stations are nodes and the lines 
of track between stations are edges. Similarly, the stops on a bus route, or the airports at which you 
change on a connecting flight can easily be thought of as nodes connected by edges. 

Having conceptually defined a graph that models the nodes and edges in a network, the role of the 
route-finding algorithm is then to determine the edges that must be traversed to get from a given start 
node to a destination node. Additional constraints can be placed on the algorithm, so that the route 
may not be allowed to cross certain edges (consider, for example, a driving route that avoids a 
particular section of road that is currently closed for maintenance).  

If more than one possible path exists between nodes then an optimum route can be determined. 
The simplest optimum path is the one that minimizes the total distance taken, that is, the total length of 
all the edges crossed. However, there are many other factors that you might wish to take into account 
when deciding which route is "optimal." Consider the example of a route across a network of roads: if 
you wanted to get to the destination in a simple efficient manner, you might prefer to select the route 
that maximized the part of the journey spent traveling along motorways, rather than narrow, winding 
country lanes. If you were planning a cycle ride between the same two locations, however, you might 
do the opposite, favoring the route that took the scenic country route instead. Rather than considering 
only the length of each edge, there are many other factors that you can use to apply a "cost" to each 
edge in a road network, including the type of road surface, the degree of uphill or downhill incline, or 
the speed limit for that section of road. Having assigned a relative cost for each of these factors, the 
optimum path is then defined as the one of least total cost. 

Modeling a Street Network 
Having briefly considered the theory behind graph models, let's now crack on with a practical example 
of how to structure this kind of data in SQL Server. For this example, the network I'm going to model 
consists of a set of roads close to my house in the city of Norwich, Norfolk. Figure 14-2 illustrates the 
area in question, as shown on the Bing Maps website (http://www.bing.com/maps). 
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Figure 14-2. Section of the street network in Norwich. 

You have probably already realized that the SQL Server spatial datatypes are ideally suited to 
modeling the individual elements of a network: each node can be represented by a Point geometry, 
and an edge between two nodes corresponds to a LineString whose start and end points are the two 
nodes that it connects. But how should we structure database tables to store an entire network? 

There are several possible approaches, but perhaps the simplest is to use a column of the geometry or 
geography datatype to model all the nodes and edges of a graph in a single table. Each row in the table 
represents an edge in the network, with the shape of that edge represented by a geometry or geography 
LineString. The start and end points of each LineString implicitly represent the nodes connected by that 
edge. Several LineStrings starting at the same point represent multiple edges connected to the same node. 

Since this model provides a simple compact way of storing the network data in a single table, this 
is the first approach that we will consider in this chapter. 

Defining the Street Names 
Although SQL Server is quite comfortable dealing with a map defined in terms of abstract "nodes" and 
“edges,” as humans we generally navigate around using names of streets. To make the output of our 
routing algorithm more human-readable, we'll create a table to store the names of the streets that are 
involved in our network model. The following code listing creates a Streets table containing two 
columns, which record the name of each street and an associated StreetId. 

CREATE TABLE Streets ( 
  StreetID int, 
  StreetName varchar(50) 
  ); 
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To begin with, we'll just add three streets to this table: 

INSERT INTO Streets VALUES 
  (1, 'Agricultural Hall Plain'), 
  (2, 'Prince of Wales Road'), 
  (3, 'Rose Lane'); 

Defining Street Segments (Edges) 
Each street will be comprised of one or more segments that represent the edges of the graph that can 
be traversed. Each segment will be given a unique ID, SegmentID, and will belong to one (and only one) 
street, the ID of which will be recorded in the StreetID column. We'll use the geometry datatype to store 
a LineString representing the shape of each segment, which we'll simply call Segment. Here's the table 
schema that we'll use to record the street segments: 

CREATE TABLE StreetSegments ( 
  SegmentID int, 
  StreetID int, 
  Segment geometry 
  ); 

The following code listing inserts the segments relating to each street in the Streets table: 

INSERT INTO StreetSegments VALUES 
  (1, 1, geometry::STLineFromText('LINESTRING(1.297851 52.6292,1.298398 52.629259,1.298548 
52.629279,1.299058 52.629328)', 4326)), 
  (2, 2, geometry::STLineFromText('LINESTRING(1.299058 52.629328,1.29997 52.629457,1.300898 
52.629452,1.301799 52.62928,1.302212 52.62913)', 4326)), 
  (3, 2, geometry::STLineFromText('LINESTRING(1.302212 52.62913,1.302432 52.629098,1.302598 
52.629028,1.303532 52.628712)', 4326)), 
  (4, 2, geometry::STLineFromText('LINESTRING(1.303532 52.628712,1.304401 52.6284)', 4326)), 
  (5, 2, geometry::STLineFromText('LINESTRING(1.304401 52.6284, 1.306117 52.627821)', 4326)), 
  (6, 3, geometry::STLineFromText('LINESTRING(1.304401 52.6284,1.303327 52.628379)', 4326)), 
  (7, 3, geometry::STLineFromText('LINESTRING(1.303327 52.628379,1.302351 52.628599, 1.301638 
52.62861)', 4326)), 
  (8, 3, geometry::STLineFromText('LINESTRING(1.301638 52.62861,1.299428 52.628089)', 4326)); 

Viewing the Network 
At this point, we can examine the network created so far by running the following code listing in SQL 
Server Management Studio. I've used STBuffer() to buffer each street segment by a small amount to 
make it easier to see on the Spatial Results tab, and concatenated the ID of each segment and the name 
of the street to which it belongs: 

SELECT 
  CAST(ss.SegmentID AS varchar(32)) + ' (' + s.StreetName + ')', 
  ss.Segment.STBuffer(0.00001) 
FROM 
  StreetSegments ss 
  JOIN Streets s ON ss.StreetID = s.StreetID; 

Switching to the Spatial results tab illustrates the road network shown in Figure 14-3. 
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Figure 14-3. Viewing the street network in SQL Server Management Studio 

Note that, as in the case of Rose Lane and Prince of Wales Road, a single street may consist of 
several consecutive edges. The end points of each edge denote intersections at which additional 
streets will be added in the full network. 

Brute-Force Routing in T-SQL 
Now that we've got our sample data in place, let's have a first shot at creating a path-finding 
algorithm. For the purposes of demonstration, let's assume that we want to navigate from Agricultural 
Hall Plain (at the top left of the map) to the end of Rose Lane (at the bottom left). 

To start with, we'll declare two geometry Point variables representing the nodes at the start and 
end points of our route, as follows.  

DECLARE 
  @Start geometry = geometry::STPointFromText('POINT (1.297851 52.6292)', 4326), 
  @End geometry = geometry::STPointFromText('POINT (1.29887 52.62802)', 4326); 

In order to navigate through the network we need to repeatedly look through the edges in the 
street segments table, experimentally traversing across each edge that connects to our current 
location to build up a route until we find the destination node. There are a variety of techniques that 
we could use to write this sort of query: in T-SQL, we could create temporary tables, cursors, or use 
logic operators to control the flow of the query. We could also use a SQLCLR procedure (more on that 
later). However, for this first example, we'll use a recursive query based on a Common Table 
Expression (CTE). A recursive query references itself, repeatedly executing the same query to return 
subsets of data until the complete result set is returned. 

Let’s build the query up bit by bit: first, the anchor part of the CTE will SELECT all those street 
segments (i.e., the edges of our graph) that start at the chosen start point, as follows: 

SELECT 
    @Start AS [From], 
    Segment.STEndPoint() AS [To], 
    Segment 
  FROM dbo.StreetSegments 
  WHERE 
    Segment.STStartPoint().STEquals(@Start) = 1; 

The recursive part of the CTE will select all those subsequent edges that begin where the last edge 
stopped, using the condition ss.Segment.STStartPoint().STEquals(p.[To]) = 1. The recursive member 
is shown in the following listing:  

  SELECT 
    p.[To] AS [From], 
    ss.Segment.STEndPoint() AS [To], 
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    ss.Segment 
  FROM Paths p 
    JOIN dbo.StreetSegments ss ON ss.Segment.STStartPoint().STEquals(p.[To]) = 1 
  WHERE p.[To].STEquals(@End) = 0 -- Stop recursion when we reach the end point 
) 

Finally, once recursion has ended, we select the complete route as follows:  

SELECT 
  [From].STAsText() AS theStart, 
  [To].STAsText() AS theEnd, 
  Segment AS Route 
FROM Paths 

When we put these elements together, we get the full code listing shown following: 

DECLARE 
  @Start geometry = geometry::STPointFromText('POINT (1.297851 52.6292)', 4326), 
  @End geometry = geometry::STPointFromText('POINT (1.29887 52.62802)', 4326); 
 
WITH Paths 
AS 
( 
-- Anchor member 
SELECT 
    @Start AS [From], 
    Segment.STEndPoint() AS [To], 
    Segment 
  FROM dbo.StreetSegments 
  WHERE 
    Segment.STStartPoint().STEquals(@Start) = 1 
 
-- Recursive member 
  UNION ALL 
  SELECT 
    p.[To] AS [From], 
    ss.Segment.STEndPoint() AS [To], 
    ss.Segment 
  FROM Paths p 
    JOIN dbo.StreetSegments ss ON ss.Segment.STStartPoint().STEquals(p.[To]) = 1 
  WHERE p.[To].STEquals(@End) = 0 -- Stop recursion when we reach the end point 
) 
SELECT 
  [From].STAsText() AS theStart, 
  [To].STAsText() AS theEnd, 
  Segment AS Route 
FROM Paths; 

When run against the simple network we've created so far, the output of this query is as follows: 

theStart                     theEnd                       Route 
POINT (1.297851 52.6292)     POINT (1.299058 52.629328)    0xE61000000… 
POINT (1.299058 52.629328)   POINT (1.302212 52.62913)     0xE61000000… 
POINT (1.302212 52.62913)    POINT (1.303532 52.628712)    0xE61000000104… 
POINT (1.303532 52.628712)   POINT (1.304401 52.6284)      0xE61000000… 
POINT (1.304401 52.6284)     POINT (1.306117 52.627821)    0xE61000000… 
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POINT (1.304401 52.6284)     POINT (1.303327 52.628379)    0xE61000000… 
POINT (1.303327 52.628379)   POINT (1.301638 52.62861)     0xE610000001… 
POINT (1.301638 52.62861)    POINT (1.299428 52.628089)    0xE610000001… 

Each row in the results represents an edge that must be traveled in the route between the start and 
end point. The columns show the start and end point of each segment, and the route following that 
segment. Switching to the spatial results tab does indeed show that the query has returned the set of 
edges from start to end point. 

However, there are several problems with this approach: Firstly, the ordering of the output of a 
CTE—just like any other query—is not guaranteed without an ORDER BY clause. In this case, the order of 
results happens to coincide with the order of the segments that must be traversed, but this is only a 
very small dataset and the computer on which I ran the query has only a single processor. On a bigger 
dataset, and/or on a server with multiple processors, the result might have been ordered differently. 

The second problem may not yet be obvious, since there is currently only one possible path 
between the start and end points. Let's see what happens when we extend the network slightly by 
adding some more streets: 

INSERT INTO Streets VALUES 
  (4, 'Cattle Market Street'), 
  (5, 'King Street'), 
  (6, 'St Vedast Street'), 
  (7, 'St Faiths Lane'), 
  (8, 'Market Avenue'); 

And now we'll define the associated street segments: 

INSERT INTO StreetSegments VALUES 
  (9, 4, geometry::STLineFromText('LINESTRING(1.29887 52.62802, 1.298209 52.62802, 1.29792 
52.628089, 1.297749 52.62818, 1.297679 52.628282, 1.297668 52.628647, 1.297701 52.628899, 
1.297851 52.6292, 1.297969 52.62936,1.297947 52.629479)', 4326)), 
  (10, 5, geometry::STLineFromText('LINESTRING(1.299058 52.629328, 1.299229 52.628878, 1.29939 
52.628481, 1.299428 52.628089)', 4326)), 
  (11, 5, geometry::STLineFromText('LINESTRING(1.299428 52.628089, 1.299862 52.627011,1.3002 
52.62656)', 4326)), 
  (12, 6, geometry::STLineFromText('LINESTRING(1.302212 52.62913, 1.301638 52.62861)', 4326)), 
  (13, 7, geometry::STLineFromText('LINESTRING(1.299728 52.629999,1.301102 52.630342,1.301128 
52.62994,1.302968 52.63003,1.30366 52.629676,1.303752 52.629311,1.303532 52.628712)', 4326)), 
  (14, 7, geometry::STLineFromText('LINESTRING(1.303532 52.628712, 1.303327 52.628379)', 
4326)), 
  (15, 8, geometry::STLineFromText('LINESTRING(1.299428 52.628089,1.29887 52.62802)', 4326)), 
  (16, 8, geometry::STLineFromText('LINESTRING(1.29887 52.62802, 1.298312 52.627778, 1.298118 
52.627617, 1.29791 52.627118, 1.297588 52.62685)', 4326)); 

The network now looks like that shown in Figure 14-4. 
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Figure 14-4. The expanded street network. 

Now try to rerun the previous routing CTE query and you will end up with the results shown in 
Figure 14-5: 

 

Figure 14-5. Results of routing through a road network with multiple possible solutions 
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There are now multiple possible routes through the network from the start to the end point. The 
query correctly identifies each possible solution, but the problem is that the edges involved in each 
route are muddled up in the resultset; it's impossible to separate out which edge belongs to which route. 

Tracing The Route 
To solve the problem of not being able to separate out which edge belongs to which route, we need to 
make the CTE "remember" the route that it has already followed on each iteration. To do this, as we 
traverse across each edge through the graph, we will build up a LineString representing the total route 
traveled so far from the start point.  

Sadly, none of the inbuilt geometry methods can be used to programmatically build up a LineString 
from an ordered set of points. Fortunately, the SqlGeometryBuilder can help us; the following code 
listing demonstrates a User-Defined Function, Extend, that will construct a LineString geometry from 
the ordered points of two supplied geometries.  

public static SqlGeometry Extend( 
  SqlGeometry @geom1,  
  SqlGeometry @geom2,  
  SqlInt32 @Offset) 
  { 
    SqlGeometryBuilder gb = new SqlGeometryBuilder(); 
    gb.SetSrid((int)(@geom1.STSrid)); 
    gb.BeginGeometry(OpenGisGeometryType.LineString); 
    gb.BeginFigure( 
      (double)@geom1.STStartPoint().STX, 
      (double)@geom1.STStartPoint().STY); 
    for (int x = 2; x <= (int)@geom1.STNumPoints(); x++) { 
      gb.AddLine((double)@geom1.STPointN(x).STX, (double)@geom1.STPointN(x).STY); 
    } 
    for (int x = 1 + (int)@Offset; x <= (int)@geom2.STNumPoints(); x++) { 
      gb.AddLine((double)@geom2.STPointN(x).STX, (double)@geom2.STPointN(x).STY); 
    } 
    gb.EndFigure(); 
    gb.EndGeometry(); 
    return gb.ConstructedGeometry; 
  } 

The @Offset parameter allows for a set number of points to be omitted from the second geometry. 
In this example, each subsequent edge in the route begins at exactly the same point that the last edge 
ended. By setting an @Offset of 1, we can exclude the first point of the second geometry to prevent 
duplication of that point in the resulting LineString. 

Build and import an assembly containing the Extend function into SQL Server, and register the 
function as follows: 

CREATE FUNCTION dbo.Extend(@geom1 geometry, @geom2 geometry, @offset int) 
RETURNS geometry 
AS EXTERNAL NAME 
ProSpatialCh14.[ProSpatial.Ch14.UserDefinedFunctions].Extend; 

Using the Extend function, we can now identify the separate routes through the network by joining 
together each segment as it is traversed. Because there is now more than one possible route through the 
network, we'll use the ROW_NUMBER function to assign a unique number to each route, and use STLength() 
to order the routes from shortest to longest distance. This is demonstrated in the following code listing: 



CHAPTER 14 ■  ROUTE FINDING 

 

362 

DECLARE 
  @Start geometry = geometry::STPointFromText('POINT (1.297851 52.6292)', 4326), 
  @End geometry = geometry::STPointFromText('POINT (1.29887 52.62802)', 4326); 
WITH Paths 
AS 
( 
SELECT 
    @Start AS [From], 
    Segment.STEndPoint() AS [To], 
    Segment, 
    Segment AS RunningSegment 
  FROM dbo.StreetSegments 
  WHERE 
    Segment.STStartPoint().STEquals(@Start) = 1 
  UNION ALL 
  SELECT 
    p.[To] AS [From], 
    ss.Segment.STEndPoint() AS [To], 
    ss.Segment, 
    dbo.Extend(p.RunningSegment, ss.Segment, 1) 
  FROM Paths p 
    JOIN dbo.StreetSegments ss ON ss.Segment.STStartPoint().STEquals(p.[To]) = 1 
  WHERE p.[To].STEquals(@End) = 0 -- Stop recursion when we reach the end point 
) 
SELECT 
  ROW_NUMBER() OVER(ORDER BY RunningSegment.STLength()) AS 'Route Num', 
  RunningSegment.STLength() AS Length, 
  RunningSegment.STAsText() AS RouteWKT, 
  RunningSegment.STBuffer(RunningSegment.STLength()/100) AS Route 
FROM Paths 
WHERE [To].STEquals(@End) = 1; 

Rather than return a set of individual edges, each row in the results now represents a distinct 
complete route across the network from the chosen start point to the end point, with the optimum route 
(i.e., in this case, the route of minimum length) listed first, as follows: 

Route Num  Length       RouteWKT                        Route 
1          0.008026955  LINESTRING(1.297851 52.6292, …  0xE6100000010… 
2          0.010745532  LINESTRING(1.297851 52.6292, …  0xE6100000010… 
3          0.012352007  LINESTRING(1.297851 52.6292, …  0xE6100000010… 

Avoiding Cycles 
Unfortunately, there is still a major problem with this approach. Consider what would happen if we 
were to add a new edge to the graph as follows: 
INSERT INTO StreetSegments VALUES 
(16, 5, geometry::STLineFromText('LINESTRING(1.299428 52.628089, 1.29939 52.628481, 1.299229 
 52.628878, 1.299058 52.629328)', 4326)); 

This edge creates a cycle, an endless loop in the graph, as shown in Figure 14-6.  
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Figure 14-6. The street network contains a cycle 

Executing the previous route finding query against a cyclic graph will result in an error, because 
the recursive CTE will attempt to retrace the same edge segments over and over. To prevent this 
problem, when considering which edges can be traversed from a given node we need to exclude any 
edge that has already been crossed during this route. This condition can be incorporated into the query 
by using the STContains() method in the recursive member to check that the RunningSegment does not 
contain the current Segment edge. This condition is highlighted in bold in the following code listing: 

DECLARE 
  @Start geometry = geometry::STPointFromText('POINT (1.297851 52.6292)', 4326), 
  @End geometry = geometry::STPointFromText('POINT (1.29887 52.62802)', 4326); 
WITH Paths 
AS 
( 
SELECT 
    @Start AS [From], 
    Segment.STEndPoint() AS [To], 
    Segment, 
    Segment AS RunningSegment 
  FROM dbo.StreetSegments 
  WHERE 
    Segment.STStartPoint().STEquals(@Start) = 1 
  UNION ALL 
  SELECT 
    p.[To] AS [From], 
    ss.Segment.STEndPoint() AS [To], 
    ss.Segment, 
    dbo.Extend(p.RunningSegment, ss.Segment, 1) 
  FROM Paths p 
    JOIN dbo.StreetSegments ss ON ss.Segment.STStartPoint().STEquals(p.[To]) = 1 
  WHERE p.[To].STEquals(@End) = 0 -- Stop recursion when we reach the end point 
  AND p.RunningSegment.STContains(ss.Segment) = 0 -- Make sure we haven't already included 
this path in the route 



CHAPTER 14 ■  ROUTE FINDING 

 

364 

) 
SELECT 
  ROW_NUMBER() OVER(ORDER BY RunningSegment.STLength()) AS 'Route Number', 
  RunningSegment.STLength() AS Length, 
  RunningSegment.STAsText() AS RouteWKT, 
  RunningSegment.STBuffer(RunningSegment.STLength()/100) AS Route 
FROM Paths 
WHERE [To].STEquals(@End) = 1; 

Allowing for Direction 
Currently, we are modeling our road network as a directed graph. This means that the LineStrings in 
every row of the StreetSegments table are considered to have a one-way direction of travel. The 
algorithm will traverse a LineString from the start point to the end point, but not reverse the journey 
from the end point back to the start point. 

In terms of a road network, our model defines every road as a one-way street, allowing traffic 
only in the direction in which the LineString has been defined. While this might make sense for some 
sorts of transport network, generally speaking, most roads can be traveled in either direction. So how 
do we account for this? 

One approach would be to modify the query so that it checked for edges that either start or end at 
the current node. In either case, we would then define the "To" node as the point that lay at the 
opposite end of the LineString. For example, the anchor member of the CTE could be modified as 
follows: 

SELECT 
  @Start AS [From], 
  CASE 
    WHEN Segment.STStartPoint().STEquals(@Start) = 1 THEN Segment.STEndPoint() 
    ELSE Segment.STStartPoint() 
  END AS [To], 
  Segment, 
  Segment AS RunningSegment 
FROM dbo.StreetSegments 
WHERE 
  Segment.STStartPoint().STEquals(@Start) = 1 
  OR 
  Segment.STEndPoint().STEquals(@Start) = 1 

A similar change would also have to be made to the recursive member. However, the effect of these 
changes would be then to treat the entire graph as undirected, which might not be desirable. In doing 
so, we would lose the ability to define one-way streets, or define junctions at which you could only turn 
right (or left), for example. 

Another alternative would be to maintain the directed nature of the graph but insert additional 
edges into the table as necessary to represent valid routes. Every two-way road, for example, would 
then be represented by a pair of edges, one for each direction of travel. This model would support one-
way roads (which would only have one edge) and also, because each LineString now represents a 
carriageway of a road rather than the road itself, would allow for the modeling of dual carriageways 
where the two carriageways of travel were physically separated. This model provides the most 
flexibility, but has a disadvantage in that (assuming most roads are indeed two-way) it would require 
nearly double the amount of rows to be added to the StreetSegments table. A compromise might be 
instead to insert an additional flag column into the edges table denoting whether an edge was 
directed or not, which would be taken into account at the query stage. This would make the query 
slightly more intensive, but would save storage space. 
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A*: A More Efficient Routing Algorithm? 
After a few iterations, we have created a reasonable attempt at a route finding procedure in T-SQL; it 
avoids cycles and returns every possible route through a network between two specified points, ranked 
in ascending order of distance. However, the approach taken relies on dumb, brute force; it evaluates 
every possible combination of paths through the network in order to find the valid routes, and then 
assesses the best performing one. It makes no attempt to find the route in an efficient or logical manner 
(by traveling in the direction of the destination, for example), but rather expands outwards in all 
directions, considering all valid nodes until the destination is reached. This approach is almost certainly 
not scalable in a production application, as the number of possibilities would grow exponentially with the 
number of nodes and edges added to the network. What's more, a recursive CTE is probably not the most 
appropriate construct if we start to add more logic to the procedure or operate on a significant volume of 
data. Although it is possible to create a CTE that recurses infinitely (by setting the MAXRECURSION query hint 
with a value of 0) doing so creates the risk of a never-ending, unresponsive query. 

In an attempt to improve the performance and robustness of our route finding function, we'll now 
implement a different algorithm, known as the A* (pronounced "A star") algorithm. Unlike the 
previous brute force approach, which is guaranteed to find the optimal route (eventually), the A* 
algorithm attempts to balance the cost (in terms of the effort required to traverse the route) of the 
result returned against the cost (in terms of the amount of processing required) to calculate that route. 
Rather than generate and evaluate all possible routes in order to find the optimum solution, A* 
attempts, at every intersection, to follow those edges that are more likely to lead to the destination. As 
soon as the first route that leads to the destination is found, the algorithm stops and returns that route. 
This means that A* may not always return the optimum route, but it should return a "good-enough" 
route in a faster time than using the previous brute-force method. 

Because we need to involve logic and relatively complex conditions to control the flow of the A* 
algorithm, we'll not use T-SQL but instead create a SQLCLR stored procedure. Over the next few 
sections I'll discuss different aspects of the implementation of the A* algorithm in isolation, before 
showing you the complete code sample necessary to create the procedure. 

Heuristics 
In order to determine the route that leads to the destination most efficiently A* requires some additional 
properties about each node in the network. Specifically, A* uses an heuristic, a value assigned to each 
node used to determine whether it is likely to lie on the optimum route to the destination. 

The additional properties of each node used in the A* algorithm are generally denoted by the 
identifiers h, g, and f, as follows: 

h is an estimate of the remaining cost from this node to the goal (the true cost 
cannot be known until after the route is found). There are many ways of 
calculating this estimate but it is important that, whatever method is used, the 
value of h must not exceed the true cost to the goal (in other words, it must 
always underestimate or, at best, be exactly equal to the true cost). Since we 
know where the destination node is (but not how to get there), one possible 
heuristic is to calculate the straight line distance from any node directly to the 
destination node. Since, in our model, distance = cost, we can be certain that 
this estimate will be less than or equal to the true cost of the route from this 
node to the destination, since there can be no route of less cost to get to the 
goal than a straight line. In SQL Server, we can calculate this heuristic easily 
using the STDistance() method. 

g is the distance already traveled from the start node to the current node, as 
measured along the edges traveled through the graph. Where there is more 
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than one route found from the start point to a given node, the g value of that 
node is the length of the shortest route found so far. 

f is the sum of g + h. It represents the best estimate of the total length of the 
route from the start point to the goal that passes through this node. 

Figure 14-7 illustrates a network consisting of 7 nodes: a start and end point, and five other nodes 
labeled A–E. Suppose that the A* algorithm has begun to identify possible paths through the network 
from the start point to the end point. Solid lines represent the (known) length of edges between nodes 
that have been calculated so far, while dotted lines represent the shortest straight line estimate from 
each node to the destination. 
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Figure 14-7. A* traversal through a network 

As shown in Figure 14-7, there are three nodes that could potentially lie on the optimum path from 
the start to the end point, with the following properties: 

• Node D has an estimated remaining distance to the end point (h) of 5, and a 
distance traveled thus far (g) of 4 (1 + 2 + 1). Therefore, its f score is 9. 

• Node E has h of 5 and g of 3 (1 + 2). Therefore, f is 8. 

• Node C has h of 3 and g of 8. Therefore f is 11. 

At this point in time, Node E has the lowest f score, so it is the node most likely to lead to an 
optimum route to the goal. Therefore, those edges that lead from E will be considered in the next 
iteration through the algorithm. 

The nodes used in an A* algorithm can be modeled with f, g, and h scores using a simple class as 
shown in the following code snippet: 

private class AStarNode : IComparable 
{ 
  public int NodeID; 
  public int ParentID; 
  public double f; // the total estimated cost of reaching the goal through this node 
  public double g; // the cost of the route so far from the starting point to this node 
  public double h; // the estimated remaining cost from this point to the destination route 
 
  // Constructor 
  public AStarNode(int NodeID, int ParentID, double g, double h) 
  { 
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    this.NodeID = NodeID; 
    this.ParentID = ParentID; 
    this.f = g + h; 
    this.g = g; 
    this.h = h; 
  } 
 
  // Implement the iComparable interface to sort nodes by ascending f score 
  int IComparable.CompareTo(object obj) 
  { 
    AStarNode other = (AStarNode)obj; 
    if (this.f < other.f) 
      return -1; 
    else if (this.f > other.f) 
      return 1; 
    else 
      return 0; 
  } 
} 

Restructuring the Data 
Whereas the primary structures in the brute-force approach were the edges in the graph that were 
defined in the StreetSegments table, the A* algorithm is instead primarily focused on considering the 
nodes of the network. In order to allow the A* algorithm to work in an efficient manner, we therefore 
need to make a few changes to the underlying structure used to store our network model. 

Rather than use a single StreetSegments table to define the edges of the graph and only implicitly 
define the nodes to which each edge connects using the STStartPoint() and STEndPoint() methods, we 
will create a new table that explicitly defines the nodes, as follows: 

CREATE TABLE Nodes ( 
  NodeID int NOT NULL, 
  geog4326 geography NULL 
); 

The Edges table will contain details of all the edges that connect pairs of nodes. Rather than 
joining from the Edges table to the Nodes table on the geog4326 column, which would require a 
relatively expensive spatial function, we'll instead reference the nodes at the start and end of each 
edge by their unique integer IDs, which will make traversal through the network significantly more 
efficient. 

CREATE TABLE Edges ( 
  EdgeID int NOT NULL, 
  Name varchar(50), 
  FromNodeID int NOT NULL, 
  ToNodeID int NOT NULL, 
  geog4326 geography NOT NULL 
); 

You can find a script to populate these tables in the code download that accompanies this book. The 
script builds a network containing approximately 1,000 nodes and 2,000 edges representing the streets 
of the city of Norwich, constructed from data retrieved from Open Street Map (http://www.osm.org). You 
can examine the street network used in this example by executing the following: 



CHAPTER 14 ■  ROUTE FINDING 

 

368 

SELECT geog4326 
FROM Edges 
UNION ALL 
SELECT geog4326.STBuffer(10) 
FROM Nodes; 

The result is shown in Figure 14-8. 

 

Figure 14-8. Nodes and Edges forming the Norwich road network 

Before getting on to the A* algorithm itself, we'll create a couple of supporting stored procedures. 
The first procedure will be used to identify all those nodes that are connected to a given node. The 
GetNodesAccessibleFromNode procedure will return the ID of any accessible nodes, the length of the 
edge that must be crossed to reach that node, and its geographic location. These facts will be used to 
calculate the g and h scores for that node, respectively: 

CREATE PROCEDURE GetNodesAccessibleFromNode  
  @NodeID int 
AS 
BEGIN 
  SET NOCOUNT ON; 
 
  SELECT 
    ToNodeID, 
    geog4326.STLength(), 
    geog4326.STEndPoint() 
  FROM 
    Edges 
  WHERE 
    FromNodeID = @NodeID; 
END; 
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The second procedure will return (if one exists) the LineString edge that connects a given pair of 
nodes: 

CREATE PROCEDURE GetEdgeBetweenNodes 
  @NodeID1 int, 
  @NodeID2 int 
AS 
BEGIN 
  SET NOCOUNT ON; 
 
SELECT 
  geog4326 
FROM 
  Edges 
WHERE 
  FromNodeID = @NodeID1 
  AND ToNodeID = @NodeID2; 
END; 

The GetEdgeBetweenNodes procedure will be used to build up the route from the start node to the goal. 

Traversing Across the Network 
The A* algorithm makes use of two lists to keep track of the nodes in the network: the open list and the 
closed list.  

The open list holds the set of nodes that have been discovered so far, but have 
yet to be assessed. When the A* algorithm begins, the only node on the open list 
is the start node (since, at that point in time, that is the only node that is 
known). 

The closed list holds the set of nodes that have been discovered, visited, and 
fully expanded; that is, all of the possible successors to that node have been 
identified already and added to the open list, and there is no more information 
to discover about this node.  

For simplicity, I'm going to implement the Open List as a List collection containing instances of 
the AStarNode class decribed earlier: 

      List<AStarNode> OpenList = new List<AStarNode>(); 

For the closed list, I'll instead use a Dictionary, in which the AStarNode elements are keyed by ID. 
This will facilitate quicker scanning through the collection to find if a given Node has already been 
visited. 

      Dictionary<int, AStarNode> ClosedList = new Dictionary<int, AStarNode>(); 

■ Note  The structures I'm using for this code example are chosen for their ease of use and understandability 
rather than for performance reasons. If you wanted to implement the A* algorithm in a production application, 

you'd probably prefer to implement the open list as a priority queue or similar structure. 
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A* is an iterative algorithm. On every iteration, the node on the open list with the lowest f score is 
chosen as the next node to be visited. Based on the information known at the time, this is the node with 
the best chance of leading to the shortest route to the goal. The node is first checked to see whether it is 
the goal node; if so, we have found a route through the network! If not, we instead look for all the 
potential "successor" nodes from the current node: if we follow the edges connected to this node, to 
what other nodes do they lead us? For this, we'll use the GetNodesAccessibleFromNode stored procedure 
created earlier. This is demonstrated in the following code snippet: 

// While there are open nodes to assess 
while (OpenList.Count > 0) 
{ 
 
  // Sort the list of open nodes by ascending f score 
  OpenList.Sort(delegate(AStarNode p1, AStarNode p2) 
  { return p1.f.CompareTo(p2.f); }); 
 
  // Consider the node at the top of the list (i.e. node with lowest f score) 
  AStarNode NodeCurrent = OpenList[0]; 
 
  // Is this node the goal node? 
  if (NodeCurrent.NodeID == GoalID) 
  { 
    //  GOAL FOUND! 
    break; 
  } 
 
  // Goal not found yet. Identify all possible successors to this node 
  List<AStarNode> Successors = new List<AStarNode>(); 
 
  conn.Open(); 
 
  using (SqlCommand cmdSelectSuccessors = new SqlCommand("GetNodesAccessibleFromNode", 
                                                         conn)) 
  { 
    // Identify all nodes accessible from the current node 
    cmdSelectSuccessors.CommandType = CommandType.StoredProcedure; 
    SqlParameter CurrentNodeOSODRparam = new SqlParameter("@NodeID", SqlDbType.Int); 
    CurrentNodeOSODRparam.Value = NodeCurrent.NodeID; 
    cmdSelectSuccessors.Parameters.Add(CurrentNodeOSODRparam); 
 
    using (SqlDataReader dr = cmdSelectSuccessors.ExecuteReader()) 
    { 
      while (dr.Read()) 
      { 
        // Create a node for this potential successor    
        AStarNode SuccessorNode = new AStarNode( 
          dr.GetInt32(0), // NodeID 
          NodeCurrent.NodeID, // Successor node is a child of the current node 
          NodeCurrent.g + dr.GetDouble(1), // Distance from current node to successor 
          (double)(((SqlGeography)dr.GetValue(2)).STDistance(endGeom)) 
        ); 
  
        // Add the end of the list of successors 
        Successors.Add(SuccessorNode); 
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      } 
    } 
  } 
  conn.Close(); 

Having identified the list of possible successors, we then need to categorize them. Each potential 
successor node can be classified according to one of three possibilities: 

• The node is already on the closed list. That is to say, it has already been visited and 
all its successors have been identified. In this case, we do not need to consider this 
node any further. 

• The node already lies on the open list, which signifies that we have already 
identified at least one alternative possible route to reach that node, but the node 
itself has not been examined yet. In this case, we compare the g score of reaching 
that node from the current route to the g score on the open list. If this is a more 
efficient route to the node (i.e., lower g score) then the value on the open list is 
updated. 

• The node is not currently on the open or closed lists, and is a “new” node previously 
unknown to the algorithm. In this case, the node is added to the open list. 

This logic is demonstrated in the following code snippet:  

foreach (AStarNode NodeSuccessor in Successors) 
{ 
  // Keep track of whether we have already found this node 
  bool found = false; 
 
  // If this node is already on the closed list, it doesn't need to be examined further 
  if (ClosedList.ContainsKey(NodeSuccessor.NodeID)) 
  { 
    found = true; 
  } 
 
  // If we didn't find the node on the closed list, look for it on the open list 
  if (!found) 
  for (int j = 0; j < OpenList.Count; j++) 
  { 
    if (OpenList[j].NodeID == NodeSuccessor.NodeID) 
    { 
      found = true; 
      // If this is a cheaper way to get there 
      if (OpenList[j].h > NodeSuccessor.h) 
      { 
        // Update the route on the open list 
        OpenList[j] = NodeSuccessor; 
      } 
      break; 
    } 
  } 
 
  // If not on either list, add to the open list 
  if (!found) 
  { 
    OpenList.Add(NodeSuccessor); 
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  } 
} 

Once all the successor nodes of a given node have been examined and categorized, the current 
node itself can be moved onto the closed list. 

OpenList.Remove(NodeCurrent); 
ClosedList.Add(NodeCurrent.NodeID, NodeCurrent); 

The preceding steps are repeated until either the goal node is found, or until there are no more 
nodes left on the open list to consider, in which case we can conclude that there is no route through the 
network from the start node to the goal node. If the goal node is found, then the optimum route path is 
built up by recursing back through the parent nodes of each goal on the route, calling the 
GetEdgeBetweenNodes procedure to retrieve the LineString edges of each segment along the route. 

if (NodeCurrent.NodeID == GoalID) 
{ 
 
  // Reconstruct the route that led here 
  // Keep a list of the edges traversed to get to the goal 
  List<SqlGeography> route = new List<SqlGeography>(); 
  int parentID = NodeCurrent.ParentID; 
 
  // Keep looking back through nodes until we get to the start node (parent -1) 
  while (parentID != -1) 
  { 
    conn.Open(); 
 
    using (SqlCommand cmdSelectEdge = new SqlCommand("GetEdgeBetweenNodes", conn)) 
    { 
      // Retrieve the edge from this node to its parent 
      cmdSelectEdge.CommandType = CommandType.StoredProcedure; 
      SqlParameter fromOSODRparam = new SqlParameter("@NodeID1", SqlDbType.Int); 
      SqlParameter toOSODRparam = new SqlParameter("@NodeID2", SqlDbType.Int); 
      fromOSODRparam.Value = NodeCurrent.ParentID; 
      toOSODRparam.Value = NodeCurrent.NodeID; 
      cmdSelectEdge.Parameters.Add(fromOSODRparam); 
      cmdSelectEdge.Parameters.Add(toOSODRparam); 
 
      object edge = cmdSelectEdge.ExecuteScalar(); 
      SqlGeography edgeGeom; 
      if (edge != null) 
      { 
        edgeGeom = (SqlGeography)(edge); 
        route.Add(edgeGeom); 
      } 
    } 
 
    conn.Close(); 
 
    // Step backwards to the previous node in the route 
    NodeCurrent = ClosedList[parentID]; 
    parentID = NodeCurrent.ParentID; 
  } 
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  // Send the results back to the client 
  SqlMetaData ResultMetaData = new SqlMetaData( 
    "Route", SqlDbType.Udt, typeof(SqlGeography) 
  ); 
  SqlDataRecord Record = new SqlDataRecord(ResultMetaData); 
  SqlContext.Pipe.SendResultsStart(Record); 
  // Loop through route segments in reverse order 
  for (int k = route.Count - 1; k >= 0; k--) 
  { 
    Record.SetValue(0, route[k]); 
    SqlContext.Pipe.SendResultsRow(Record); 
  } 
  SqlContext.Pipe.SendResultsEnd(); 
 
  return; 
} 

Putting It All Together 
The following code listing combines the snippets given previously to create the complete code 
required for a SQLCLR procedure that implements that A* algorithm to traverse the network of roads 
in the Edges and Nodes tables. 

[Microsoft.SqlServer.Server.SqlProcedure] 
public static void GeographyAStar(SqlInt32 StartID, SqlInt32 GoalID) 
{ 
 
  /** 
   * INITIALISATION 
   */ 
  // The "Open List" contains the nodes that have yet to be assessed 
  List<AStarNode> OpenList = new List<AStarNode>(); 
 
  // The "Closed List" contains the nodes that have already been assessed 
  // Implemented as a Dictionary<> to enable quick lookup of nodes 
  Dictionary<int, AStarNode> ClosedList = new Dictionary<int, AStarNode>(); 
 
  using (SqlConnection conn = new SqlConnection("context connection=true;")) 
  { 
    conn.Open(); 
 
    // Retrieve the location of the StartID 
    using (SqlCommand cmdGetStartNode = new SqlCommand("SELECT geog4326 FROM Nodes WHERE   
                                                         NodeID = @id", conn)) 
    { 
      SqlParameter param = new SqlParameter("@id", SqlDbType.Int); 
      param.Value = StartID; 
      cmdGetStartNode.Parameters.Add(param); 
      object startNode = cmdGetStartNode.ExecuteScalar(); 
      if (startNode != null) 
      { 
        startGeom = (SqlGeography)(startNode); 
      } 
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      else 
      { 
        throw new Exception("Couldn't find start node with ID " + StartID.ToString()); 
      } 
    } 
 
    // Retrieve the location of the GoalID; 
    using (SqlCommand cmdGetEndNode = new SqlCommand("SELECT geog4326 FROM Nodes WHERE 
                                                       NodeID = @id", conn)) 
    { 
      SqlParameter endparam = new SqlParameter("@id", SqlDbType.Int); 
      endparam.Value = GoalID; 
      cmdGetEndNode.Parameters.Add(endparam); 
      object endNode = cmdGetEndNode.ExecuteScalar(); 
      if (endNode != null) 
      { 
        endGeom = (SqlGeography)(endNode); 
      } 
      else 
      { 
        throw new Exception("Couldn't find end node with ID " + GoalID.ToString()); 
      } 
    } 
 
    conn.Close(); 
 
    // To start with, the only point we know about is the start node 
    AStarNode StartNode = new AStarNode( 
      (int)StartID, // ID of this node 
      -1, // Start node has no parent 
      0, // g - the distance travelled so far to get to this node 
      (double)startGeom.STDistance(endGeom) // h - estimated remaining distance to the goal 
    ); 
 
    // Add the start node to the open list 
    OpenList.Add(StartNode); 
 
    /** 
     * TRAVERSAL THROUGH THE NETWORK 
     */ 
 
    // So long as there are open nodes to assess 
    while (OpenList.Count > 0) 
    { 
 
      // Sort the list of open nodes by ascending f score 
      OpenList.Sort(delegate(AStarNode p1, AStarNode p2) 
      { return p1.f.CompareTo(p2.f); }); 
 
      // Consider the open node with lowest f score 
      AStarNode NodeCurrent = OpenList[0]; 
 
      /** 
       * GOAL FOUND 
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       */ 
      if (NodeCurrent.NodeID == GoalID) 
      { 
 
        // Reconstruct the route to get here 
        List<SqlGeography> route = new List<SqlGeography>(); 
        int parentID = NodeCurrent.ParentID; 
 
        // Keep looking back through nodes until we get to the start (parent -1) 
        while (parentID != -1) 
        { 
          conn.Open(); 
 
          using (SqlCommand cmdSelectEdge = new SqlCommand("GetEdgeBetweenNodes", conn)) 
          { 
             // Retrieve the edge from this node to its parent 
             cmdSelectEdge.CommandType = CommandType.StoredProcedure; 
             SqlParameter fromOSODRparam = new SqlParameter("@NodeID1", SqlDbType.Int); 
             SqlParameter toOSODRparam = new SqlParameter("@NodeID2", SqlDbType.Int); 
             fromOSODRparam.Value = NodeCurrent.ParentID; 
             toOSODRparam.Value = NodeCurrent.NodeID; 
             cmdSelectEdge.Parameters.Add(fromOSODRparam); 
             cmdSelectEdge.Parameters.Add(toOSODRparam); 
 
             object edge = cmdSelectEdge.ExecuteScalar(); 
             SqlGeography edgeGeom; 
             if (edge != null) 
             { 
               edgeGeom = (SqlGeography)(edge); 
               route.Add(edgeGeom); 
             } 
           } 
 
           conn.Close(); 
 
          NodeCurrent = ClosedList[parentID]; 
          parentID = NodeCurrent.ParentID; 
        } 
 
        // Send the results back to the client 
        SqlMetaData ResultMetaData = new SqlMetaData( 
          "Route", SqlDbType.Udt, typeof(SqlGeography) 
        ); 
        SqlDataRecord Record = new SqlDataRecord(ResultMetaData); 
        SqlContext.Pipe.SendResultsStart(Record); 
 
        // Loop through route segments in reverse order 
        for (int k = route.Count - 1; k >= 0; k--) 
        { 
          Record.SetValue(0, route[k]); 
          SqlContext.Pipe.SendResultsRow(Record); 
        } 
        SqlContext.Pipe.SendResultsEnd(); 
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        return; 
      } // End if (NodeCurrent.NodeID == GoalID) 
 
      /** 
       * GOAL NOT YET FOUND - IDENTIFY ALL NODES ACCESSIBLE FROM CURRENT NODE 
       */ 
      List<AStarNode> Successors = new List<AStarNode>(); 
 
      conn.Open(); 
      using (SqlCommand cmdSelectSuccessors = new SqlCommand("GetNodesAccessibleFromNode", 
                                                              conn)) 
      { 
        // Identify all nodes accessible from the current node 
        cmdSelectSuccessors.CommandType = CommandType.StoredProcedure; 
        SqlParameter CurrentNodeOSODRparam = new SqlParameter("@NodeID", SqlDbType.Int); 
        CurrentNodeOSODRparam.Value = NodeCurrent.NodeID; 
        cmdSelectSuccessors.Parameters.Add(CurrentNodeOSODRparam); 
 
        using (SqlDataReader dr = cmdSelectSuccessors.ExecuteReader()) 
        { 
          while (dr.Read()) 
          { 
            // Create a node for this potential successor    
            AStarNode SuccessorNode = new AStarNode( 
              dr.GetInt32(0), // NodeID 
              NodeCurrent.NodeID, // Successor node is a child of the current node 
              NodeCurrent.g + dr.GetDouble(1), // Distance from current node to successor 
             (double)(((SqlGeography)dr.GetValue(2)).STDistance(endGeom)) 
            ); 
          
            // Add the end of the list of successors 
            Successors.Add(SuccessorNode); 
          } 
        } 
      } 
 
      conn.Close(); 
 
      /** 
       * Examine list of possible nodes to go next 
       */ 
      foreach (AStarNode NodeSuccessor in Successors) 
      { 
        // Keep track of whether we have already found this node 
        bool found = false; 
 
        // If this node is already on the closed list, don't examine further 
        if (ClosedList.ContainsKey(NodeSuccessor.NodeID)) 
        { 
          found = true; 
        } 
 
        // If we didn't find the node on the closed list, look for it on the open list 
        if (!found) 
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          for (int j = 0; j < OpenList.Count; j++) 
          { 
            if (OpenList[j].NodeID == NodeSuccessor.NodeID) 
            { 
              found = true; 
 
              // If this is a cheaper way to get there 
              if (OpenList[j].h > NodeSuccessor.h) 
              { 
                // Update the route on the open list 
                OpenList[j] = NodeSuccessor; 
              } 
              break; 
            } 
          } 
 
        // If not on either list, add to the open list 
        if (!found) 
        { 
          OpenList.Add(NodeSuccessor); 
        } 
      } 
 
      // Once all successors have been examined, we've finished with the current node 
      // so move it to the closed list 
      OpenList.Remove(NodeCurrent); 
      ClosedList.Add(NodeCurrent.NodeID, NodeCurrent); 
 
    } // end while (OpenList.Count > 0) 
 
    SqlContext.Pipe.Send("No route could be found!"); 
    return; 
  } 
} 

■ Tip  Rather than typing this out, remember that this code listing (and all the code samples in this book) are 
available in the code download that accompanies this book available from the Apress website at 

http://www.apress.com  

Testing It Out 
Build an assembly containing the previous procedure and import it into SQL Server. Then register the 
procedure as follows: 

CREATE PROCEDURE dbo.GeographyAStar(@StartID int, @GoalID int) 
AS EXTERNAL NAME ProSpatialCh14.[ProSpatial.Ch14.StoredProcedures].GeographyAStar; 

You can then try plotting routes between any two nodes by supplying their node IDs as the 
@StartId and @GoalId parameters to the GeographyAStar procedure, as follows: 
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EXEC dbo.GeographyAStar 
  @StartId = 10, 
  @GoalId = 900; 

The nodes in the network are numbered consecutively from 1 to 995, so try it out with any 
combination you like (although bear in mind that there are not always valid routes between every pair 
of nodes). Figure 14-9 illustrates the route between nodes 10 and 900 plotted together with the road 
segments in the Edges table, as produced by the following code listing: 

DECLARE @AStarRoute table (geog4326 geography); 
INSERT INTO @AStarRoute 
EXEC dbo.GeographyAStar 
@StartId = 10, 
@GoalId = 900; 
SELECT geog4326.STBuffer(10) FROM @AStarRoute 
UNION ALL SELECT 
geog4326 FROM Edges; 

 

Figure 14-9. The A* route calculated between two nodes in the Norwich road network  

Optimizing the Code and Further Enhancements 
The algorithm created in this section is a lot more scalable than the earlier T-SQL approach, but can 
still be improved further. In order to maximize the clarity of the code logic, I've kept to simple 
structures such as List and Dictionary, and searched for nodes by iterating through the lists in a 
foreach loop. While this keeps the example relatively simple to understand, it does not result in 
optimal performance. Every time a new node is chosen, the open list must be re-sorted to find the node 
with the lowest f score, and this is not very efficient operation.  

A more efficient approach might be to keep the lists sorted as nodes are added. This would make 
inserting new nodes slightly slower, but would make searching and updating the lists faster. In fact, we 
don't even need to sort every element on the open list; the only operation we need to do is to retrieve 
the next best node to investigate from the list, that is, the one with the current lowest f score. The best 
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structure for this would be a priority queue. Priority queues differ from other collections in that, rather 
than retrieving items based on the order in which they were added (as in a stack, or a queue), or by 
retrieving the value associated with a corresponding key (as in a dictionary), they retrieve the next 
smallest element in the collection. However, .NET has no native implementation of a priority queue and 
so this would require additional code to implement. 

There are still many further enhancements that could be made to this example. For example, 
driving directions could be added at each node to explain the action that needs to be taken by a person 
following the route; for example, "Turn left onto Queen's Road" (The Name column of the Edges table 
can be used to help provide this). Also, you can try experimenting with different heuristic values, 
assigning a weighting factor to adjust the cost of each edge based on road surface, for example. These 
are just examples left to you, the reader, to implement. 

The Traveling Salesman Problem 
Up to this point, we've been considering how best to calculate a route from one node to another chosen 
node in a network. However, this is not the only kind of routing problem that applies to spatial data. 
One classic mathematical puzzle based on graph theory is called the Traveling Salesman Problem 
(TSP). The essence of the TSP puzzle is, given a list of locations and the known distances between each, 
find the shortest route that visits each location exactly once and returns back to the start. 

The algorithms discussed up to now have all been concerned with getting from A to B, but the 
objective in TSP is slightly different: we generally don't care where we end up or how we get there, so 
long as we visit the specified set of nodes (or, frequently, all the nodes in the network) in the most 
efficient way. Although commonly studied as a purely academic, theoretical problem, TSP has many 
practical applications. The most obvious example is in the field of logistics, for example, planning the 
route for a delivery driver who must deliver parcels to a list of known addresses and return to the depot, 
while driving the shortest total distance. TSP can also be applied to find solutions to optimization 
problems in many other fields, including the biosciences, engineering, and manufacturing industries. 

■ Note  A similar problem to TSP is the Chinese Postman Problem (CPP). Whereas the objective of TSP is to find 
the optimum path that visits every node in a network, the objective in CPP is to find the optimum path that 

traverses each edge at least once. Like the Traveling Salesman, the Chinese Postman is a simply stated problem, 
but one for which there is no easy solution. It too has many potential practical applications. As its name suggests, 
delivering letters or perhaps ploughing snow from roads are obvious uses, but it can also be applied in many  

other fields. 

The most direct way of solving the TSP problem would be to evaluate all possible permutations of 
routes between the locations and evaluating which took the least distance. As with the brute-force 
approach to route finding discussed at the start of this chapter, as more locations are considered, the 
number of possible routes increases exponentially. Taking this approach to find the optimum solution 
for even a modest amount of cities therefore quickly becomes impractical. The number of possible 
routes between 10 cities, for example, is 10! = 3,628,800. For 20 cities, there are 20! = 
2,432,902,008,176,640,000 possible routes! Exact solutions to a TSP scenario using this method are 
therefore almost always impractical, but there is a range of approximations available. One approach is, 
from an arbitrary starting point, to always visit the next closest city that has yet to be visited. This 
"nearest neighbor" approach will probably yield a suboptimal solution, but it is simple and relatively 
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fast to calculate, and it generally avoids making unnecessarily long journeys between locations. We 
can do this in an SQLCLR function, as follows: 

[Microsoft.SqlServer.Server.SqlFunction] 
public static SqlGeometry GeometryTSP(SqlGeometry PlacesToVisit) 
{ 
  // Convert the supplied MultiPoint instance into a List<> of SqlGeometry points 
  List<SqlGeometry> RemainingCities = new List<SqlGeometry>(); 
 
  // Loop and add each point to the list 
  for (int i = 1; i <= PlacesToVisit.STNumGeometries(); i++) 
  { 
    RemainingCities.Add(PlacesToVisit.STGeometryN(i)); 
  } 
 
  // Start the tour from the first city 
  SqlGeometry CurrentCity = RemainingCities[0]; 
 
  // Begin the geometry 
  SqlGeometryBuilder Builder = new SqlGeometryBuilder(); 
  Builder.SetSrid((int)PlacesToVisit.STSrid); 
  Builder.BeginGeometry(OpenGisGeometryType.LineString); 
 
  // Begin the LineString with the first point 
  Builder.BeginFigure((double)CurrentCity.STX, (double)CurrentCity.STY); 
 
  // We don't need to visit this city again 
  RemainingCities.Remove(CurrentCity); 
 
  // While there are still unvisited cities 
  while (RemainingCities.Count > 0) 
  { 
    RemainingCities.Sort(delegate(SqlGeometry p1, SqlGeometry p2) 
    { return p1.STDistance(CurrentCity).CompareTo(p2.STDistance(CurrentCity)); }); 
 
    // Move to the closest destination 
    CurrentCity = RemainingCities[0]; 
 
    // Add this city to the tour route 
    Builder.AddLine((double)CurrentCity.STX, (double)CurrentCity.STY); 
 
    // Update the list of remaining cities 
    RemainingCities.Remove(CurrentCity); 
  } 
 
  // End the geometry 
  Builder.EndFigure(); 
  Builder.EndGeometry(); 
  
  // Return the constructed geometry 
  return Builder.ConstructedGeometry; 
} 
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■ Note  This method is far from the optimal solution for the TSP. Better methods exist, involving a wide range of 
genetic algorithms. However, this method is simple to understand, and it demonstrates how we can use methods 

of the SqlGeometry type to solve interesting problems. 

Now suppose that you had a list of locations to visit, defined as a MultiPoint instance as follows: 

DECLARE @PlacesToVisit geometry; 
SET @PlacesToVisit = geometry::STGeomFromText('MULTIPOINT(0 0, 40 30, 25 10, 5 5, 0 1, 1 0, 
 2 2, 5 4, 4 10, 12 32, 13 13, 56 60, 45 23, 20 56, 60 40, 34 35)', 0); 

You can find the route between these destinations using the nearest neighbor approach as follows: 

DECLARE @TSProute geometry; 
SET @TSProute = dbo.GeometryTSP(@PlacesToVisit); 
 
SELECT 
  @TSProute, 
  @TSProute.STLength(); 

The resulting LineString, 180.6 units long, is depicted in Figure 14-10. 

 

Figure 14-10. The shortest tour as calculated by the nearest-neighbor method. 
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We can compare this to the route that the salesman would have traveled if he had simply visited 
each point in the order in which they were originally listed in the MultiPoint, as follows: 

DECLARE @route geometry; 
SET @route = geometry::STGeomFromText('LINESTRING(0 0, 40 30, 25 10, 5 5, 0 1, 1 0, 
 2 2, 5 4, 4 10, 12 32, 13 13, 56 60, 45 23, 20 56, 60 40, 34 35)', 0); 
 
SELECT 
  @route, 
  @route.STLength(); 

This time, the route is longer (371.1 units) and a lot more chaotic, as shown in Figure 14-11. 

 

Figure 14-11. The original tour route obtained from visiting each location in the order supplied. 

Harnessing the Bing Maps Routing Service 
I hope you've enjoyed learning about different approaches to route finding, and finding out some of 
the complexity involved in implementing such systems. However, you may also be feeling slightly 
bewildered or disappointed: considering that navigation systems are so commonplace in modern cars, 
websites, and even on mobile phones, you might have been hoping that I’d provide you with a 
complete, ready-to-run routing solution. You can certainly build upon and extend the templates I've 
given in this chapter, but creating a reliable, fully featured routing algorithm is surprisingly complex, 
especially when you consider elements such as turn restrictions and one-way highways. 
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All is not lost, however. Remember that, in Chapter 6, I showed you how to create a SQLCLR function 
that used the Bing Maps REST service to geocode an address? Bing Maps also provides a Routes API that 
calculates a route between any two locations. The path of the route is returned as an array of latitude 
and longitude coordinates that can be used to build up a geography LineString representing the journey. 

So, rather than try to reinvent the wheel, create a new SQLCLR class library that calls the Bing 
Maps Routes API as shown in the following code listing: 

using System; 
using System.Data; 
using System.Data.SqlClient; 
using System.Data.SqlTypes; 
using Microsoft.SqlServer.Server; 
using System.Net; 
using System.IO; 
using Microsoft.SqlServer.Types; 
using System.Xml; 
 
namespace ProSQLSpatial.Ch14 
{ 
  public partial class UserDefinedFunctions 
  { 
    [Microsoft.SqlServer.Server.SqlFunction] 
    public static SqlGeography Route(SqlGeography Start, SqlGeography End,  
                                         SqlString Mode) 
    { 
 
      // Check the input parameters 
      if (!(Start.STGeometryType() == "POINT" && Start.STSrid == 4326)) { 
        throw new Exception("Route start must be a single point defined using SRID 4326"); 
      } 
      if (!(End.STGeometryType() == "POINT" && End.STSrid == 4326)) { 
        throw new Exception("Route end must be a single point defined using SRID 4326"); 
      } 
      // Routes API can calculate both walking and driving routes 
      string travelMode = ((string)Mode).ToUpper(); 
      if (travelMode != "DRIVING" && travelMode != "WALKING") 
      { 
        throw new Exception("Mode of travel must be WALKING or DRIVING"); 
      } 
 
      // Response returned from the service 
      string feedData = string.Empty; 
 
      try 
      { 
 
        // Set up the template for the Bing Maps routing request 
        // See http://msdn.microsoft.com/en-us/library/ff701717.aspx 
        String key = "ENTERYOURBINGMAPSKEY"; 
        String urltemplate =  
"http://dev.virtualearth.net/REST/V1/Routes/{0}?wp.0={1}&wp.1={2}&rpo=Points&optmz=distance& 
output=xml&key={3}"; 
        String Startcoords = String.Concat(Start.Lat, ",", Start.Long); 
        String Endcoords = String.Concat(End.Lat, ",", End.Long); 
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        String url = String.Format(urltemplate, travelMode, Startcoords, Endcoords, key); 
 
        // Call the service 
        HttpWebRequest request = null; 
        HttpWebResponse response = null; 
        Stream stream = null; 
        StreamReader streamReader = null; 
 
        request = (HttpWebRequest)WebRequest.Create(url); 
        request.Method = "GET"; 
        request.ContentLength = 0; 
        response = (HttpWebResponse)request.GetResponse(); 
 
        // Read the (XML) results 
        stream = response.GetResponseStream(); 
        streamReader = new StreamReader(stream); 
        feedData = streamReader.ReadToEnd(); 
 
        // Clean up 
        response.Close(); 
        stream.Dispose(); 
        streamReader.Dispose(); 
      } 
 
      catch (Exception ex) 
      { 
        // Oops - something went wrong 
        SqlContext.Pipe.Send(ex.Message.ToString()); 
      } 
 
      // Process the XML response 
      XmlDocument doc = new XmlDocument(); 
      doc.LoadXml(feedData); 
 
      // Define the default XML namespace 
      XmlNamespaceManager nsmgr = new XmlNamespaceManager(doc.NameTable); 
      nsmgr.AddNamespace("ab", "http://schemas.microsoft.com/search/local/ws/rest/v1"); 
 
      // Isolate the routepath from the results 
      XmlNode routePath = doc.GetElementsByTagName("RoutePath")[0]; 
      XmlNode line = routePath["Line"]; 
 
      // Create a set of all <Location>s in the response 
      XmlNodeList Points = line.SelectNodes("ab:Point", nsmgr); 
 
      // Build up a geography LineString connecting the <Location>s 
      SqlGeographyBuilder gb = new SqlGeographyBuilder(); 
      gb.SetSrid(4326); 
      gb.BeginGeography(OpenGisGeographyType.LineString); 
      gb.BeginFigure(double.Parse(Points[0]["Latitude"].InnerText),  
                    double.Parse(Points[0]["Longitude"].InnerText)); 
      for(int i=1; i<Points.Count; i++) 
      { 
        gb.AddLine(double.Parse(Points[i]["Latitude"].InnerText), 
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                   double.Parse(Points[i]["Longitude"].InnerText)); 
      } 
      gb.EndFigure(); 
      gb.EndGeography(); 
 
      // Return the constructed LineString  to SQL Server 
      return gb.ConstructedGeography; 
    } 
  }; 
} 

The code logic is very similar to that used by the geocoding function used in Chapter 6: an 
HTTPWebRequest is made containing a number of parameters in the URL. These specify the coordinates 
of the start and end points of the desired route, and whether the method of travel should be "walking" 
or "driving." You must also supply a valid Bing Maps key when making the request. When the response 
is returned, the individual points that make up the route are used to construct a SqlGeography 
LineString, which is returned to SQL Server. 

Import the assembly containing this code into SQL Server, remembering to grant it EXTERNAL 
ACCESS permission. Then register a T-SQL function to call the routing service as follows: 

CREATE FUNCTION dbo.Route(@Start geography, @End geography, @Mode nvarchar(255)) 
RETURNS geography 
EXTERNAL NAME ProSpatialCh14.[ProSpatial.Ch14.UserDefinedFunctions].Route; 

To demonstrate the function, you can calculate a driving route between Boston and Miami: 

DECLARE @NewYork geography = 'POINT(-71.1 42.35)'; 
DECLARE @Miami geography = 'POINT(-80.2 25.8)'; 
 
DECLARE @Route geography; 
SET @Route = dbo.Route(@NewYork, @Miami, 'DRIVING'); 
 
SELECT @Route, @Route.STLength(); 

The calculated route, 2,360 km in length, is shown in Figure 14-12. 
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Figure 14-12. The driving route from Boston to Miami calculated from the Bing Maps Route API 

Summary 
In this chapter, you learned various methods to use SQL Server's spatial datatypes to model and 
traverse through a network 

• Networks are generally modeled as graphs, in which nodes are connected by 
edges. 

• Edges may be directed or undirected, and each edge has a cost associated with 
crossing it. The cost of an edge may depend on many factors; in the example of a 
road network this might include the type of road surface, the speed limit, the 
typical amount of traffic, or the degree of incline. 

• A route finding algorithm attempts to find the optimum route from one specified 
node in the network to another by crossing those edges that have the least 
resulting total cost. 

• You saw two practical implementations of route finding algorithms in SQL Server, 
one using a brute-force approach in T-SQL, and another implementing the A* 
algorithm in SQLCLR. 

• The Traveling Salesman Problem and Chinese Postman Problem are further 
examples of mathematical problems from the discipline of graph theory that can 
be modeled and solved using SQL Server's spatial datatypes. 

• The Bing Maps Routes API can calculate walking and driving routes between 
locations that are used to create corresponding geography LineStrings in SQL 
Server. 



C H A P T E R  15 
 

■ ■ ■ 

 

387 

Triangulation and Tesselation 

In this chapter I’d like to discuss triangulation and tessellation, two related topics taken from the 
computational geometry branch of mathematics, which can be used to provide interesting useful insights 
about a set of spatial data. Discussion of these topics necessarily involves some mathematical theory, 
and may initially seem slightly abstract. However, once you've got your head around them you'll see 
that tessellation and triangulation have plenty of practical spatial applications, and I'll show you just a 
few of these. 

The Importance of Triangles 
Triangles are the most basic, and arguably the most useful, type of polygon. Because of their simplicity 
and the conciseness and efficiency with which they can be defined and used in calculations, triangles 
are often used as the primitive building block from which more complex geometric structures are 
created. For example, the three-dimensional models used in computer graphics and animation, such as 
that illustrated in Figure 15-1, are typically formed from sets of triangular faces. 

 

Figure 15-1. A Three-dimensional model formed from a mesh of triangular faces 
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Three-dimensional models of spatial data are also sometimes based on triangular data 
structures. For example, a triangulated irregular network (TIN), as illustrated in Figure 15-2, is a 
method of modeling terrain. A TIN is formed by recording the spot height of different point locations 
across an area of ground. The network is irregular in that the heights do not have to be sampled at 
regular intervals (although they can be). The network is triangulated by defining a set of triangular 
faces that connect the points, which creates a faceted surface representing the approximate lie of the 
land across the area sampled. 

TINs, like the geometry types implemented by the geometry and geography datatypes, are an 
example of vector spatial data; the location of each point in the network is stored as an (x, y, z) 
coordinate tuple, and the triangular faces are defined by interpolation between the three vertices at 
the corners of each triangle. 

 

Figure 15-2. A Triangulated irregular network model of a section of terrain 

Triangulation 
The process required to create the models illustrated in Figures 15-1 and 15-2 involves determining the 
set of triangular faces that form a continuous mesh connecting a series of points. There may be several 
different ways to create a triangulated surface from a given set of points, as demonstrated in Figure 15-3.  

Triangulation Triangulation

 

Figure 15-3. Different triangulations of a set of points 
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Although there are many possible triangulations, when people refer to "triangulating" a set of 
points, they most commonly mean one specific triangulation, the Delaunay triangulation. The 
Delaunay triangulation has several important properties that make it distinct from other 
triangulations, as described in the next section. 

The Delaunay Triangulation 
The Delaunay triangulation, named after Russian mathematician Boris Delaunay, is the particular 
triangulation of a set of points in which no point lies in the circumcircle of any created triangle (a 
condition sometimes alternatively expressed as "the circumcircle of every triangle must be empty"). If 
you're not familiar with geometrical terms, that might be a little hard to grasp, so let's break it down. 

Every triangle (and every other regular convex polygon) has a circumcircle, the unique circle that 
passes through all of the vertices at the corners of that shape. The point at the center of a circumcircle is 
called the circumcenter. Similar to the centroid calculated by the STCentroid() method, the 
circumcenter is one way of thinking about the "center" of a shape (indeed, in the case of an equilateral 
triangle, the centroid and circumcenter are the same). Also as with a centroid, the circumcenter of a 
triangle may lie either inside or outside the area of the triangle itself. 

Figure 15-4 illustrates a triangle, together with its circumcircle and circumcenter. 

Circum
circle

Circumcenter
+

 

Figure 15-4. The circumcenter of a triangle is the circle that passes through all three vertices 

The unique property of a Delaunay triangulation is that it is the triangulation in which the 
circumcircle of every triangle is empty; that is, the points that define the vertices of one triangle 
cannot lie within the circumcircle that encloses any other triangle.  

Delaunay triangulations have some interesting and useful properties: 

• They are deterministic and unique. For any given set of points, there is exactly one 
possible Delaunay triangulation. 

• The Delaunay triangulation tends to create a mesh of relatively evenly-
proportioned triangles, which are more aesthetically pleasing than long thin 
triangles created by some other triangulations. 

• The Delaunay triangulation has relationships to other mathematical structures, 
including alpha shapes and the Voronoi tessellation discussed later in this 
chapter. 
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Calculating the Delaunay Triangulation 
There are several approaches that can be used to calculate the Delaunay triangulation of a set of 
points. The general technique that I'm about to follow is an example of an incremental triangulation 
method. This is a commonly used and relatively straightforward method to understand. For readers 
interested in considering other, possibly more high-performance approaches, I recommend searching 
the Internet for alternative methods including Divide and Conquer, or Sweepline techniques. 

Using the incremental approach, each point in the dataset is added one at a time into an existing 
mesh of triangles. If the point being added lies within the circumcircle of any existing triangles, those 
triangles are removed from the mesh and replaced with smaller empty triangles formed by 
connecting each of the vertices of the old triangle to the new point. This method ensures that, after the 
final point has been added, the resulting triangular mesh consists only of triangles whose 
circumcircles are empty. 

One difficulty arising from the incremental approach to triangulation is the question of how to add 
the very first point from the dataset because, at the start of the triangulation, there is no existing mesh 
into which to add the point. The general solution to this problem is first to create an artificial 
"supertriangle" that encompasses the entire dataset, and acts as an initial mesh into which the first 
points can be triangulated. Once the triangulation is complete, the supertriangle can be removed 
again, leaving only those triangles defined between points contained in the original dataset. 

The steps involved in creating a Delaunay triangulation can be described as follows: 

1. Create a "supertriangle" that encompasses all the points to be triangulated 
(you can think of this supertriangle as similar to a bounding box, but 
triangular). 

2. Select a point to be added to the triangulation, and test whether it lies inside 
the circumcircle of any of the existing triangles in the mesh. When adding the 
first point to the mesh this is guaranteed to occur, because the supertriangle 
covers all the points. 

3. For each triangle whose circumcircle contains the added point, remove that 
triangle, and instead replace it with three new smaller triangles from each of 
the corners of the original triangle to the added point. 

4. Repeat Steps 2 and 3 until all points have been added into the mesh, and no 
point lies inside the circumcircle of a triangle. 

5. Finally, remove any "exterior" triangles from the triangulation, those that 
connect points that lie on the outside edge of the triangular mesh to the 
supertriangle. 

These steps are illustrated with a dataset containing four points in Figure 15-5. 
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1. Define points to be triangulated
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3. Point a lies within circumcircle of triangle xyz

5. Point b lies within circumcircle of triangle zax

7. Continue to examine each point, creating
    new triangles as appropriate

8. Remove any triangle that shares supertriangle
    vertices x, y, or z

6. Remove triangle zax
    Insert new triangles zab, zbx, and bax

4. Remove triangle xyz
    Insert new triangles ayz, xaz, and xya

2. Create supertriangle xyz encompassing points 

 

Figure 15-5. Steps involved in an incremental approach to Delaunay triangulation. 



CHAPTER 15 ■  TRIANGULATION AND TESSELATION 

 

392 

An SQLCLR Triangulation Procedure 
You've seen the theory behind the incremental method of Delaunay triangulation; now it's time to put 
that theory into practice with spatial data in SQL Server. In this section, we'll create a CLR stored 
procedure that triangulates the points in a geometry MultiPoint and returns a table of Polygons 
representing the triangles created between those points. So, fire up Visual Studio and create a new C# 
class library project, and let's go! 

Data Structures 
I said previously that the input to the procedure would be a MultiPoint geometry, and the output would 
be a set of Polygons. In fact, we could operate on SqlGeometry instances right through the triangulation 
process; for example, creating new SqlGeometry Polygons as each triangle is added to the mesh, and 
determining whether the circumcircle of a triangle is empty using familiar methods such as 
STIntersects() or STDisjoint(). However, carrying around complete SqlGeometry instances like this is 
quite unnecessary when we only really need a very small subset of that functionality. Creating and 
manipulating arrays of fully formed SqlGeometry instances would make our code pretty inefficient 
when we start to work with a large volume of data. So, instead, we'll define some simple lightweight 
structures to represent a point and a triangle. 

The structure used to represent a point needs only two double properties to hold a pair of 
coordinate values. We'll also implement the IComparable CompareTo method, which will allow us to sort 
a collection of points by ascending x-coordinate value (we'll use this to make an optimization to the 
code later), as follows: 

private struct SimplePoint : IComparable 
{ 
  public double x, y; 
 
  // Constructor 
  public SimplePoint(double x, double y) 
  { 
    this.x = x; 
    this.y = y; 
  } 
  // Implement IComparable CompareTo method to enable sorting 
  int IComparable.CompareTo(object obj) 
  { 
    SimplePoint other = (SimplePoint)obj; 
    if (this.x > other.x) { return 1; } 
    else if (this.x < other.x) { return -1; } 
    else { return 0; } 
  } 
} 

The set of points used in the triangulation will be stored in a List collection. That means that each 
triangle need not explicitly define the coordinates of the vertices from which it is formed, but rather it 
can simply reference the index value of those vertices from the collection of points. Defining a 
triangle from three int index values is significantly more efficient than defining a triangular 
SqlGeometry polygon. We'll also store the circumcenter and radius of the circumcircle along with each 
triangle rather than calculating them on the fly. 

private struct SimpleTriangle 
{ 
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  // Index entries to each vertex 
  public int a, b, c; 
 
  // Circumcenter and radius of the circumcircle 
  public SimplePoint circumcentre; 
  public double radius; 
 
  // Constructor 
  public SimpleTriangle(int a, int b, int c, SimplePoint circumcentre, double radius) 
  { 
    this.a = a; 
    this.b = b; 
    this.c = c; 
    this.circumcentre = circumcentre; 
    this.radius = radius; 
  } 
} 

As stated previously, the advantage of using these stripped-down structures for points and 
triangles is that it will make our algorithm more efficient. The disadvantage, however, is that we won't 
be able to use any of the built-in SqlGeometry methods to help us during the triangulation process. So 
we'll have to create our own functions to perform the necessary calculations instead. Fortunately, 
these calculations are relatively simple; the following code listing demonstrates a function that 
calculates the circumradius and circumcenter of a triangle from its three vertices: 

private static void CalculateCircumcircle( 
  SimplePoint p1, SimplePoint p2, SimplePoint p3, // Inputs 
  out SimplePoint circumCentre, out double radius // Outputs 
) 
{ 
  // Calculate the length of each side of the triangle 
  double a = Distance(p2, p3); // side a is opposite point 1 
  double b = Distance(p1, p3); // side b is opposite point 2  
  double c = Distance(p1, p2); // side c is opposite point 3 
 
  // Calculate the radius of the circumcircle 
  double area = Math.Abs((double)(p1.x * (p2.y - p3.y) + p2.x * (p3.y - p1.y) + p3.x  
                * (p1.y - p2.y)) / 2); 
  radius = a * b * c / (4 * area); 
 
  // Define area coordinates to calculate the circumcentre 
  double pp1 = Math.Pow(a, 2) * (Math.Pow(b, 2) + Math.Pow(c, 2) - Math.Pow(a, 2)); 
  double pp2 = Math.Pow(b, 2) * (Math.Pow(c, 2) + Math.Pow(a, 2) - Math.Pow(b, 2)); 
  double pp3 = Math.Pow(c, 2) * (Math.Pow(a, 2) + Math.Pow(b, 2) - Math.Pow(c, 2)); 
 
  // Normalise 
  double t1 = pp1 / (pp1 + pp2 + pp3); 
  double t2 = pp2 / (pp1 + pp2 + pp3); 
  double t3 = pp3 / (pp1 + pp2 + pp3); 
 
  // Convert to Cartesian 
  double x = t1 * p1.x + t2 * p2.x + t3 * p3.x; 
  double y = t1 * p1.y + t2 * p2.y + t3 * p3.y; 
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  // Define the circumcenter 
  circumCentre = new SimplePoint(x, y); 
} 

The next function calculates the distance between two simple points. Rather than replicating the 
full capability of the STDistance() method, which can compute the distance between complex polygonal 
or curved geometries, we only need to work out the distance between two points on a flat plane. 
Therefore, we can apply some straightforward knowledge of high school Pythagorus: 

private static double Distance(SimplePoint p1, SimplePoint p2) 
{ 
  double result = 0; 
  result = Math.Sqrt(Math.Pow((p2.x - p1.x), 2) + Math.Pow((p2.y - p1.y), 2)); 
  return result; 
} 

The Distance() function will be used to determine whether a point lies within the circumcircle of a 
triangle, by calculating the distance between the point and the circumcenter of the triangle, and 
comparing this to the circumradius of that triangle. If the distance from the circumcenter to the point is 
greater than the circumradius, that point is not contained within the circumcircle of the triangle. 

With these structures and functions in place, we can begin to code the main body of the 
triangulation algorithm. 

Setting Up the Points 
We'll perform the triangulation using a CLR stored procedure with the following signature: 

[Microsoft.SqlServer.Server.SqlProcedure] 
public static void GeometryTriangulate(SqlGeometry MultiPoint) 

The procedure will have a single supplied parameter, MultiPoint, which is a SqlGeometry instance 
containing the points to be triangulated. You could of course adjust the procedure so that the input was 
read in from individual geometry Point values contained in a specified column of a table; in fact, for 
practical use in a production environment, this would probably be a better approach. However, for 
simplicity and ease of demonstration, I'll stick with passing all the points to be triangulated in a single 
MultiPoint parameter. Note that the CLR stored procedure has no return value; the results will be sent 
back to SQL Server via the SqlContext pipe instead. 

The first step is to initialize and populate a List of simple points from each of the elements in the 
supplied MultiPoint. We won't simply add every point in the MultiPoint into the network though; while a 
MultiPoint geometry can contain several Point elements at the same coordinate location, the Delaunay 
triangulation will fail if the network contains any duplicate points (since this would lead to a triangle 
being created with an infinitely small edge between those two points). To prevent the chance of this 
happening, we'll loop through each point in the MultiPoint and only add unique points to the list: 

List<SimplePoint> Vertices = new List<SimplePoint>(); 
// Loop through supplied points 
for (int i = 1; i <= MultiPoint.STNumPoints(); i++) 
{ 
  // Create a new simple point corresponding to this element of the MultiPoint 
  SimplePoint Point = new SimplePoint( 
    (double)MultiPoint.STPointN(i).STX, 
    (double)MultiPoint.STPointN(i).STY 
  ); 
 
  // Check whether this point already exists 
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  if (!Vertices.Contains(Point)) 
  { 
    Vertices.Add(Point); 
  } 
} 

Once the unique points have all been added, we'll sort the list. The SimplePoint structure 
implemented the IComparable CompareTo method, so sorting the list using the default comparer will 
arrange the points in ascending x-coordinate order. Note that it's not strictly necessary to sort the 
points; the incremental triangulation method will work whatever order the points are added in to the 
mesh. However, if we sort the list first we can make an efficiency enhancement to the algorithm, as 
follows. 

Remember that, when a point is added, we must identify the circumcircles of all those triangles in 
the mesh in which the point lies. If points are always added in ascending x order, new triangles will be 
created in a broad "sweep" from left to right across the surface of the mesh. Therefore, once any 
triangle lies entirely to the left of the point currently being added (i.e., the x-coordinate of every vertex 
of the triangle is less than the x-coordinate of the point being added), we know that its circumcircle 
cannot possibly contain that point, or any future points yet to be added. As such, any triangles that lie 
to the left of the point being added can be considered "complete" and do not need to be tested again 
throughout the triangulation process. Making use of this fact will enable our code to be significantly 
more efficient, and simply requires us to sort the vertex list first: 

Vertices.Sort(); 

Creating the Supertriangle 
We need to ensure that the supertriangle—the artificial triangle used to begin the mesh into which 
points can be added—is large enough to cover the complete extent of the area to be triangulated. To do 
so, we'll first use the STEnvelope() method to create the bounding box around the supplied MultiPoint 
instance. 

SqlGeometry Envelope = MultiPoint.STEnvelope(); 

Having created the bounding box around the points, we then need to determine its maximum 
dimension, that is, whichever of its height or width is greatest.  This can be done by working out the 
difference in coordinate values from the corners of the box and then comparing them as follows: 

 // Width 
double dx = (double)(Envelope.STPointN(2).STX - Envelope.STPointN(1).STX); 
// Height  
double dy = (double)(Envelope.STPointN(4).STY - Envelope.STPointN(1).STY); 
// Maximum dimension 
double dmax = (dx > dy) ? dx : dy; 

■ Note  The preceding code listing relies on two useful properties of the result returned by the STEnvelope() 
method, which are that the first point, STPointN(1), is always at the bottom left-hand corner of the box, and the 
remaining points are always listed in counterclockwise order. Knowing these two facts allows you to work out the 

height and width of the bounding box by simple subtraction of the relevant coordinate values. 
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Having determined the maximum extent of the bounding box around the points, we also need to 
calculate the x-and y-coordinates of its centerpoint, which can be done easily using the STCentroid() 
method: 

SqlGeometry centroid = Envelope.STCentroid(); 
double avgx = (double)centroid.STX; 
double avgy = (double)centroid.STY; 

Now, we can define the three vertices, a, b, and c, of the supertriangle of sufficient size to 
encompass all the points, as follows: 

SimplePoint a = new SimplePoint(avgx - 2 * dmax, avgy - dmax); 
SimplePoint b = new SimplePoint(avgx + 2 * dmax, avgy - dmax); 
SimplePoint c = new SimplePoint(avgx, avgy + 2 * dmax); 

We'll add the vertices of the supertriangle onto the list of vertices, and also add the supertriangle 
onto a new list of triangles that have been created so far. Finally, we'll set up an empty list to keep 
track of any triangles that have been completed (those that lie completely to the left of the point being 
added) that will form the final results of the triangulation algorithm. These steps are shown in the 
following code listing: 

// Add the supertriangle vertices to the end of the vertex array 
Vertices.Add(a); 
Vertices.Add(b); 
Vertices.Add(c); 
 
// Create the supertriangle from the calculated vertices a, b, and c. Since these are the 
// last points to be added to the vertices array, their corresponding index values will be 
// numPoints, numPoints+1, and numPoints+2, respectively 
double radius; 
SimplePoint circumcentre; 
CalculateCircumcircle(a, b, c, out circumcentre, out radius); 
SimpleTriangle SuperTriangle = new SimpleTriangle(numPoints, numPoints + 1, numPoints + 2, 
 circumcentre, radius); 
 
// Add the supertriangle to the list of triangles 
List<SimpleTriangle> Triangles = new List<SimpleTriangle>(); 
Triangles.Add(SuperTriangle); 
 
// Create an empty list to hold completed triangles 
List<SimpleTriangle> CompletedTriangles = new List<SimpleTriangle>(); 

Adding Points to the Triangulated Mesh 
We can now begin the incremental process of adding points to the mesh. We'll set up a loop that 
iterates through each point that is to be triangulated. We'll then use another nested loop to consider 
each triangle in relation to the point being added. If the circumcircle of a triangle contains this point, 
the triangle is removed and each of its edges is recorded on a temporary list referred to as the "edge 
buffer". Alternatively, if the triangle lies completely to the left of the point being added, it is also 
removed, but this time added to the list of completed triangles. 

Once every triangle has been considered, the edge buffer is filtered to remove any edges that 
have been included twice, and then new triangles are created from each edge in the buffer to the 
newly added point. This process is then repeated for every point in the dataset. Here's the code: 
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// Loop through each point 
for (int i = 0; i < numPoints; i++) 
{ 
  // Initialise the edge buffer 
  List<int[]> Edges = new List<int[]>(); 
 
  // Loop through each triangle 
  for (int j = Triangles.Count - 1; j >= 0; j--) 
  { 
    // If the point lies within the circumcircle of this triangle 
    if (Distance(Triangles[j].circumcentre, Vertices[i]) < Triangles[j].radius) 
    { 
      // Add the triangle edges to the edge buffer 
      Edges.Add(new int[] { Triangles[j].a, Triangles[j].b }); 
      Edges.Add(new int[] { Triangles[j].b, Triangles[j].c }); 
      Edges.Add(new int[] { Triangles[j].c, Triangles[j].a }); 
             
      // Remove this triangle from the list 
      Triangles.RemoveAt(j); 
    } 
 
    // If this triangle is complete 
    else if (Vertices[i].x > Triangles[j].circumcentre.x + Triangles[j].radius) 
    { 
      // Move the triangle to the list of completed triangles 
      CompletedTriangles.Add(Triangles[j]); 
      Triangles.RemoveAt(j); 
    }   
  } 
 
  // Remove duplicate edges 
  for (int j = Edges.Count - 1; j > 0; j--) 
  { 
    for (int k = j - 1; k >= 0; k--) 
    { 
      // Compare if these edges match in either direction 
      if (Edges[j][0].Equals(Edges[k][1]) && Edges[j][1].Equals(Edges[k][0])) 
      { 
        // Remove both duplicates 
        Edges.RemoveAt(j); 
        Edges.RemoveAt(k); 
 
        // We've removed an item from lower down the list than where j is now, so update j 
        j--; 
        break; 
      } 
    } 
  } 
 
  // Create new triangles from each edge to the current point 
  for (int j = 0; j < Edges.Count; j++) 
  { 
    CalculateCircumcircle(Vertices[Edges[j][0]], Vertices[Edges[j][1]], Vertices[i], 
       out circumcentre, out radius); 
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    SimpleTriangle T = new SimpleTriangle(Edges[j][0], Edges[j][1], i,  
      circumcentre, radius); 
          Triangles.Add(T); 
  } 
} 

Once all points have been considered we know that no further triangles will be created so, 
following the end of this loop, we can move any remaining triangles onto the completed list. 

CompletedTriangles.AddRange(Triangles); 

Outputting the Results 
Once the triangulation is complete, the CompletedTriangles list contains one entry for each triangle 
that we'll use to populate a resultset in SQL Server. However, each triangle is currently only defined 
by the int indexes of each of its vertices. To output a column of the geometry datatype, we'll need a 
function that takes these three vertex references and creates a corresponding triangular SqlGeometry 
Polygon. This is easily done with a SqlGeometryBuilder: 

// Construct a triangle from 3 vertices 
private static SqlGeometry TriangleFromPoints(SimplePoint p1, SimplePoint p2, 
  SimplePoint p3, int srid) 
{ 
  SqlGeometryBuilder TriangleBuilder = new SqlGeometryBuilder(); 
  TriangleBuilder.SetSrid(srid); 
  TriangleBuilder.BeginGeometry(OpenGisGeometryType.Polygon); 
  TriangleBuilder.BeginFigure(p1.x, p1.y); 
  TriangleBuilder.AddLine(p2.x, p2.y); 
  TriangleBuilder.AddLine(p3.x, p3.y); 
  TriangleBuilder.AddLine(p1.x, p1.y); 
  TriangleBuilder.EndFigure(); 
  TriangleBuilder.EndGeometry(); 
  return TriangleBuilder.ConstructedGeometry; 
} 

We'll use the TriangleFromPoints function to output one Polygon for each triangle on the 
completed triangles list, and send these back to SQL Server via the SqlContext pipe, as follows: 

// Define the metadata of the results table – a single geometry column 
SqlMetaData metadata = new SqlMetaData("Triangle", SqlDbType.Udt, typeof(SqlGeometry)); 
 
// Create a record based on this metadata 
SqlDataRecord record = new SqlDataRecord(metadata); 
 
// Start to send the results back to the client 
SqlContext.Pipe.SendResultsStart(record); 
foreach (SimpleTriangle Tri in CompletedTriangles) 
{ 
  // Check that this is a triangle formed only from vertices in the original MultiPoint 
  // i.e. not from the vertices of the supertriangle. 
  if (Tri.a < numPoints && Tri.b < numPoints && Tri.c < numPoints) 
  { 
    SqlGeometry triangle = TriangleFromPoints( 
      Vertices[Tri.a], Vertices[Tri.b], Vertices[Tri.c], srid 
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    ); 
    record.SetValue(0, triangle); 
    SqlContext.Pipe.SendResultsRow(record); 
  } 
} 
SqlContext.Pipe.SendResultsEnd(); 

Registering and Testing the Function 
Once you've created a function based on the preceding code listing (or, better still, just download the 
code from the APress website), register the assembly and function in SQL Server as follows: 

CREATE ASSEMBLY ProSpatialCh15 
FROM 'C:\ProSpatial\Ch15_Triangulation\bin\Debug\ProSpatialCh15.dll' 
WITH PERMISSION_SET = SAFE; 
GO 
 
CREATE PROCEDURE dbo.GeometryTriangulate(@MultiPoint geometry) 
AS EXTERNAL NAME ProSpatialCh15.[ProSpatial.Ch15].GeometryTriangulate; 
GO 

You can then try testing the triangulation. To demonstrate, first create a MultiPoint geometry 
instance containing a random distribution of 800 points. 

DECLARE @MultiPoint geometry = 'MULTIPOINT EMPTY'; 
DECLARE @i int = 0; 
WHILE @i < 800 BEGIN 
  SET @MultiPoint = @MultiPoint.STUnion( 
    geometry::Point(RAND()*100, RAND()*100, 0) 
  ); 
  SET @i = @i + 1; 
END; 

Then create the Delaunay triangulation of this data, and display it alongside the set of points from 
which it was created by executing the following: 

SELECT @MultiPoint; 
EXEC dbo.GeometryTriangulate @MultiPoint; 

The results, as shown in the SSMS Spatial Results tab, are illustrated in Figure 15-6. 
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Figure 15-6. Triangulating a Random Distribution of points 

You may think that seemed like an awful lot of effort to have gone to just to create a pretty mosaic 
picture from a set of points and, if that were all you could do with the Delaunay triangulation, I would 
agree with you. Fortunately, however, there are several practical applications that are based on a 
Delaunay triangulation. In the following sections, I'll show three such practical examples: 

• Creating a 3D model representing a terrain surface 

• Forming alpha shapes that define the concave hull of a geometry 
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• Deriving a Voronoi tessellation that materializes the pattern of nearest neighbors 
around every point 

All of these examples reuse the same triangulation code base just created, with only slight 
additional modifications. 

Creating 3D Surface Models 
Generally speaking, SQL Server doesn't deal with three-dimensional spatial data. Sure, you can 
define geometry and geography instances in which the individual points contain z or m coordinate 
values, but you don't get any obvious benefit from doing so; it won't make a difference to any 
calculations performed within SQL Server itself. In fact, the results of many of SQL Server's functions 
will strip off any z or m coordinate values that had been defined in the original instance. However, so 
long as you avoid using any inbuilt methods, you can still use SQL Server to store and retrieve values 
for display or analysis in an application that does work with 3D data, and you can define your own 
functions to operate in 3D space. 

In this section, I'll show you how to adapt the Delaunay triangulation code to create a three-
dimensional mesh of triangles, similar to that shown in the TIN illustrated in Figure 15-2 near the 
beginning of this chapter. Then, I'll show you how to display such a model in a Windows Presentation 
Foundation (WPF) application. 

Adapting the Triangulation Code into 3D 
To create a 3D triangulated mesh, we need only make a few changes to our existing triangulation 
code. Namely, we need to modify our simple point structure to possess a z-coordinate value. The 
necessary changes are highlighted in the following code listing: 

private struct SimplePoint3d : IComparable 
{ 
  public double x, y, z; 
  public SimplePoint3d(double x, double y, double z) 
  { 
    this.x = x; 
    this.y = y; 
    this.z = z; 
  } 
  // Implement IComparable CompareTo method to enable sorting 
  int IComparable.CompareTo(object obj) 
  { 
    SimplePoint3d other = (SimplePoint3d)obj; 
    if (this.x > other.x) { return 1; } 
    else if (this.x < other.x) { return -1; } 
    else { return 0; } 
  } 
} 

When adding the points into the list of Vertices at the start of the procedure, we'll check to see if 
the input point has a z-coordinate value by using the SqlGeometry HasZ property. If the point does have a 
z-coordinate, we'll retrieve its value via the Z property. If not, we'll assume a default z-coordinate 
value of 0: 

for (int i = 1; i <= MultiPoint.STNumPoints(); i++) 
{ 
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  SqlGeometry p = MultiPoint.STPointN(i); 
  SimplePoint3d Point = new SimplePoint3d( 
    (double)p.STX, (double)p.STY, p.HasZ ? (double)p.Z : 0 
  ); 
  // MultiPoints can contain the same point twice, but this messes up Delaunay 
  if (!Vertices.Contains(Point)) 
  { 
    Vertices.Add(Point); 
  } 
} 

And finally, when we reconstruct each triangle into a geometry Polygon after triangulation is 
complete, we need to incorporate the Z-coordinate values of each vertex. Note that the BeginFigure() 
and AddLine() methods of the SqlGeometryBuilder class do not have an overload that accepts only x-, y-, 
and z-coordinates; to pass in a z-coordinate value you must also supply an m-coordinate value, but I'll 
leave this as null for this example (if your dataset had m values, you could choose to retain them 
throughout the triangulation): 

private static SqlGeometry Triangle3dFromPoints( 
  SimplePoint3d p1, SimplePoint3d p2, SimplePoint3d p3, int srid) 
{ 
  SqlGeometryBuilder TriangleBuilder = new SqlGeometryBuilder(); 
  TriangleBuilder.SetSrid(srid); 
  TriangleBuilder.BeginGeometry(OpenGisGeometryType.Polygon); 
  TriangleBuilder.BeginFigure(p1.x, p1.y, p1.z, null); 
  TriangleBuilder.AddLine(p2.x, p2.y, p2.z, null); 
  TriangleBuilder.AddLine(p3.x, p3.y, p3.z, null); 
  TriangleBuilder.AddLine(p1.x, p1.y, p1.z, null); 
  TriangleBuilder.EndFigure(); 
  TriangleBuilder.EndGeometry(); 
  return TriangleBuilder.ConstructedGeometry; 
} 

Those are all the changes required. Note that you don't need to make any changes to the core 
triangulation process itself;  this will still take place in two dimensions. The Z-coordinates of each 
vertex are simply retained throughout the triangulation process, and required only at the end of the 
process when the angled triangular faces are created. 

Once you've made the code changes described above, recompile the assembly and import it into 
SQL Server once more (In the code example that accompanies this book, I've created a separate 
version of the function called GeometryTriangulate3d). 

A Practical Example: Creating a 3D Surface from LIDAR Data 
To demonstrate the GeometryTriangulate3d procedure, we need some point data from which we can 
create a triangulated surface model. In the code sample accompanying this book you'll find a 
MultiPoint instance representing a small sample of LIDAR data. LIDAR technology is similar to 
familiar RADAR technology, except that it is utilizes pulses of laser or other light rather than 
radiowaves. A light pulse is emitted from a LIDAR device, and the pattern of diffraction and time taken 
to receive the reflected beam of light can be used to determine not only how far away a surface is, but 
also from what sort of material it is made. For example, a light aircraft fitted with a LIDAR device can 
survey an area of land to determine not only the height of the terrain over which it is flying, but also 
the canopy height of any trees, and even the type of those trees (since deciduous trees with greater leaf 
area will produce a different reflection pattern from a coniferous tree). 
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The supplied MultiPoint instance, @WolfPoint, contains the readings of a set of LIDAR observations 
taken at Wolf Point, which lies near Mount Saint Helen's in the Pacific Northwest region of the United 
States. Each point represents a location on the ground, in which the x- and y-coordinate values are 
measured using the UTM Zone 10N spatial reference system and the z-coordinate is measured 
relative to the North American vertical Datum of 1988. 

■ Note  The data used in this example was adapted from a set of data published by the United States Geological 
Survey, hosted at the Washington State Geospatial Data Archive at 

http://wagda.lib.washington.edu/data/type/elevation/lidar/st_helens/ 

 The set of LIDAR readings is illustrated, as shown in the SSMS Spatial Results tab, in Figure 15-7: 

 

Figure 15-7. A set of LIDAR observations taken at Wolf Point 

Although you can't tell from looking at Figure 15-7, it's important to realize that each of the 
individual points in the @WolfPoint MultiPoint instance has an associated Z-coordinate value. So, we 
can create a 3D surface by triangulating those points as before, but positioning the vertices of each 
triangle in three-dimensional space rather than on a flat plane. 

To test out the GeometryTriangulate3D procedure with the LIDAR data, execute the following code 
listing: 

EXEC dbo.GeometryTriangulate3d @WolfPoint; 

At first glance, the result, shown in Figure 15-8, doesn't seem that different from the result of the 
GeometryTriangulate method demonstrated earlier. 
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Figure 15-8. The 3D surface created by the GeometryTriangulate3d method  

The SSMS Spatial Results tab only displays in two dimensions, so you can't tell that the triangular 
faces contained in the triangulation illustrated in Figure 15-8 do not lie on a flat plane. To really 
appreciate the difference between the flat triangulation produced by GeometryTriangulate and the 3D 
triangulation produced by GeometryTriangulate3d, we're going to need a different visualization tool. 
And that's where WPF steps in. 

Visualizing a 3D Mesh in WPF 
The System.Windows.Media.Media3D namespace of the .NET framework contains a number of classes for 
working with 3D objects. One of these classes is the MeshGeometry3D, which is described as a "triangle 
primitive for building a 3-D shape" (http://msdn.microsoft.com/en-us/library/ms604610.aspx), which 
sounds perfect for creating a WPF application to visualize our triangulated surface mesh. 

Before looking at creating the MeshGeometry3D class itself, it's worth making a quick observation 
about the coordinate system used to define 3D space in WPF. Up to now, we've mostly been concerned 
with two-dimensional planar coordinate sysyems, in which the x-axis extends positively to the right 
and the y-axis extends positively upwards. In the 3D coordinate space used by members of the Media3D 
namespace, the x-axis extends positively to the right, the y-axis extends upwards, and the z-axis extends 
positively from from the screen towards the viewer. This is illustrated in Figure 15-9. 
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Figure 15-9. WPF 3D coordinate space 

In order to take the triangulated mesh illustrated in Figure 15-8 and convert it to a three-
dimensional surface model, we must rotate the coordinate reference frame so that the y-coordinate 
axis extends forwards away from the viewer (along the negative z-axis), and the z-axis maps to the 
positive y-axis. The x-axis remains the same in both systems. 

The following code listing demonstrates an extract of the code required to create a WPF 
application that connects to SQL Server, retrieves the triangles in the mesh created by the 
GeometryTriangulate3d procedure, and uses these to populate a MeshGeometry3D.  

// Create a new MeshGeometry3D instance 
MeshGeometry3D mesh = new MeshGeometry3D(); 
 
using (SqlConnection conn = new SqlConnection("server=localhost;Trusted_Connection=yes; 
                                               database=ProSpatial") 
) 
{ 
  // Define the stored procedure to create the 3D triangulated mesh 
  SqlCommand comm = new SqlCommand(); 
  comm.CommandText = "GeometryTriangulate3d"; 
  comm.CommandType = CommandType.StoredProcedure; 
  comm.Connection = conn; 
 
  // Pass in the MultiPoint to be triangulated 
  SqlGeometry WolfPoint = SqlGeometry.STMPointFromText(new SqlChars("MULTIPOINT ((532101.12 
 5121560.53 432.31), (532100.44 5121557.35 432.62), (532100.22 5121547.64 434.28) …  
 
  …(532197.97 5121503.1 447.2), (532198.64 5121506.22 446.86), (532199.36 5121509.24  
  445.27))"), 26910); 
  SqlParameter Points = new SqlParameter("@MultiPoint", WolfPoint); 
  Points.UdtTypeName = "geometry"; 
  comm.Parameters.Add(Points); 
 
  try 
  { 
    // Open the connection 
    conn.Open(); 
    // Execute the procedure 
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    SqlDataReader dataReader = comm.ExecuteReader(); 
    // Loop through the results 
    while (dataReader.Read()) 
    { 
      // First column in the results contains geometry triangles 
      SqlGeometry tri = SqlGeometry.Deserialize(dataReader.GetSqlBytes(0)); 
 
      // Loop through each vertex of this triangle 
      for (int n = 1; n <= 3; n++) 
      { 
        // Retrieve the coordinate values of this vertex 
        SqlGeometry point = tri.STPointN(n); 
        double X = (double)point.STX; 
        double Y = (double)point.STY; 
        double Z = point.HasZ ? (double)point.Z : 0; 
 
        // Add this point into the 3D mesh – note X/Y/Z are transposed to X/Z/-Y 
        mesh.Positions.Add(new Point3D(X, Z, -Y)); 
      } 
    } 
  } 
} 

The complete source code required to create, render, and rotate around a 3D model formed from 
this mesh is included in the source code that accompanies this book. A screenshot from this application 
is illustrated in Figure 15-10. 

 

Figure 15-10. A triangulated 3D surface from LIDAR data of Wolf Point viewed in WPF 

Rather than being limited to a plain, slate grey appearance as shown in 15-10, you can also assign 
texture maps to the WPF 3D model. For example, Figure 15-11 illustrates another 3D terrain model 
created by triangulating a dataset of points in an area near Mount Snowdon in Wales. The point 
elevation data in this case was gathered not by LIDAR, but by the NASA Shuttle Radar Topography 
Mission. After having created the triangular mesh from the set of point readings, I've then applied a 
texture map that overlays satellite photography of the region on the model. 
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Figure 15-11. A triangulated 3D mesh with texture map applied 

SQL Server's support for 3D spatial data is limited and, if you're dealing with large amounts of 3D 
information, I would recommend that you use an alternative format that is designed to deal with such 
data. However, I hope that this example has shown that it is possible to store, retrieve, and perform 
custom calculations involving 3D data with SQL Server, and how triangulation can help in achieveing 
that goal. 

Creating Alpha Shapes (Concave Hulls) 
In Chapter 10, I introduced the STConvexHull() method, which generates a Polygon formed from the 
convex hull around a set of points. A question that I sometimes get asked is, "How can you create a 
concave hull around a set of points instead?" 

This question is harder to answer than at first it may seem. The problem is that, unlike the convex 
hull, there is no single concave hull around a set of points. Our human brains are very good at looking 
at a distributed set of points and interpreting the general pattern in which they lie, but doing so 
involves a degree of subjectivity. Defining this shape precisely or writing a computer algorithm to 
produce this result is surprisingly complex. However, there is one relatively straightforward approach 
to creating concave hulls that makes use of the Delaunay triangulation, as follows: 

• First, create the Delaunay triangulation of all the points in the shape. 

• Select a subset of the triangulation that includes only those triangles whose 
circumradius is less than a set value. 

• Create the union of those filtered triangles. 

The resulting union will be formed from all those areas that were triangulated by relatively small 
triangles (i.e., where the points in the original dataset were close together), and exclude areas of space 
triangulated by larger triangles, which imply a gap in the data. This approach therefore works quite 
well to generate a convex hull representing the broad "shape" in which a densely packed set of points 
is distributed. The single supplied parameter value used to filter the triangles is called alpha, and the 
shapes created by this process are generally known as alpha shapes. 



CHAPTER 15 ■  TRIANGULATION AND TESSELATION 

 

408 

Adapting the Triangulation Code to Create Alpha Shapes 
To create alpha shapes in SQLCLR, we can reuse almost all the same code as for the original 2D 
triangulation. The only difference comes right at the end of the procedure where, instead of outputting 
all of the triangles in the CompletedTriangles list individually, we return the union of those triangles 
whose circumradius is less than the desired alpha value. The modified code is as follows: 

SqlGeometry result = new SqlGeometry(); 
result.STSrid = srid; 
foreach (SimpleTriangle Tri in CompletedTriangles) 
{ 
  // Only include triangles whose radius is less than supplied alpha 
  if (Tri.radius < alpha) 
  { 
    SqlGeometry triangle = TriangleFromPoints( 
      Vertices[Tri.a], Vertices[Tri.b], Vertices[Tri.c], srid 
    ); 
    // Create union of all matching triangles  
    result = result.STUnion(triangle); 
  } 
} 

A Practical Example: Calculating the Outline of Massachusetts 
To demonstrate alpha shapes in action, we'll reuse the MA_Firestations table from Chapter 12. Recall 
that this table records Point geometries for all the firestations in Massachusetts. Selecting the records 
from this table as in the following code listing produces the results shown in Figure 15-12. 

SELECT Location FROM MA_Firestations; 

 

Figure 15-12. A set of points representing the locations of firestations in the state of Massachussetts 
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Assuming that firestations are spread out across the entire state (though not necessarily 
consistently spaced), let's see how we can use alpha shapes to try to create a Polygon representing the 
shape of Massachusetts from this dataset alone. The only factor that will influence the shape of the 
resulting Polygon is the choice of the single parameter value, alpha. In the following sections, I'll show 
you the effects of varying this value. 

Small Alpha Values 
Choosing a small alpha value will create a concave hull formed from only those triangles that connect 
the most densely distributed points. As alpha approaches 0, the hull created from the union of those 
triangles degenerates more and more, and the alpha shape created tends towards an empty geometry. 

For example, Figure 15-13 demonstrates the hull created from this dataset using an alpha value of 
5,000. The code to create this image is as follows: 

-- First, create a MultiPoint instance containing all the firestations 
DECLARE @Firestations geometry; 
SELECT @Firestations = geometry::UnionAggregate(Location) FROM MA_Firestations; 
 
-- Create the alpha shape and show it together with the firestations 
SELECT dbo.GeometryAlphaShape(@Firestations, 5000) 
UNION ALL 
SELECT @Firestations.STBuffer(1000); 

Notice the interior cavities created towards the middle and to the west of the state, where there is 
generally a greater distance between neighboring firestations. The greater dispersion of points in 
these areas leads to triangles with circumcircles of radius greater than the supplied alpha value of 
5000, so they become excluded from the resulting shape. 

 

Figure 15-13. An alpha shape created from the firestations in Massachusetts using an alpha value of 5,000 
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Large Alpha Values 
As alpha increases, the resulting shape is created from the union of more and more of the triangles 
from the Delaunay triangulation, making it form a less close fit around the "true" shape of the data it 
is trying to describe. As alpha approaches infinity, the alpha shape created is formed from the union of 
all the triangles in the Delaunay triangulation, which increasingly resembles the convex hull of the 
set of points. 

Figure 15-14 illustrates the alpha shape created around the firestations of Massachussetts using an 
alpha value of 30,000, as created using the following code listing: 

DECLARE @Firestations geometry; 
SELECT @Firestations = geometry::UnionAggregate(Location) FROM MA_Firestations; 
 
SELECT dbo.GeometryAlphaShape(@Firestations, 30000) 
UNION ALL 
SELECT @Firestations.STBuffer(1000); 

Notice how, rather than hug the coastline around Boston (towards the east of the state, where the 
points are most concentrated), the alpha shape now incorporates too large an area, including regions 
of sea in Massachusetts Bay and Nantucket Sound. 

 

Figure 15-14. An alpha shape created from the firestations in Massachusetts using an alpha value of 
30,000 

Getting the Alpha Value “Just Right” 
The alpha value used to create the image in Figure 15-13 was too small, and the alpha value used in 
Figure 15-14 was too large. But, rather like in the story of "Goldilocks and the Three Bears," somewhere 
between the two should be a value of alpha that is "just right," one that is small enough to create a hull 
that hugs the outside boundary of the state closely, while not being so small as to introduce any interior 
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cavities. The exact value to use will vary from dataset to dataset, but in this case I find an alpha value of 
11,000 creates a relatively aesthetically pleasing result, as shown in Figure 15-15. The code to create 
this image is as follows: 

DECLARE @Firestations geometry; 
SELECT @Firestations = geometry::UnionAggregate(Location) FROM MA_Firestations; 
 
SELECT dbo.GeometryAlphaShape(@Firestations, 11000) 
UNION ALL 
SELECT @Firestations.STBuffer(1000); 

 

Figure 15-15. An alpha shape created from the firestations in Massachusetts using an alpha value of 
11,000 

The result is still not perfect; the islands of Nantucket and Martha's Vineyard at the bottom right of 
the map have dissolved, as has a section in the middle of the Cape Cod peninsula, However, it 
successfully captures the general shape of the state more accurately than a simple convex hull.  

■ Note  The photo-sharing website Flickr uses alpha shapes to create outline shapes of different regions of the 
world. Geotagged photos uploaded to the site are associated with one or more Where On Earth (WOE) identifiers, 

which are descriptive identifiers of where a photo was taken. By creating alpha shapes around the locations of all 
those photos identified with a given WOE ID (all photos taken in "London," for example), Flickr has built up a 
crowd-sourced set of geographic boundaries, quite separate from any political or administrative definition of those 

locations. It's a fascinating idea, and you can download the resulting dataset in shapefile format from 

http://www.flickr.com/services/shapefiles/2.0/ 
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Voronoi Tessellations 
A Voronoi tessellation (also called a Voronoi diagram), like the Delaunay triangulation, creates a 
single mesh of connected polygons based on a set of points in a dataset. The key differences between 
the Voronoi tessellation and the Delaunay triangulation are that: 

• In a Delaunay triangulation, the mesh is formed from a set of connected triangular 
faces. A Voronoi tessellation is also formed from a set of nonoverlapping polygons, 
but they do not have to be triangles; they can be any n-sided convex polygon. 

• In a Delaunay triangulation the triangles are drawn between points, so that each 
point in the dataset defines a vertex at which triangles meet. However, in a 
Voronoi tessellation each polygon in the mesh is formed around the points in the 
dataset. Each Voronoi polygon contains one (and only one) point in the dataset. 

The Delaunay triangulation and Voronoi tessellation of a given set of points are directly related: 
each point at which Delaunay triangles meet corresponds to the center of a Voronoi polygon, and each 
point at which Voronoi polygons meet is the circumcenter of a Delaunay triangle. In mathematical 
terms, the Delaunay triangulation and Voronoi tessellation are referred to as dual structures, 
knowledge of either one provides all the information required to create the other. 

The relationship between the Delaunay triangulation and Voronoi tessellation of a set of points is 
illustrated in Figure 15-16. 

 

Figure 15-16. Delaunay triangulation (solid lines) and Voronoi tessellation (dashed lines) of a set of points 

As with Delaunay triangulations, Voronoi tessellations have applications in three-dimensional 
computer graphics. They also have uses in spatial analysis, because the Voronoi cell around any site P 
contains all those points that lie closer to P than to any other site included in the tesselation. You can 
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think of Voronoi diagrams as being a materialized form of the nearest neighbor query. You can easily 
find the nearest neighbor site of any point in a dataset by simply looking at the Voronoi cell in which it 
is contained. The shape and size of the polygons in a Voronoi tessellation provide a good visual 
analysis of the distribution of underlying points. 

Adapting the Triangulation Code to Create a Voronoi Tesselation 
Just as alpha shapes can be easily derived from the Delaunay triangulation, so too can Voronoi 
tessellations be created with only minor modifications to the generic triangulation algorithm created 
at the beginning of this chapter. 

Firstly, unlike a Delaunay triangulation, a Voronoi tessellation has no defined boundary and, 
theoretically, the cells that lie on the exterior of a Voronoi tesselation extend outwards on an infinite 
plane. SQL Server won't allow us to define a polygon that extends to infinity so, instead, we'll define 
the exterior Voronoi cells as extending up to the edges of the supertriangle created for the Delaunay 
triangulation. In order to do this, we need to ensure that we do not remove the supertriangle from the 
set of triangles after triangulation is complete.  

The second change is that once the triangular mesh has been completed, instead of returning each 
triangle, we will create new convex Polygons by connecting the circumcenters of the triangles around 
each point. The Polygon created from the circumcenters of all the Delaunay triangles that share a 
vertex defines the Voronoi cell around that point. 

Listed below is the revised output function from the GeometryTriangulate code: 

foreach (SqlGeometry V in Vertex) 
{ 
  // Initialise a new geometry to hold the Voronoi polygon 
  SqlGeometry vp = SqlGeometry.STGeomFromText(new SqlChars("POINT EMPTY"), srid); 
 
  // Look through each triangle 
  foreach (SqlGeometry Tri in Triangle) 
  { 
    // If the triangle intersects this point 
    if (Tri.STIntersects(V)) 
    { 
      // Add the circumcentre of this triangle to the list  
      vp = vp.STUnion(VCircumcentre(Tri)); 
    } 
  } 
  // Create Voronoi polygon from convex hull of the circumcentres of intersecting triangles 
  vp = vp.STConvexHull(); 
 
  record.SetValues(V, vp); 
  SqlContext.Pipe.SendResultsRow(record); 
} 

Having made the necessary changes, import the assembly and register a new GeometryVoronoi 
function as follows: 

CREATE PROCEDURE dbo.GeometryVoronoi(@Points geometry) 
AS EXTERNAL NAME ProSpatialCh15.[ProSpatial.Ch15.StoredProcedures].GeometryVoronoi; 
GO 
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A Practical Example: Outbreaks of Cholera in Victorian London 
Dr. John Snow was a physician and statistician who lived in Victorian England. He is widely 
recognized as being the founder of the modern science of epidemiology, and his methods of statistical 
analysis and pioneering use of maps still influence geographic analysis today in the fields of medicine 
and beyond. 

In August 1854, a severe outbreak of cholera occurred in the Soho district of Central London. At the 
time, cholera was largely believed to be an airborne disease spread by miasma (pollution, or "bad air"). 
However, Dr. Snow believed instead that the disease was carried through infected water. To prove his 
theory, he plotted the location of all of the reported cholera deaths on a map, together with the location 
of all of the water pumps in the area from which people would have drawn their drinking water. His spot 
map, reproduced in Figure 15-17, was one of the first uses of plotting data on a map in such a fashion. 

 

Figure 15-17. John Snow's cholera map of London. Black tally lines indicate the number of reported 
cholera deaths at each location.   
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What John Snow discovered was that the vast majority of cholera deaths were centered around the 
location of a single water pump on Broad Street, or, at those locations for which the pump was closest 
by travel time, even if not by distance. Assuming that people always obtained their water from the 
closest water pump, this helped to confirm Dr Snow's theory of how cholera spread. He also explained 
some of the outlying deaths, as some of those victims had chosen to obtain their water from the Broad 
Street pump rather than their closest pump (as it was  believed that the water of the Broad Street pump 
tasted better). After Dr. Snow petitioned the council to remove the handle from the Broad Street pump, 
preventing any water being drawn from it, the death rate dramatically dropped. And the rest, they say, 
is history. 

You can simulate some of Dr. Snow's analysis using Voronoi tessellations in SQL Server. Firstly, 
we can create a MultiPoint geometry defining the locations of all the water pumps in the Soho area. 
The coordinate system we'll use will be SRID 27700 (The Ordnance Survey National Grid of Great 
Britain), as in the following code listing: 

DECLARE @Pumps geometry; 
SET @Pumps = geometry::STMPointFromText('MULTIPOINT ((529180 181359), (529523 181356), 
  (529441 181333), (529184 181195), (529194 181079), (529393 181021), (529747 180923), 
  (529613 180895), (529451 180825), (529295 180794), (529204 180667), (529589 180666))',  
  27700); 

Now, we can use the GeometryVoronoi tessellation function to define the areas of all those points 
that lie closest to each pump. However, we won't return the Voronoi cells directly. What we'll do 
instead is to insert the cells into a temporary table first, as follows: 

CREATE TABLE #PumpAreas ( 
  PumpID int IDENTITY(1,1), 
  PumpArea geometry 
); 
INSERT INTO #PumpAreas(PumpArea) 
EXEC GeometryVoronoi @Pumps; 

Why bother with the temporary table? Recall that the exterior cells of a Voronoi tessellation 
theoretically extend to infinity. In our GeometryVoronoi function, they actually extend to the edges of 
the Delaunay supertriangle, but this still isn't good, since it suggests that the cells extend beyond the 
geographic boundaries of the source dataset. To ensure that the analysis remains valid, we'll clip the 
Voronoi cells to the edges of the dataset from which they were created (since, beyond that, we do not 
know where the location of any further pumps lie that may alter the nature of the tessellation). We can 
do this by updating the PumpAreas temporary table, and using the STIntersection() method to clip each 
Voronoi cell to contain only those areas that lie within the boundaries of the map: 

DECLARE @MapExtent geometry; 
SET @MapExtent = geometry::STPolyFromText('POLYGON ((528895 180562, 529804 180562,  
529804 181408, 528895 181408, 528895 180562))', 27700); 
 
UPDATE #PumpAreas 
SET PumpArea = PumpArea.STIntersection(@MapExtent); 

At this point, you can visualize the location of each pump, together with the Voronoi cell around it, 
by executing the following code listing: 

DECLARE @Pumps geometry; 
SET @Pumps = geometry::STMPointFromText('MULTIPOINT ((529180 181359), (529523 181356), (529441 
181333), (529184 181195), (529194 181079), (529393 181021), (529747 180923), (529613 180895), 
(529451 180825), (529295 180794), (529204 180667), (529589 180666))', 27700); 
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SELECT @Pumps.STBuffer(10) 
UNION ALL  
SELECT PumpArea FROM #PumpAreas; 

The results are illustrated in Figure 15-18. 

 

Figure 15-18. Locations of waterpumps and the Voronoi cells sited around them 

The Voronoi cells illustrated in Figure 15-18 are Polygons that represent the materialized view of 
the "nearest neighbors" to each pump. (Note that this is a simplified approach compared to Snow's 
analysis, since the Polygons represent nearest neighbors calculated by simple linear distance and 
don't account for the travel distance to each pump along the streets of Victorian London, for example.) 

To continue the analysis, we now need to consider the number of deaths occurring in locations 
within each cell. 

We'll define the location of each property at which a death occurred, like the pumps, as a Point 
geom.etry using SRID 27700, and record the number of deaths at that property in an int column, as 
follows: 

CREATE TABLE Cholera_deaths( 
  ID int IDENTITY(1,1) NOT NULL, 
  NumDeaths int, 
  geom27700 geometry 
); 

Execute the code listing accompanying this chapter to populate this table with data. Having done 
so, you can then quickly visualize the distribution of cholera deaths in the regions closest to each pump 
as shown in the following code listing, the results of which are illustrated in Figure 15-19: 

SELECT PumpArea 
FROM #PumpAreas 
UNION ALL SELECT 
geom27700.STBuffer(2*SQRT(NumDeaths)) FROM Cholera_Deaths; 
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■ Note  Rather than buffering each location in direct proportion to the number of deaths, I've buffered each 
location in proportion to the square root of the number of deaths. This has the effect of creating circles in the 
Spatial Results tab whose area varies relative to the data value they represent (rather than circles whose radius is 

proportional to the value in question). When creating maps that represent data using proportionally sized shapes 
this is generally considered a good practice, because users typically perceive and compare elements based on 

their relative area (as in a histogram) rather than based on a linear dimension such as radius.  

 

Figure 15-19. Plotting proportionally sized circles representing the number of cholera deaths at each 
property overlaid on the Voronoi cells formed around each pump 

It is obvious from a visual examination of Figure 15-19 that the majority of deaths occurred at 
locations contained within the Voronoi cell around the central water pump on Broad Street. To 
quantify this finding, we can execute one last code listing, as follows: 

SELECT 
  PumpArea,  
  (SELECT 
    SUM(NumDeaths) 
    FROM Cholera_Deaths WHERE  
    geom27700.STWithin(PumpArea) = 1 
  ) AS NumDeaths 
FROM #PumpAreas; 

Switching to the Spatial Results tab and selecting NumDeaths as the label column gives the result 
shown in Figure 15-20. 
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Figure 15-20. The number of cholera deaths occurring within the Voronoi cell around each water pump. 

Three hundred fifty-five of the 578 recorded cholera deaths occurred within the Voronoi cell 
surrounding the Broad Street pump, with hardly any deaths occurring in those Voronoi cells formed 
around pumps towards the edge of the map. 

Voronoi tessellations can be used as an efficient method to perform nearest-neighbor calculations. 
In this example, we could have calculated the nearest pump for each of the 578 victims separately, using 
one of the nearest-neighbor query patterns described in Chapter 12 (and we'd have got the same result 
if we had done so). However, having created the Voronoi tessellation of those points, it is much more 
efficient to determine the nearest neighbor of any point by simply determining the Voronoi cell in 
which it lies. 

Summary 
In this chapter, you learned about triangulation and tessellation. 

• The process of triangulation creates a continuous mesh of nonoverlapping 
polygons formed from a set of points. 

• There are many possible triangulations of a set of points, but the most common 
(and useful) triangulation is the Delaunay triangulation, which is the unique 
triangulated surface formed from a set of points in which the circumcircle of every 
triangle is empty. 

• Delaunay triangulations have many uses, and I showed you three different 
practical applications: 

• Creating surface models of 3D terrain 

• Creating alpha shapes that can approximate the concave hull of a shape 

• Deriving a Voronoi tessellation to identify nearest neighbors 
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Visualization and User Interface 

Spatial data, by its very nature, lends itself to graphical display; we do not think of a country, a place, or 
a route as a set of numeric coordinates, but as a physical object in the world with a location and shape. 
Text-based formats such as well-known text (WKT) are all very well as a method of exchanging spatial 
data, but they're simply not viable options for presenting or analyzing that information (and well-
known binary is even worse!). Instead, we generally want to portray spatial data in a way that lets us 
visually examine the shape and location of each element, as well as consider the proximity and 
relationships between different elements in space. In other words, we expect spatial data to be 
graphically represented on a map of some sort. 

There are many different ways of displaying spatial features with their associated properties on a 
map; for example, cartographic symbols representing cities can be proportionally sized to represent 
the population of each city, while polygons representing countries can be colored to represent their 
relative wealth or another economic or demographic measure. Generally, such thematic maps plot 
only a single attribute value associated with each feature (i.e., they are univariate). It is also possible to 
represent multiple attributes on a map by using, say, different sizes, colors, and marker symbols to 
encode three different dimensions of data. However, this can quickly become confusing, so be careful 
not to overload your map with too much information. 

Computer-based visualizations are not limited only to presenting a static, top-down map view, as 
used in a traditional cartographic projection, "geobrowsers" such as Google Earth 
(http://earth.google.com) provide rich graphical interfaces that allow users to explore spatial data in a 
completely immersive, natural way, enabling multiple layers of information to be placed individually 
or combined on a virtual globe that can be navigated in three-dimensional space. That data can even 
be animated to explore changes in spatio-temporal data over time. 

In this chapter, we'll examine some of the different options available for visualizing spatial data, 
and a little about interface design allowing users to interact with that data. Note that the tools provided 
with SQL Server itself are fairly limited in this respect, so I'll be making use of some well-known 
third-party applications—Google Earth and Microsoft Bing Maps—to provide ready-made 
presentation layers for spatial data from SQL Server. 

The SSMS Spatial Results Tab 
Before looking at more complex visualization solutions, let's start by considering the tools provided 
"out-of-the-box" with SQL Server itself, such as within SQL Server Management Studio. Normally, the 
results of any T-SQL statements executed in SQL Server Management Studio are displayed in the 
Results tab, represented in tabular format. However, after executing a SELECT statement that returns 
one or more columns of geometry or geography data, you'll also have the option to switch to the Spatial 
Results tab, which displays the query results in a graphical fashion. 
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For example, try executing the following code listing, which creates a five-sided geography Polygon 
containing an interior ring, representing the U.S. Department of Defense Pentagon building: 

SELECT 
  'The Pentagon' AS Label, 
   geography::STPolyFromText( 
     'POLYGON( 
       ( -77.053224 38.87086, -77.054683 38.87304, -77.057880 38.87280, 
         -77.058492 38.87022, -77.055563 38.86907, -77.053224 38.87086 ), 
       ( -77.055820 38.87029, -77.056936 38.87074, -77.056732 38.87171, 
         -77.055477 38.87185, -77.054919 38.87098, -77.055820 38.87029 ) 
       )', 
     4326 
   ) AS Geometry; 

In the results pane at the bottom of the screen, you will see the standard tabular results showing 
the name of the feature, and SQL Server's binary representation of the geometry. However, notice the 
choice of three tabs available at the top of the results pane: Results, Spatial Results, and Messages, as 
illustrated in Figure 16-1. 

 

Figure 16-1. The Spatial Results tab. 

To view the results of the query displayed in a graphical fashion, simply click on the Spatial 
Results tab. You will see the results illustrated in Figure 16-2. 

 

Figure 16-2. Viewing the results of a query on the Spatial Results tab 
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This is probably pretty familiar to you; I've already illustrated the Spatial Results tab several times 
in this book to demonstrate the results of various code listings. And this is exactly the purpose of the 
Spatial Results tab: to provide a quick "sense-check" of the results of any spatial queries. In the 
following sections, I'll give you a couple of tips to make the Spatial Results tab more useful: 

Add a Buffer to Points 
When displaying Point geometries, (which, by definition, are infinitely small), you'll find that they are 
quite hard to see on the Spatial Results tab, plotted as only a single pixel. To make Point data easier to 
visualize on the Spatial Results tab you can use STBuffer(), BufferWithCurves(), or 
BufferWithTolerance() to add a buffer of fixed radius around each Point, creating small circular 
Polygon geometries centered on each Point instead. 

You only need to apply this buffer to Points, so use a CASE statement to check the dimension of each 
geometry in a resultset; if the value returned by STDimension() is 0 then you're dealing with a Point or 
MultiPoint geometry and a buffer should be applied, otherwise let the geometry pass through as it is. 
Here's an example code listing: 

DECLARE @MixedGeometries TABLE  ( 
  geom geometry 
); 
INSERT INTO @MixedGeometries VALUES 
  ('POINT(2 1)'), 
  ('POINT(3 4)'), 
  ('LINESTRING(1 1, 5 3)'), 
  ('LINESTRING(1 4, 2 0)'); 
 
-- It's very hard to see the results of this query on the Spatial Results tab 
SELECT * FROM @MixedGeometries; 
 
-- Adding a buffer around zero-dimensional geometries creates small circular Polygons 
SELECT 
  CASE geom.STDimension() 
    WHEN 0 THEN geom.STBuffer(0.1) 
    ELSE geom 
  END AS geom 
 FROM @MixedGeometries; 

Note that this is only a "hack" solution to make Point data easier to see in the Spatial Results tab, 
which may help in performing a quick sense-check of the data. I certainly wouldn't recommend that 
you change your Point data into Polygons as a general rule for this reason alone! 

Create a Base Layer Against Which to Display Your Data 
A spatial query will generally return a subset of data containing one or more particular features of 
interest, but you may well find that those features only really make sense when considered in a wider 
context. For example, plotting the results of a query to find the current locations of a set of delivery 
vehicles doesn't help much unless you also consider the road network and locations between which they 
are traveling. For this purpose, I keep a set of tables representing various simplified "base layers"—
country outlines, rivers and roads, major towns, and the like—which I can select and include together 
with the results of any query to add background context while still in SQL Server Management Studio. 



CHAPTER 16 ■  VISUALIZATION AND USER INTERFACE 

 

422 

To add context to the Spatial Results tab, use a UNION ALL query to append the geometries from the 
appropriate base layer to the results of your query. You may also need to add dummy values so that the 
columns of data in the two result sets are aligned. 

■ Tip  The sources listed at the beginning of Chapter 5 are good places to look for layers of base data. 

For example, suppose that you have a table of all those settlements in Australia with a population 
greater than 15,000 (a dataset that can be downloaded from http://www.geonames.org). Selected in 
isolation, the data in this table would be displayed in the Spatial Results tab as shown in Figure 16-3: 

SELECT Name, geog4326 FROM Australian_Settlements; 

 

Figure 16-3. Displaying a set of Point data representing settlements in Australia 

To add useful context to this display, you might want to add a UNION ALL statement to append a 
Polygon geometry to the result set representing the country of Australia. In the following code listing, I 
select the appropriate country outline from a Country_Outlines table, which I maintain for exactly this 
sort of situation: 

SELECT Name, geog4326 
FROM Australian_Settlements 
 
UNION ALL 
 
SELECT Name, geog4326 
FROM Country_Outlines 
WHERE Name='Australia'; 
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The Spatial Results tab would then display the point dataset against a backdrop as shown in Figure 
16-4. 

 

Figure 16-4. Displaying a set of Point data against a background layer representing Australia. 

Customize the Display 
There are a handful of customization options in the right-hand pane of the Spatial Results tab, as follows: 

Select spatial column: Determines which column of geography/geometry from 
the resultset should be plotted in the display. The Spatial Results tab can only 
plot data from one column at a time; it is not possible to overlay data from 
multiple columns. If you execute a SELECT query that returns more than one 
column of geometry/geography data then you must choose which column 
should be displayed. 

Select label column: Each feature on the map may be labeled according to the 
value of another column included in the result set, such as an integer id, or 
varchar description. Labels for LineString features will be placed on the path of 
the LineString, while labels for Polygons will appear within the Polygon. It is worth 
noting that SQL Server employs a label placement algorithm that tries to avoid 
cluttering up the Spatial Results display with too much text, but one side effect of 
this algorithm is that only some features in a set of results may be labeled. Point 
features will never be labeled, although it is still possible to view the attributes of a 
Point by hovering your mouse cursor over the feature on the Spatial Results tab. 

Select projection: (geography only) The geography datatype stores angular 
coordinates from a geographic coordinate system. However, in order to display 
them on any flat display, including the Spatial Results tab, they must be 
projected in some way (note that the data itself remains unprojected; it is 
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projected only for the purposes of display). The Spatial Results tab offers four 
common projection methods: Equirectangular, Mercator, Robinson, and 
Bonne. If you are plotting results from the geometry datatype, this option is not 
available. geometry coordinates will always be displayed in the same two-
dimensional coordinate system in which they are already defined. 

Zoom: This slider allows you to zoom in and out of the rendered map. 

Show grid lines: Highlighting this check box allows you to plot the graticule of 
latitude and longitude (or x and y) values over the map window. 

The options described here are the only customizations available; you can't, for example, choose to 
color features differently depending on the value of a certain attribute, or change other aspects of their 
visual appearance. There's also a limit on the total number of elements that can be displayed on the 
Spatial Results tab, which is capped at 5,000. If your geometries are particularly complex, you may find 
that you are not able to display this many. 

Finally, even if you do end up creating a beautiful display of your data in the Spatial Results tab 
(such as my attempt to recreate the Mona Lisa as a geometry MultiPolygon, shown in Figure 16-5), 
there's no way to export the image or embed it in any other application. 

 

Figure 16-5. Visualizations in the Spatial Results tab, however great their artistic merit, can't be exported 
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For these reasons, the Spatial Results tab is clearly not a useful tool in terms of presenting or 
sharing the output of spatial queries with end users. For this, we will have to look to other tools. 

Thematic Mapping with Google Earth 
Google Earth, the popular "virtual globe" application, is widely acknowledged as contributing to the 
massive growth in consumer interest and awareness of spatial applications in recent years. The 
combination of satellite imagery, aerial photography, and other data sources overlaid on a 3D 
geographic model of the entire globe, together with a responsive and intuitive interface was 
revolutionary when first released in 2005, and still holds a significant consumer "wow" factor to this 
day. 

The first time I used Google Earth, my immediate first thought (like that, I imagine, of many others) 
was to see what my house looked like "from space," followed by zooming to various landmarks around 
the globe (the Eiffel Tower, Sydney Opera House, the Taj Mahal). However, far from being merely a 
pretty "spinny globe" of amazing imagery, Google Earth also holds significant potential as a graphical 
user interface in which end-users can explore spatial data from many sources.  

To demonstrate this, we'll use Google Earth to display a dataset that shows the ecological footprint 
of different countries around the world. Broadly speaking, an ecological footprint is a measure of how 
sustainable a given way of life is, in terms of the amount of resources it demands, and the capacity of 
the earth to absorb the waste ir produces. An ecological footprint of 1.0 or less indicates that the Earth 
can sustain a particular way of life. A footprint of 2.0 suggests that it requires the natural capacity of 
two Earths if the whole of humanity lived according to that lifestyle. 

The end result that we're aiming to achieve in this example is shown in Figure 16-6, in which 
different countries are colored on Google Earth according to their ecological footprint. Clicking on a 
country brings up an information balloon with additional information.  
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Figure 16-6. Displaying ecological footprint of countries on Google Earth 

■ Note  To follow this example you'll need the Google Earth application, which can be downloaded from 

http://earth.google.com 

Getting the Data 
The source dataset for this example can be found in the code download accompanying this book. It 
contains three columns: the name of a country, a geography Polygon representing the country outline, 
and a numeric value representing its ecological footprint as published by the Global Footprint 
Network in 2010. The structure of the EcoFootprint table is as follows: 



CHAPTER 16 ■  VISUALIZATION AND USER INTERFACE 

 

427 

CREATE TABLE EcoFootprint ( 
  COUNTRYNAME varchar(255) NULL, 
  SHAPE geography NULL, 
  FOOTPRINT decimal(18, 2) NULL 
); 

A typical row of data inserted into this table is as follows: 

INSERT INTO EcoFootprint (COUNTRYNAME, SHAPE, FOOTPRINT)  
VALUES ( 
  'Albania',      
  0xE610000001040F0000008E0B0742B2824440A80E80B8AB6F3340FAD5E3BED52C444078812040867A3340FE1… 
  1.86 
); 

In order to use this data as the basis for a thematic map in Google Earth, we must first determine 
the color in which each country should be shown based on its relative footprint, and then export the 
data in a suitable format. These steps are described in the following sections. 

Creating a Color Range 
We'll display the data on a chloropleth map in Google Earth, in which the footprint of each country is 
represented by the color in which it is shaded. We therefore need to determine an appropriate color 
palette based on the range of values in the ecological fooprint column. In keeping with normal user 
expectation, countries with higher (worse) ecological footprints will be colored red, while countries 
with lower (better) footprints will be colored green, with a linear gradient being applied to the range 
of values in between. 

The following code listing adds a new column to the EcoFootprint table and populates it with 
hexadecimal color codes representing the color with which each country will be shaded. The hex color 
code is stored as a char(8) value, in which the first two characters represent an opacity (alpha) value, 
and subsequent character pairs represent the blue, green, and red components of each color. This 
matches the ABGR format used by Google Earth, although note that it differs from the more common 
ARGB ordering with which you may be familiar. As the value of a country's footprint increases, the red 
component of the corresponding color increases up to a maximum of 255, while the green component 
reduces towards 0: 

ALTER TABLE EcoFootPrint 
ADD  ABGRHexCode char(8); 
GO 
 
-- Determine the maximum footprint value from the dataset 
DECLARE @MaxFootPrint decimal(18,2) = (SELECT MAX(FootPrint) FROM EcoFootprint); 
 
-- Calculate the color code for each country based on their %age of the maximum value 
UPDATE EcoFootPrint 
SET ABGRHexCode =  
COALESCE( 
  CONVERT(varchar(max), 
    CAST(200 AS BINARY(1)) -- Alpha 
    + CAST(100 AS BINARY(1)) -- Blue 
    + CAST(CAST(200 - (FootPrint / @MaxFootPrint * 128) AS INT) AS BINARY(1)) -- Green 
    + CAST(CAST(127 + (FootPrint / @MaxFootPrint * 128) AS INT) AS BINARY(1)) -- Red 
  , 2), 
  'ff808080' -- Grey if no data available 
); 
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You can, of course, adjust this code listing to apply a different color gradient to the data as you see fit. 

Exporting to KML 
Google Earth can't query the data in the EcoFootPrint table directly. Instead, the native file format 
used by Google Earth is Keyhole Markup Language (KML). We'll export the data from the EcoFootPrint 
table (including the hex color code associated with each country Polygon) to KML using OGR2OGR, as 
we did previously in Chapter 5. 

Here's the code listing: 

ogr2ogr 
  -f "KML" 
  "C:\spatial\ecofootprint.kml"  
  "MSSQL:server=localhost;database=prospatial;trusted_connection=yes;" 
  -sql "SELECT COUNTRYNAME, FOOTPRINT, SHAPE.STAsBinary(), ABGRHexCode FROM EcoFootprint" 
  -overwrite 
  -nln "EcoFootprint" 
  -dsco NameField="COUNTRYNAME" 

For more information on the general syntax used in this code listing, please refer back to Chapter 
5. In this example, the code listing connects to the specified SQL Server instance running on 
localhost and executes the query listed specified with the –sql flag to select the contents of the 
EcoFootprint table. The results are converted to KML format as specified by the –f flag, and saved as 
c:\spatial\ecofootprint.kml, overwriting any previous existing versions of that file. There is one 
additional option I've included, -dsco NameField="COUNTRYNAME", which is a dataset creation option 
specific to the KML format; this option specifies that the COUNTRYNAME column from the dataset should be 
used to populate the name of each placemark in the KML file, which will cause Google Earth to 
automatically label each country with the correct name. 

Styling the KML File 
After exporting the data from SQL Server to KML, load up the resulting file, c:\spatial\ecofootprint.kml 
(or whatever destination you specified in the previous step), in Visual Studio to examine its contents. The 
following extract shows the start of the file, including the first Placemark feature representing the 
country of Algeria: 

<?xml version="1.0" encoding="utf-8" ?> 
<kml xmlns="http://www.opengis.net/kml/2.2"> 
<Document><Folder><name>EcoFootprint</name> 
<Schema name="EcoFootprint" id="EcoFootprint"> 
  <SimpleField name="Name" type="string"></SimpleField> 
  <SimpleField name="Description" type="string"></SimpleField> 
  <SimpleField name="COUNTRYNAME" type="string"></SimpleField> 
  <SimpleField name="FOOTPRINT" type="float"></SimpleField> 
  <SimpleField name="ABGRHexCode" type="string"></SimpleField> 
</Schema> 
<Placemark> 
  <name>Algeria</name> 
  <Style> 
    <LineStyle><color>ff0000ff</color></LineStyle> 
    <PolyStyle><fill>0</fill></PolyStyle> 
  </Style> 
  <ExtendedData> 
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    <SchemaData schemaUrl="#EcoFootprint"> 
      <SimpleData name="COUNTRYNAME">Algeria</SimpleData> 
      <SimpleData name="FOOTPRINT">1.79</SimpleData> 
      <SimpleData name="ABGRHexCode">C864B98D</SimpleData> 
    </SchemaData> 
  </ExtendedData> 
  <Polygon> 
    <outerBoundaryIs> 
      <LinearRing> 
        <coordinates> 
          2.96361,36.802216 0.95,36.450272 -2.209445,35.085831 -1.74722,34.747215  
         -1.668056,33.26111 -1.01028,32.508331 -1.180556,32.11055 -2.853889,32.088333  
         -3.818334,31.69555 -3.626667,30.97055 -4.920556,30.508053 -5.53833,29.902496  
         -7.12389,29.636944 -8.66722,28.709442 -8.66667,27.666664 -8.66679,27.29046  
         -6.662778,26.129166 -4.80611,25.000275 1.169662,21.102543 1.1675,20.741108  
          1.79583,20.308331 3.233055,19.820274 3.331944,18.976387 4.245277,19.146664  
          5.812499,19.44611 7.450807,20.852863 11.986475,23.522305 11.558887,24.3025 
          10.25222,24.60583 9.398333,26.153332 9.871666,26.514164 9.948332,27.824444  
          9.766388,29.427776 9.30389,30.122498 9.537113,30.23439 9.055277,32.099998  
          8.34861,32.533333 7.492499000000123,33.887497 8.251665,34.64444 8.183611,36.524162  
          8.62203,36.941368 6.398333,37.086388 5.328055,36.640274 4.785832,36.894722  
          2.96361,36.802216 
       </coordinates> 
    </LinearRing> 
    </outerBoundaryIs> 
  </Polygon> 
</Placemark> 
… 

You'll see in this code listing the familiar <Polygon> structure describing the coordinates of the 
geometry representing Algeria. However, what I'd like to draw your attention to are the other 
elements of the KML file, particularly the <Schema> element at the top of the file, and the 
<ExtendedData> element attached to the Placemark. 

The <Schema> element is a structured type that defines the fields of custom data associated with 
each element in this KML file. You can think of this element as being roughly equivalent to the .dbf file  
that defines the nonspatial attributes of each element in an ESRI shapefile. In this KML document, the 
<Schema> element has been assigned a name and id of "EcoFootprint" matching the name of the file 
itself. Within the <Schema> element there is a set of <SimpleElement> entities. These correspond to the 
columns of data returned from the SQL query, and each has both a name and associated type. 

Within the <Placemark> element representing Algeria, you'll see an instance of the <SchemaData> 
element that references the EcoFootprint Schema, which contains the appropriate COUNTRYNAME, 
FOOTPRINT and ABGRHexCode values for Algeria. 

■ Tip  For more information about the structure and elements contained with a KML file and how they are 
interpreted within Google Earth, consult the Google Earth KML reference guide at 

https://developers.google.com/kml/documentation/ 
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The KML file generated by OGR2OGR contains all of the fields of information required to create 
our thematic map, but it requires a little manipulation first. Currently, the color with which we want 
each country polygon to be filled is specified in the ABGRHexCode element, which is part of the extended 
data for each Placemark. The XML hierarchy to locate this element in the document is as follows: 

<Document> 
  <Folder> 
    <Placemark> 
      <ExtendedData> 
        <SchemaData> 
          <SimpleData name="ABGRHexCode">C864B98D</SimpleData> 

However, Google Earth expects to find styling information in the PolyStyle color element located 
in the <Style> element of a Placemark, as shown here: 

<Document> 
  <Folder> 
    <Placemark> 
      <Style> 
        <PolyStyle> 
          <color>C864B98D</color> 

To correct the structure of the KML document, we'll create an XSL transformation that copies the 
appropriate ABGRHexCode value for each Placemark into a PolyStyle color element instead. To do so, 
create a new XSLT file in Visual Studio and enter the code shown in the following listing: 

<?xml version="1.0"?> 
 
<xsl:stylesheet 
  xmlns:xsl="http://www.w3.org/1999/XSL/Transform"  
  xmlns:kml="http://www.opengis.net/kml/2.2" 
  version="2.2"> 
 
  <xsl:output method="xml" indent="yes" omit-xml-declaration="no" encoding="utf-8"/> 
 
  <!-- By default, allow all elements and attributes to pass through unchanged --> 
  <xsl:template match="*">   
    <xsl:copy> 
      <xsl:copy-of select="@*" /> 
      <xsl:apply-templates  /> 
    </xsl:copy> 
  </xsl:template> 
 
  <!-- Remove any existing styles --> 
  <xsl:template match="kml:Style" /> 
 
  <!-- For each Placemark element in the KML file --> 
  <xsl:template match="kml:Placemark"> 
    <xsl:copy> 
      <xsl:copy-of select="@*" /> 
 
      <!-- Add <Style> element based on the value of the associated ABGRHexCode --> 
      <Style> 
        <PolyStyle> 
          <color> 
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            <xsl:value-of 
              select="kml:ExtendedData/kml:SchemaData/kml:SimpleData[@name='ABGRHexCode']"/> 
          </color> 
        </PolyStyle> 
      </Style> 
    <xsl:apply-templates /> 
    </xsl:copy> 
  </xsl:template> 
</xsl:stylesheet> 

Having input the XML transformation, go to the Visual Studio XML menu and select Start XSLT 
(with or without debugging). On the Choose Input XML Document dialog box that appears, select the 
c:\spatial\ecofootprint.kml file exported from OGR2OGR (you may have to change the file filter to 
show all files *.* in order to see the KML file). 

Visual Studio will apply the XSL transformation to the source KML file to create a new file with the 
correct styling elements. Save this file and load it in Google Earth to see the output previously 
illustrated in Figure 16-6.  

Taking It Further 
In this example, I've demonstrated one way to take data from an SQL Server table and display it in 
Google Earth. However, there are many ways in which you could improve and extend this idea. 

Firstly, rather than manually export a static KML file using OGR2OGR, you could serve the KML 
file dynamically on-demand via a web service. (KML is, after all, just a dialect of XML, so it is relatively 
easy to write a .NET handler that will connect to the database and generate the associated XML.) 
Rather than loading a local static file, this dynamic KML file could be accessed via a network link, 
meaning users would always see the latest refreshed and updated view of the data in the SQL Server 
table. 

Remember also that Google Earth can not only display shaded polygon areas: it supports polylines 
equivalent to SQL Server's LineString geometry, and markers that can be used to portray Points using 
customizable icons. You can even overlay images and text to add additional context to your map, and 
create some interactivity by launching information windows when certain elements are clicked, and 
so on. 

Furthermore, the example shown here currently makes little use of the fact that Google Earth 
presents a (pseudo) 3D view of data. Rather than simply coloring each feature on the map, we could 
create a 3D prism map that extrudes each feature upwards based on its ecological footprint. Prism maps 
are conceptually a cross between a column chart and a map, in which the height of each feature 
represents a corresponding attribute value. Figure 16-7 illustrates an alternative view of the 
ecological footprint data used in this example, in which both the height and color of each country vary 
according to its footprint. 



CHAPTER 16 ■  VISUALIZATION AND USER INTERFACE 

 

432 

 

Figure 16-7. A 3D prism map using Google Earth. 

Limitations 
While Google Earth certainly presents an impressive immersive display medium for users to explore 
spatial data (particularly datasets that span the whole globe), the level of data interaction it offers is 
relatively limited. In this example, a single complete KML file containing the ecological footprint of all 
countries was presented on the map, and no refinement or querying of that data occurs once it is 
loaded within the Google Earth interface. You can introduce some degree of user interaction with data 
in Google Earth (displaying pop-up windows with further information when the user clicks on a 
feature, for example), but the scope of interaction is pretty limited. 

Furthermore, it is hard to create a fully fledged, customized application interface based on Google 
Earth, since you will always be confined to operating within the sandboxed environment of the Google 
Earth application itself and the functionality it exposes. To overcome this limitation, we can instead 
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create a simple application that harnesses a web-mapping API such as Google Maps or Bing Maps, and 
this is exactly what I'll demonstrate in the next section. 

Creating a Web Map Interface with Bing Maps 
Interactive "slippy" map displays such as Google Maps and Bing Maps can be used as a central, two-
way user application interface, operating both as a canvas to capture input from users and also to 
display output to them. In this case, the map becomes not only a presentation layer, but also the main 
application interface to spatial data held in the database. To demonstrate this approach, we'll create a 
web application that displays a map of the United States using the Bing Maps AJAX API. When the user 
clicks any point on the map, the application will trigger a stored procedure that selects information 
from an SQL Server table about all airports that lie within a certain distance of the chosen location, 
displays them on the map, and provides a popup information window containing additional 
information about each. This type of application is similar to that used to provide "store locator" 
functionality found on many websites, but can easily be adapted to many other situations. 

Because we'll be coding this example using standard web conventions such as HTML and 
Javascript, together with a little .NET server-side scripting, you can extend this example to create a 
complete customized spatial application incorporating any other web components you desire. 

■ Note  To follow this example, you'll need to insert a valid Bing Maps key in any code listing where indicated by 
ENTERYOURBINGMAPSKEY. Instructions on how to obtain a Bing Maps key are described at the beginning of chapter 

6. (If you already signed up for a key, you can use the same key here as you did for the geocoding service) 

Create the SQL Server Table and Stored Procedure 
To begin, execute the SQL script accompanying this chapter to create and populate the table containing 
details of U.S. airports. The structure of the US_Airports table is as follows: 

CREATE TABLE US_Airports( 
  Code char(4) NULL, 
  Name varchar(255) NULL, 
  City varchar(255) NULL, 
  County varchar(255) NULL, 
  State char(2) NULL, 
  Location geography NULL, 
  Elevation int NULL 
); 

And a typical row inserted into the table looks like this: 

INSERT INTO US_Airports VALUES ( 
  '00A ', 
  'STONE MOUNTAIN-BRITT MEMORIAL', 
  'STONE MOUNTAIN', 
  'DE KALB', 
  'GA', 
  0xE6100000010CC87A6AF5D5E74040D61C2098A30755C0, 
  986 
); 
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Next, we will create a stored procedure to select all those airports from this table that lie within a 
given distance of a provided location. This procedure will be called from the web application, which 
will provide the parameters of where the user clicked on the map (as latitude and longitude 
coordinates), together with an adjustable radius defining the maximum distance around the point that 
should be searched. The location of each airport is defined as a geography Point using SRID 4326 so, to 
be consistent with this, the radius parameter will also be provided in meters. 

We'll use the STDistance() method to determine the distance from each airport to the chosen point. 
Here's the code to create the stored procedure: 

CREATE PROCEDURE [dbo].[uspAirportLocator] 
  @latitude float, 
  @longitude float, 
  @radius float 
AS 
BEGIN 
 
  -- Create a geography point from the supplied lat/long 
  DECLARE @Point geography; 
  SET @Point = geography::Point(@latitude, @longitude, 4326); 
 
  -- Select all airports less than specified distance from this point 
  SELECT 
    NAME, 
    CITY, 
    COUNTY, 
    STATE, 
    Location.Lat AS Latitude, 
    Location.Long AS Longitude 
  FROM 
    US_Airports 
  WHERE 
    Location.STDistance(@Point) < @radius; 
END; 

That's all that needs to be done in the database back-end, so now we'll turn our attention to 
creating the client-facing web application. 

Creating the Web Application 
Launch Visual Studio and select File ➤ New ➤ Project. In the New Project Dialog window that appears, 
expand the set of installed C# Web templates and highlight the Empty ASP.NET Web Application 
template. Name the project and choose a location, as shown in Figure 16-8. 
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Figure 16-8. Creating an ASP.NET Empty Web Application 

Defining the HTML/Javascript 
The web application will consist of two elements. The first is the HTML file that defines the structure 
and elements contained in the user map interface. This file will also contain the Javascript that will 
add interactivity to the map. 

From the Visual Studio menu bar, select Project ➤ Add New Item, and choose to add an HTML Page 
in the dialog box as shown in Figure 16-9. 
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Figure 16-9. Adding a new HTML page to the web application 

When the HTML Page has been added it will contain a default template. Replace this with the 
HTML necessary to define a webpage containing a Bing Maps control, as follows: 

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"  
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
  <title>Bing Maps Interface</title> 
  <script type="text/javascript" 
          src="http://ecn.dev.virtualearth.net/mapcontrol/mapcontrol.ashx?v=7.0"></script> 
  <script type="text/javascript" 
          src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.6.4.min.js"></script> 
  <script type="text/javascript"> 
 
    // Declare the radius of the search area (in metres) 
    radius = 50000; 
 
    // When the browser has finished loading the document 
    $(document).ready(function () { 
 
      // Create a new map 
      map = new Microsoft.Maps.Map(document.getElementById("mapDiv"), 
                           { credentials: "ENTERYOURBINGMAPSKEYHERE", 
                             center: new Microsoft.Maps.Location(38, -122), 
                             mapTypeId: Microsoft.Maps.MapTypeId.birdseye, 
                             zoom: 8 
                           }); 
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      // Listen to mouse clicks on the map 
      Microsoft.Maps.Events.addHandler(map, 'click', function (e) { 
 
        // If user clicks on a pushpin 
        if (e.targetType == "pushpin") { 
 
          // Create an infobox with information about the selected airport 
          var infobox = new Microsoft.Maps.Infobox( 
            e.target.getLocation(), 
            { title: e.target.Title, description: e.target.Description } 
          ); 
 
          // Display the infobox on the map 
          map.entities.push(infobox); 
        } 
 
        // If the user clicks anywhere else on the map 
        else { 
 
          // Clear the map 
          map.entities.clear(); 
 
          // Get the lat/long coordinates of where the mouse clicked 
          var point = new Microsoft.Maps.Point(e.getX(), e.getY()); 
          var loc = map.tryPixelToLocation(point); 
 
          // Draw a circle around this point 
          DrawCircleAroundPoint(loc, radius); 
 
          // Find all airports within range of this point 
          GetAirportsWithinSearchArea(loc, radius); 
        } 
      }); 
    }); 
 
    // Draws a circle of given radius around a location 
    function DrawCircleAroundPoint(loc, radius) { 
 
      // Convert angular coordinates to radians 
      var lat = loc.latitude * Math.PI / 180;  
      var lon = loc.longitude * Math.PI / 180; 
      var d = radius / 6371000; // angular radius of search area 
 
      // Determine an array of locations lying in a circle around the chosen point 
      var locs = []; 
      for (var x = 0; x <= 360; x++) { 
        var latRadians = Math.asin(Math.sin(lat) * Math.cos(d) + Math.cos(lat) * Math.sin(d)  
                                   * Math.cos(x * Math.PI / 180)); 
        var lngRadians = lon + Math.atan2(Math.sin(x * Math.PI / 180) * Math.sin(d)  
                       * Math.cos(lat), Math.cos(d) - Math.sin(lat) * Math.sin(latRadians)); 
        locs.push(new Microsoft.Maps.Location(latRadians / Math.PI * 180,  
                                             lngRadians / Math.PI * 180)); 
      } 
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      // Create a polygon from this array of locations 
      var searchArea = new Microsoft.Maps.Polygon(locs, { 
        strokeColor: new Microsoft.Maps.Color(150, 255, 0, 0), 
        fillColor: new Microsoft.Maps.Color(150, 255, 155, 20) 
      }); 
 
      // Put the polygon on the map 
      map.entities.push(searchArea); 
    } 
 
    // Retrieves airports lying within a given radius of supplied location 
    // and plots them on the map 
    function GetAirportsWithinSearchArea(loc, radius) { 
      $.getJSON( 
              "Handler.ashx", 
              { lat: loc.latitude, long: loc.longitude, radius: radius }, 
              function (data) { 
                for (var i = 0; i < data.length; i++) { 
                  var loc = new Microsoft.Maps.Location(data[i].Lat, data[i].Long); 
                  var pushpin = new Microsoft.Maps.Pushpin(loc); 
                  pushpin.Title = data[i].Name; 
                  pushpin.Description = data[i].City + ', ' + data[i].State; 
                  map.entities.push(pushpin); 
                } 
              }); 
    } 
  </script> 
  <style type="text/css"> 
    #mapDiv 
    { 
      width: 800px; 
      height: 600px; 
      position: relative; 
    } 
  </style> 
</head> 
<body> 
  <div id="mapDiv"></div> 
</body> 
</html> 

The preceding code listing defines the HTML document that will be served to the client's web 
browser. It includes references to the Bing Maps API, defines the overall structure of the page, and 
contains methods to handle client-side interactivity with the map. It is not my intention to describe 
this code in any great detail here; readers interested in finding out more about the Bing Maps API 
should consult the MSDN documentation at http://msdn.microsoft.com/en-us/library/gg427610.aspx. 

The primary line of code responsible for adding user interaction to the application is as follows: 

Microsoft.Maps.Events.addHandler(map, 'click', function (e) { … } 

This line adds an event handler that listens and responds to mouse clicks on the map. Mouse 
clicks are handled in one of two ways: if the user clicks anywhere on the background of the map then a 
circle is first drawn around the chosen point (by the DrawCircleAroundPoint() function) and then the  
GetAirportsWithinSearchArea() function is called to plot any airports lying within the area selected. 
Alternatively, if the user clicks on an airport that is already plotted on the map, then an information 
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box is displayed containing additional information about that airport. This logic is contained in the 
following lines: 

// If user clicks on an airport pushpin 
if (e.targetType == "pushpin") { 
 
  // Create an infobox with information about the selected airport 
  var infobox = new Microsoft.Maps.Infobox( 
    e.target.getLocation(), 
    { title: e.target.Title, description: e.target.Description } 
  ); 
 
  // Display the infobox on the map 
  map.entities.push(infobox); 
} 
 
// If the user clicks anywhere else on the map 
else { 
 
  // Clear the map 
  map.entities.clear(); 
 
  // Get the lat/long coordinates of where the mouse clicked 
  var point = new Microsoft.Maps.Point(e.getX(), e.getY()); 
  var loc = map.tryPixelToLocation(point); 
 
  // Draw a circle around this point 
  DrawCircleAroundPoint(loc, radius); 
 
  // Find all airports within range of this point 
  GetAirportsWithinSearchArea(loc, radius); 
} 

Notice that, on the last line of this event handler, the action to locate and plot airports within the 
requested search area is handled by a call to another method - GetAirportsWithinSearchArea(). This 
function is defined as follows: 

    function GetAirportsWithinSearchArea(loc, radius) { 
      $.getJSON( 
              "Handler.ashx", 
              { lat: loc.latitude, long: loc.longitude, radius: radius }, 
 
              function (data) { 
 
                // Loop through the response 
                for (var i = 0; i < data.length; i++) { 
 
                  // Create a pushpin at each location 
                  var loc = new Microsoft.Maps.Location(data[i].Lat, data[i].Long); 
                  var pushpin = new Microsoft.Maps.Pushpin(loc); 
 
                  // Add title and description attributes 
                  pushpin.Title = data[i].Name; 
                  pushpin.Description = data[i].City + ', ' + data[i].State; 
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                  // Add the pushpin to the map 
                  map.entities.push(pushpin); 
                } 
              }); 
    } 

The GetAirportsWithinSearchArea() function is responsible for displaying the relevant airports on 
the map in reponse to a mouse click by the user. However, a Javascript function running in a client 
browser cannot directly retrieve such information from SQL Server. Instead, it makes an HTTP GET 
request to the specified URL, Handler.ashx, providing the relevant lat, long, and radius parameters. 
The function then loops through the JSON-encoded response, creating a Pushpin element at each 
coordinate pair in the results and assigning them a title and description attribute, before adding them 
to the map. A simplified illustration of the architecture involved is illustrated in Figure 16-10. 

 

Figure 16-10. Architecture of a client-side web mapping application interfacing with SQL Server 

We've already created the HTML page and the stored procedure; the final element required for 
this application is to create the intermediate handler, Handler.ashx, which will pass requests from the 
HTML Page to SQL Server, execute the relevant stored procedure, and return the results. This is 
discussed in the next section. 

Retrieving JSON Data from SQL Server to the Webpage 
The intermediate handler could be written in one of several server-side scripting languages; for this 
example we'll create a generic .NET handler written in C#. 

The handler will return results to the web client in Javascript Object Notation format. To do this, 
we'll make use of the .NET JSONSerializer class. 

1. To add a new generic handler to the project, select Project ➤ Add New File ➤ 
Generic Handler. 

2. To include the JSONSerializer class, choose Project ➤ Add Reference and, from the 
.NET tab, highlight System.Web.Extensions.dll. Then click ok to add the reference. 

The handler will retrieve the three parameters passed from the GET request (lat, long, and radius), 
and send these to the SQL Server stored procedure. The results of the procedure are read and 
serialized as JSON, which is then sent back to the webpage to be added to the map. Here's the code 
listing required for the handler: 

using System; 
using System.Collections.Generic; 
using System.Linq; 
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using System.Web; 
using Microsoft.SqlServer.Types; 
using System.Data.SqlClient; 
using System.Data.Sql; 
using System.Data; 
using System.Data.Common; 
using System.Web.Script.Serialization; 
 
namespace ProSpatial.Ch16 
{ 
  /// <summary> 
  /// Summary description for Handler 
  /// </summary> 
  public class Handler : IHttpHandler 
  { 
 
    public void ProcessRequest(HttpContext context) 
    { 
 
      // Define connection to SQL server 
      using (SqlConnection conn = new SqlConnection(@"server=localhost;" +  
                       "Trusted_Connection=yes;" + "database=ProSpatial")) 
      { 
        // Open the connection 
        conn.Open(); 
        
        // Define the stored procedure to execute 
        SqlCommand cmd = new SqlCommand("dbo.uspAirportLocator", conn); 
        cmd.CommandType = CommandType.StoredProcedure; 
 
        // Send the coordinates of the clicked point 
        cmd.Parameters.Add("@Latitude", SqlDbType.Float); 
        cmd.Parameters["@Latitude"].Value = context.Request.Params["lat"]; 
        cmd.Parameters.Add("@Longitude", SqlDbType.Float); 
        cmd.Parameters["@Longitude"].Value = context.Request.Params["long"]; 
        cmd.Parameters.Add("@Radius", SqlDbType.Float); 
        cmd.Parameters["@Radius"].Value = context.Request.Params["radius"]; 
 
        // Create a reader for the result set 
        SqlDataReader rdr = cmd.ExecuteReader(); 
        var dataQuery = from d in rdr.Cast<DbDataRecord>() 
                        select new 
                        { 
                          Name = (String)d["Name"], 
                          City = (String)d["City"], 
                          State = (String)d["State"], 
                          Lat = (Double)d["Latitude"], 
                          Long = (Double)d["Longitude"] 
                        }; 
 
        // Serialise as JSON 
        var data = dataQuery.ToArray(); 
        JavaScriptSerializer serializer = new JavaScriptSerializer(); 
        String jsonData = serializer.Serialize(data); 
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        // Send results back to the webpage 
        context.Response.ContentType = "text/plain"; 
        context.Response.Write(jsonData); 
      } 
    } 
 
    public bool IsReusable 
    { 
      get 
      { 
        return false; 
      } 
    } 
  } 
} 

Remember to change the connection string in the preceding listing as necessary. With the stored 
procedure, handler, and HTML page in place, we can test out the application. Right-click on the HTML 
page from the Visual Studio project explorer pane and select View In Browser (or hit Ctrl+Shift+W). You 
should initially be presented with a map centered on the west coast of America near San Francisco, as 
shown in Figure 16-11. 

 

Figure 16-11. A Bing Map centered on the west coast of America 



CHAPTER 16 ■  VISUALIZATION AND USER INTERFACE 

 

443 

Clicking on the map will cause the Javascript event handler to fire, which makes an 
XmlHttpRequest to the .NET handler. The handler connects to SQL Server, executes the 
uspAirportLocator stored procedure and returns the results as a JSON string which is deserialized, and 
pushpins are added to the map at each location. 

Clicking on a pushpin creates a popup infobox that displays the title and description attributes of 
the clicked airport, as shown in Figure 16-12. 

 

Figure 16-12. Clicking on a pushpin displays an information box containing details of the selected airport. 

Taking It Further 
With the basic structure now in place, it is easy to think of a number of ways in which this application 
could be modified or extended. For example: 

• Users could manually specify the radius of the search area around the clicked 
point, which could be passed as an additional parameter to the stored procedure. 

• Pushpin markers representing each airport could use different icons to represent 
how many runways they had, the amount of passengers that use that airport, or 
whether parking was available. 
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• You could plot many more types of features on the map. The U.S. National 
Transportation Atlas database from which the data in this example was sourced 
also contains details of railway tracks, hazardous material routes, ferry terminals, 
and many other elements that could be added to the map. 

• Combine this application with the geocoding function demonstrated in Chapter 6 
so that, instead of clicking on a point, the user types in an address as the center 
point of the search. 

• Rather than have a simple site-centered search about a point, let the user trace a 
line or draw an abstract shape on the map and use the geography STIntersects() 
method in the stored procedure to determine those airports that lay within the 
chosen area.  

Unlike Google Earth, which is primarily designed as a self-contained desktop application, the 
Bing Maps AJAX control has a complete application programming interface, documented at 
http://msdn.microsoft.com/en-us/library/gg427611.aspx, allowing you to customize almost any part 
of the appearance or behavior of the map, so try experimenting! 

Summary 
In this chapter, you looked at issues relating to the visual presentation of spatial information from SQL 
Server, and the creation of user interfaces that allow users to explore and analyze that data. 

• SQL Server provides only limited in-built visualization options, in the form of the 
Management Studio Spatial Results tab. 

• To create more engaging and immersive spatial application interfaces, you can 
use tools such as Bing Maps and Google Earth. 

• Google Earth is a desktop application that can display information from SQL 
Server exported to KML format. It provides a rich graphical interface and allows 
for some interaction with the data. 

• Bing Maps is an AJAX web map control that runs in a client-side browser. It can 
display information from SQL Server that is accessed via an intermediate server-
side handler. Since it is a based on standard web technologies such as 
HTML/Javascript, it is easy to integrate and customize the Bing Maps control as 
part of a larger, more complex application. 

There is one further visualization option to consider: if you work in an environment that makes 
use of SQL Server Reporting Services, you can use the new SSRS map component to embed maps in 
your reports. This will be discussed in the next chapter. 
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Reporting Services 

In the last chapter, I demonstrated some of the ways in which you can visualize spatial information 
from SQL Server using applications such as Google Earth and Bing Maps. These tools are great for 
presenting a graphical interface to a dataset represented primarily by simple placement of 
cartographic features—via markers, lines, or shaded areas on a map—and are suitable in situations 
when you want the map to be the primary focus of user attention. 

However, in practice, location information is rarely treated in isolation, nor is it necessarily the 
most important element in business databases; more often, it is just one aspect of information, a 
single dimension that needs to be presented and interpreted in context with other elements of data. 
When viewing reports, users don't always want to see a full-screen map, but more commonly want to 
visualize spatial information in a report or dashboard alongside other business data in the form of 
tables, charts, or graphs that present other facets of related information.  

In this chapter we'll examine the SQL Server Reporting Services (SSRS) map component, which 
can display spatial information as part of a report alongside other data visualization components, 
presenting a full picture of your spatially enabled datasets. 

■ Note  SQL Server Reporting Services is Microsoft's business intelligence online reporting environment, 
containing a rich featureset. In this chapter. I'll demonstrate the process involved in creating a report that displays 
spatial data from SQL Server, but there are many features that I won't cover including, for example, report 
parameters, actions, and subreports. For a more thorough treatment of SSRS, I encourage you to read one of the 

many excellent books dedicated to the subject. 

Creating a Simple Report Map 
For the example in this chapter, we'll create a report concerning a housing development near to the 
M6 motorway just north of Birmingham, England. The development contains 300 properties, each 
represented by a Polygon geometry, shown in the SSMS Spatial Results tab as in Figure 17-1. 
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Figure 17-1. A Dataset containing details of 300 properties. 

To create the properties table containing this data, and the associated property_prices table used 
later on, execute the SQL script that accompanies this chapter.  

Creating the Report Project 
Before getting into the details of adding a map to an SSRS report, we need to begin by creating a basic 
report project. To do so, follow these steps:  

1. Load up SQL Server Data Tools (the Visual Studio environment for creating 
SQL Server BI applications, known in previous versions of SQL Server as 
"Business Intelligence Development Studio"). 

2. From the File menu, click to create a new project. When the New Project dialog 
window appears, highlight the Report Server Project template from the set of 
Business Intelligence templates. (If the Report Server Project template is not 
available, open the SQL Server Installation Center to ensure that the Reporting 
Services component is installed on your system). 

3. Enter a name and location for the project and click OK, as shown in Figure 17-2. 
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Figure 17-2. Creating a new SSRS Report Server Project 

Defining the SQL Connection 
The connection(s) through which data is retrieved to populate an SSRS report can be defined and 
embedded within the report itself. However, I tend to prefer using shared data connections, which are 
instead managed by the report server and can be reused by a number of different reports. You'll find 
that using shared connections makes it much easier to manage reports that use data that might be 
migrated or replicated between different environments, since you only need to update the single shared 
connection and all reports that use that connection will automatically point to the new data location. 

To create a new shared data connection in the report project: 

1. In the Solution Explorer pane, right-click on Shared Data Sources and select 
Add New Data Source. 

2. By default, the Microsoft SQL Server connection type will already be 
highlighted. Click on the button to edit the connection string and, in the 
connection properties dialog that appears, enter the details of your SQL Server 
database including any necessary authentication information. 

3. Click OK to exit out of the dialog. You should see the new data source appear in 
the Shared Data Sources folder of the Solution Explorer pane.  
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Creating a New Report 
Having created a new report project and configured a shared data connection, we'll now add a new 
report to the project. 

1. From the Project menu, select Add New Item. 

2. In the Add New Item dialog that appears, highlight the Report template, enter 
a name for the report, and then click Add. 

The new report will be added to the project, and you'll see it displayed under the Reports folder of 
the Solution Explorer pane. The main window display will change to show the design surface of the 
(currently empty) report as illustrated in Figure 17-3. 

 

Figure 17-3. An empty report template. 

■ Note  In the Add New Item dialog window, be sure to select the Report item rather than Report Wizard. Using 

the wizard will force you to step through several screens that aren't relevant to this example. 

Adding a Map to the Report 
SSRS offers a toolbox containing several different types of report item, which can be combined to 
provide different ways of visualizing data in a report. In addition to the standard tabular and matrix 
(or cross-table) items, there are also customizable chart types, gauges, and graphic indicators, similar 
to those found in Microsoft Excel. The map control, introduced in SQL Server 2008 R2, is a relatively 
recent addition to the SSRS toolbox, specifically designed for displaying spatial data in reports. 
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■ Note  The SSRS map component was originally developed by Dundas Data Visualisation Inc. 
(http://www.dundas.com), who released it as a third-party plugin called "Dundas Map." The codebase for the 
Dundas Map component was subsequently acquired by Microsoft, who used it to create the built-in map 

component now provided in SQL Server 2012. 

To explore the SSRS map features, let's now add a map to the empty report. Open up the toolbox 
and highlight the map report item illustrated in Figure 17-4. Then click anywhere on the design 
surface to place the map into the report. 

 

Figure 17-4. Selecting the map component from the report toolbox 

When you add a new map to a report, the New Map Layer dialog window will appear. This dialog 
contains a number of screens that guide you through the process of adding the first layer of data to the 
map, which are described in the following sections (note that additional layers can be added to the map 
later following a similar process). 

Specify a Data Source 
The first page of the new map layer dialog prompts you to select a source for the data, as shown in 
Figure 17-5. 
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Figure 17-5. Selecting the spatial data source for a map layer 

The data displayed in each SSRS map layer can be based on one of three sources: 

Map Gallery allows you to create a layer based on one of the inbuilt SSRS map 
data sets. There are only a small number of items in the map gallery distributed 
with SQL Server, which cover the states of the United States and the counties 
within each state (based on TIGER/Line data provided by the U.S. Census 
Bureau). However, it is possible to add more maps to the gallery, and there is a 
codeplex project at http://mapgallery.codeplex.com that provides a range of 
boundaries for other countries and regions across the world. After having 
downloaded additional map files from the codeplex website, you should copy 
the .rdl files to the Program Files\Microsoft Visual Studio 
10.0\Common7\IDE\PrivateAssemblies\MapGallery folder to make those maps 
appear in the list of installed map gallery templates. 
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ESRI shapefile uses a shapefile to provide the data displayed on the map. If you 
already have spatial data defined in shapefile format you might find this a 
convenient option to display the data directly from a file, rather than importing 
the data into SQL Server and then retrieving it from the database again via a 
query. It is possible to combine the spatial information about a set of features 
from a shapefile with additional attribute information about those features 
from a SQL Server analytic dataset, as will be described later. Bear in mind that, 
if using a shapefile as a datasource, the shapefile containing the map data will 
need to be in a location that is accessible from the SSRS report server using the 
credentials under which the Reporting Services account executes.  

SQL Server spatial query creates a map that displays geography or geometry 
data returned by a SELECT query against a SQL Server database. 

For this example, we'll be plotting geography data from SQL Server, so  

1. Highlight the SQL Server spatial query option and click Next. 

2. On the next page of the dialog you'll be asked to choose a dataset for the map. 
We haven't yet created a dataset in this report, so highlight the option to Add a 
new dataset with SQL Server spatial data and click Next. 

3. When prompted, click to add a New Data Source Connection and, in the Data 
Source Properties dialog, select the shared data source reference you created 
earlier, as shown in Figure 17-6. 

4. Click OK to add the data source connection, and then click Next to proceed to 
the next dialog screen. 
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Figure 17-6. Adding a reference to the shared data source 

Design the Query 
You should now be presented with the query design window, as shown in Figure 17-7. You can use the 
graphical designer in the top half of the window to select those tables and fields to include in the 
dataset. However, if, like me, you prefer to write your queries by hand, you can instead just type the 
required SQL code straight into the bottom half of the window. You can also specify the name of a 
stored procedure to be used as the datasource for the map but, for this example, we'll just use an ad hoc 
SELECT statement. 

Enter the following query to return the unique id and shape of each property in the properties 
table: 

SELECT 
  Propid, 
  Shape 
FROM 
  Properties; 
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Figure 17-7. The query design window. 

After entering the query that will be used to retrieve data for the map layer, click Next to continue 
through the dialog. The next screen, shown in Figure 17-8, allows you to select the spatial field from the 
dataset that will be used to populate the map. In this case, our query only returned one suitable 
candidate field, shape, so that has been automatically chosen as the field containing the spatial data on 
which the map will be based. 

Note that each layer in an SSRS map can contain only geometries of a certain dimension. Since 
the shape field contains Polygon geometries, the type of this map layer has been set to Polygon 
accordingly, and a preview of the data is shown in the middle of the dialog box. 
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Figure 17-8. Setting the map view options. 

Underneath the map preview, there is a checkbox enabling you to embed map data in the report. 
Generally speaking, every time an SSRS report is run, all of the queries required to populate that 
report are executed and the report is refreshed with data. Unusually, however, it is possible to embed 
any spatial data that is displayed on a map layer in the report definition itself, making that data 
always available within the report without needing to be retrieved at runtime. This option may be 
useful in cases where you have relatively static boundary data (e.g., county outlines) that are unlikely 
to change between report runs, making it unnecessary to retrieve each time from a server query. 
Embedding such data in the report removes load on the database server, and ensures that it is always 
available at runtime, making the report more self-contained and potentially increasing its portability. 
However, it also significantly increases the report size, which typically also increases the processing 
time required to perform any actions on that report. 

There are also some other options that you can set on this screen: the vertical slider to the right of 
the map preview determines the map resolution, and there is a checkbox at the bottom of the screen 
allowing you to add a Bing Maps layer. For now, just leave these options as default; we'll examine 
them in more detail later. Continue to click Next to finish the wizard and insert the map into the report. 
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■ Note  Every SSRS map contains one or more layers of data, overlaid one on top of another. When you first add a 
map to an SSRS report, the New Map Layer wizard is used to specify the datasource and options for the first layer 

of data. The wizard follows the same process as described here for each additional layer that you add to the map. 

Previewing the Report 
Once you've finished specifying the options for the map layer, you should see the newly inserted map 
placed on the design surface of the report. Now, click on the Preview tab at the top of the screen to 
render the report. You should see the map as shown in Figure 17-9. 

 

Figure 17-9. Previewing the report 

Customizing the Map Viewport 
So far, we've created a SSRS report that executes a query, retrieves the results, and plots them on a map 
layer. However, the result shown in Figure 17-9 is a bit, well, boring. Let's now look at some of the 
ways that you can customize the appearance of the map. 

First, click on the Design tab to return to the report design surface. Then, right-click on the shaded 
area of the map (the viewport) and click to select Viewport Properties from the context menu. This will 
bring up a dialog box with a number of settings, as shown in Figure 17-10. 
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Figure 17-10. Customizing the Map Viewport 

There are several tabs available containing groups of settings that affect different aspects of the 
map viewport. In the following sections we'll examine each in turn. 

General Options 
The General tab contains a number of options that control mapwide settings affecting the coordinate 
system, projection, and geographic extent of the map view. Since, in this example, we are plotting a set 
of data that has been retrieved from a column of the geography datatype, we must (as always) choose an 
appropriate projection to display that data on a map. The SSRS map component provides all of the 
same projections as those available within the SSMS spatial results tab, together with a handful of 
additional common projections. The list of supported projections is as follows: 

• Equirectangular 

• Mercator 

• Robinson 

• Fahey 

• Eckert1 

• Eckert3 



CHAPTER 17 ■  REPORTING SERVICES 

 

457 

• Hammer Aitoff 

• Wagner3 

• Bonne 

The most appropriate projection to use will depend on the extent and location of the data in 
question. For this example, we'll use the familiar Mercator projection. 

■ Tip  For more information about the properties or method of calculation of any map projections, I recommend 
you check out the excellent Wolfram Mathworld site at 

http://mathworld.wolfram.com/topics/MapProjections.html  

By default, the extent of the projection will be set automatically to include the full extent of the 
data displayed on the map. However, you can also set explicit boundaries on the extents of the map 
view by specifying a minimum and maximum latitude and longitude. For now, just leave them set to 
the default auto setting. 

Center and Zoom 
On this tab you can choose a point on which the map should be initially centered, and the amount by 
which it is zoomed in. There are four methods of specifying these properties: 

Set a view center and zoom level. When using this option, the map center must 
be given as a percentage in which the default value, 50%, centers the map at the 
midpoint between the minimum and maximum values in the horizontal and 
vertical dimensions. The zoom level must also be specified as a percentage, in 
which the default value of 100% indicates no magnification. Supplying explicit 
values for the centerpoint and zoom level can be useful when visualizing an 
unevenly distributed dataset where, instead of displaying the full extent of the 
dataset, you might want to center and zoom in on a particular area of data. 

Center the map to show a map layer. Maps may be composed of several layers, 
each displaying a different set of data. Use this option to center and zoom the 
map so that it displays the full extent of data in a particular named layer to 
which you want to draw the user's attention. Features in the other layers that 
are contained within this view will also be shown, but any features in those 
layers lying outside the view will be obscured. 

Center the map to show an embedded map element. If the data displayed on 
the map is bound to a set of analytical data, you can use this option to specify a 
particular data element on which the map is centered. For example, center the 
map on the property that has a [PropId] value equal to 123. 

Center the map to show all map-bound elements. Use this option to center the 
map on all elements in the layer that are bound to a set of analytical data. 
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Optimization 
On this pane you can optimize the data used in the map by removing unnecessary detail (using a 
process similar to that used by the Reduce() method). Higher quality maps take longer to render and, if 
the spatial data behind the map is embedded into the report, lead to larger report sizes. Lower 
resolution maps are quicker to render, although they are less accurate. Note that the optimization level 
is a property applied to the whole map and cannot be set separately for individual layers. 

You can set the resolution of the map either by dragging the slider to a position representing the 
desired tradeoff between quality and performance or, alternatively, you can specify an explicit map 
resolution. Setting an explicit value lets you decide the minimum resolution that should be distinctly 
defined on the map; increasing the resolution causes features on the map to become more simplified. 
For an illustration of the effect of changing the optimization of a map of Italy, refer to Figure 17-11. 

 

Figure 17-11. Comparing optimization levels 

Fill, Border, and Shadow 
These options allow you to change aspects of the viewport appearance to alter the fill (i.e., the 
background color of the map), border (the edge of the map), and any shadow effect applied to the map 
frame. These options are common to most Reporting Services elements. 

Note that, since we are currently editing properties of the map viewport, these settings affect only 
the appearance of the viewport itself, that part of the control that contains the map data. If you want to 
change the fill, border, or shadow of the map container (which encompasses not only the viewport, but 
also elements such as the title, legend, distance scale bar, etc.) then you should right-click somewhere 
on the map other than the viewport, and select to edit map properties instead. 

I've changed the viewport fill to solid white and added a 2 pt dotted gray border. I've also added a 
title to the map, set the zoom level to 200%, and centered at 60% along the y-axis. The result is shown 
in Figure 17-12. 
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Figure 17-12. The customized map viewport 

Adding an Analytic Dataset 
Sometimes, plotting the geometric shape and position of items in a dataset is, in itself, the primary 
objective of a map. This is true, for example, of maps used solely for navigation or planning purposes. 
However, in a business context, it is more common to require maps that interpret and analyze some 
additional quality of the data: displaying the number of sales that have occurred in each sales territory, 
the distribution of customers that have responded to a particular sales campaign, or the routes traveled 
by certain types of logistic vehicles, for example. To create such thematic maps, it is necessary to link 
the spatial dataset used to plot the shape of elements on the map with an analytic dataset, which is used 
to provide additional information about those elements. 

Let's add a new dataset to the report that contains an additional field of information, the price of 
each property on the map. 

1. From the Report Data pane (normally displayed to the left of the report design 
surface), right-click on the Datasets folder and select Add Dataset. 

2. Choose to use a new dataset embedded in the report. We'll use analytical data 
from the same SQL Server database as the spatial data already added to the 
report, so select the existing shared data source from the dropdown box. 

3. In the query box, enter the simple query shown below to retrieve the price of 
each property, and click ok. 

SELECT propid, price FROM property_prices; 

These steps are illustrated in Figure 17-13. For clarity, I've named this dataset Analytic_DataSet, 
and renamed the first dataset added to the report (previously DataSet1) to Spatial_DataSet. 
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Figure 17-13. Adding an analytic dataset 

We now need to join the analytic and spatial datasets together, to relate the price of each property 
to the corresponding Polygon on the map. To do so: 

1. First, click anywhere in the map viewport to display the Map Layers pane. 

2. From the Map Layers pane, right-click on the PolygonLayer to bring up the 
context menu, and select the Layer Data option. The Map Polygon Layer 
Properties dialog will appear. 

3. Click on the Analytical data tab on the left-hand side to be presented with the 
analytical dataset options. 

4. Select the new Analytic_DataSet just created from the dropdown of datasets, 
and match the spatial dataset to the analytic dataset using the propid field, as 
shown in Figure 17-14. 
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Figure 17-14. Matching an analytic dataset to a spatial dataset 

■ Caution  At the time of writing, a bug exists that can cause the selected spatial field to be corrupted after 
matching the layer to an analytical dataset. After matching the analytical dataset, return to the General tab and 

ensure that the spatial field is still set to use the shape field from the Spatial_DataSet dataset. 

It is worth noting that, in this particular example, it is not strictly necessary to add a separate 
analytic dataset: since the analytic information is being sourced through exactly the same data 
connection as the spatial dataset, we could have simply modified the existing data to incorporate both 
the shape spatial column and the price attribute column in one dataset, as in the following query: 

SELECT 
  s.shape, 
  a.price 
FROM Properties s 
INNER JOIN Property_Prices a ON s.propid = a.propid; 

If we were to take this approach, there would have been no need to link the two datasets together; 
the price of each property would automatically be available as a field associated with the appropriate 
Polygon on the map. However, the ability to link separate spatial and analytical datasets can be useful 
in other circumstances: remember that a spatial dataset does not have to be sourced from a SQL Server 
query, but can contain features extracted directly from an ESRI shapefile, or from the in-built SSRS 
map gallery. In such cases, you might still want to assign attribute data from a SQL Server query to 
those spatial features. So long as there is a common field between the two datasets—a unique 
identifier or name that can be used to match the elements together—you can use spatial and analytical 
datasets from separate sources and combine them in the report itself. 
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Applying a Styling Rule 
Having linked the spatial dataset with associated analytical data, we can now style the map features 
based on one or more attributes by applying styling rules. Different styling rules can be applied to 
different sorts of data; the housing plots shown on our map are contained in a Polygon layer, so we'll 
create a styling rule that determines an appropriate color for each Polygon based on the price of the 
property. For layers containing line data, a styling rule can be applied to vary the width and color of 
each line, and a layer of Point data may be styled to use different colors, sizes, and types of marker. 

To add a color style rule to the layer, 

1. First, highlight the viewport of the map so that the Map Layers pane becomes 
visible. 

2. From the Map Layers pane, right-click on the PolygonLayer (currently, the 
only layer on the map) and select Polygon Color Rule. 

3. The Map Color Rules Properties dialog window will appear as shown in Figure 
17-15, which contains options listed under three tabs as described following. 

 

Figure 17-15. The Map Color Rules Properties dialog 
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General Settings 
In this section you can choose the method by which a color is assigned to each item on the map, using 
one of four methods: 

Apply template style. This is the default option, which adds no additional color 
rules on top of those already defined by the map template. 

Visualize data by using color palette. Select this option to let Reporting Services 
automatically assign colors to each element from a predetermined color palette. 
The palettes available are Light, Bright Pastel, Semi Transparent, and Random. 

Visualize data by using color ranges. This option allows you to create a color 
palette from a gradient that varies smoothly between two colors. You can also 
specify an optional midcolor through which the gradient passes. (If you do not 
want to specify a midcolor, set it to "No Color".) Use this option in order to 
color elements according to a variable that can be placed in a continuous scale; 
a common example is to assign a "red, amber, green" color depending on 
whether a certain property of the feature is poor, acceptable, or good.  

Visualize data by using custom colors. Use this option to explicitly set the palette 
of colors that will be used to assign colors to different features on the map. Colors 
may be added to the palette by name ("Black" or "Cyan," for example), or by RGB 
color code. You may also adjust the transparency assigned to each color in the 
palette. Use this option when you need to assign specific colors manually to 
features based on an attribute; for example, to color ski runs based on their 
difficulty as green (easy), blue (intermediate), or black (advanced). 

■ Note  When visualizing data using custom colors, looking at the color of a feature on the map in isolation will 
not give any indication as to the range of data values it represents. If you are using custom colors, it is very 

important also to display a legend so that users can interpret the values associated with each color. 

Having chosen any of the visualize data options, you must then also choose the analytical data 
field that will be used to assign colors from the palette. For the example at hand, we'll color each 
property on the map according to its price, with the cheapest properties colored green, midpriced 
properties colored yellow, and the most expensive properties colored red. To do so, choose to Visualize 
data by using a color range, using [Sum(price)] as the data field. Set the start color to Green, the 
Middle color to Yellow, and the End color to Red. 

Distribution Options 
Having specified the color palette that will be used, you must then also determine how the data will be 
divided into subranges that will be assigned distinct colors from that palette. First, you must decide 
into how many subranges, or categories, the data should be grouped. For example, if you specify a color 
palette that ranges from red to yellow, and divide the data into only two subranges, every element will 
be colored either red or yellow depending on whether they lie in the lower half of the distribution or 
the upper half. If, however, you create three subranges based on the same palette, elements on the map 
will be colored red or yellow if they lie at either extreme, or orange if they lie in the middle. Adding 
further subranges creates more groups of data, which will be colored somewhere on the gradient 
between red and yellow.  
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Creating more subranges leads to more distinct categories of features on the map, which is 
suitable when you want to highlight the differences between elements that span a wide range of 
values. However, creating too many groups can lead to the styling differences between them 
becoming too subtle and indistinct, making it hard to tell exactly what subrange a particular element 
lies in (e.g., it is difficult to discern the different between a Polygon that is orangey-red and one that is 
reddish-orange!). In practice, for normally distributed data I generally recommend that you create 
somewhere between three and seven subranges.   

Having set the total number of categories, the next step is to assign elements into one of the 
subranges. There are four methods of doing so: 

Optimal is the default option and suitable for most scenarios. It attempts to 
automatically determine the appropriate boundaries in order to create a 
balanced distribution of elements between subranges. 

Equal Interval assigns elements into subranges by dividing the extent of the 
dataset into equally-spaced boundaries, although the number of elements 
contained in each group may vary significantly. 

Equal Distribution creates subranges that each contain an equal number of 
elements, although the range covered by each group may vary significantly. 

Custom allows you to specify manually the boundary of each subrange. 

To understand the different between the equal interval and equal distribution method, consider a 
dataset of six items (A–F) that are to be colored according to a datafield that contains values as shown 
in Table 17-1. 

Table 17-1. Sample distribution of a dataset 

Item Value 

A 0 

B 1 

C 2 

D 3 

E 5 

F 8 

Now suppose that you wanted to color the items in this dataset based on a styling rule that assigned 
them one of three subranges, colored red, amber, or green, based on the value of the datafield shown. 

Using the equal interval method, the subranges would each span an equal-
sized range of values. Thus the first subrange would contain those elements 
with values between 0–2, the second subrange from 3–5, and the final subrange 
from 6–8. Under this rule, items A, B, and C would be colored red, items D and 
E would be colored amber, and only item F would be colored green. 

Under the equal distribution method, the boundaries of the three subranges 
would be set so that each contained an equal number of items. Thus, items A 
and B would be colored red, items C and D would be amber, and items E and F 
would be green. 
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The difference between the two methods becomes more noticeable as the underlying data 
becomes more unevenly distributed. The equal interval method typically emphasizes extreme outlying 
values in the dataset, which can skew the appearance of the results. The equal distribution method 
ensures a greater range of contrast across the spread of the data, but can create unbalanced groups 
that contain very variable ranges of data. The appropriate method depends on the data in question 
and the way in which you intend to analyze it. 

Note also that you can create a restriction so that the rule is applied only to a certain subrange of 
the data, by providing values for the Range Start and Range End. If either value is not specified, the 
rule is assumed to apply to the full extent of data. 

For this example, create six subranges using the optimal distribution method. 

Legend 
SSRS will automatically create a legend that displays a key and label for each of the category 
subranges displayed on the map. The settings on this tab allow you to customize the way in which the 
label text is displayed, by specifying a pattern containing keywords and custom formats. 

For this example, we'd like each legend entry to display the corresponding range of property 
prices assigned to that color. To display the upper and lower bound of a range, you can use the 
keywords #FROMVALUE and #TOVALUE, respectively. To format these values as monetary figures rounded 
to the nearest integer, we'll specify that they should use the currency format C0. To do so, enter the 
legend text as follows: 

#FROMVALUE{C0} - #TOVALUE{C0} 

Click Ok to exit the dialog, and then click to preview the report again. The cumulative result of 
making the changes described in this section is illustrated in Figure 17-16. 

 

Figure 17-16. A styled map with legend 
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Adding a Bing Maps Tile Layer 
One of the pretty smart features of the SSRS map control is that it provides integration with the 
Microsoft Bing Maps service, allowing you to add a background tile layer automatically to your SSRS 
map using the same aerial or road imagery that you can see on http://www.bing.com/maps. 

There are some limitations to this feature: the Bing Maps background layers are already projected 
and prerendered onto image tiles, which means that they can be displayed only on SSRS maps that are 
consistent with the spatial reference system used by the Bing Maps service. Specifically: 

• Data on the map must be defined using geographic coordinates based on the 
WGS84 coordinate system. 

• The map viewport must be projected using the Mercator projection. 

• The geographic extent of data cannot lie at extreme latitudes close to the Poles 
(i.e., latitude cannot exceed approximately +85.05 degrees or be less than –85.05). 

• As the image tiles must be retrieved from an external source, the Bing Maps tile 
layer can only be used when the SSRS service has access to Microsoft's tile servers 
at dev.virtualearth.net. If SSRS is hosted on a server with no Internet access, or if 
access to that external server is blocked, the tile layer cannot be used. 

Seeing as our example map meets all these criteria (and assuming that your SSRS service has 
access to the Bing Maps tile server), we can add a Bing Maps tile layer, as follows: 

1. From the report design surface, click on the map viewport to display the Map 
Layers pane. 

2. Click on the Add Layer button from the top of the Map Layers pane (second 
icon from the left) and choose Tile Layer from the dropdown. 

3. The new tile layer will be added to the Map Layers pane, and displayed in the 
map preview in the report design surface. By default, the tile layer displays the 
Bing Maps road style. If you would prefer to display aerial imagery, right-click 
on TileLayer1 in the Map Layers pane and select Tile Properties. In the Map 
Tile Layer Properties dialog that appears you can choose either Aerial or 
Hybrid (Aerial with labels) instead. 

Figure 17-17 illustrates the result of adding a road tile layer behind the Polygon layer of properties. 
You can see that adding the tile layer places an immediate context to the data that can add real benefit 
to your reports. 
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Figure 17-17. A styled map with Bing Maps road tile layer 

■ Note  Displaying a Bing Maps layer in your SSRS report requires you to agree to the Bing Maps terms of use, 

which are available by right-clicking on the tile layer in the Map Layers pane and clicking Bing Maps Legal. 

Assigning Actions to Map Elements 
Although certainly not as immersive as the experience provided by Google Earth, it is still possible to 
add a degree of user interaction to SSRS maps by assigning actions to elements on the map. An action 
is triggered when the user clicks on a particular report element, which can redirect them to a new 
report or URL, for example. 

To demonstrate how an action can be used, let's suppose that we wanted to allow users to click on 
any Polygon on the map. Doing so would direct them to a new detailed report that provided further 
information about the specific property on which they clicked. To do so, we first need to add a new 
report to the project that will provide information about an individual property, which we can do using 
the new report wizard: 

1. From the Solution Explorer pane, right-click on the Reports folder and click on 
Add New Report. 

2. The Report Wizard welcome screen will appear. Click Next to proceed. 

3. When prompted to select a data source for the new report, choose to select the 
existing DataSource1 shared data source. Then click next. 
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4. On the Query Design page, enter the following query which will retrieve the 
price and area of the property associated with a given propid parameter: 

SELECT 
  p.propid 
  price, 
  shape.STArea() AS area 
FROM properties p 
JOIN property_prices pp ON p.propid = pp.propid 
WHERE p.propid = @propid; 

5. Continue to click Next to select the default options for all remaining pages of 
the dialog. 

Once the wizard is complete, you can test out the report by clicking on the preview tab. The dataset 
in this report is dependent on the @propid parameter so, unlike our first report containing the map, 
SSRS will prompt you to enter a parameter value before rendering the report. Enter a valid propid 
value (any number between 1–300) in the text box at the top of the screen and then click on View 
Report. You will see a very simple table of information about the chosen property, as shown in Figure 
17-18. (Note that I've made some simple formatting changes and added a title to the report). 

 

Figure 17-18. The detailed individual property report 

The next step is to create an action that passes the appropriate propid parameter value and 
displays this report when the user clicks on any property on the map. So, switch back to the initial map 
report and follow these steps: 

1. With the map viewport highlighted, right-click on the PolygonLayer from the 
Map Layers pane and select Polygon Properties from the context menu. 

2. In the Map Polygon Properties dialog that appears, click to select the Action 
tab. 

3. Select the Go to report action, and specify Report2 as the name of the report to 
which the action should point (or whatever name you chose for the detailed 
property report). Although possible to link to any report hosted on the SSRS 
report server, the dropdown on this screen only lists reports contained in the 
same project as the current report. 

4. In the parameters section, add a new parameter named propid, with a value 
set to [propid], as illustrated in Figure 17-19. Then click OK. 
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Figure 17-19. Assigning an action to a map layer 

The effect of this action will be that whenever a user clicks on any element in the PolygonLayer of 
the map, the propid of that element will be passed as a parameter to Report2, which will be executed to 
show further information about the selected property. Click on the Preview tab to try out the new 
functionality! 

■ Tip  To navigate back to the parent report from the individual property report, click the small blue back arrow in 

the report toolbar. 

Limitations of the SSRS Map Control 
The SSRS Map component is a powerful tool that complements and adds to the range of visualization 
options available in an SSRS report. However, it is not without its limits. The most obvious limitation 
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of the map control is that it can only be used from within an SSRS report. It is not possible to embed the 
control within a stand-alone WPF application, say, which means that you can only use it in 
environments where Reporting Services is available. If you already use Reporting Services, it's great 
to be able simply to drop in a map into your existing reports, but if you don't, it's a lot of upheaval to 
move an entire reporting environment just for the benefit of the map control. 

In terms of technical limitations, an SSRS Map can display a maximum of 20,000 individual 
elements (or 1,000,000 points). However, you will generally find that, as you add more data to the map, 
performance suffers long before you reach those limits. Report users generally do not want to wait 
minutes for a report to render, however detailed the resulting map will be. You should always 
judiciously filter your data at the server so that only relevant data is retrieved, and make use of the 
map optimization option to eliminate unnecessary detail. 

Also note that, while it is possible to assign simple actions to elements on the map, more advanced 
user interaction such as panning around the map, smooth zooming, and the like are generally not 
possible.  

Summary 
In this chapter, you learned about displaying spatial data in SQL Server Reporting Services reports. 

• The SSRS map control is a dedicated tool for displaying spatial data that has been 
retrieved from a query of the geography or geometry datatype, or from an ESRI 
shapefile. 

• A map is composed of one or more layers, each of which contains either Point, 
LineString, or Polygon features. In the example in this chapter, a single layer 
containing Polygon data was added to the map, but you can easily add more layers 
by repeating the same process as described here.  

• Spatial data can be linked to an analytical dataset to create a thematic map, in 
which features are styled according to the value of certain properties. Styling rules 
can be used to change the fill and border color of Line and Polygon features, or to 
assign different markers to Point features. 

• You can add a Bing Maps background tile layer to add additional context to data 
shown on the map. 

• The map control exposes many properties common to all SSRS components, 
enabling you to assign styles and actions to elements on the map and integrate it 
into a report alongside other more common elements such as tables and graphs.  

• The map control can only be used within an SSRS report. To add a map into a 
custom reporting application you will have to look for other components (such as 
embedding the Bing Maps AJAX control discussed in the last chapter). 

While this chapter has provided an introduction to the core functionality of the SSRS map control, 
there are several additional features and options not discussed here. For a complete reference guide, 
you can consult Microsoft Books Online at http://technet.microsoft.com/en-
us/library/ee240845%28SQL.110%29.aspx. 
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Indexing 

Effective indexing is fundamental to making database applications find the results you want quickly and 
efficiently. You're probably already familiar with SQL Server’s clustered and nonclustered indexes, 
which index one or more columns of data, such as columns of int, char, or datetime data. However, SQL 
Server also includes a type of index specifically designed for indexing spatial data, called 
(unsurprisingly) a spatial index. 

A spatial index can be created only on a column of the geography or geometry datatype, and 
columns of these datatypes can only be added to a spatial index; you cannot include a geography 
column in a normal nonclustered index, for example. 

In this chapter I’ll explain how spatial indexes work, and how to make best use of them to improve 
the efficiency of your spatial queries. 

The Need for a Spatial Index 
Spatial operations can be complex, and performing them requires a significant amount of processing 
power. This is particularly true when using methods that compare the relationships between two 
geometries, such as those discussed in Chapter 12. Consider the process involved in manually 
determining whether two geometries intersect, as calculated by the STIntersects() method: you'd 
generally have to evaluate and test the relationship between each coordinate contained in the point set 
of both geometries. If used to compare two complex geometries, this could involve performing thousands of 
individual calculations to obtain the desired result. Therefore, a smart design would be to try to find a 
way to reduce the number of times that expensive methods such as STIntersects(), STDistance(), and 
STContains() are called. 

As a theoretical example, suppose that you had a table containing information about vineyards of 
the world, in which the location and shape of each vineyard is stored as a geography Polygon. Now 
suppose that you wanted to identify those vineyards that were located in the Champagne region of 
France. To do so, you could write a query using the STWithin() method something like as follows 
(assuming that the variable @Champagne is a Polygon representing the Champagne region):  

SELECT Name 
FROM Vineyards 
WHERE Vineyard.STWithin(@Champagne) = 1; 

To execute this query, SQL Server would have to test every row of data in the Vineyards table, using 
the computationally expensive STWithin() method to compare the Polygon geometry representing every 
vineyard against the Polygon representing the Champagne region. You and I know that some vineyards, 
such as Jacob’s Creek in the Barossa Valley of Australia and those in the Napa Valley of California, 
clearly don’t lie within the Champagne region of France, since they don’t even lie within the country of 
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France itself. However, SQL Server can’t apply common sense like this, so (without the presence of an 
index) it must use STWithin() to evaluate the intersection of every geometry to see if it should be included in 
the results. This is a lot of effort, and will be a slow laborious query to execute. 

To make this query perform more efficiently, we need some way of initially narrowing down the 
dataset, so that we call the STWithin() method only on those rows that we know are approximately 
located within the correct area, “in the right ballpark,” so to speak. Regular clustered or nonclustered 
indexes don't help us here, because they can't identify records from the table based on the sort of topological 
relationships defined between geometries. We need a new dedicated type of index, and this is where the 
spatial index comes in.  

How Does a Spatial Index Work? 
Spatial indexes are quite unlike other sorts of SQL Server index. In this section, I'll explain a little 
more about the theory behind how a spatial index is constructed and how it can be used to make spatial 
queries more efficient.  

The Primary and Secondary Filter 
Rather than following the simplistic, brute-force approach of testing every geometry from the source 
dataset to see whether it meets the conditions for a given query, SQL Server executes spatial queries 
using a two-stage approach that involves two filters, as follows: 

• Primary filter: This is a fast approximate method to select a set of potential 
candidate results for the query. The set of candidates returned by the primary filter 
is a superset of the actual result set; that is, while it is guaranteed to include all of 
the records that should be present in the results, it may (and generally does) also 
include additional “false positive” results. 

• Secondary filter: This is an accurate, but computationally expensive (and 
therefore slow to perform) filter that takes the candidate results generated by the 
primary filter and refines them, removing false positives. The output of the 
secondary filter is the true result set required by the query in question. 

The purpose of a spatial index is that it can be used to provide the primary filter for a spatial query, 
quickly identifying an approximate set of candidate results. In doing so, it reduces the number of 
matching records that must be tested by the slower, more accurate secondary filter. The secondary 
filter, which returns the precise result required by the query, executes the requested spatial method 
(STIntersects(), say) only on the subset of records identified by the primary filter. 

In the example given previously of determining Champagne vineyards, the primary filter would 
use a spatial index to generate a subset of records from the vineyards table that could lie within the 
Champagne region (eliminating those that clearly didn't). The secondary filter would then use the 
STWithin() method on this set of potential candidates to determine those records that truly did lie 
within the Champagne region. 

When a spatial index does not exist, no primary filtering of the dataset can occur, so the slower 
secondary filter must be applied to every row in the source dataset, which can be very costly. 

The Grid Structure of a Spatial Index 
How, then, do we design an index in such a way that it can perform an efficient primary filter of the 
results of a spatial query? The entries in a spatial index (as with any type of index) must be sorted in 
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some logical order, so that we can quickly identify and access the set of candidate results that might 
meet the criteria for a particular spatial query. First, let's consider how values from other datatypes 
can be ordered in an index: 

• Values stored using the int, money, decimal, or float datatype can be sorted in 
numerical order. 

• Values stored using the char or varchar datatype (or their nchar or nvarchar 
Unicode equivalents) can be sorted in a collating sequence (usually alphabetical) 
order. 

• Values stored using the datetime datatype can be sorted in chronological order. 

However, none of these methods are suitable for an index of values of the geometry and geography 
datatypes, which define the position of objects in space. Instead, the solution used by SQL Server (in 
common with several other spatial databases) is to define a grid that covers the area of space in which 
the geometries to be indexed lie, so that every feature intersects one or more cells in the grid. The grid 
cells are logically arranged and ordered, and the spatial index entry for each feature stores a reference 
to the grid cells which that geometry intersects. 

To explain this concept in more detail, let's consider an example using the simple geometry 
illustrated in Figure 18-1. For this example, we'll assume that this is the only geometry included in the 
index although, in practice, an index will normally be created on a table that contains many rows of data. 

 

Figure 18-1. A simple Polygon geometry 

Now suppose that a regular 4 × 4 grid of cells is laid on top of this geometry. The cells of the grid 
are numbered sequentially from left to right and top to bottom, starting with cell 1 in the top-left 
corner and increasing to cell 16 in the bottom-right corner. This is illustrated in Figure 18-2. 
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Figure 18-2. A low-resolution grid index 

■ Note  The actual grid cell numbering system used by SQL Server is more complicated than that described here, 
instead being based on the Hilbert curve model. However, for the purposes of illustration, I will use simple 

incremental numbering.  

The spatial index is formed by describing the relationships between a geometry and the cells in 
the grid. For example, the geometry illustrated in Figure 18-2 covers cells 6 and 10, partially covers 
cells 2, 3, 5, 7, 9, 14, and 15, and touches cell 11. The simple relationships to those 10 grid cells, taken 
together, allow us to deduce enough information to perform a primary filter of this geometry in certain 
queries without ever needing to consider the detailed shape on a point-by-point basis. 

For example, suppose that we were to compare this geometry (let's call it Geometry A), to four 
other geometries, B–E, as shown in Figure 18-3. 
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Figure 18-3. Using the grid to determine relationships between geometries 

With knowledge only of the grid cells that each geometry intersects, we can make several 
conclusions about the relationship between these geometries: 

• Geometry B touches grid cell 6, which is fully covered by Geometry A. Therefore, 
Geometry A and Geometry B must themselves intersect. 

• Geometry C lies partially in cell 3, which is also partially occupied by Geometry A. 
Therefore, Geometry A and Geometry C may intersect, but this cannot be 
determined based on the grid alone. 

• Geometry D lies entirely in grid cell 12, which is not intersected at all by Geometry 
A. Therefore Geometry D cannot intersect Geometry A. 

• Geometry E lies entirely in grid cell 10, which is completely covered by Geometry 
A. Therefore not only do the two geometries intersect, but Geometry E must be 
entirely contained within Geometry A. 

Using this grid as a primary filter to answer the question "Which geometries intersect Geometry 
A?" we can therefore instantly determine that Geometry B and Geometry E must be included in the 
results, and that Geometry D should definitely not be included in the results. It is only Geometry C that 
needs to be tested by the more accurate secondary filter to determine whether it truly intersects 
Geometry A or not. 
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Even based on this simple example, I hope you can see how the grid index can be used to identify 
possible candidates for certain sorts of spatial query (and, perhaps more importantly, to discard 
records that do not meet the criteria for inclusion in the result set). 

Refining the Grid 
While functional, the index obtained using the method described previously is not very precise; in other 
words, the grid cells provide only a "loose fit" around the true shape of the geometry.  This means that there 
is a relatively high chance of obtaining results that lie partially in the same grid cell as another geometry, in 
which case it cannot be determined whether the geometries truly intersect based on the index alone.  

In order to make the index more precise, we could increase the resolution of the grid, by dividing 
the space into 64 cells arranged in an 8 × 8 grid instead, as shown in Figure 18-4. 

 

Figure 18-4. A medium-resolution grid index 

By increasing the resolution of the grid to contain a total of 64 cells, we obtain a closer fit around 
the shape of the geometry. Since the index is more precise, this means that a primary filter based on 
this index will be more selective and return fewer candidate geometries that have to be evaluated by 
the secondary filter. 

However, this introduces a new problem: to be able to describe the geometry, the index must now 
contain the following grid cells: 11–13, 17–21, 25–29, 33–37, 42–45, 51–53, and 60. The index entry 
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now contains 26 cell values for this geometry, nearly three times as many as in the original index. The 
increase in precision therefore comes at the expense of a larger index, which has an associated 
performance cost.  

We can extend this approach even further by declaring a high-resolution grid index: a 16 × 16 grid 
containing a total of 256 cells, as shown in Figure 18-5. 

 

Figure 18-5. A high-resolution grid index 

The area described by the cells occupied in Figure 18-5 gives the closest approximation  
of the true area occupied by the shape, which will optimize the accuracy of the results of the primary 
filter, but it also leads to the most complex index entry. The larger an index grows, the more unwieldy 
and slow it becomes, to the point where using an index can actually degrade the performance of a 
query rather than improve it.  

In order to be an efficient primary filter, an index needs to be accurate, but it also needs to be 
small. So, what is the best compromise between these approaches? The solution used by SQL Server is 
not to use a single grid as in these examples, but rather to define a multilevel grid. The multilevel grid 
consists of four levels of grid, nested within one another. For example, the first, level 1 grid might 
divide the space into 16 cells. The next, level 2, grid then subdivides each of these level 1 cells into a 
further 16 cells. The third grid subdivides each of those level 2 cells into 16 subcells, and so on until 
level 4. This creates a multilevel grid as illustrated in Figure 18-6. 
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Figure 18-6. The four levels of the multilevel grid. 
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The numbering convention illustrated in Figure 18-6 expresses the cell reference as you drill 
down into each subsequent level of the grid, in the format Level1.Level2.Level3.Level4. For example, 
the cell 3.9.12.1 refers to the first level 4 cell that is located within cell 3 of the level 1 grid, in cell 9 of 
that level 2 grid, and within cell 12 of that level 3 grid.  

The number of cells contained at each grid level may be set independently to one of three 
predetermined resolutions: 

• LOW resolution grids correspond to a 4 × 4 grid, containing a total of 16 cells. 

• MEDIUM resolution grids correspond to an 8 × 8 grid, containing a total of 64 cells. 

• HIGH resolution grids correspond to a 16 × 16 grid, containing a total of 256 cells. 

The default resolution for each grid level is MEDIUM. This means that SQL Server's default spatial index 
containing four grids, each at MEDIUM resolution, contains 644 (approximately 16.7 million) level 4 cells. 
Increasing the grid resolution to HIGH at all four grid levels results in the maximum of 2564 cells, which 
equals approximately 4.3 billion possible level 4 cells! 

The Auto Grid 
In addition to the manually defined four-level grid defined previously, SQL Server 2012 also 
introduces an alternative, "auto grid" setting. The auto grid uses eight levels of nested grid rather than 
the conventional four. The resolution of the auto grid is fixed at HIGH (16 × 16) for the first grid level, 
and LOW (4 × 4) resolution at all subsequent levels.  

The increased number of nested levels means that the auto grid can provide a more accurate filter 
when used to index objects of varying sizes. The tradeoff is that you lose the ability to define the 
explicit resolution that should be used at each level of the grid, which can be a powerful tool in 
performance-tuning. In other respects, the auto grid and the four-level grid operate in exactly the 
same way, and the techniques discussed in this chapter apply equally to both types. 

Optimization Rules in a Multilevel Grid Index 
When using a multilevel grid, you might wonder how we go about creating the index entries 
representing spatial features covered by that grid. In a simple single grid index, such as that discussed at the 
beginning of this chapter, each geometry’s index entry is constructed from a list of all the individual 
grid cells covered, partially covered, or touched by the geometry. We could do the same for a multilevel 
grid, storing every cell at every level 1 of the grid that intersects the geometry, then every level 2 cell, 
every level 3 cell, and so on. However, to do so would be inefficient, and fail to take advantage of some 
of the beneficial properties of a multilevel grid. The spatial index entry formed from a multilevel grid 
may contain cells from different grid levels, but it does not need to contain every cell intersected by that 
geometry at every grid level. 

To determine those cells that should be included in a spatial index, SQL Server applies three rules: 

• The covering rule 

• The deepest-cell rule 

• The cells-per-object rule 

The purpose of these rules is to ensure that each index entry includes only the necessary cells to 
maximize the accuracy of the index, while minimizing the total amount of information required to do 
so. Let’s look at how each rule operates, in turn. 
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Covering Rule 
The covering rule states that if a cell at any grid level is completely covered by a geometry, the index 
entry for that geometry should not contain any cells that further divide the covered cell into lower grid 
levels. For example, if a level 1 cell is completely covered by a geometry, we know that every level 2 cell 
contained within that level 1 cell must, by implication, also be completely covered (as must every 
subsequent level 3 and level 4 cell). Therefore, performing this subdivision and storing every lower-
level subcell would occupy a lot of space in the index while providing no new information. In these cases, 
only the completely covered cell needs to be stored in the index. Figure 18-7 illustrates how the 
covering rule can be applied to an example geometry. 

 

Figure 18-7. The covering rule. If a cell at any grid level is completely covered by the geometry, it is not 
further subdivided into lower grid levels. For illustrative purposes, the level 1 grid resolution in this 
example is 4 × 4 cells, and levels 2, 3, and 4 are all 2 × 2 cells. 
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Deepest-Cell Rule 
The deepest-cell rules states that when a partially covered cell is subdivided, only the cell or cells that 
lie at the deepest nested grid at which intersection occurs need to be added to the index, not the cells at any 
higher grid levels in which those cells are contained. Since every level 4 cell lies within one (and only 
one) level 3 cell, and that level 3 cell lies within one (and only one) level 2 cell, and so on, once you 
know that a level 4 cell (the deepest level) intersects the geometry, you know by implication that the 
cells at each higher grid level in which that level 4 cell lies must also partially intersect the geometry.  

To use an example based on the numbering system illustrated in Figure 18-6, if the level 4 cell 
10.2.31.5 intersects the geometry, then the cells 10.2.31 (level 3), 10.2 (level 2), and 10 (level 1) must also 
intersect that geometry, since they contain the stated level 4 cell. As such, only the deepest cell, 
10.2.31.5, needs to be added to the index describing that feature. 

Note that the deepest cell does not always lie in level 4; according to the covering rule, if a cell at 
any level is completely covered by the geometry it is not subdivided further. Therefore, the deepest 
cell in such cases lies at the first grid level in which the cell is completely covered. 

Cells-Per-Object Rule 
Even after applying the deepest-cell rule and the covering rule, the index entry necessary to describe 
a complex geometry might still require many distinct grid cells. While this maximizes the precision 
with which the index describes the extent of a geometry, it can lead to poor performance of the index. 

The cells-per-object rule mitigates the risk of a spatial index becoming too large, by allowing you 
to place an explicit limit on the number of cells that will be stored for each object. In situations where 
subdividing a cell would lead to this limit being exceeded, the cell will not be subdivided, and the cell at 
the current grid level will be included in the index instead (overruling the behavior dictated by the 
deepest-cell rule). The value of the CELLS_PER_OBJECT parameter on which the cells-per-object rule is 
based must be specified at the time a spatial index is created, and may be set to any value between 1 
and 8,192. The default value is 16 cells per object. 

■ Note  The only circumstance in which SQL Server will break the cells-per-object rule is if the number of level 1 
grid cells required to cover a large object exceeds the specified CELLS_PER_OBJECT value. In this case, SQL 

Server will include as many level 1 grid cells as are necessary to ensure that the object is fully covered. 

Creating a Spatial Index in T-SQL 
Now that I’ve shown you the mechanics behind how spatial indexes work, let’s look at the syntax of how 
to create a spatial index in T-SQL. To start with, let’s create a simple table onto which the index can be 
applied, containing two columns, as follows: 

CREATE TABLE Points ( 
  id char(1) NOT NULL, 
  shape geometry 
); 

Even though this table contains a column of the geometry datatype, we can't add a spatial index to it 
quite yet. A spatial index identifies which grid cells belong to each geometry by relating the cells to the 
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primary keys of indexed objects. The index itself essentially takes the form of a set of (grid_cell_id, 
primary_key) pairs. Therefore, you can only add a spatial index to a table that has a primary key.  

To add a clustered primary key index on the id column of the Points table, execute the following 
code listing: 

ALTER TABLE Points  
ADD CONSTRAINT idxCluster PRIMARY KEY CLUSTERED (id ASC); 
GO 

■ Caution  You can only create spatial indexes on columns of a table that has a clustered primary key. 

With the primary key in place, we can now go about creating the index. The syntax to do so is 
shown in the following code listing: 

CREATE SPATIAL INDEX sidxPoints ON Points(shape) 
USING GEOMETRY_GRID WITH ( 
BOUNDING_BOX = (0, 0, 4096, 4096), 
GRIDS = ( 
  LEVEL_1 = MEDIUM, 
  LEVEL_2 = MEDIUM, 
  LEVEL_3 = MEDIUM, 
  LEVEL_4 = MEDIUM), 
CELLS_PER_OBJECT = 16); 

Let's break this listing down line by line: 

The first line follows the regular T-SQL syntax for creating any kind of index, 
stating the name of the index and the table and column on which the index will 
be applied. It is possible to have multiple spatial indexes on the same column, 
although each individual spatial index can be placed on only a single column of 
data. 

The geometry and geography datatypes each have their own distinct grid type; as 
the shape column on which I'm creating this index is of the geometry datatype, 
I've specified  USING GEOMETRY_GRID so that the manual geometry grid should be 
used in this case. I could alternatively have specified GEOMETRY_AUTO_GRID to 
create the eight-level nested auto grid. If creating an index on a column of 
geography data, you can use either the corresponding GEOGRAPHY_GRID or 
GEOGRAPHY_AUTO_GRID instead. 

The BOUNDING_BOX parameter states the total extent of the area to be covered by 
the index, in the order xmin, ymin,  xmax,  ymax. Even though the geometry 
datatype allows for geometries to be placed on a theoretically infinite flat plane, 
the grid that divides that space used by a spatial index can only be applied 
within the limits of a finite space. You must therefore always specify the extent 
of the BOUNDING_BOX for any spatial index applied to a geometry column. The 
coordinate values of the bounding box may be any floating-point values so long 
as xmax is greater than xmin, and ymax is greater than ymin; in this example, I'm 
creating a square grid ranging from (0,0) to (4096,4096). 
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The GRIDS parameter sets the resolution of cells contained at each of the four 
levels of the grid. They can be set independently but, for this example, I'm using 
a MEDIUM resolution at all four levels. Note that this parameter is not required 
(nor valid) if using the GEOMETRY_AUTO_GRID option. 

The CELLS_PER_OBJECT limit determines the maximum number of cells that will 
be added to the index to describe each individual geometry. I've used 16 here, 
which is the default. 

■ Note  The parameters just described relate to properties that are specific to spatial indexes. You can also set a 
number of options that are generic to all index types in SQL Server, such as DATA_COMPRESSION, PAD_INDEX, and 

SORT_IN_TEMPDB. For a full list of available index options, consult 

http://msdn.microsoft.com/en-us/library/bb934196.aspx. 

The values used in this example were chosen carefully. In what way? Well, remember that the 
MEDIUM grid resolution corresponds to an 8 × 8 grid. Therefore, as the index covers the extent from (0,0) 
to (4096,4096), each level 1 grid cell will be 512 units high by 512 units wide. Each level 2 cell will then 
be 64 × 64 units, each level 3 grid cell will be 8 × 8 units, and each level 4 cell in the grid will be 1 × 1 
unit. These values were chosen to simplify the analysis in the following sections, since each level 4 
grid cell will be a simple unit square. 

Analysing How the Index Is Used  
To understand how SQL Server uses a spatial index to fulfill a spatial query, let's now insert some 
sample data into the Points table just created. We'll insert four points, identified by the letters A–D. 
Since these are just abstract points I'll insert them into the geometry Shape column using SRID 0. 

INSERT INTO Points VALUES 
('A', geometry::Point(0.5, 2.5, 0)), 
('B', geometry::Point(2.5, 1.5, 0)), 
('C', geometry::Point(3.25, 0.75, 0)), 
('D', geometry::Point(3.75, 2.75, 0)); 

Figure 18-8 illustrates the points contained in the Points table, together with the individual Level 
4 grid cells in which each point lies. 
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Figure 18-8. A set of points lying in distinct level 4 grid cells. 

To see how the index is used to fulfill a typical query, let's consider a very common query pattern 
to identify those records from the Points table that intersect a given Polygon. The Polygon we'll use in 
this example will be a square Polygon, 2 units high × 2 units wide, as shown in Figure 18-9 (You might 
want to take good note of this diagram, as I'll be referring to the elements several times in the 
upcoming sections). 
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Figure 18-9. Using the grid to determine those points that intersect a square Polygon 

The query to identify those points lying within the Polygon is as follows (note that the query 
includes an explicit index hint to make sure that the execution plan uses the spatial index just defined; 
this will be explained shortly!): 

DECLARE @Polygon geometry='POLYGON((1.5 0.5, 3.5 0.5, 3.5 2.5, 1.5 2.5, 1.5 0.5))'; 
 
SELECT id 
FROM Points WITH(INDEX(sidxPoints)) 
WHERE shape.STIntersects(@Polygon) = 1; 

To analyze how SQL Server makes use of the sidxPoints index to fulfill this query, we can make 
use of one of a set of spatial helper stored procedures: because we're using a geometry index in this 
example, the appropriate stored procedure is sp_help_spatial_geometry_index (the equivalent 
sp_help_spatial_geography_index can be used to describe geography indexes). 

The sp_help_spatial_geometry_index returns a table containing a range of useful information 
about how a particular geometry index can be used in spatial queries in relation to a provided query 
sample. Spatial indexes are used to provide a primary filter of results by comparing them to another 
geometry, and the query sample is simply the other geometry against which the geometries in the 
index are to be compared (say, by the STEquals() or STIntersects() method). 

The following code listing demonstrates how to call the sp_help_spatial_geometry_index method 
to analyze the sidxPoints index in relation to a query sample based on the square Polygon illustrated 
in Figure 18-9.  

EXEC sp_help_spatial_geometry_index 
@tabname = Points, 
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@indexname = sidxPoints, 
@verboseoutput=0, 
@query_sample='POLYGON((1.5 0.5, 3.5 0.5, 3.5 2.5, 1.5 2.5, 1.5 0.5))'; 

■ Tip  To get even more information about the spatial index, you can call sp_help_spatial_geometry_index 

with  @verboseoutput=1. 

The stored procedure will output a table containing several properties describing the way in 
which the sidxPoints index can be used by a spatial query involving the specified query sample. These 
properties are discussed in the following sections. 

Tesselation Information 
The first statistics reported by sp_help_spatial_geometry_index give tessellation information about the 
index, that is, information about the grid cells in which geometries in the index lie. In this case, the 
sidxPoints index contains four Points, each of which lies in its own distinct level 4 grid cell. This is 
reported in the following lines:  

Total_Number_Of_Intersecting_ObjectCells_In_Level4_In_Index     4 
Total_Number_Of_ObjectCells_In_Level4_In_Index             4 

An important concept to grasp is that, in order to use the grid as a primary filter, the query sample 
(i.e., the other geometry against which we are making a comparison) must also be tessellated to the 
same grid as the geometries in the index itself. The query sample in this case is the square Polygon, 
which, as can be seen in Figure 18-9, completely covers one grid cell, and partially intersects a further 
eight cells. This is reported in the following lines: 

Total_Number_Of_Interior_ObjectCells_In_Level4_For_QuerySample    1 
Total_Number_Of_Intersecting_ObjectCells_In_Level4_For_QuerySample      8 
Total_Number_Of_ObjectCells_In_Level4_For_QuerySample                   9 

■ Note  In order to be used as a primary filter, both the geometries in the column on which a spatial index is 

created and the other geometry to which they are being compared must be tesselated to the same grid. 

Primary Filter Selectivity 
The next set of properties returned by sp_help_spatial_geometry_index gives statistics relating to the 
use of the index as a primary filter of records compared to the query sample. In this example, based on 
the index alone, we can be certain that Point A does not intersect the query sample (because it lies 
solely in a cell not intersected by the Polygon geometry). As there are four records altogether in the 
index, the primary filter excludes 25% of the rows, as reported by: 

Percentage_Of_Rows_NotSelected_By_Primary_Filter       25 
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The remaining three rows, Points B, C, and D, are selected by the primary filter: 

Number_Of_Rows_Selected_By_Primary_Filter              3 

Internal Filtering 
At this point, you may think that all three rows selected by the primary filter must be passed to the 
secondary filter. However, we can make that process more efficient. Consider Point B, which lies 
within a grid cell completely covered by the square Polygon geometry. Therefore, it is possible to 
preselect this row into the query result set based on the primary filter alone, without needing to call 
the secondary filter for confirmation. This preselection of rows based on the primary filter is known as 
"internal filtering," as reported by: 

Number_Of_Rows_Selected_By_Internal_Filter       1 

This measure is also reported as a percentage, with the number of rows selected by internal 
filtering given as a percentage of the number of rows selected by the primary filter. In this case, of 
Points B, C, and D, only Point B was selected by internal filtering: 

Percentage_Of_Primary_Filter_Rows_Selected_By_Internal_Filter   33.3333333333333 

Needless to say, it's desirable for this measure to be as high as possible, because every row 
selected by the internal filter is one less row that has to be processed by the secondary filter. 

Secondary Filtering and Output 
Using the primary filter based on the grid index, SQL Server has been able definitely to include Point 
B through internal filtering, and definitely exclude Point A. That leaves two points that need to be 
passed to the secondary filter, Points C and D, as reported by: 

Number_Of_Times_Secondary_Filter_Is_Called   2 

The secondary filter is precise, and accurately determines that Point C lies within the Polygon 
while Point D lies outside it. Therefore, the total number of points that intersect the provided query 
sample is 2, and this is the number of rows output by the query: 

Number_Of_Rows_Output      2 

Efficiency Measures 
The final two properties reported by the sp_help_spatial_geometry_index procedure are also arguably 
the most important, since they relate to the efficiency with which the index can be used to answer 
queries of this data based on the supplied query sample. 

The first efficiency measure is calculated as the number of rows selected by the primary filter as a 
percentage of those included in the final output. This is a useful measure in that it represents the 
accuracy of the "first guess" based on the primary filter alone.  The more false positives that are included 
in the primary filter, the lower this percentage becomes. In this example, the primary filter selected 3 
rows: B, C, and D. Of these, rows B and C were correct, so the primary filter efficiency is 2/3 = 66.66%. 

Primary_Filter_Efficiency   66.6666666666667 

The second efficiency measure is calculated as the number of rows preselected by the internal 
filter as a percentage of those in the final output. In this case, there were two rows in the final output 
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(Points B and C), of which Point B was preselected by the internal filter. So, the internal filter 
efficiency is 1/2 = 50%:  

Internal_Filter_Efficiency   50 

These two measures are very useful when evaluating the relative efficiency of different index 
settings. Generally speaking, when tuning a spatial index for optimum performance, you should 
always seek to maximize both the internal filter efficiency and the primary filter efficiency. 

Creating a geography Index 
So far in this chapter, I have demonstrated only examples of geometry indexes, in which a grid system is 
overlaid onto a flat, two-dimensional plane. You may then be wondering how SQL Server applies a 
grid index onto the three-dimensional, curved surface used by the geography datatype? The answer is, 
quite simply, that it doesn't.  

As with the geometry datatype, geography indexes are based on a multilevel grid system. However, 
rather than being applied directly onto a round model of the earth, SQL Server first implicitly projects 
all geography data onto a flat plane prior to indexing. 

The particular projection used by SQL Server to facilitate indexing is as follows: 

• Two quadrilateral pyramids are placed over the poles of the earth. The bases of the 
two pyramids touch at the equator, so that they fully cover the northern 
hemisphere and southern hemisphere, respectively. 

• Geometries lying in each hemisphere are projected onto the sides of the 
appropriate pyramid. 

• The pyramids are vertically flattened and joined together to form a single 
projected image. 

This process is illustrated in Figure 18-10.  

1. Each hemisphere is projected
    onto a pyramid

2. The pyramids are flattened 3. Flattened surfaces are
    joined together

Northern
Hemisphere

Southern
Hemisphere

 

Figure 18-10. Projecting the geography globe onto a flat plane for indexing 

Once the two hemispheres have been projected and combined into a single image, a grid can be 
applied just as with the geometry datatype. This process of projection occurs automatically and 
transparently whenever you create a spatial index on a column of geography data. As a result, you can 
apply the same basic set of rules for a multilevel grid system for either the geometry or geography 
datatype, and SQL Server will handle the "behind-the-scenes" conversions for you. 

There are just a few differences to be aware of when working with geography indexes, as follows: 

Firstly, indexes created on columns of the geography datatype must specify the 
appropriate tessellation grid, using GEOGRAPHY_GRID or GEOGRAPHY_AUTO_GRID as required. 
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Secondly, unlike with the geometry datatype, there is no need to specify a 
BOUNDING_BOX parameter. All geography index grids are assumed to cover the 
entire globe and you cannot specify an explicit bounding box. Other settings 
regarding grid resolution and cells per object apply to geography indexes exactly 
as they do to geometry indexes. 

The following code listing demonstrates an example of the syntax required to create an index on the 
geography column of a table: 

CREATE SPATIAL INDEX idxGeography ON Table ( geogColumn ) 
USING  GEOGRAPHY_GRID  
WITH ( 
  GRIDS = ( 
    LEVEL_1 = MEDIUM, 
    LEVEL_2 = MEDIUM, 
    LEVEL_3 = MEDIUM, 
    LEVEL_4 = MEDIUM),  
  CELLS_PER_OBJECT = 16 
); 

■ Note  "Behind-the-scenes," SQL Server uses projection to apply a grid index to geography data, but the column 

of data on which the index is based remains as unprojected geographic coordinates. 

Designing Queries to Use a Spatial Index 
Generally speaking, queries that make use of a spatial index as a primary filter perform better than 
those that do not. However, not all spatial queries can use an index. In this section, we'll consider a 
number of factors to bear in mind when designing queries so that they can make use of an index.  

Supported Methods 
A grid index describes the approximate topological relationship between geometries. Therefore, it can 
be used only to fulfill queries that, in themselves, are concerned with testing the toplogical 
relationship between two geometries.  

Specifically, SQL Server supports the use of a spatial index as a primary filter only for queries that 
use one of the following methods: 

• Filter() 

• STContains() 

• STDistance() 

• STEquals() 

• STIntersects() 

• STOverlaps() 

• STTouches() 

• STWithin() 
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SQL Server cannot use a spatial index to fulfill other types of query condition: for example, to 
identify geometries of a certain length using STLength(), or geometries of a certain type using 
STGeometryType(). To support such queries, you can instead create a persisted computed column based 
on the result of the method in question and create a regular clustered or nonclustered index on the 
computed column. 

For example, consider the following code listing, which creates a table containing a geometry 
column and then creates a spatial index based on that column: 

CREATE TABLE IndexTest ( 
  id int NOT NULL, 
  geom geometry, 
  CONSTRAINT pk_IndexTest PRIMARY KEY CLUSTERED (id ASC) 
); 
 
CREATE SPATIAL INDEX sidx_IndexTest ON IndexTest(geom) 
WITH ( BOUNDING_BOX = (0, 0, 10, 10) ); 

The spatial index created in this example, sidx_IndexTest, can be used in an execution plan to 
fulfill the following query: 

SELECT * FROM IndexTest 
WHERE geom.STIntersects('POINT(3 2)') = 1; 

However, it cannot be used in the following query: 

SELECT * FROM IndexTest 
WHERE geom.STLength() > 100; 

To create an index that can be used in conjunction with the second query, we can add a persisted 
computed column to the table that stores the length of each geometry, and then  create a nonclustered 
index on this column as shown in the following code listing: 

ALTER TABLE IndexTest ADD geom_length AS geom.STLength() PERSISTED; 
CREATE INDEX idx_geom_length ON IndexTest(geom_length); 

Correct Syntax and Query Form 
When designing a query that makes use of one of the supported methods listed previously, there are 
several additional conditions that must be met to ensure that a spatial index can be employed. 

Firstly, the spatial method must appear within a condition contained in the WHERE clause of the 
query (i.e., it cannot be used in the SELECT, HAVING, or GROUP BY clause). The method itself must be 
applied on a column of data on which a spatial index has been created. 

Secondly, the query condition must be expressed using the general syntax of 
GeomA.Method(GeomB) = 1, in which the method is evaluated  on the left hand of the expression. Even 
though generally considered normal coding practice, this requirement can still present a bit of a 
gotcha; even though they are logically identical, the following code listing can make use of a spatial 
index on the geom column: 

SELECT * FROM IndexTest WHERE geom.STEquals('POINT(3 2)') = 1; 

whereas this query cannot: 

SELECT * FROM IndexTest WHERE 1 = geom.STEquals('POINT(3 2)'); 

Indeed, trying to force the use of a spatial index by adding an index hint to the second query will 
result in an error. 
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One minor exception to the general syntax described previously is when using the STDistance() 
method in a query condition. In this case, a spatial index can be used to filter those results lying within a 
certain distance of another geometry using either of the following two query patterns: 

SELECT * FROM IndexTest WHERE geom.STDistance('POINT(3 2)') < 25; 
SELECT * FROM IndexTest WHERE geom.STDistance('POINT(3 2)') <= 25; 

Checking if a Spatial Index Is Being Used 
When it comes to executing a query, frequently there is more than one approach that SQL Server can use to 
locate and return the necessary results from the database. SQL Server's query optimizer generates a 
number of alternative query plans, together with an estimated cost of each plan. The actual execution 
plan chosen to fulfill the query is the one that has the lowest estimated cost, that is, the most efficient 
query. 

In general, this process happens automatically and is not something you need to worry about. For 
example, if an index exists on a table, and the query optimizer estimates that using that index would 
lead to the most efficient query, the index will automatically be used. Spatial indexes make spatial queries 
more efficient, so, having created a spatial index and designed a query that meets the conditions for that 
index to be used, you don’t need to do anything else, right? Unfortunately, this isn’t quite true. In fact, there 
are two false assumptions in the previous sentence; let’s look at each one in turn. 

Firstly, using a spatial index does not always lead to a spatial query being more efficient. Setting 
inappropriate values for the GRIDS, CELLS_PER_OBJECT, and BOUNDING_BOX parameters can actually lead to 
a spatial index that is more cumbersome to use than methods executed directly against the table on which 
the index is based. In this case, the query optimizer might (correctly) choose not to use a query 
execution plan that employs the spatial index, since it has a high associated cost. 

Secondly, remember that the query optimizer chooses between various execution plans based on 
their lowest estimated cost and, sometimes, these estimates aren’t accurate. While this problem occurs 
with any type of query plan, it is particularly difficult to assign cost estimates to spatial queries 
correctly. As a result, the optimizer sometimes decides not to choose a query plan that uses the spatial 
index because it has failed to estimate the associated cost accurately in comparison to the other plans. 
As previously, this leads to the spatial index not being used, however, in this case, the query optimizer 
has made an incorrect decision, and the query execution plan chosen is not optimal. 

To demonstrate a query execution plan that makes use of a spatial index, enable the SSMS option 
to display the execution plan (Tools ➤ Include Actual Execution Plan, or Ctrl + M). Then execute a 
spatial query that makes use of a spatial index, such as that shown below: 

SELECT * FROM IndexTest WITH(INDEX(sidx_IndexTest)) 
WHERE geom.STIntersects('POINT(3 2)') = 1; 

After the query has finished executing, switch to the Execution Plan tab, which should appear as 
shown in Figure 18-11.  
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Figure 18-11. A query execution plan containing a spatial index seek 

This plan may look quite complicated for what seems like a relatively straightforward query, but 
don't let that worry you. The thing to notice is the item illustrated in Figure 18-12, which is a Clustered 
Index Seek (Spatial). 

 

Figure 18-12. The Clustered Index Seek (Spatial) icon 

The presence of a Clustered Index Seek (Spatial) element shows that, instead of performing a scan, 
this execution plan performs a seek into the spatial index, using it to perform a primary filter of those 
geometries from the IndexTest table that intersect the requested Point at POINT(3 2). 

If you're familiar with the symbology used in SQL Server's execution plans, you might notice the 
little yellow exclamation mark displayed at the bottom right of the Index Seek icon in Figure 18-12, 
which indicates a warning in relation to this element. Hovering your mouse cursor over the Index 
Seek icon will present further information, indicating that the warning in this case is because there 
are no statistics available for the column. 

This is nothing to worry about; in contrast to "traditional" index types, spatial indices in SQL 
Server are stored in internal tables that maintain their own statistics. Unfortunately, the "Missing 
Column Statistics" event does not correctly recognize this and so generates a false warning, which 
you can safely ignore. 

■ Tip  To find out whether the query optimizer has chosen a plan that uses a spatial index, select Query ➤  
Include Actual Execution Plan in SQL Server Management Studio before you execute the query. If the execution 
plan contains a step called Clustered Index Seek (Spatial), then you know that the index was used as part of the 

query execution.  
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Adding an Index Hint 
To make sure that a spatial index is used to execute a particular query, you can use an index hint as 
used in the previous code sample. Adding an index hint to a query forces the query optimizer to choose 
an execution plan that makes use of that particular index (or indexes). You can specify an index hint by 
using the WITH(INDEX(indexName)) clause in your query following the name of the table on which the 
index is placed, as highlighted in the following example:  

SELECT * FROM IndexTest WITH(INDEX(sidx_IndexTest)) 
WHERE geom.STIntersects('POINT(3 2)') = 1; 

If possible, SQL Server will then generate an execution plan for this query that uses the 
sidx_IndexTest index as a primary filter to determine those geometries from the IndexTest table that 
intersect the Point at POINT(3 2). 

■ Caution  Although using a spatial index can improve the performance of a spatial query, forcing the use of an 

inappropriate index can degrade query performance just as much.  

Optimizing an Index 
The key properties of a primary filter are that it must not only be fast, but also minimize the number of 
false positive results returned. The degree by which a spatial index succeeds in meeting these two aims 
is largely determined by the values chosen for the grid resolution, the bounding box, and the cells per 
object parameters. 

It is very hard to give foolproof guidance on the appropriate values to use for each of these 
parameters, because they depend very much on the exact distribution of the particular dataset in 
question. However, in this section I’ll give you some general ideas to bear in mind when 
determining the settings for a spatial index.  

When tuning spatial index settings, in addition to general performance-testing measures, 
remember to use the sp_help_spatial_geometry_index and sp_help_spatial_geography_index 
procedures described previously to compare and analyze the relative efficiency achieved from your 
changes. 

■ Tip  You can create multiple spatial indexes on the same column using different settings for each index. You 

may find this particularly useful to index unevenly distributed data. 

Grid Resolution 
Choosing the correct grid resolution—the number of cells contained at each level of the grid—is a 
matter of balancing the degree of precision offered by the index (the “tightness of fit” around features) with 
the number of grid cells required to obtain that precision. When attempting to achieve the optimum 
grid resolution, you should consider the following factors: 
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If you set the resolution of the grid cells too low (i.e., the index contains a small 
number of relatively large grid cells), then the primary filter will return more 
false positives, features that intersect the grid cell that don’t actually intersect 
the geometry in question. These false positives will lead to more work having to 
be done by the secondary filter, leading to query degradation. 

If you set the resolution of the grid cells too high (i.e., the index contains a large 
number of grid cells, but each one is individually small), then the resulting 
index will contain more grid cell entries for each geometry, which means that it 
will take longer to query the index, degrading query performance. There is also 
the risk that the total number of cells required to describe the geometry fully 
will exceed the cells per object limit. 

How, then, should you go about determining the optimum grid resolution for a particular dataset? 
Unfortunately, there are no definitive rules to follow, and the “correct” answer largely depends on the 
particular dataset in question. One approach to determine the appropriate grid size is as follows: 

1. Create and populate a table with no spatial index at all. Run a set of typical 
queries against the data contained in this table and record how long they take 
to execute. You will use these results as a benchmark against which to 
measure any improvements gained from the addition of an index. 

2. Create an appropriate geometry or geography index, initially using the LOW 
resolution at all levels of the grid. This creates the most generalized index. 

3. Rerun the same set of queries that you originally used to set your benchmark, and 
assess the difference in performance. (Remember that you may have to use an 
index hint to ensure that the new index is used by the query optimizer.) 

4. Drop the existing index, and re-create a new index, increasing the resolution of 
each level from LOW to MEDIUM. 

5. Rerun the benchmark tests and record the results. 

6. Repeat Steps 4 and 5, increasing the resolution of each grid one level at a time, 
for as long as you continue to receive performance benefits. If increasing the 
grid resolution makes your query perform more slowly then stop and re-create 
the index that gave the best performance setting (or use no index at all). 

This approach can be used to help give you an initial indication of the appropriate grid resolution 
required for a spatial index, but it is a very crude method. An alternative approach is to rely on the 
GEOGRAPHY_AUTO_GRID or GEOMETRY_AUTO_GRID settings, which removes the need to state the resolution of 
each grid level explicitly in favor of the automatically predetermined eight-level grid. Using SQL 
Server's auto grid will produce good performance in most situations and removes the need to decide 
on individual grid settings, although it will not necessarily result in optimal performance and cannot 
be adjusted. 

In practice, the optimum grid resolution settings cannot be determined in isolation as they 
depend on the values chosen for the bounding box and cells-per-object parameters discussed in the 
following sections. Bear in mind also that if the data contained in the table changes, the optimum index 
design might also change. 

Bounding Box 
The bounding box of a spatial index applied to a geometry column determines the extent of space over 
which the grid is overlaid. Your first instinct might be to specify a bounding box that covers the full extent 
of all the data contained in the table to which the index is applied, but this is not always the best choice.  
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The area contained within the bounding box will be decomposed into a fixed number of cells, as 
specified by the parameters supplied for the resolution at each level of the grid. Specifying a smaller 
bounding box but keeping the number of cells in the grid the same will lead to each grid cell being 
smaller. Therefore, the grid cells can achieve a more precise fit around any features.  

Suppose you have a dataset that contains a densely populated central area together with a few 
extreme outlying features. Specifying a grid that covers the full extent of data means that each grid 
cell would be relatively large, since the grid must extend to cover the far-outlying features. By 
specifying a bounding box that tightly fits around only the dense area of data, the index can more 
accurately depict the majority of data contained in this area, with only the few outlying features excluded 
from the index. Just because these features aren’t contained in the index doesn’t mean that they won’t 
be contained in any results when you come to query the table, just that they won’t be obtained from a 
primary filter of the index. 

Alternatively, if you want to include the full extent of your data in your index, you may also want 
to include a buffer that enlarges the bounding box slightly to provide capacity for future growth. 

For geography indexes, the bounding box parameter cannot be set, as all geography indexes 
explicitly cover the entire globe. 

■ Tip  You can set the extent of the bounding box based on the maximum and minimum coordinate values of the 
geometry data contained in your table, but narrowing the bounds of the index may result in better performance 

because it allows the index grid to be more granular. 

Cells per Object 
The CELLS_PER_OBJECT parameter allows you to explicitly state the maximum number of grid cells that will 
be stored to describe each feature in the spatial index. The optimum number of cells per object is a 
value that balances the precision of each entry against the size of the index. This optimum value is 
intricately linked to the resolution of the cells used at each level, since a higher-resolution grid will 
contain smaller cells, which might mean that more cells are required to cover the object fully at a 
given level of the grid. The following are a few factors to keep in mind when you’re attempting to set 
the ideal number of allowed cells per object: 

If you set the CELLS_PER_OBJECT limit too low, then each index entry might not 
be allowed to contain the total number of cells required to describe a geometry 
based on the deepest-cell rule and the covering rule. In such cases, the grid cells 
will not be fully subdivided and the index entry will not be as accurate as it 
could be. 

If you set the CELLS_PER_OBJECT limit too high, then each index entry will be 
allowed to grow to contain a large number of cells. This may lead to a more 
accurate index, but a slower one, thereby negating the purpose of using a 
spatial index, which is to speed up the results of spatial queries. 

As with the other index parameters described previously, determining the optimum setting involves 
a degree of manual trial and error, based on a particular dataset. If you are not sure what value to set, 
use the default CELLS_PER_OBJECT value of 16, which works reasonably well in the majority of situations. 
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Performance Comparison 
Spatial indexes are most effective when used by queries that are highly selective; that is, the window 
within which intersecting geometries are chosen is relatively small compared to the overall extent of 
the dataset. As the percentage of rows selected from the underlying table increases, the cost of 
performing lookups against the spatial index begins to outweigh the cost of performing a full table scan, 
to the point that using a spatial index actually degrades a query performance rather than improves it. 

Figure 18-13 illustrates a graph plotting the time taken to execute a simple SELECT query against a 
randomly distributed set of points in a RandomPoints table, based on the following general syntax: 

DECLARE @Window geometry 
SET @Window = geometry::STPolyFromText('POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))', 4326) 
 
SELECT * 
FROM RandomPoints 
WHERE geom.STIntersects(@Window) = 1; 

The query was executed repeatedly against a base table while increasing the number of rows, and 
specifying increasing lengths for the sides of the square Polygon @Window. For each size of window, the 
query execution time was recorded. 

 

Figure 18-13. A graph comparing the time taken to execute a query for increasing size of query window 

As can be clearly seen in Figure 18-13, the spatial index in this example proves most beneficial 
when the size of a query window is small relative to the overall extent of the data contained in the index. 
When the area of the query window is less than 3% of the total area covered by the index, execution time 
increases only very slightly, even when the base table contains 1,000,000 rows. As the size of the query 
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window increases and the total number of rows returned by the query increases, the primary filter 
becomes less efficient, leading to dramatically longer execution times. 

Note that this comparison is based on results obtained from a single artificial dataset. The relative 
benefits of using a spatial index in a particular application depend on a number of factors, and may 
vary from those illustrated here. To create a more thorough investigation, you would also need to 
repeat this set of tests using different combinations of grid resolution and cells per object. 

Summary 
In this chapter you learned about spatial indexes, and how you can use them to improve the 
performance of queries against spatial data. Specifically, you learned the following: 

• A spatial index acts as a primary filter for the results of certain spatial operations. 

• The primary filter provides a fast approximate set of candidate geometries that is 
guaranteed to include the results of a query, but may include additional “false 
positive” results. 

• The secondary filter is used to refine the results of the primary filter into the true 
result set. Secondary filters are slower but more accurate than primary filters.  

• To create an index of spatial features, SQL Server allocates features to cells within 
a multilevel grid. 

• SQL Server applies the covering rule, the deepest-cell rule, and the cells-per-
object rule in an attempt to maximize the precision of an index entry while 
minimizing the number of grid cells required to do so. 

• You may create spatial indexes that apply to either the geography or geometry 
datatype by using either T-SQL or SQL Server Management Studio. 

• Sometimes, it is necessary to force the query optimizer to use a spatial index, by 
specifying a query hint. 

There are a number of factors that affect the performance of a spatial index, and each one must be 
balanced to obtain the optimum trade-off between speed and accuracy.  
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Appendix 

This appendix contains various tables of reference information that you might find helpful when 
working with spatial data in SQL Server, as follows: 

• Methods available for the geometry and geography datatypes 

• Exception codes and descriptions 

• IsValidDetailed() response codes and descriptions 

• Common SRIDs 

Method List 
This section contains a summary of all the methods and properties provided by the geometry and 
geography datatypes. 

Static Methods 
The following tables list static methods that can be used to instantiate items of geometry or geography 
data. 

Well-Known Text 

Method Description geometry geography 

STPointFromText() Creates a Point from supplied WKT • • 

STLineFromText() Creates a LineString from supplied WKT • • 

STPolyFromText() Creates a Polygon from supplied WKT • • 

STMPointFromText() Creates a MultiPoint from supplied WKT • • 

STMLineFromText() Creates a MultiLineString from supplied 
WKT 

• • 
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Method Description geometry geography 

STMPolyFromText() Creates a MultiPolygon from supplied WKT • • 

STGeomCollFromText() Creates a GeometryCollection from 
supplied WKT 

• • 

STGeomFromText() Creates any kind of supported geometry 
from supplied WKT 

• • 

Parse() Creates any kind of supported geometry 
from supplied WKT 

• • 

Well-Known Binary 

Method Description geometry geography 

STPointFromWKB() Creates a Point from supplied WKB • • 

STLineFromWKB() Creates a LineString from supplied WKB • • 

STPolyFromWKB() Creates a Polygon from supplied WKB • • 

STMPointFromWKB() Creates a MultiPoint from supplied WKB • • 

STMLineFromWKB() Creates a MultiLineString from supplied WKB • • 

STMPolyFromWKB() Creates a MultiPolygon from supplied WKB • • 

STGeomCollFromWKB() Creates a GeometryCollection from supplied 
WKB 

• • 

STGeomFromWKB() Creates any supported geometry from supplied 
WKB 

• • 

Geography Markup Language 

Method Description geometry geography 

GeomFromGML() Creates any supported geometry from supplied 
GML 

• • 
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Other Static Methods 

Method Description geometry geography 

Point() Creates a Point from supplied coordinate values • • 

Representation Formats 

Method Description geometry geography 

STAsText() Returns the Well-Known Text representation of 
a geometry 

• • 

ASTextZM() Returns the Well-Known Text representation of 
a geometry including Z and M values 

• • 

ToString() Returns the Well-Known Text representation of 
a geometry including Z and M values 

• • 

STAsBinary() Returns the Well-Known Binary representation 
of a geometry 

• • 

AsBinaryZM() Returns the Well-Known Binary representation 
of a geometry including Z and M values 

• • 

AsGML() Returns the Geographic Markup Language 
representation of a geometry 

• • 

Aggregate Methods 

Method Description geometry geography 

CollectionAggregate() Creates a collection containing 
geometries from a column of spatial 
data 

• • 

ConvexHullAggregate() Creates a convex hull around the 
geometries in a column of spatial data 

• • 

EnvelopeAggregate() Creates the envelope around the 
geometries in a column of spatial data 

• • 

UnionAggregate() Creates the union of geometries in a 
column of spatial data 

• • 
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Describing Properties of a geometry 

Method Description geometry geography 

STSrid Sets or retrieves the SRID in which an 
instance is defined 

• • 

STGeometryType() Returns the name of the type of a geometry 
(e.g., "Point") 

• • 

InstanceOf() Tests whether an instance is of a particular 
geometry type 

• • 

STDimension() Returns the number of dimensions occupied 
by a geometry 

• • 

STIsSimple() Tests whether a geometry is simple •  

STIsClosed() Tests whether a geometry is closed •  

STIsRing() Tests whether a geometry is a ring (a simple, 
closed LineString) 

•  

STNumPoints() Returns the number of points in a geometry • • 

STIsEmpty() Tests whether a geometry is empty (contains 
no points) 

• • 

STIsValid() Tests whether a geometry is valid • • 

IsValidDetailed() Tests if, and describes why, a geometry is 
invalid 

• • 

HasM Tests if an instance has M coordinate values • • 

HasZ Tests if an instance has Z coordinates values • • 

Calculating Metrics 

Method Description geometry geography 

STLength() Measures the length of a geometry • • 

STArea() Measures the area contained within a 
geometry 

• • 
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Returning Coordinate Values 

Method Description geometry geography 

STX Returns the X coordinate of a Point •  

STY Returns the Y coordinate of a Point •  

Lat Returns the latitude coordinate of a Point  • 

Long Returns the longitude coordinate of a Point  • 

M Returns the M coordinate of a Point • • 

Z Returns the Z coordinate of a Point • • 

Isolating Points from a geometry 

Method Description geometry geography 

STPointN() Returns the nth point of a geometry • • 

STStartPoint() Returns the first point of a geometry • • 

STEndPoint() Returns the last point of a geometry • • 

STCentroid() Returns the centroid of a geometry •  

EnvelopeCenter() Returns the center of the envelope around a 
geometry 

 • 

STPointOnSurface() Returns an arbitrary point from the interior 
of a geometry 

•  

Isolating Curve/Line Segments from a Geometry 

Method Description geometry geography 

STNumCurves() Returns the number of segments in a 
LineString, CircularString, 
CompoundCurve, or MultiLineString 

• • 

STCurveN() Returns the nth curve segment from a 
geometry 

• • 
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Dealing with Polygon Rings 

Method Description geometry geography 

STExteriorRing() Returns the exterior ring of a Polygon •  

STNumInteriorRing() Counts the number of interior rings in a 
Polygon 

•  

STInteriorRingN() Returns the specified interior ring of a 
Polygon 

•  

NumRings() Counts the total number of rings in a 
Polygon 

 • 

RingN() Returns the specified ring from a Polygon  • 

Describing the Extent of a geometry 

Method Description geometry geography 

STBoundary() Returns the boundary of a geometry •  

STEnvelope() Returns the bounding box of a geometry •  

EnvelopeAngle() Determines the angle between the center 
of a geography instance and its most 
outlying point 

 • 

Working with Geometry Collections 

Method Description geometry geography 

STNumGeometries() Returns the number of geometries in a 
geometry collection 

• • 

STGeometryN() Returns the nth geometry from a 
collection 

• • 
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Modifying a geometry 

Method Description geometry geography 

STBuffer() Applies a buffer around a geometry  • • 

BufferWithTolerance() Applies a buffer with a given 
tolerance 

• • 

BufferWithCurves() Applies a buffer that uses curved 
geometries 

• • 

MakeValid() Makes a geometry valid according 
to OGC specifications 

• • 

Reduce() Simplifies a geometry • • 

ReorientObject() Reorients the rings of a Polygon, 
inverting its interior and exterior 

 • 

STConvexHull() Creates the convex hull around a 
geometry 

• • 

STCurveToLine() Converts a curved geometry to the 
equivalent linear geometry type 

• • 

CurveToLineWithTolerance() Converts a curved geometry to the 
equivalent linear geometry type, 
approximating curved sections to 
within a specified tolerance 

• • 

STUnion() Combines two geometries • • 

STIntersection() Returns the intersection created 
between two geometries 

• • 

STDifference() Returns the difference between one 
geometry and another 

• • 

STSymDifference() Returns the symmetrical difference 
between two geometries 

• • 
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Testing Relationships Between geometries 

Method Description geometry geography 

STEquals() Tests if two geometries contain 
exactly the same set of points  

• • 

STDistance() Calculates the shortest distance 
between two geometries 

• • 

ShortestLineTo() Determines the shortest straight 
line connecting two geometries 

• • 

STIntersects() Tests for any degree of intersection 
between two geometries 

• • 

Filter() Performs a primary filter  (based on 
a spatial index) to test whether two 
geometries intersect 

• • 

STDisjoint() Tests whether two geometries are 
disjoint 

• • 

STTouches() Tests whether two geometries 
touch 

•  

STOverlaps() Tests whether two geometries 
overlap 

• • 

STCrosses() Tests whether one geometry 
crosses another 

•  

STWithin() Tests whether one geometry is 
contained within another 

• • 

STContains() Tests whether one geometry 
contains another 

• • 

STRelate() Tests whether two instances 
exhibit the relationship specified 
using the DE-9IM model 

•  
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Exception Codes and Messages 
The following table lists the codes and corresponding description for exceptions that can occur while 
working with geometry or geography datatypes (or their SqlGeometry and SqlGeography equivalents). 

Code Description 

24100 The spatial reference identifier (SRID) is not valid. SRIDs must be between 0 and 999999. 

24101 The distance parameter ({0}) for ({1}) is not valid. Distances cannot be infinite or not a number 
(NaN).  

24102 The point index n ({0}) passed to STPointN is less than 1. This number must be greater than or 
equal to 1 and less than or equal to the number of points returned by STNumPoints. 

24103 The geometry index n ({0}) passed to STGeometryN is less than 1. The number must be greater 
than or equal to 1 and should be less than or equal to the number of instances returned by 
STNumGeometries. 

24104 The ring index n ({0}) passed to STInteriorRingN is less than 1. The number must be greater 
than or equal to 1 and should be less than or equal to the number of rings returned by 
STNumInteriorRing. 

24105 The geometryType argument in InstanceOf ('{0}') is not valid. This argument must contain one 
of the following types: Geometry, Point, LineString, Curve, Polygon, Surface, MultiPoint, 
MultiLineString, MultiPolygon, MultiCurve, MultiSurface, GeometryCollection, CircularString, 
CompoundCurve, CurvePolygon, or FullGlobe (geography Data Type only). 

24108 The tolerance ({0}) passed to BufferWithTolerance is not valid. Tolerances must be positive 
numbers.  

24109 The intersectionPatternMatrix argument to STRelate is not valid. This argument must contain 
exactly nine characters, but the string provided has {0} characters. 

24110 Character {0} ({1}) of the intersectionPatternMatrix argument to STRelate is not valid. This 
argument must only contain the characters 0, 1, 2, T, F, and *. 

24111 The well-known text (WKT) input is not valid. 

24112 The well-known text (WKT) input is empty. To input an empty instance, specify an empty 
instance of one of the following types: Point, LineString, Polygon, MultiPoint, MultiLineString, 
MultiPolygon, CircularString, CompoundCurve, CurvePolygon, or GeometryCollection. 

24114 The label {0} in the input well-known text (WKT) is not valid. Valid labels are POINT, 
LINESTRING, POLYGON, MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, 
GEOMETRYCOLLECTION, CIRCULARSTRING, COMPOUNDCURVE, CURVEPOLYGON, and 
FULLGLOBE (geography Data Type only). 
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Code Description 

24115 The well-known binary (WKB) input is not valid. 

24117 The LineString input is not valid because it does not have enough points. A LineString must 
have at least two points. 

24118 The Polygon input is not valid because the exterior ring does not have enough points. Each ring 
of a polygon must contain at least four points. 

24119 The Polygon input is not valid because the start and end points of the exterior ring are not the 
same. Each ring of a polygon must have the same start and end points. 

24120 The Polygon input is not valid because the interior ring number {0} does not have enough 
points. Each ring of a polygon must contain at least four points. 

24121 The Polygon input is not valid because the start and end points of the interior ring number {0} 
are not the same. Each ring of a polygon must have the same start and end points. 

24125 The tolerance ({0}) passed to Reduce is not valid. Tolerances must be positive numbers. 

24126 Point coordinates cannot be infinite or not a number (NaN). 

24128 The Geography Markup Language (GML) input must have a single top-level tag. 

24129 The given XML instance is not valid because the top-level tag is {0}. The top-level element of 
the input Geographic Markup Language (GML) must contain a Point, LineString, Polygon, 
MultiPoint, MultiGeometry, MultiCurve, MultiSurface, Arc, ArcString, CompositeCurve, 
PolygonPatch, or FullGlobe (geography Data Type only) object. 

24130 The given XML instance contains attributes. Attributes in Geography Markup Language (GML) 
input are not permitted. 

24131 The given pos element provides {0} coordinates. A pos element must contain exactly two 
coordinates. 

24132 The posList element provided has {0} coordinates. The number of coordinates in a posList 
element must be an even number. 

24133 The linearRing input is not valid because there are not enough points in the input. A linearRing 
must have at least four points, but this linearRing input only has {0}. l24304: Nesting overflow. 
The call to {0} would result in {1} levels of nesting. Only {2} levels are allowed. 

24134 Sequential parts of a compound curve must have one common end point. Add a common end 
point. All coordinates, including optional Z and M, must be equal.  

24141 A number is expected at position {0} of the input. The input has {1}. 
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Code Description 

24142 Expected "{0}" at position {1}. The input has "{2}". 

24143 The posList element provided is empty. 

24144 This operation cannot be completed because the instance is not valid. Use MakeValid to 
convert the instance to a valid instance. Note that MakeValid may cause the points of a 
geometry instance to shift slightly. 

24149 FullGlobe cannot have internal elements and must be the only object in the instance. Remove 
any other objects in the same geography instance. 

24150 FullGlobe instances cannot be objects in the GeometryCollection. GeometryCollections can 
contain the following instances: Points, MultiPoints, LineStrings, MultiLineStrings, Polygons, 
MultiPolygons, CircularStrings, CompoundCurves, CurvePolygons, and GeometryCollections. 

24151 The curve index n ({0}) passed to STCurveN is less than 1. This number must be greater than or 
equal to 1 and less than or equal to the number of curves returned by STNumCurves. 

24152 The tolerance ({0}) passed to CurveToLineWithTolerance is not valid. Tolerances must be 
positive numbers. 

24200 The specified input does not represent a valid geography instance. Use MakeValid to convert 
the instance to a valid instance. Note that MakeValid may cause the points of a spatial instance 
to shift slightly. 

24201 Latitude values must be between –90 and 90 degrees. 

24202 Longitude values must be between –15069 and 15069 degrees. 

24204 The spatial reference identifier (SRID) is not valid. The specified SRID must match one of the 
supported SRIDs displayed in the sys.spatial_reference_systems catalog view. 

24205 The specified input does not represent a valid geography instance because it exceeds a single 
hemisphere. Each geography instance must fit inside a single hemisphere. A common reason 
for this error is that a polygon has the wrong ring orientation. To create a larger than 
hemisphere geography instance, upgrade the version of SQL Server and change the database 
compatibility level to at least 110. 

24206 The specified input cannot be accepted because it contains an edge with antipodal points. For 
information about using spatial methods with FullGlobe objects, see Types of Spatial Data in 
SQL Server Books Online.  

24207 The specified buffer distance exceeds the full globe. Decrease the buffer distance.  

24209 Unexpected end of input. Check that the input data is complete and has not been truncated. 
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Code Description 

24210 {0} type with an unexpected version of {1} received; only versions up to {2} are accepted. 

24211 The specified operation cannot run under the current compatibility level. A common reason 
for this issue is that the object contains circular arcs. Change the database compatibility level to 
110 or higher, or use STCurveToLine. 

24212 The CircularString input is not valid because it does not have enough points. A CircularString 
must have at least three points.  

24213 The CompoundCurve input is not valid because it does not have enough points. A 
CompoundCurve must have at least two points.  

24214 Circular arc segments with Z values must have equal Z value for all three points.  

24215 Bounding box input is not valid. The value of parameter '{0}' must be greater than the value of 
parameter '{1}'. 

24216 The arc must contain exactly three points. 

24300 Expected a call to {0}, but {1} was called. 

24301 Expected a call to {0} or {1}, but {2} was called. 

24302 No more calls expected, but {0} was called. 

24303 The OpenGis{0}Type provided, {1}, is not valid. 

24305 The Polygon input is not valid because the ring number {0} does not have enough points. Each 
ring of a polygon must contain at least four points. 

24306 The Polygon input is not valid because the start and end points of the ring number {0} are not 
the same. Each ring of a polygon must have the same start and end points. 

24307 Different SRIDs encountered. 

24308 Objects with compatibility level 110 cannot be populated using IGeometrySink. Use 
IGeometrySink110 instead. 

24309 Objects with compatibility level 110 cannot be populated using IGeographySink. Use 
IGeographySink110 instead. 
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IsValidDetailed() Response Codes 
The following table lists the possible codes and descriptions returned by the IsValidDetailed() method 
when used to test the validity of a geometry. 

Code Description 

24400 Valid 

24401 Not valid, reason unknown. 

24402 Not valid because point ({0}) is an isolated point, which is not valid in this type of object. 

24403 Not valid because some pair of polygon edges overlaps. 

24404 Not valid because polygon ring ({0}) intersects itself or some other ring. 

24405 Not valid because some polygon ring intersects itself or some other ring. 

24406 Not valid because curve ({0}) degenerates to a point. 

24407 Not valid because polygon ring ({0}) collapses to a line at point ({1}). 

24408 Not valid because polygon ring ({0}) is not closed. 

24409 Not valid because some portion of polygon ring ({0}) lies in the interior of a polygon. 

24410 Not valid because ring ({0}) is the first ring in a polygon of which it is not the exterior ring. 

24411 Not valid because ring ({0}) lies outside the exterior ring ({1}) of its polygon. 

24412 Not valid because the interior of a polygon with rings ({0}) and ({1}) is not connected. 

24413 Not valid because of two overlapping edges in curve ({0}). 

24414 Not valid because an edge of curve ({0}) overlaps an edge of curve ({1}). 

24415 Not valid because some polygon has an invalid ring structure. 

24416 Not valid because in curve ({0}) the edge that starts at point ({1}) is either a line or a degenerate 
arc with antipodal endpoints. 
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Common Spatial Reference Identifiers 
This section contains SRIDs for some common spatial reference systems. To look up details of any 
reference systems not listed here you can consult http://www.epsg-registry.org or 
http://www.spatialreference.org. 

Geographic Coordinate Systems 

SRID Description 

4326 Global - WGS84 

4230 European – ED50 

4267 North America – NAD27 

4269 North America – NAD83 

National Grids 

SRID Description 

27700 OSGB 1936 British National Grid 

29900 TM65 / Irish National Grid 

20790 Lisbon (Lisbon)/Portuguese National Grid 

2100 GGRS87 / Greek Grid 

20499 Ain el Abd / Bahrain Grid 

2391 KKJ / Finland zone 1 

2392 KKJ / Finland zone 2 

2393 KKJ / Finland Uniform Coordinate System 

2394 KKJ / Finland zone 4 

28600 Qatar / Qatar National Grid 
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UTM North Zones (Meter Units) 

SRID Description  SRID Description 

32601 WGS 84 / UTM zone 1N  32631 WGS 84 / UTM zone 31N 

32602 WGS 84 / UTM zone 2N  32632 WGS 84 / UTM zone 32N 

32603 WGS 84 / UTM zone 3N  32633 WGS 84 / UTM zone 33N 

32604 WGS 84 / UTM zone 4N  32634 WGS 84 / UTM zone 34N 

32605 WGS 84 / UTM zone 5N  32635 WGS 84 / UTM zone 35N 

32606 WGS 84 / UTM zone 6N  32636 WGS 84 / UTM zone 36N 

32607 WGS 84 / UTM zone 7N  32637 WGS 84 / UTM zone 37N 

32608 WGS 84 / UTM zone 8N  32638 WGS 84 / UTM zone 38N 

32609 WGS 84 / UTM zone 9N  32639 WGS 84 / UTM zone 39N 

32610 WGS 84 / UTM zone 10N  32640 WGS 84 / UTM zone 40N 

32611 WGS 84 / UTM zone 11N  32641 WGS 84 / UTM zone 41N 

32612 WGS 84 / UTM zone 12N  32642 WGS 84 / UTM zone 42N 

32613 WGS 84 / UTM zone 13N  32643 WGS 84 / UTM zone 43N 

32614 WGS 84 / UTM zone 14N  32644 WGS 84 / UTM zone 44N 

32615 WGS 84 / UTM zone 15N  32645 WGS 84 / UTM zone 45N 

32616 WGS 84 / UTM zone 16N  32646 WGS 84 / UTM zone 46N 

32617 WGS 84 / UTM zone 17N  32647 WGS 84 / UTM zone 47N 

32618 WGS 84 / UTM zone 18N  32648 WGS 84 / UTM zone 48N 

32619 WGS 84 / UTM zone 19N  32649 WGS 84 / UTM zone 49N 

32620 WGS 84 / UTM zone 20N  32650 WGS 84 / UTM zone 50N 

32621 WGS 84 / UTM zone 21N  32651 WGS 84 / UTM zone 51N 
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SRID Description  SRID Description 

32622 WGS 84 / UTM zone 22N  32652 WGS 84 / UTM zone 52N 

32623 WGS 84 / UTM zone 23N  32653 WGS 84 / UTM zone 53N 

32624 WGS 84 / UTM zone 24N  32654 WGS 84 / UTM zone 54N 

32625 WGS 84 / UTM zone 25N  32655 WGS 84 / UTM zone 55N 

32626 WGS 84 / UTM zone 26N  32656 WGS 84 / UTM zone 56N 

32627 WGS 84 / UTM zone 27N  32657 WGS 84 / UTM zone 57N 

32628 WGS 84 / UTM zone 28N  32658 WGS 84 / UTM zone 58N 

32629 WGS 84 / UTM zone 29N  32659 WGS 84 / UTM zone 59N 

32630 WGS 84 / UTM zone 30N  32660 WGS 84 / UTM zone 60N 

UTM South Zones (Meter Units) 

SRID Description  SRID Description 

32701 WGS 84 / UTM zone 1S  32731 WGS 84 / UTM zone 31S 

32702 WGS 84 / UTM zone 2S  32732 WGS 84 / UTM zone 32S 

32703 WGS 84 / UTM zone 3S  32733 WGS 84 / UTM zone 33S 

32704 WGS 84 / UTM zone 4S  32734 WGS 84 / UTM zone 34S 

32705 WGS 84 / UTM zone 5S  32735 WGS 84 / UTM zone 35S 

32706 WGS 84 / UTM zone 6S  32736 WGS 84 / UTM zone 36S 

32707 WGS 84 / UTM zone 7S  32737 WGS 84 / UTM zone 37S 

32708 WGS 84 / UTM zone 8S  32738 WGS 84 / UTM zone 38S 

32709 WGS 84 / UTM zone 9S  32739 WGS 84 / UTM zone 39S 

32710 WGS 84 / UTM zone 10S  32740 WGS 84 / UTM zone 40S 
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SRID Description  SRID Description 

32711 WGS 84 / UTM zone 11S  32741 WGS 84 / UTM zone 41S 

32712 WGS 84 / UTM zone 12S  32742 WGS 84 / UTM zone 42S 

32713 WGS 84 / UTM zone 13S  32743 WGS 84 / UTM zone 43S 

32714 WGS 84 / UTM zone 14S  32744 WGS 84 / UTM zone 44S 

32715 WGS 84 / UTM zone 15S  32745 WGS 84 / UTM zone 45S 

32716 WGS 84 / UTM zone 16S  32746 WGS 84 / UTM zone 46S 

32717 WGS 84 / UTM zone 17S  32747 WGS 84 / UTM zone 47S 

32718 WGS 84 / UTM zone 18S  32748 WGS 84 / UTM zone 48S 

32719 WGS 84 / UTM zone 19S  32749 WGS 84 / UTM zone 49S 

32720 WGS 84 / UTM zone 20S  32750 WGS 84 / UTM zone 50S 

32721 WGS 84 / UTM zone 21S  32751 WGS 84 / UTM zone 51S 

32722 WGS 84 / UTM zone 22S  32752 WGS 84 / UTM zone 52S 

32723 WGS 84 / UTM zone 23S  32753 WGS 84 / UTM zone 53S 

32724 WGS 84 / UTM zone 24S  32754 WGS 84 / UTM zone 54S 

32725 WGS 84 / UTM zone 25S  32755 WGS 84 / UTM zone 55S 

32726 WGS 84 / UTM zone 26S  32756 WGS 84 / UTM zone 56S 

32727 WGS 84 / UTM zone 27S  32757 WGS 84 / UTM zone 57S 

32728 WGS 84 / UTM zone 28S  32758 WGS 84 / UTM zone 58S 

32729 WGS 84 / UTM zone 29S  32759 WGS 84 / UTM zone 59S 

32730 WGS 84 / UTM zone 30S  32760 WGS 84 / UTM zone 60S 
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U.S. State Plane Projections (Meter Units) 

SRID Description  SRID Description 

26929 NAD83 / Alabama East  26991 NAD83 / Minnesota North 

26930 NAD83 / Alabama West  26992 NAD83 / Minnesota Central 

26932 NAD83 / Alaska zone 2  26993 NAD83 / Minnesota South 

26933 NAD83 / Alaska zone 3  26994 NAD83 / Mississippi East 

26934 NAD83 / Alaska zone 4  26995 NAD83 / Mississippi West 

26935 NAD83 / Alaska zone 5  26996 NAD83 / Missouri East 

26936 NAD83 / Alaska zone 6  26997 NAD83 / Missouri Central 

26937 NAD83 / Alaska zone 7  26998 NAD83 / Missouri West 

26938 NAD83 / Alaska zone 8  32100 NAD83 / Montana 

26939 NAD83 / Alaska zone 9  32104 NAD83 / Nebraska 

26940 NAD83 / Alaska zone 10  32107 NAD83 / Nevada East 

26941 NAD83 / California zone 1  32108 NAD83 / Nevada Central 

26942 NAD83 / California zone 2  32109 NAD83 / Nevada West 

26943 NAD83 / California zone 3  32110 NAD83 / New Hampshire 

26944 NAD83 / California zone 4  32111 NAD83 / New Jersey 

26945 NAD83 / California zone 5  32112 NAD83 / New Mexico East 

26946 NAD83 / California zone 6  32113 NAD83 / New Mexico Central 

26948 NAD83 / Arizona East  32114 NAD83 / New Mexico West 

26949 NAD83 / Arizona Central  32115 NAD83 / New York East 

26950 NAD83 / Arizona West  32116 NAD83 / New York Central 

26951 NAD83 / Arkansas North  32117 NAD83 / New York West 
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SRID Description  SRID Description 

26952 NAD83 / Arkansas South  32118 NAD83 / New York Long Island 

26953 NAD83 / Colorado North  32119 NAD83 / North Carolina 

26954 NAD83 / Colorado Central  32120 NAD83 / North Dakota North 

26955 NAD83 / Colorado South  32121 NAD83 / North Dakota South 

26956 NAD83 / Connecticut  32122 NAD83 / Ohio North 

26957 NAD83 / Delaware  32123 NAD83 / Ohio South 

26958 NAD83 / Florida East  32124 NAD83 / Oklahoma North 

26959 NAD83 / Florida West  32125 NAD83 / Oklahoma South 

26960 NAD83 / Florida North  32126 NAD83 / Oregon North 

26961 NAD83 / Hawaii zone 1  32127 NAD83 / Oregon South 

26962 NAD83 / Hawaii zone 2  32128 NAD83 / Pennsylvania North 

26963 NAD83 / Hawaii zone 3  32129 NAD83 / Pennsylvania South 

26964 NAD83 / Hawaii zone 4  32130 NAD83 / Rhode Island 

26965 NAD83 / Hawaii zone 5  32133 NAD83 / South Carolina 

26966 NAD83 / Georgia East  32134 NAD83 / South Dakota North 

26967 NAD83 / Georgia West  32135 NAD83 / South Dakota South 

26968 NAD83 / Idaho East  32136 NAD83 / Tennessee 

26969 NAD83 / Idaho Central  32137 NAD83 / Texas North 

26970 NAD83 / Idaho West  32138 NAD83 / Texas North Central 

26971 NAD83 / Illinois East  32139 NAD83 / Texas Central 

26972 NAD83 / Illinois West  32140 NAD83 / Texas South Central 

26973 NAD83 / Indiana East  32141 NAD83 / Texas South 
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SRID Description  SRID Description 

26974 NAD83 / Indiana West  32142 NAD83 / Utah North 

26975 NAD83 / Iowa North  32143 NAD83 / Utah Central 

26976 NAD83 / Iowa South  32144 NAD83 / Utah South 

26977 NAD83 / Kansas North  32145 NAD83 / Vermont 

26978 NAD83 / Kansas South  32146 NAD83 / Virginia North 

26979 NAD83 / Kentucky North  32147 NAD83 / Virginia South 

26980 NAD83 / Kentucky South  32148 NAD83 / Washington North 

26981 NAD83 / Louisiana North  32149 NAD83 / Washington South 

26982 NAD83 / Louisiana South  32150 NAD83 / West Virginia North 

26983 NAD83 / Maine East  32151 NAD83 / West Virginia South 

26984 NAD83 / Maine West  32152 NAD83 / Wisconsin North 

26985 NAD83 / Maryland  32153 NAD83 / Wisconsin Central 

26986 NAD83 / Massachusetts 
Mainland 

 32154 NAD83 / Wisconsin South 

26987 NAD83 / Massachusetts 
Island 

 32155 NAD83 / Wyoming East 

26988 NAD83 / Michigan North  32156 NAD83 / Wyoming East Central 

26989 NAD83 / Michigan Central  32157 NAD83 / Wyoming West 
Central 

26990 NAD83 / Michigan South  32158 NAD83 / Wyoming West 

   32161 NAD83 / Puerto Rico and 
Virgin Islands 
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Index

* algorithm 
code optimisation and enhancements, 379 
data restructure, 367–369 
heuristics, 365–367 
MAXRECURSION query, 365 
SQLCLR procedure complete code, 373–378 
SQLCLR stored procedure, 365 
testing, 378–379 
traversing across network 

AStarNode class, 370 
GetEdgeBetweenNodes procedure, 

372–373 
GetNodesAccessibleFromNode stored 

procedure, 370–371 
node classification, 371–372 
open list and closed list, 369 

A 
Aggregation and combination 

geometry appending, 276–277 
geometry subtracting 

British Meteorological Office, 279–281 
STDifference() method, 278 

intersection, geometries, 283–285 
spatial data, column aggregation 

CollectionAggregate() function, 288–289 
ConvexHullAggregate() function, 289 
EnvelopeAggregate() function, 288 
GROUP BY clause, 287 
row-wise operation, 285 
STUnion(), 286 
table creation with four geography 

LineStrings, 286 
T-SQL aggregate functions, 287 
UnionAggregate() function, 287 

spatial result sets combining 
error, 291 
@OlympicCities and @MarathonCities 

tables, 292 
Olympic Games, table creation, 290 
STEquals() method, 291 

tables joining, spatial cloumn, 293–294 
UNION ALL operation, 291 
UNION join operation, 292, 293 

two geometries, union creation 
CircularString, 275 
CompoundCurve, 275 
GeomA and B, 273 
graphical representation, 276 
LineString, 275 
MultiPoint collection, 275 
MultiPolygon instance, 273 
plus (+) operator, 273 
SELECT statement, 274 
spatial reference identifiers, 273 
table creation with two geometry 

columns, 274 
unique part determination, geometry, 

281–283 
Anglo-American Treaty, 260 

B 
Bing maps 

ENTERYOURBINGMAPSKEY, 433 
geography STIntersects() method, 444 
GetAirportsWithinSearchArea() function, 439 
pushpin markers, 443 
SQL Server table creation, 433 
store locator functionality, 433 
stored procedure creation, 434 
tile layer, 466, 467 
two-way user application interface, 433 
U.S. National Transportation Atlas 

database, 444 
web application 

adding HTML page, 436 
ASP.NET Empty Web Application, 435 
Bing Maps control, 436–438 
client-side web mapping application, 440 
GetAirportsWithinSearchArea() function, 

438–440 
JSON data (see JSON data) 
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British Meteorological Office, 279–281 
Brute-force routing 

Agricultural Hall Plain, 357 
anchor part, 357 
code listing, 358 
complete route, 358 
CTE, 357 
cycles, 362–364 
direction, 364–365 
geometry point variables, 357 
ORDER BY clause, 359 
query output, 358–359 
recursive part, 357–358 
route tracing 

code listing, 362 
Extend function, 361 
LineString, 361 
@Offset parameter, 361 
optimum route, 362 
ROW_NUMBER function, 361 
SqlGeometryBuilder, 361 

SQLCLR procedure, 357 
street network extension, 359–361 

Buffering 
BufferWithCurves() method, 268 
BufferWithTolerance() method, 268 

circular polygon, 266 
CurveToLineWithTolerance() method, 266 
distance parameter, 266 
relative parameter, 266 
STNumPoints() method, 266, 267 
tolerance parameter, 266 
WKT representation, 267 

STBuffer() method, 265, 268 
buffered geometries, 264 
distance parameter, 265 
EPSG:4326, 265 
multielement instance, 264 
single-element instance, 264 
SRID 4296, 265 

Builder classes 
C# console application, 91 
collection-type geometry, 97 
curved geometries building, 98 
.NET console application 

creation, 92 
Microsoft.SqlServer.Types.dll library, 

92, 93 
Program.cs code file, 92 
using directive, 93 

point construction 
AddLine() method, 94 
BeginFigure() method, 94 
BeginGeography() method, 94 
BeginGeometry() method, 94 

ConstructedGeometry property, 94 
OpenGisGeographyType enumeration, 94 
OpenGisGeometryType enumeration, 94 
Program.cs code, 95 
SetSrid() method, 94 
SqlGeography instances, 93 
SqlGeographyBuilder, 93, 94 
SqlGeometry instances, 93 
SqlGeometry Point instance, 94 
SqlGeometryBuilder, 93, 94 
ToString() method, 94 

polygon geometry, 96 
SqlGeographyBuilder class, 91 
SqlGeometryBuilder class, 91 
SqlServer.Types.dll assembly, 91 
three- and four-dimensional geometries, 99 

C 
Cells-per-object rule, 479, 481 
Chinese Postman Problem (CPP), 380 
Circumcenter, 389 
Common Language Runtime (CLR), 52, 210 
Common Table Expression (CTE), 357 
Conditional blocks, 88 
Control-of-flow statements, 88 
CONUS Albers projection, 196 
Convex geometry, 269–272 
Covering rule, 479, 480 
Curve to line conversion, 256–258 
CurveToLineWithTolerance(), 257–258 
Custom method, 464 
Customized distribution analysis 

bullseye grid creation, 341 
dartboard cell pattern, 342, 343 
SQLCLR procedure, 341, 342 

custom cell pattern 
AddDrivetimeZone function, 344 
drivetime polygon analysis, 343 
MI6 building, polygon zones, 344, 345 
Microsoft MapPoint, 343, 344 

dynamic SQL statement, 336, 337 
Information_Schema.Columns system, 336 
procedure, 336 
regular grid creation 

CellId value, 339 
CreateGeometryGrid procedure, 

339–341 
geom parameter, 339 
SQLCLR function, 337, 338 
usp_geometry_distribution_analysis 

procedure, 340 
resolution parameter, 335 
sp_executesql query, 336 
STIntersects() method, 336 
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TVP, 336 
usp_geometry_distribution_analysis 

function, 337 

D 
Datum transformation 

coordinate values conversion, 189 
Deutches Hauptdreiecksnetz system, 188, 189 
ellipsoid models, 189 
inverse flattening ratio, 189 
Luxembourg 1930 spatial reference 

system, 188 
SRID 4181, 188, 189 
SRID 4314, 188, 189 
sys.spatial_reference_systems table, 188 
WKT representation, 188 

Deepest-cell rule, 479, 481 
Delaunay triangulation 

artificial supertriangle, 390 
circumcenter, 389 
circumcircle, 389 
creation, 390 
incremental approach, 391 
incremental triangulation method, 390 
properties, 389 
triangular mesh, 390 

Densification 
AddLine() method, 262, 263 
American–Canadian border, 261, 262 
DensifyGeography function, 263 
EPSG: 3857, 261 
geodesic LineString path, 262 
LineString geometry, 260 
loxodrome, 262 
Microsoft Bing Maps, 260, 261 
spatial reference system, 260 
WGS84 datum, 261 

Deutches Hauptdreiecksnetz system, 188, 193 
Dimensionally Extented 9-Intersection Model 

(DE-9IM) pattern 
FF*F0**** pattern, 326 
geometry datatype, 324 
matrix, 326 
NAD 83 datum, 326 
STWithin() method, 324 
T*F**F*** pattern, 325 
values, 324 

Distance() function, 394 
Divide and Conquer, 390 
Douglas–Peucker algorithm, 254 
3D surface models 

3D Mesh, WPF 
3D coordinate space, 405 
application creation, 405–406 

LIDAR data, Wolf Point, 406 
MeshGeometry3D class, 404 
System.Windows.Media.Media3D 

namespace, 404 
texture map, 407 

geometry and geography, 401 
GeometryTriangulate3d method, 403, 404 
LIDAR data, 402–404 
triangulation code 

BeginFigure() and AddLine() methods, 402 
changes, 401 
geometry polygon, 402 
SqlGeometry HasZ property, 401–402 
SqlGeometryBuilder, 402 

z/m coordinate values, 401 
Dual structures, 412 
Dynamically generated WKT 

CAST numeric coordinates, 88 
CAST statement, 89 
control-of-flow/conditional operators, 91 
degree of manual string manipulation, 90 
GPS device, log data table, 88 
LineString, 89, 90 
nvarchar values, 88 
Point instances, 89 
POINT keyword, 89 
Point() method, 89 
SqlGeographyBuilder class, 91 
SqlGeometryBuilder class, 91 
STGeomFromText() method, 89 
T-SQL string manipulation functions, 88 
T-SQL string methods, 89 

E 
Earth 

geoid 
ellipsoidal models (see Ellipsoidal 

models) 
oblate spheroid, 3 
spheroid property, 3 
web-mapping providers, 3 

reference ellipsoid, 2 
Edge buffer, 396 
Ellipsoidal models 

inverse-flattening ratio, 4 
Airy 1830, 4 
properties of, 5 
reference ellipsoid, 5 
reference frame, 5 
World Geodetic System 1984 (WGS84), 4 

EnvelopeAngle() method, 237, 238, 259 
EnvelopeCenter() method, 228–230, 237 
Environmental Systems Research Institute, Inc. 

(ESRI), 110 
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EPSG spatial reference identifier, 199 
Equal distribution method, 464 
Equirectangular projection:, 11–12 
Errors 

ERROR_MESSAGE(), 185 
geography Parse() method, 186 
SQLCLR Exception, 183 
Microsoft.SqlServer.Types.dll library, 184 
spatial exception numbers and messages, 

186, 187 
SQLCLR Exception 

hierarchyid datatype, 183 
Msg 6522, 183 
state, 183 
SQLCLR Exception LineString, 183 

TRY/CATCH construct, 184, 185 
ESRI shapefile, 451 
Extraction, transformation, and load (ETL), 127 

F 
Feature Manipulation Engine (FME), 137 
Filter() method 

degree of accuracy, 314 
disadvantage, 312 
geometry/geography datatype, 312 
index-dependency, 312 
Polygon geometries, 313 
spatial indexes, 311 
table creation, 312, 313 

Flickr, 411 
Forward projection, 195 

G 
Geocoding 

assembly compiling, 149 
assembly importing, 151–152 
asynchronous and batch, 158–159 
bing maps 

account creation, 140 
keys creation, 141 
REST Locations API, 141–143 

database configuration 
CLR support enabling, 150 
security permissions setting, 150 

function, 153–154 
latitude and longitude coordinates, 139 
.NET (see .NET) 
TVF wrapper, 154–158 
UDF wrapper creation, 148–149 

Geodetic vector spatial data, 51 
Geographic coordinates conversion, manual 

calculation, 197, 198 

Geography polygon reorientation 
EnvelopeAngle(), 259 
inverting a geography polygon, 259 
left-hand rule, 258 
ReorientObject() method, 258 
right-hand rule, 258 

GeometryTriangulate3d procedure, 402 

H 
Hammer–Aitoff map projection:, 9 
Helmert transformation, 192–194 
Hilbert curve model, 474 
HTTPWebRequest, 385 

I 
Indexing. See Spatial index 
InstanceOf() method, 213–216 
Instantiation, 54 
Intersection types 

STContains() method, 323, 324 
STCrosses() method, 315 

London congestion charging zone, 316, 317 
syntax, 316 

STOverlaps() method, 320, 321 
STTouches() method 

Aquitaine and Limousin regions, 318, 319 
syntax, 318 
touching geometries, 318 

STWithin() method, 321, 322 

J 
JSON data 

.NET JSONSerializer class, 440–442 
uspAirportLocator stored procedure, 443 
west coast, America, 442 

K 
Keyhole Markup Language (KML) 

ABGRHexCode element, XML hierarchy, 430 
EarthViewer, 124 
EcoFootPrint table, 428 
<ExtendedData> element, 429 
first Placemark feature, 428, 429 
Google Earth, 125 
OGR2OGR, 125–126 
<Placemark> element, 429 
<Polygon> structure, 429 
<Schema> element, 429 
<SchemaData> element, 429 
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<SimpleElement> entities, 429 
XML-based language, 124 
XSLT file, 430, 431 

k-means clustering, 353 
centroid location, 346, 347 
cluster center point, 345 
cluster group, 327 
clustering, definition, 327 
geometry MultiPoint column, 347–350 
geometry UnionAggregate() method, 351, 352 
GeometrykMeans function, 350 
GeometrykMeans procedure, 352 
point allocation process, 345 
SqlGeometry instance, 346 
table structure, 350, 351 

L 
Lambert Conic Conformal projection, 195 
Left-hand rule, 258 
Linear approximations, 257–258 
LineString geometry, 254 
LineStrings 

characteristics of, 29 
definition, 31–32 
Orient Express railway, 27, 28 
self-intersection, 30 

Luxembourg 1930 spatial reference system, 188 

M 
Map Gallery, 450 
Map Viewport 

Center and Zoom tab, 457 
Fill, Border and Shadow tab, 458, 459 
General tab, 456, 457 
Optimization tab, 458 
Viewport Properties, dialog box, 455, 456 

MapInfo Interchange Format (MIF), 120 
Masachussets State Plane projected system, 196 
Massachusetts State Plane Coordinate System, 294 
Massachussets Mainland spatial reference 

system, 196 
Media3D namespace, 404 
Mercator map projection, 10–11 
Molodensky transformation, 191 
Molodensky–Badekas algorithm, 193 
MultiPoint geometry, 399 

N 
NAD83 datum, 187 
NAD83 geographic coordinate reference 

system, 195 

National Grid reference systems, 63 
Nearest neighbors approach 

execution plan, 296 
expanding search zone, 301 

numbers table creation, 300 
Range column, 301 
TOP 1 syntax, 300, 301 
two-stage approach, 299 
WITH TIES argument, 301 

fixed search zone 
advantage, 299 
Ashland Fire Department, 299 
execution plan, 299 
Filter() method, 298 
STBuffer() method, 298 
STBuffer(25000) method, 298 
uniform data distribution, 299 

ORDER BY clause, 295 
query plan comparison, 302–304 
SELECT TOP n syntax, 295 
spatial index, 298 

Clustered Index Seek (Spatial), 297 
MA_Firestations table, Locotion 

column, 296 
STDistance() IS NOT NULL, 296 

.Net 
Add Reference, 145–146 
configuration, 144, 145 
Simple Geocoding Function, 146–148 
Visual C# 2010 Express Edition, 143, 144 

New York Long Island State Plane Coordinate 
System (SRID 2263), 209 

North American Datum 1983 (SRID 4269), 209 
NumRings() method, 244 

O 
Open Geospatial Consortium properties 

closed geometry testing, 219–221 
simplicity testing 

@DeliveryRoute, 218 
geometries types, 217, 218 
requirement, 217 

STIsRing() method, 221 
Optimal method, 464 

P 
Planar vector spatial data, 51 
Point 

3-and 4-dimensional space 
m-coordinate, 26 
z-coordinate, 26 

characteristics of, 27 
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Point (continued) 
coordinate values, 25 
location of Berlin representation, 24 
WKT, 25, 26 

Point geometry, 85 
Precision 

calculation 
42 bits of precision, 174 
error amount, 174 
floating point coordinates, 174 
grid size, 174 
overlapping Polygons, 172 
robust fashion, 174 
SSMS spatial results tab, 171–172 
STArea() method, 173 
STIntersection() method, 172 

equality, 175–176 
fixed binary 

geography datatype, 165–168 
geometry datatype, 165 

transmission size 
C# SQLCLR function, 168–170 
coordinate values, 168 
geography instance, 170 
RoundGeography function, 170 
web-based mapping application, 168 

Precision storage, 164–165 
Priority queues, 379 
Projected coordinate systems, 18–19 

angular coordinates, 8 
map projection 

distortions, 9 
3D model, 8, 9 
equirectangular projection, 11–12 
Hammer–Aitoff Projection, 9 
Mercator map projection, 10–11 
projection parameters, 13 
UTM, 12–13 

units of measurement, 14–15 
Projection, unprojection, and reprojection 

CONUS Albers projection, 196 
datum conversion steps, 196 
forward projection, 195 
Lambert Conic Conformal projection, 195 
Masachussets State Plane projected 

system, 196 
Massachusetts Mainland spatial reference 

system, 195, 196 
SRID 26918, 195, 196 
UTM Zone 18N projection, 196 

Q 
Qatar National Grid, 83 

Query design 
Bing Maps layer, 454 
map view options, 453, 454 
Polygon geometries, 453 
query design window, 452, 453 
SELECT statement, 452 

R 
Reduce() method 

geometry comparison, 255 
Instance.Reduce(tolerance), 255 
LineString geometry, 256 
LineString, CircularString, and 

CompoundCurve, 255 
for point geometries, 255 
Polygon and CurvePolygon geometries, 255 

ReorientObject(), 258 
Reusable spatial conversion library creation 

EPSG spatial reference identifier, 199 
Proj.NET assembly, 200–202 
prospatial_reference_systems, 199, 200 
sys.spatial_reference_systems, 198 
transformation sinks creation 

BeginGeography() method, 203 
CoordinateTransformation instance, 205 
creation and configuration, 202, 203 
DataAccessKind.Read attribute, 205 
geography to geometry sinks, 203–205 
GeographyToGeometry function, 205–207 
IGeographySink110 interface, 203 
Proj.NET ICoordinateTransformation 

class, 203 
Project ~TRA Build Solution, 207 
sink interfaces, 203 
SqlGeometryBuilder instance, 205 
STSrid property, 205 
TransformGeographyToGeometrySink 

interface, 205 
Reverse geocoding 

point, 159 
XML response 

</Copyright>, 159 
States</FormattedAddress>, 160 
XMLSchema instance, 159 

Right-hand rule, 258 
RingN() method, 245, 246 
Route finding algorithm, 353 

A* algorithm (see A* algorithm) 
Brute-force routing (see Brute-force routing) 
graph 

cyclic and acyclic, 353 
definition, 353 
directed and undirected edges, 353 
optimum path, 354 
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transportation network and railway 
network, 354 

optimum path, 353 
printed circuitboard, 353 
public road network, 353 
street network 

LineString, 355 
Point geometry, 355 
section , Norwich, 354, 355 
street names, 355–356 
street segments, 356 
view, 356–357 

TSP (see Traveling salesman problem ) 

S 
SELECT Instance.Property syntax, 211 
ShortestLineTo() method, 305, 306 
ShortestPathTo() method, 305 
Simplifying a geometry 

display resolution, 253 
Douglas–Peucker algorithm, 254 
Reduce() method 

geometry comparison, 255 
Instance.Reduce(tolerance), 255 
LineString geometry, 256 
LineString, CircularString, and 

CompoundCurve, 255 
for point geometries, 255 
Polygon and CurvePolygon geometries, 255 

spatial data analysis, 253 
Spatial data 

earthquake 
columnar format, 103 
computed column, 108 
Depth column, 107 
epicenter, 107, 108 
eqs7dayM1, 105–107 
geography/geometry datatype, 106 
hypocenter, 107, 108 
import and export wizard, 105 
persisted computed column, 108 
USGS, 104 

ESRI 
Boston precinct data, 111 
California ZCTA table, 119 
Californian ZCTA shapefile, 118 
DBF file, 111 
geog4269, 118 
geometry_columns table, 113 
Management Studio Spatial Results 

Tab, 113 
ogr_geometry, 113 
OGR2OGR, 112, 119 
precincts shapefile, 113 

PRJ file, 111 
shapefile format, 110 
SHP file, 110 
SHX file, 111 
spatial_ref_sys table, 113 
SRID, 114, 117 
ZCTA, 117 
ZIP file, 117 

geographic information, 102 
Geoscience Australia website, 121 
MapInfo data, 120 

Australian River Basins, 123 
Geoscience Australia website, 120 
MapInfo Interchange File (MIF), 120 
Massachussetts precinct polygons, 124 
RBasin_Polygon dataset, 122 
SRID, 121 

OGR2OGR 
GDAL/OGR Library, 109 
syntax, 110 

sources, 101 
spatial reference system, 123 
SQL Server, 124, 127 

CodePlex SSIS Shapefile Source, 137 
destinationestination, 134 
eqs7day-M1.txt file, 130 
KML (see Keyhole Markup Language) 
Microsoft.SQLServer.types, 132 
NET libraries, 132 
OLE DB connection, 129 
postexecute() or preexecute() methods, 133 
ProcessInputRow() method, 132 
Script Transformation Editor dialogue 

window., 130 
SSIS package, 136 
SSIS project, 127, 135 

tabular sources, 102 
Spatial data conversion/reprojection, 209 
Spatial data creation 

builder classes (see Builder classes) 
dynamically generated WKT (see 

Dynamically generated WKT) 
Geometry Markup Language (GML) 

advantages, 85, 86 
AsGml() method, 87, 88 
code, 85 
coordinate tuple, 85 
definition, 85 
disadvantages, 86 
GeomFromGml() method, 86 
LineString, 85 
namespace, 86–87 
Point geometry, 85 
<posList> element, 85 
STAsBinary() method, 87 
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Spatial data creation (continued) 
Geometry Markup Language (GML) 

(continued) 
STAsText() method, 87 
uses, 88 

WKB (see Well-known binary format) 
WKT (see Well-known text (WKT) format) 

Spatial features 
boundary geometry, 23 
circularstrings 

characteristics, 33 
complete circles, 33–34 
definition, 31–32 
Oxford–Cambridge University boat 

race, 31 
straight line, 32–33 

compoundcurves, 34 
characteristics, 36 
Daytona racing circuit, 35 
definition, 35–36 

correct geometry, 49 
curvepolygons, 39 

characteristics of, 41 
definition, 40–41 
Yankee Stadium, 39 

disjoint geometry, 23 
empty geometry, 23 
empty geometry, 48–49 
exterior geometry, 23 
fullglobe, 47 
geometry hierarchy, 22 
geometrycollections 

characteristics, 47 
definition, 46 
Trafalgar Square, London, 46 

interior geometry, 23 
intersect geometry, 23 
linestrings (see Linestrings) 
multilinestrings 

characteristics, 45 
definintion, 44 
Nile delta, 43, 44 

multipoints, 41 
Ardrossan windfarm, 41, 42 
characteristics, 43 
definition, 42–43 
table of customers, 43 

multipolygons 
characteristics, 46 
definition, 46 
New Zealand, 45 

point (see Point) 
polygons, 36 

characteristics, 38, 39 
country of Lesotho, 37 

definition, 38 
internal rings, 37 
U.S. state of Texas., 37 

touch geometry, 23 
Spatial index, 497 

auto grid, 479 
bounding box, 494, 495 
CELLS_PER_OBJECT parameter, 495 
efficiency measures, 487, 488 
geography index 

"behind-the-scenes", 488, 489 
geography column, 489 
GEOGRAPHY_AUTO_GRID, 488 

grid resolution 
factors, 493 
GEOGRAPHY_AUTO_GRID/GEOMETRY

_AUTO_GRID settings, 494 
grid size determination, 494 
high-resolution grid index, 477 
medium-resolution grid index, 476 
multilevel grid, 477–478 

grid structure 
datatype values, 473 
geometries comparison, 475 
Hilbert curve model, 474 
low-resolution grid index, 473, 474 
polygon geometry, 473 

internal filter, 487 
multilevel grid index 

cells-per-object rule, 479, 481 
covering rule, 479, 480 
deepest-cell rule, 479, 481 

Points table, 483, 484 
primary filter, 472, 486, 487 
Query design, 489 

Clustered Index Seek (Spatial) icon, 492 
geometry column, 490 
index hint, 493 
missing column statistics, 492 
nonclustered index, 490 
query execution plan, 491, 492 
sidx_IndexTest, 490 
SQL Server's query optimizer, 491 
STGeometryType() method, 490 
STLength() method, 490 
syntax and query form, 490, 491 
toplogical relationship testing, 489 

secondary filter, 472, 487 
SELECT query, 496 
sidxPoints index, 485, 486 
sp_help_spatial_geometry_index, 485 
square Polygon, 484, 485 
STIntersects() method, 471 
STWithin() method, 472 
tesselation information, 486 
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T-SQL 
BOUNDING_BOX parameter, 482 
CELLS_PER_OBJECT, 483 
geometry and geography datatypes, 482 
GRIDS parameter sets, 483 
MEDIUM grid resolution, 483 
Points table, 482 
syntax, 482 

Spatial libraries, 56–57 
Spatial properties examination, 253 

bounding box, 236 
bounding circle calculation 

EnvelopeAngle() method, 237–239 
EnvelopeCenter() method, 237 
geographic and geometric coordinates, 

239, 240 
@NorthernHemisphere Polygon, 238 

empty geometry, 223, 224 
envelope center calculation 

EnvelopeCenter() method, 228–230 
STPointOnSurface() method, 230, 231 

geometry collections 
STGeometryN() method, 246–249 
STNumGeometries() method, 246, 247 

InstanceOf() method, 212–216 
method syntax, 211 
metrics calculation 

STArea() method, 250–252 
STLength() method, 249, 250 

OGC properties (see Open Geospatial 
Consortium properties) 

returning extended coordinate values, 
232, 233 

returning geography coordinates, 232 
returning geometry coordinates, 231, 232 
SRID, 252, 253 
STBoundary() method, 233, 235, 236 
STCentroid() method, 227, 228 
STDimension() method, 212, 214–216 
STEndPoint() method, 226 
STEnvelope() method, 236, 237 
STGeometryType(), 212, 213 
STGeometryType() method, 215, 216 
STNumPoints() method, 222, 223 
STPointN() method, 224, 225, 226 
STStartPoint() method, 226 
surface properties 

NumRings() method, 244, 245 
RingN() method, 245, 246 
STExteriorRing() method, 240, 241 
STInteriorRingN() method, 242, 243 
STNumInteriorRing() method, 241, 

242, 244 
Spatial reference identifier, 84 
Spatial Reference Identifiers (SRIDs), 16, 252, 253 

Spatial reference system 
components of, 15–16 
coordinate system, 18 
Datum, 18 
definition, 1 
Earth (see Earth) 
geographic coordinate system, 18–19 

decimal degree notation, 7 
definition, 7 
DMS (degree, minutes, seconds) 

system, 7 
latitude coordinate, 6 
longitude coordinate, 6 
units of measurement, 7 

geography datatype, 58–59 
geometry datatype, 64–65 
Prime meridian, 18 
projected coordinate systems (see Projected 

coordinate systems) 
SRIDs, 16 
well-known text (WKT) format, 16–17 

Spatial relationship testing, 293 
distance between two geometries 

geography datatype, 293 
geometry datatype, 293 
Massachusetts State Plane Coordinate 

System, 294 
nearest neighbors approach (see Nearest 

neighbors approach) 
nearest-neighbor query, 294 
Point geometry, 294, 295 
STDistance() method, 293, 294 
table creation, 294 

intersection testing 
disjointness testing, 314, 315 
Filter() method (see Filter() method) 
Point geometry, 311 
Polygon geometry, 309, 310 
STIntersects() method, 308, 309 
STWithin() method, 310 
Sydney, geometry features, 311 

intersection types (see Intersection types) 
shortest path between two geometries 

Alcatraz Island, 306, 307 
LineString, 305 
MultiLineString, 306 
ShortestLineTo() method, 305, 306 
ShortestPathTo() method, 305 
SSMS Spatial Results tab, 305, 306 
trigonometry, 307, 308 
UTM Zone 10N spatial reference 

system, 306 
STRelate() method, 324 (see also 

Dimensionally Extented 9-Intersection 
Model (DE-9IM) pattern) 
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SQL server datatypes, 51 
data conversion, 73–74 
geodetic vector spatial data, 51 
geography datatype 

accuracy, 67 
angular computations, 57 
consistency, 66 
ellipsoid model, 57 
geodetic spatial data stroing, 57 
LineString, 57 
OGC standards compliance, 70 
performance, 70 
polygon ring orientation, 60–62 
presentation, 69 
rules, 71 
spatial reference systems, 58–59 
Tokyo and Vancouver, shortest route, 68 

geometry datatype 
accuracy, 67 
CAD packages, 62 
consistency, 66 
coordinate measurement, meter unit, 63 
distortions affect calculations, 67 
floorplan, 62, 63 
MultiPolygon geometry, 69 
National grid reference systems, 63 
nongeodetic data storing, 65 
OGC standards compliance, 70 
performance, 70 
planar spatial data storing, 62 
polygon geometry representation, 69 
polygon ring orientation, 65–66 
presentation, 69 
rules, 71 
spatial reference systems, 64–65 
STArea() method, 63 
STLength() and STDistance() methods, 63 
universal transverse mercator system, 63 

internal data structure, 72–73 
object-oriented methods, 52 
planar vector spatial data, 51 
spatially enabled table creation, 74–75 
SQLCLR 

clr_enabled option, 52 
coding, 53 
definition, 52 
extended methods, 54 
instance methods, 54–55 
.NET application layer, 53 
OGC methods, 53 
properties, 55–56 
routines, 53 
SELECT query, 52 
sp_configure system, 52 
spatial libraries, 56–57 

static methods, 54 
STRelate() method, 53 
system-defined CLR datatypes, 52 
table joining, 53 
TableA.GeometryColumn = 

TableB.GeometryColumn join syntax, 53 
T-SQL errors, 53 
T-SQL functions, 53 
T-SQL query engine, 52 
UDTs, 52 

SRID, 75–76 
standard spatial functionality, 52 
storage requirements, 71 
vector model, 52 

SQL Server Reporting Services (SSRS), 445, 470, 
498, 518 

analytic dataset 
Analytic_DataSet, 459, 460 
Analytical data tab, 460 
data quality, business context, 459 
Map Layers pane, 460 
map properties, 459 
PolygonLayer, 460 
price attribute column, 461 
shape spatial column, 461 
spatial dataset, 461 

Bing Maps tile layer, 466, 467 
map elements, action assignment 

action creation, 468, 469 
individual property report, 468 
new report wizard, 467 
PolygonLayer, 469 
propid parameter, 468 

map Viewport 
Center and Zoom tab, 457 
Fill, Border and Shadow tab, 458, 459 
General tab, 456, 457 
Optimization tab, 458 
Viewport Properties, dialog box, 455, 456 

report map creation 
dataset, 446 
Dundas Map, 449 
ESRI shapefile, 451 
map component selection, 449 
map gallery, 450 
new report creation, 448 
Preview tab, 455 
query design (see Query design) 
report project creation, 446, 447 
spatial data source selection, map layer, 

450 
SQL connection, 447 
SQL Server spatial query, 451, 452 
types, 448 

SSRS map control, limitations, 469 
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styling rule 
color palette, 463 
Custom method, 464 
dataset sample distribution, 464 
Equal Distribution method, 464 
Equal Interval method, 464 
features, 462 
legend, 465 
Map Color Rules Properties, 462 
Optimal method, 464 
Range Start and Range End, 465 
settings, 463 

SQL Server spatial query, 451, 452 
SQL Server terminology, 194 
SQL Server's histogram functions, 353 
SQL Server's spatial histogram procedures 

sp_help_spatial_geography_histogram 
ellipsoidal surface projection, 332 
FullGlobe geometry, 334 
geography columns, 335 
IntersectionCount, 335 
LifeMapper_PongamiaPinnata table, 334 
Pongamia Pinnata, 332, 333 
resolution parameter, 335 
Spatial Results tab view, 334 

sp_help_spatial_geometry_histogram 
adding buffer, 329 
CellId and geometry Polygon, 330 
HistogramPoints table, 329 
IntersectionCount field, 330 
Location column, 330, 331 
point distribution analysis, 328, 329 
process, 328 
resolution parameter, 331 

SQLCLR triangulation 
adding points, triangulated mesh, 396–398 
CompletedTriangles list, 398 
data structures 

circumradius and circumcenter, 
392–394 

Distance() function, 394 
IComparable CompareTo method, 392 
SqlGeometry polygons, 392 
STDistance() method, 394 

function register and testing, 399–401 
IComparable CompareTo method, 395 
MultiPoint, 394–395 
signature, 394 
SimplePoint structure, 395 
SqlContext pipe, 394, 398–399 
SqlGeometry Polygon, 398 
SqlGeometryBuilder, 398 
supertriangle, 395–396 
TriangleFromPoints function, 398 
vertex sorting, 395 

SqlGeography and SqlGeometry, 57 
SqlGeometry methods, 393 
SqlGeometry polygon, 392, 398 
SqlGeometryBuilder, 77, 398 
SRID 4326, 79 
STArea() method, 250, 251 
STBoundary() method, 233, 235 
STCentroid() method, 227, 228, 389, 396 
STContains() method, 323, 324 
STConvexHull() method, 407 
STCrosses() method, 315 

London congestion charging zone, 316, 317 
syntax, 316 

STCurveToLine(), 256–257 
STDimension() method, 214–216 
STDisjoint() method, 314, 315 
STDistance() method, 366, 394 
STEndPoint() method, 226, 367 
STEnvelope() method, 236, 237, 239, 395 
STExteriorRing() method, 240, 241 
STGeometryN() method, 247, 248, 249 
STGeometryType() method, 211–213, 215, 216 
STInteriorRingN() method, 242, 243 
STIntersection() method, 223 
STIntersects() method, 308, 309 
STIsClosed() method, 219–221 
STIsEmpty() method, 223 
STIsRing() method, 221 
STIsSimple() method, 217–219 
STLength() method, 249, 250 
STNumGeometries() method, 246, 247 
STNumInteriorRing() method, 241, 242, 244 
STNumPoints() method, 222, 223 
STNumPoints() syntax, 211 
STOverlaps() method, 320, 321 
STPointN() method, 224–226 
STPointOnSurface() method, 230, 231 
STRelate() method, 53 
STStartPoint() method, 226, 367 
STTouches() method 

Aquitaine and Limousin regions, 318, 319 
syntax, 318 
touching geometries, 318 

STWithin() method, 310, 321, 322 
Sweepline techniques, 390 

T 
Table Valued Parameter (TVP), 336 
Tolerance parameter, 254, 255 
Transformation algorithm 

coordinate offsets, 190, 191 
Helmert transformation, 192 
Molodensky transformation, 191 

Transformation assembly and functions, 207–208 
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Traveling salesman problem (TSP) 
Bing Maps routing service 

Boston and Miami driving route, 386 
HTTPWebRequest, 385 
latitude and longitude coordinates, 383 
ready-to-run routing solution, 383 
SQLCLR class library, 383–385 
SqlGeography LineString, 386 

CPP, 380 
field of logistics, 380 
LineString, 382 
MultiPoint, 381, 382 
nearest neighbor approach, 380, 382 
original tour route, 383 
shortest tour, 382 
SQLCLR function, 380–381 
SqlGeometry method, 381 

TriangleFromPoints function, 398 
Triangulated irregular network (TIN), 388 
Triangulation, 387 

3D surface models (see 3D surface models) 
alpha shapes 

concave hulls creation, 407 
just right alpha value, 410–411 
large alpha values, 410 
Massachussetts online, 408–409 
small alpha values, 409 
Triangulation Code, 408 

Delaunay 
artificial supertriangle, 390 
circumcenter, 389 
circumcircle, 389 
creation, 390 
incremental approach, 391 
incremental triangulation method, 390 
properties, 389 
triangular mesh, 390 

set of points, 388 
SQLCLR 

adding points, triangulated mesh, 396–98 
CompletedTriangles list, 398 
data structures, 392–394 
function register and testing, 399–401 
IComparable CompareTo method, 395 
MultiPoint, 394–395 
signature, 394 
SimplePoint structure, 395 
SqlContext pipe, 394, 398–399 
SqlGeometry Polygon, 398 
SqlGeometryBuilder, 398 
supertriangle, 395–396 
TriangleFromPoints function, 398 
vertex sorting, 395 

triangles, 387–388 
T-SQL, 208–209 

U 
U.S. Census bureau, 187 
UDF wrapper:, 148–149 
United States Geological Survey (USGS), 103 
Universal transverse Mercator (UTM) 

projection, 12–13 
Universal Transverse Mercator system, 63 
User-defined CLR datatypes (UDTs), 52 
UTM Zone 18N projection, 196 

V 
Validity 

checks, 176 
geometry LineString, 176 
IsValidDetailed() method, 178–179 
MakeValid() method, 179, 180 
MakeValid() operation, 181 
point creation, 177 
polygon, 176, 180–181 
STArea() method, 177 
STGeomFromText(), 176 
STIsValid() method, 178, 179 

Visualization and user interface, 419, 444 
geobrowsers, 419 
SSMS Spatial Results tab, 425 

base layer creation, 421–423 
label column selection, 423 
MultiPolygon geometry, 424 
Point geometries, 421 
projection selection, 423 
query results, 420 
Results, Spatial Results and Messages 

tab, 420 
show grid lines, 424 
spatial column selection, 423 
SQL Server Management Studio, 419 
U.S. Department of Defense Pentagon 

building, 420 
zoom selection, 424 

text-based formats, 419 
thematic mapping, Google Earth 

3D geographic model, 425 
3D prism map creation, 431, 432 
color range creation, 427, 428 
dataset source, 426, 427 
ecological footprint, 425, 426 
KML (see Keyhole Markup Language) 
limitations, 432, 433 
spinny globe, 425 
SQL Server table and display, 431 

Web map interface creation (see 
Bing Maps) 
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Voronoi tessellations, 387 
cholera outbreaks, Victorian London 

Broad Street pump, 415, 418 
cholera map (Snow, John), 414 
int column, 416 
miasma, 414 
nearest-neighbor calculations, 418 
number of deaths plot, 417 
NumDeaths, 417, 418 
Point geometry, 416 
polygons, 416 
PumpAreas temporary table, 415 
Spatial Results tab, 417 
SRID 27700, 415 
STIntersection() method, 415 
waterpumps locations, 415–416 

triangulation code, 413 
vs. Delaunay triangulation, 412 

W, X, Y 
Well-known binary (WKB) format, 83 

advantages, 82 
AsBinaryZM() method, 84 
binary data format, 82 
binary string, 83 
disadvantage, 82 
geometry representation, 83 
header, 81 
multielement instance, 81 
Point geometry, 83 
Qatar National Grid, 83 
spatial reference identifier, 84 
SRID 2099, 83 
STAsBinary() method, 84 
STAsText() method, 84 
STGeomFromWKB() method, 82, 83 
STPointFromWKB() method, 83 
vs. SQL Server's own internal binary, 82 

Well-known text (WKT) format, 78 
advantages, 77 
disadvantages, 77, 78 
static method 

advantage, 79 
AsTextZM() method, 81 
C# code listing, 79 

 

 

 

 

CircularString geometry, 78 
CompoundCurve geometry, 78 
coordinate separators, 80 
CurvePolygon geometry, 78 
generic Parse() method, 80 
geography Point instance creation, 79 
LineString geometry, 79 
nvarchar(max) text string, 79 
SqlChar array, 80 
SqlServer.Types.dll library, 79 
SRID 4326, 79 
STAsText() method, 81 
STGeomFromText() method, 79 
STGeomFromText()/Parse() methods, 78 
STLineFromText() method, 79 
STPointFromText() method, 79 
syntax, 78 
ToString() method, 81 
ToString() methods, 81 
T-SQL code listing, 80 
WGS84 spatial reference system, 79 

text-based format, 77 
well_known_text column, 77 

WGS84 datum 
Deutsches Hauptdreiecksnetz system, 193 
DHDN datum conversion, 194 
Helmert transformation, 193 
Luxembourg conversion, 194 
TOWGS84 keyword, 193 
transformation parameters, 194 

WGS84 spatial reference system, 79 
Where On Earth (WOE) identifiers, 411 
Windows presentation foundation (WPF), 401 

3D coordinate space, 405 
application creation, 405–406 
LIDAR data, Wolf Point, 406 
MeshGeometry3D class, 404 
System.Windows.Media.Media3D 

namespace, 404 
texture map, 407 

@WolfPoint MultiPoint, 403 

Z 
Zip Code Tabulation Areas (ZCTAs), 116 
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