
Gradle 

 

  

  
  

 

  



Gradle 

 

i 

  
  

 

About the Tutorial 

Gradle is an open source, advanced general purpose build management system. It is built 

on ANT, Maven, and lvy repositories. It supports Groovy based Domain Specific Language 

(DSL) over XML. 

This tutorial explains how you can use Gradle as a build automation tool for Java as well 

as Groovy projects. 

 

Audience 

This tutorial is designed for those software professionals who would like to learn the basics 

of Gradle as a build tool in simple and easy steps.  

 

Prerequisites 

Gradle is a Groovy-based build automation tool. So, it will certainly help if you have some 

prior exposure to Groovy. In addition, you should have working knowledge of Java.  

 

Disclaimer & Copyright 

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com. 

 

 

 

 

mailto:contact@tutorialspoint.com


Gradle 

 

ii 

  
  

Table of Contents 

About the Tutorial .................................................................................................................................... i 

Audience .................................................................................................................................................. i 

Prerequisites ............................................................................................................................................ i 

Disclaimer & Copyright ............................................................................................................................. i 

Table of Contents .................................................................................................................................... ii 

1. GRADLE –OVERVIEW ........................................................................................................... 1 

Features of Gradle ................................................................................................................................... 1 

Why Groovy? .......................................................................................................................................... 2 

2. GRADLE – INSTALLATION ..................................................................................................... 3 

Prerequisites ........................................................................................................................................... 3 

Step 1: Verify JAVA Installation ............................................................................................................... 3 

Step 2: Download Gradle Build File ......................................................................................................... 4 

Step 3: Set Up Environment for Gradle .................................................................................................... 4 

Step 4: Verify the Gradle Installation ...................................................................................................... 5 

3. GRADLE – BUILD SCRIPT ...................................................................................................... 7 

Writing Build Script ................................................................................................................................. 7 

How Gradle Uses Groovy ......................................................................................................................... 8 

Default Imports for Gradle Scripts ......................................................................................................... 11 

4. GRADLE – TASKS ................................................................................................................ 16 

Defining Tasks ....................................................................................................................................... 16 

Locating Tasks ....................................................................................................................................... 18 

Adding Dependencies to Tasks .............................................................................................................. 19 

Adding a Description to a Task .............................................................................................................. 21 

Skipping Tasks ....................................................................................................................................... 22 



Gradle 

 

iii 

  
  

Task Structure ....................................................................................................................................... 22 

5. GRADLE – DEPENDENCY MANAGEMENT ........................................................................... 23 

Declaring Your Dependencies ................................................................................................................ 23 

Dependency Configurations .................................................................................................................. 23 

External Dependencies .......................................................................................................................... 24 

Repositories .......................................................................................................................................... 24 

Publishing Artifacts ............................................................................................................................... 25 

6. GRADLE – PLUGINS ............................................................................................................ 26 

Types of Plugins .................................................................................................................................... 26 

Applying Plugins .................................................................................................................................... 26 

Writing Custom Plugins ......................................................................................................................... 27 

Getting Input from the Build ................................................................................................................. 28 

Standard Gradle Plugins ........................................................................................................................ 29 

7. GRADLE – RUNNING A BUILD ............................................................................................ 31 

Executing Multiple Tasks ....................................................................................................................... 31 

Excluding Tasks ..................................................................................................................................... 32 

Continuing the Build When a Failure Occurs ......................................................................................... 32 

Selecting Which Build to Execute .......................................................................................................... 33 

Obtaining Build Information .................................................................................................................. 33 

8. GRADLE – BUILD A JAVA PROJECT ..................................................................................... 38 

Java Default Project Layout ................................................................................................................... 38 

init Task Execution ................................................................................................................................ 39 

Specifying Java Version ......................................................................................................................... 39 

9. GRADLE – BUILD A GROOVY PROJECT ................................................................................ 42 

The Groovy Plug-in ................................................................................................................................ 42 

Default Project Layout of Groovy Projects ............................................................................................. 42 



Gradle 

 

iv 

  
  

10. GRADLE – TESTING ............................................................................................................ 43 

Test Detection ....................................................................................................................................... 43 

Test Grouping ........................................................................................................................................ 43 

Include and Exclude Particular Tests ..................................................................................................... 44 

11. GRADLE – MULTI-PROJECT BUILD ...................................................................................... 46 

Structure for Multi-project Build ........................................................................................................... 46 

Specifying a General Build Configuration .............................................................................................. 47 

Project Specific Configurations and Dependencies ................................................................................ 47 

12. GRADLE – DEPLOYMENT .................................................................................................... 48 

Using the Maven-publish Plugin ............................................................................................................ 48 

Converting a Project from Maven to Gradle .......................................................................................... 49 

13. GRADLE – ECLIPSE INTEGRATION ...................................................................................... 51 

Step 1: Open Eclipse Marketplace ......................................................................................................... 51 

Step 2: Install Buildship Plugin .............................................................................................................. 51 

Step 3: Verifying Gradle Plugin .............................................................................................................. 54 

Step 4: Verifying Directory Structure ..................................................................................................... 58 
 



Gradle 

 

1 

  
  

ANT and Maven shared considerable success in the Java marketplace. ANT was the first 

build tool released in 2000 and it is developed based on procedural programming idea. 

Later, it was improved with an ability to accept plug-ins and dependency management 

over the network with the help on Apache-Ivy. The main drawback was XML as a format 

to write build scripts. XML being hierarchical is not good for procedural programming and 

tends to become unmanageably big. 

Maven was introduced in 2004. It comes with a lot of improvement than ANT. It changes 

its structure and it continues using XML for writing build specifications. Maven relies on 

the conventions and is able to download the dependencies over the network. The main 

benefit of Maven is its life cycle. While following the same life cycle for multiple projects 

continuously, this comes a cost of flexibility. Maven also faces some problems in 

dependency management. It does not handle well conflicts between versions of the same 

library, and complex customized build scripts are actually harder to write in Maven than 

in ANT. 

Finally, Gradle came into the picture in 2012. Gradle carries some efficient features from 

both the tools. 

Features of Gradle 

Following is the list of features that Gradle provides. 

 Declarative builds and build-by-convention: Gradle is available with separate 

Domain Specific Language (DSL) based on Groovy language. Gradle provides 

declarative language elements. The elements also provide build-by-convention 

support for Java, Groovy, OSGi, Web and Scala. 

 

 Language for dependency based programming: The declarative language lies on 

top of a general purpose task graph, which you can fully leverage in your build. 

 

 Structure your build: Gradle allows you to apply common design principles to your 

build. It gives you a perfect structure for build, so that you can design well-

structured and easily maintained, comprehensible build.  

 

 Deep API: Using this API, you can monitor and customize its configuration and 

execution behavior to its core. 

 

 Gradle scales: Gradle can easily increase productivity, from simple and single 

project builds to huge enterprise multi-project builds. 

 

 Multi-project builds: Gradle supports multi-project builds and also partial builds. If 

you build a subproject, Gradle takes care of building all the subprojects that it 

depends on.   

 

 Different ways to manage your builds: Gradle supports different strategies to 

manage your dependencies. 

1. Gradle –Overview 



Gradle 

 

2 

  
  

 

 First build integration tool: Gradle completely supports ANT tasks, Maven and lvy 

repository infrastructure for publishing and retrieving dependencies. It also provides 

a converter for turning a Maven pom.xml to Gradle script. 

 

 Ease of migration: Gradle can easily adapt to any structure you have. Therefore, 

you can always develop your Gradle build in the same branch where you can build 

live script. 

 

 Gradle Wrapper: Gradle Wrapper allows you to execute Gradle builds on machines 

where Gradle is not installed. This is useful for continuous integration of servers.  

 

 Free open source: Gradle is an open source project, and licensed under the Apache 

Software License (ASL). 

 

 Groovy: Gradle's build script is written in Groovy. The whole design of Gradle is 

oriented towards being used as a language, not as a rigid framework. Groovy allows 

you to write your own script with some abstractions. The entire Gradle API is 

designed in Groovy language.  

Why Groovy? 

The complete Gradle API is designed using Groovy language. This is an advantage of an 

internal DSL over XML. Gradle is general purpose build tool at its core; its main focus is 

Java projects. In such projects, the team members will be very familiar with Java and it is 

better that a build should be as transparent as possible to all team members.  

Languages like Python, Groovy or Ruby are better for build framework. Why Groovy was 

chosen is, because it offers by far the greatest transparency for people using Java. The 

base syntax of Groovy is same as Java. Groovy provides much more on top of that. 

 

 

 

 

 

 

 

 

 

 

  



Gradle 

 

3 

  
  

Gradle is a build tool, based on Java. There are some prerequisites that needs to be 

installed before installing the Gradle framework. 

Prerequisites 

JDK and Groovy are the prerequisites for Gradle installation.  

 Gradle requires JDK version 6 or later to be installed in your system. It uses the 

JDK libraries which is installed and sets to the JAVA_HOME environmental 

variable. 

 

 Gradle carries its own Groovy library, therefore, we do no need to install Groovy 

explicitly. If it is installed, that is ignored by Gradle. 

Following are the steps to install Gradle in your system. 

Step 1: Verify JAVA Installation 

First of all, you need to have Java Software Development Kit (SDK) installed on your 

system. To verify this, execute Java –version command in any of the platform you are 

working on. 

In Windows 

Execute the following command to verify Java installation. I have installed JDK 1.8 in my 

system. 

C:\> java - version 

If the command is executed successfully, you will get the following output. 

 

java version "1.8.0_66" 

Java(TM) SE Runtime Environment (build 1.8.0_66-b18) 

Java HotSpot(TM) 64-Bit Server VM (build 25.66-b18, mixed mode) 

In Linux 

Execute the following command to verify Java installation. I have installed JDK 1.8 in my 

system. 

$ java - version 

 

 

2. Gradle – Installation 



Gradle 

 

4 

  
  

If the command is executed successfully, you will get the following output. 

java version "1.8.0_66" 

Java(TM) SE Runtime Environment (build 1.8.0_66-b18) 

Java HotSpot(TM) 64-Bit Server VM (build 25.66-b18, mixed mode) 

We assume the readers of this tutorial have Java SDK version 1.8.0_66 installed on their 

system. 

Step 2: Download Gradle Build File 

Download the latest version of Gradle from the Download Gradle link. In the reference 

page, click on the Complete Distribution link. This step is common for any platform. For 

this you will get the complete distribution file into your Downloads folder. 

Step 3: Set Up Environment for Gradle 

Setting up the environment means we have to extract the distribution file and copy the 

library files into proper location. Setting up GRADLE_HOME and PATH environmental 

variables. 

This step is platform dependent. 

In Windows 

Extract the downloaded zip file named gradle-2.11-all.zip and copy the distribution files 

from Downloads\gradle-2.11\ to C:\gradle\ location. 

Later, add the C:\gradle and C:\gradle\bin directories to the GRADLE_HOME and 

PATH system variables. Right-click on My Computer -> Click properties -> Advanced 

system settings -> Environment variables. There you will find a dialog box for creating 

and editing system variables. Click ‘New’ button for creating GRADLE_HOME variable 

(follow the left side screenshot). Click ‘Edit’ for editing the existing Path system variable 

(follow the right side screenshot). The process is shown in the following screenshots. 

http://gradle.org/gradle-download/


Gradle 

 

5 

  
  

 

In Linux 

Extract the downloaded zip file named gradle-2.11-all.zip then you will find an extracted 

file named gradle-2.11. 

You can use the following to move the distribution files from Downloads/gradle-2.11/ 

to /opt/gradle/ location. Execute this operation from the Downloads directory. 

$ sudo mv gradle-2.11 /opt/gradle 

Edit the ~/.bashrc file and paste the following content to it and save it. 

export ORIENT_HOME = /opt/gradle 

export PATH = $PATH: 

Execute the following command to execute ~/.bashrc file. 

$ source ~/.bashrc 

Step 4: Verify the Gradle Installation 

In Windows 

You can execute the following command in command prompt.  

C:\> gradle –v 

Output: You will find the Gradle version.  

------------------------------------------------------------ 

Gradle 2.11 



Gradle 

 

6 

  
  

------------------------------------------------------------ 

Build time:   2016-02-08 07:59:16 UTC 

Build number: none 

Revision:     584db1c7c90bdd1de1d1c4c51271c665bfcba978 

 

Groovy:       2.4.4 

Ant:          Apache Ant(TM) version 1.9.3 compiled on December 23 2013 

JVM:          1.7.0_60 (Oracle Corporation 24.60-b09) 

OS:           Windows 8.1 6.3 amd64  

In Linux 

You can execute the following command in terminal.  

$ gradle –v 

Output: You will find the Gradle version.  

------------------------------------------------------------ 

Gradle 2.11 

------------------------------------------------------------ 

 

Build time:   2016-02-08 07:59:16 UTC 

Build number: none 

Revision:     584db1c7c90bdd1de1d1c4c51271c665bfcba978 

 

Groovy:       2.4.4 

Ant:          Apache Ant(TM) version 1.9.3 compiled on December 23 2013 

JVM:          1.7.0_60 (Oracle Corporation 24.60-b09) 

OS:           Linux 3.13.0-74-generic amd64  

 

 

 

 

 

 

 

 

 



Gradle 

 

7 

  
  

Gradle builds a script file for handling two things; one is projects and another one is 

tasks. Every Gradle build represents one or more projects.  A project represents a library 

JAR or a web application or it might represent a ZIP that assembled from the JARs 

produced by other projects. In simple words, a project is made up of different tasks. A 

task means a piece of work which a build performs. A task might be compiling some 

classes, creating a JAR, generating Javadoc, or publishing some archives to a repository. 

Gradle uses Groovy language for writing scripts.  

Writing Build Script 

Gradle provides a Domain Specific Language (DSL), for describing builds. This uses the 

Groovy language to make it easier to describe a build. Each build script of Gradle is 

encoded using UTF-8, saved offline and named as build.gradle. 

build.gradle 

We are describing about tasks and projects by using a Groovy script. You can run a Gradle 

build using the Gradle command. This command looks for a file called build.gradle. Take 

a look at the following example which represents a small script that prints tutorialspoint. 

Copy and save the following script into a file named build.gradle. This build script defines 

a task name hello, which is used to print tutorialspoint string. 

task hello { 

    doLast { 

        println 'tutorialspoint' 

    } 

}  

Execute the following command in the command prompt. It executes the above script. You 

should execute this, where the build.gradle file is stored. 

C:\> gradle –q hello 

If the command is executed successfully, you will get the following output. 

tutorialspoint 

If you think task works similar to ANT’s target, then that’s right - Gradle task is equivalent 

to ANT target. 

You can simplify this hello task by specifying a shortcut (represents a symbol <<) to the 

doLast statement. If you add this shortcut to the above task hello it will look like the 

following script. 

 

3. Gradle – Build Script 



Gradle 

 

8 

  
  

task hello << { 

  println 'tutorialspoint' 

} 

You can execute the above script using gradle –q hello command. 

The Gradle script mainly uses two real Objects; one is Project Object and another one is 

Script Object. 

Project Object: Each script describes about one or multiple projects. While in the 

execution, this script configures the Project Object. You can call some methods and use 

property in your build script which are delegated to the Project Object. 

Script Object: Gradle takes script code into classes, which implements Script Interface 

and then executes. This means that of all the properties and methods declared by the 

script interface are available in your script. 

The following table defines the list of standard project properties. All these properties 

are available in your build script. 

Sr. 

No. 
Name Type Default Value 

1 project Project The Project instance 

2 name String The name of the project directory. 

3 path String The absolute path of the project. 

4 description String A description for the project. 

5 projectDir File The directory containing the build script. 

6 buildDir File projectDir/build 

7 group Object Unspecified 

8 version Object Unspecified 

9 ant AntBuilder An AntBuilder instance 

How Gradle Uses Groovy 

Gradle build scripts use the full length Groovy API. As a startup, take a look at the following 

examples. The following example explains about converting a string to upper case. 

Copy and save the following code into build.gradle file. 

task upper << { 

    String expString = 'TUTORIALS point' 

    println "Original: " + expString  

    println "Upper case: " + expString.toUpperCase()} 



Gradle 

 

9 

  
  

Execute the following command in the command prompt. It executes the above given 

script. You should execute this, where the build.gradle file is stored. 

C:\> gradle –q upper 

 

If the command is executed successfully, you will get the following output. 

Original: TUTORIALS point 

Upper case: TUTORIALS POINT 

The following example explains about printing the value of an implicit parameter ($it) for 

4 times. 

Copy and save the following code into build.gradle file. 

task count << { 

    4.times { print "$it " } 

} 

Execute the following command in the command prompt. It executes the above given 

script. You should execute this, where the build.gradle file is stored. 

$ gradle –q count 

If the command is executed successfully, you will get the following output. 

0 1 2 3 

Groovy language provides plenty of features. Following are some important features. 

Groovy JDK Methods 

Groovy adds lots of useful methods to the standard Java classes. For example, Iterable 

API from JDK implements an each() method which iterates over the elements of the 

Iterable Interface. 

Copy and save the following code into build.gradle file. 

task groovyJDK << { 

String myName = "Marc"; 

myName.each() { println "${it}" }; 

} 

Execute the following command in the command prompt. It executes the above given 

script. You should execute this, where the build.gradle file is stored. 

C:\> gradle –q groovyJDK 

If the command is executed successfully, you will get the following output. 



Gradle 

 

10 

  
  

M 

a 

r 

c 

Property Accessors 

You can automatically accesses appropriate getter and setter methods of a particular 

property by specifying its reference. 

The following snippet defines the syntaxes of getter and setter methods of a property 

buildDir. 

// Using a getter method 

println project.buildDir 

println getProject().getBuildDir() 

 

// Using a setter method 

project.buildDir = 'target' 

getProject().setBuildDir('target') 

Optional Parentheses on Method Calls 

Groovy contains a special feature in methods calling that is the parentheses are optional 

for method calling. This feature applies to Gradle scripting as well. 

Take a look at the following syntax. That defines a method calling systemProperty of 

test object. 

test.systemProperty 'some.prop', 'value' 

test.systemProperty('some.prop', 'value') 

Closure as the Last Parameter of the Method 

Gradle DSL uses closures in many places. Where the last parameter of a method is a 

closure, you can place the closure after the method call. 

The following snippet defines the syntaxes Closures use as repositories() method 

parameters.  

repositories { 

    println "in a closure" 

} 

repositories() { println "in a closure" } 

repositories({ println "in a closure" }) 



Gradle 

 

11 

  
  

Default Imports for Gradle Scripts 

Gradle automatically adds a set of import statements to the Gradle scripts. The following 

list shows you the default import packages to the Gradle script. 

import org.gradle.* 

import org.gradle.api.* 

import org.gradle.api.artifacts.* 

import org.gradle.api.artifacts.cache.* 

import org.gradle.api.artifacts.component.* 

import org.gradle.api.artifacts.dsl.* 

import org.gradle.api.artifacts.ivy.* 

import org.gradle.api.artifacts.maven.* 

import org.gradle.api.artifacts.query.* 

import org.gradle.api.artifacts.repositories.* 

import org.gradle.api.artifacts.result.* 

import org.gradle.api.component.* 

import org.gradle.api.credentials.* 

import org.gradle.api.distribution.* 

import org.gradle.api.distribution.plugins.* 

import org.gradle.api.dsl.* 

import org.gradle.api.execution.* 

import org.gradle.api.file.* 

import org.gradle.api.initialization.* 

import org.gradle.api.initialization.dsl.* 

import org.gradle.api.invocation.* 

import org.gradle.api.java.archives.* 

import org.gradle.api.logging.* 

import org.gradle.api.plugins.* 

import org.gradle.api.plugins.announce.* 

import org.gradle.api.plugins.antlr.* 

import org.gradle.api.plugins.buildcomparison.gradle.* 

import org.gradle.api.plugins.jetty.* 

import org.gradle.api.plugins.osgi.* 

import org.gradle.api.plugins.quality.* 

import org.gradle.api.plugins.scala.* 

import org.gradle.api.plugins.sonar.* 

import org.gradle.api.plugins.sonar.model.* 

import org.gradle.api.publish.* 



Gradle 

 

12 

  
  

 

import org.gradle.api.publish.ivy.* 

import org.gradle.api.publish.ivy.plugins.* 

import org.gradle.api.publish.ivy.tasks.* 

import org.gradle.api.publish.maven.* 

import org.gradle.api.publish.maven.plugins.* 

import org.gradle.api.publish.maven.tasks.* 

import org.gradle.api.publish.plugins.* 

import org.gradle.api.reporting.* 

import org.gradle.api.reporting.components.* 

import org.gradle.api.reporting.dependencies.* 

import org.gradle.api.reporting.model.* 

import org.gradle.api.reporting.plugins.* 

import org.gradle.api.resources.* 

import org.gradle.api.specs.* 

import org.gradle.api.tasks.* 

import org.gradle.api.tasks.ant.* 

import org.gradle.api.tasks.application.* 

import org.gradle.api.tasks.bundling.* 

import org.gradle.api.tasks.compile.* 

import org.gradle.api.tasks.diagnostics.* 

import org.gradle.api.tasks.incremental.* 

import org.gradle.api.tasks.javadoc.* 

import org.gradle.api.tasks.scala.* 

import org.gradle.api.tasks.testing.* 

import org.gradle.api.tasks.testing.junit.* 

import org.gradle.api.tasks.testing.testng.* 

import org.gradle.api.tasks.util.* 

import org.gradle.api.tasks.wrapper.* 

import org.gradle.authentication.* 

import org.gradle.authentication.http.* 

import org.gradle.buildinit.plugins.* 

import org.gradle.buildinit.tasks.* 

import org.gradle.external.javadoc.* 

import org.gradle.ide.cdt.* 

import org.gradle.ide.cdt.tasks.* 

import org.gradle.ide.visualstudio.* 

import org.gradle.ide.visualstudio.plugins.* 



Gradle 

 

13 

  
  

import org.gradle.ide.visualstudio.tasks.* 

import org.gradle.ivy.* 

import org.gradle.jvm.* 

import org.gradle.jvm.application.scripts.* 

import org.gradle.jvm.application.tasks.* 

import org.gradle.jvm.platform.* 

import org.gradle.jvm.plugins.* 

import org.gradle.jvm.tasks.* 

import org.gradle.jvm.tasks.api.* 

import org.gradle.jvm.test.* 

import org.gradle.jvm.toolchain.* 

import org.gradle.language.assembler.* 

import org.gradle.language.assembler.plugins.* 

import org.gradle.language.assembler.tasks.* 

import org.gradle.language.base.* 

import org.gradle.language.base.artifact.* 

import org.gradle.language.base.plugins.* 

import org.gradle.language.base.sources.* 

import org.gradle.language.c.* 

import org.gradle.language.c.plugins.* 

import org.gradle.language.c.tasks.* 

import org.gradle.language.coffeescript.* 

import org.gradle.language.cpp.* 

import org.gradle.language.cpp.plugins.* 

import org.gradle.language.cpp.tasks.* 

import org.gradle.language.java.* 

import org.gradle.language.java.artifact.* 

import org.gradle.language.java.plugins.* 

import org.gradle.language.java.tasks.* 

import org.gradle.language.javascript.* 

import org.gradle.language.jvm.* 

import org.gradle.language.jvm.plugins.* 

import org.gradle.language.jvm.tasks.* 

import org.gradle.language.nativeplatform.* 

import org.gradle.language.nativeplatform.tasks.* 

import org.gradle.language.objectivec.* 

import org.gradle.language.objectivec.plugins.* 

import org.gradle.language.objectivec.tasks.* 



Gradle 

 

14 

  
  

import org.gradle.language.objectivecpp.* 

import org.gradle.language.objectivecpp.plugins.* 

import org.gradle.language.objectivecpp.tasks.* 

import org.gradle.language.rc.* 

import org.gradle.language.rc.plugins.* 

import org.gradle.language.rc.tasks.* 

import org.gradle.language.routes.* 

import org.gradle.language.scala.* 

import org.gradle.language.scala.plugins.* 

import org.gradle.language.scala.tasks.* 

import org.gradle.language.scala.toolchain.* 

import org.gradle.language.twirl.* 

import org.gradle.maven.* 

import org.gradle.model.* 

import org.gradle.nativeplatform.* 

import org.gradle.nativeplatform.platform.* 

import org.gradle.nativeplatform.plugins.* 

import org.gradle.nativeplatform.tasks.* 

import org.gradle.nativeplatform.test.* 

import org.gradle.nativeplatform.test.cunit.* 

import org.gradle.nativeplatform.test.cunit.plugins.* 

import org.gradle.nativeplatform.test.cunit.tasks.* 

import org.gradle.nativeplatform.test.googletest.* 

import org.gradle.nativeplatform.test.googletest.plugins.* 

import org.gradle.nativeplatform.test.plugins.* 

import org.gradle.nativeplatform.test.tasks.* 

import org.gradle.nativeplatform.toolchain.* 

import org.gradle.nativeplatform.toolchain.plugins.* 

import org.gradle.platform.base.* 

import org.gradle.platform.base.binary.* 

import org.gradle.platform.base.component.* 

import org.gradle.platform.base.plugins.* 

import org.gradle.platform.base.test.* 

import org.gradle.play.* 

import org.gradle.play.distribution.* 

import org.gradle.play.platform.* 

import org.gradle.play.plugins.* 

import org.gradle.play.tasks.* 



Gradle 

 

15 

  
  

import org.gradle.play.toolchain.* 

import org.gradle.plugin.use.* 

import org.gradle.plugins.ear.* 

import org.gradle.plugins.ear.descriptor.* 

import org.gradle.plugins.ide.api.* 

import org.gradle.plugins.ide.eclipse.* 

import org.gradle.plugins.ide.idea.* 

import org.gradle.plugins.javascript.base.* 

import org.gradle.plugins.javascript.coffeescript.* 

import org.gradle.plugins.javascript.envjs.* 

import org.gradle.plugins.javascript.envjs.browser.* 

import org.gradle.plugins.javascript.envjs.http.* 

import org.gradle.plugins.javascript.envjs.http.simple.* 

import org.gradle.plugins.javascript.jshint.* 

import org.gradle.plugins.javascript.rhino.* 

import org.gradle.plugins.javascript.rhino.worker.* 

import org.gradle.plugins.signing.* 

import org.gradle.plugins.signing.signatory.* 

import org.gradle.plugins.signing.signatory.pgp.* 

import org.gradle.plugins.signing.type.* 

import org.gradle.plugins.signing.type.pgp.* 

import org.gradle.process.* 

import org.gradle.sonar.runner.* 

import org.gradle.sonar.runner.plugins.* 

import org.gradle.sonar.runner.tasks.* 

import org.gradle.testing.jacoco.plugins.* 

import org.gradle.testing.jacoco.tasks.* 

import org.gradle.testkit.runner.* 

import org.gradle.util.* 

 

 

 

 

 



Gradle 

 

16 

  
  

Gradle build script describes one or more Projects. Each project is made up of different 

tasks. A task is a piece of work which a build performs. The task might be compiling some 

classes, storing class files into separate target folder, creating JAR, generating Javadoc, 

or publishing some archives to repositories. 

This chapter explains what is task and how to generate and execute a task.  

Defining Tasks 

Task is a keyword which is used to define a task into build script. Take a look at the 

following example which represents a task named hello that prints tutorialspoint. Copy 

and save the following script into a file named build.gradle. This build script defines a 

task named ‘hello’, which is used to print tutorialspoint string. 

task hello { 

    doLast { 

        println 'tutorialspoint' 

    } 

}  

Execute the following command in the command prompt. It executes the above script. You 

should execute this where the build.gradle file is stored. 

C:\> gradle –q hello 

If the command is executed successfully, you will get the following output. 

tutorialspoint 

You can simplify this hello task by specifying a shortcut (represents a symbol <<) to the 

doLast statement. If you add this shortcut to the above task hello it will look like the 

following script. 

task hello << { 

  println 'tutorialspoint' 

} 

You can execute the above script using gradle –q hello command. 

 

 

 

4. Gradle – Tasks 



Gradle 

 

17 

  
  

Here are some variations in defining a task, take a look at it. The following example defines 

a task hello.  

Copy and save the following code into build.gradle file. 

task(hello) << { 

    println "tutorialspoint" 

} 

Execute the following command in the command prompt. You should execute this, where 

the build.gradle file is stored. 

C:\> gradle –q hello 

If the command is executed successfully, you will get the following output. 

tutorialspoint 

You can also use strings for the task names. Take a look at the same hello example. Here 

we will use String as task. 

Copy and save the following code into build.gradle file. 

task('hello') << { 

    println "tutorialspoint" 

} 

Execute the following command in the command prompt. You should execute this where 

the build.gradle file is stored. 

C:\> gradle –q hello 

If the command is executed successfully, you will get the following output. 

tutorialspoint 

You can also use alternative syntax for defining a task. That is using create() method to 

defining a task. Take a look at the same hello example. 

Copy and save the following code into build.gradle file. 

Task.create(name: 'hello') << { 

    println "tutorialspoint" 

} 

Execute the following command in the command prompt. You should execute this where 

the build.gradle file is stored. 

 C:\> gradle –q hello 

 



Gradle 

 

18 

  
  

If the command is executed successfully, you will get the following output. 

tutorialspoint 

Locating Tasks 

If you want to locate tasks that you defined in the build file, then you have to use 

respective standard project properties. That means each task is available as a property of 

the project, using the task name as the property name. 

Take a look at the following code that accesses tasks as properties. 

Copy and save the following code into build.gradle file. 

task hello 

 

println hello.name 

println project.hello.name 

Execute the following command in the command prompt. You should execute this where 

the build.gradle file is stored. 

C:\> gradle –q hello 

If the command is executed successfully, you will get the following output. 

hello 

hello  

You can also use all the properties through the tasks collection. 

Copy and save the following code into build.gradle file. 

task hello 

 

println tasks.hello.name 

println tasks['hello'].name 

Execute the following command in the command prompt. You should execute this where 

the build.gradle file is stored. 

C:\> gradle –q hello 

If the command is executed successfully, you will get the following output. 

hello 

hello  

You can access tasks from any project using the task's path. For this you can call the 

getByPath()  method with a task name, or a relative path, or an absolute path. 



Gradle 

 

19 

  
  

Copy and save the following code into build.gradle file. 

project(':projectA') { 

    task hello 

} 

 

task hello 

 

println tasks.getByPath('hello').path 

println tasks.getByPath(':hello').path 

println tasks.getByPath('projectA:hello').path 

println tasks.getByPath(':projectA:hello').path 

Execute the following command in the command prompt. You should execute this where 

the build.gradle file is stored. 

C:\> gradle –q hello 

If the command is executed successfully, you will get the following output. 

:hello 

:hello 

:projectA:hello 

:projectA:hello  

Adding Dependencies to Tasks 

You can make a task dependent on another task, which means when one task is done only 

then the other task will start. Each task is differentiated with a task name. Collection of 

task names is referred by its tasks collection. To refer to a task in another project, you 

should use path of the project as a prefix to the respective task name. 

The following example adds a dependency from taskX to taskY.  

Copy and save the following code into build.gradle file.  

task taskX << { 

    println 'taskX' 

} 

 

task taskY(dependsOn: 'taskX') << { 

    println "taskY" 

} 

Execute the following command in the command prompt. You should execute this where 

the build.gradle file is stored. 



Gradle 

 

20 

  
  

C:\> gradle –q taskY 

If the command is executed successfully, you will get the following output. 

taskX 

taskY 

The above example is adding dependency on task by using its names. There is another 

way to achieve task dependency that is define the dependency using a Task object. 

Let us take the same example of taskY being dependent on taskX but we are using task 

objects instead of task reference names.  

Copy and save the following code into build.gradle file.  

task taskY << { 

    println 'taskY' 

} 

 

task taskX << { 

  println 'taskX' 

} 

 

taskY.dependsOn taskX 

Execute the following command in the command prompt. You should execute this where 

the build.gradle file is stored. 

C:\> gradle –q taskY 

If the command is executed successfully, you will get the following output. 

taskX 

taskY 

There is another way to add dependency to the task, that is, by using closures. In this 

case, the task is released through the closure. If you use closure in the build script that 

should return a single task or collection of task objects. The following example adds a 

dependency from taskX to all the tasks in the project, whose name starts with 'lib'. 

Copy and save the following code into build.gradle file.  

task taskX << { 

    println 'taskX' 

} 

 

taskX.dependsOn { 



Gradle 

 

21 

  
  

    tasks.findAll { task -> task.name.startsWith('lib') } 

} 

 

task lib1 << { 

    println 'lib1' 

} 

 

task lib2 << { 

    println 'lib2' 

} 

 

task notALib << { 

    println 'notALib' 

} 

Execute the following command in the command prompt. You should execute this where 

the build.gradle file is stored. 

C:\> gradle –q taskX 

If the command is executed successfully, you will get the following output. 

lib1 

lib2 

taskX 

Adding a Description to a Task 

You can add a description to your task. This description is displayed when executing 

Gradle tasks. This is possible by using the description keyword. 

Copy and save the following code into build.gradle file.  

task copy(type: Copy) { 

   description 'Copies the resource directory to the target directory.' 

   from 'resources' 

   into 'target' 

   include('**/*.txt', '**/*.xml', '**/*.properties') 

   println("description applied") 

} 

Execute the following command in the command prompt. You should execute this where 

the build.gradle file is stored. 



Gradle 

 

22 

  
  

C:\> gradle –q copy 

If the command is executed successfully, you will get the following output. 

description applied 

Skipping Tasks 

Skipping tasks can be done by passing a predicate closure. This is possible only if method 

of a task or a closure throwing a StopExecutionException before the actual work of a 

task is executed. 

Copy and save the following code into build.gradle file.  

task eclipse << { 

  println 'Hello Eclipse' 

} 

 

// #1st approach - closure returning true, if the task should be executed, 
false if not. 

eclipse.onlyIf {  

  project.hasProperty('usingEclipse')  

} 

 

// #2nd approach - alternatively throw an StopExecutionException() like this 

eclipse.doFirst { 

  if(!usingEclipse) { 

    throw new StopExecutionException() 

  } 

} 

Execute the following command in the command prompt. You should execute this where 

the build.gradle file is stored. 

C:\> gradle –q copy 

Task Structure 

Gradle has different phases, when working with tasks. First of all, there is a configuration 

phase, where the code, which is specified directly in a task's closure, is executed. The 

configuration block is executed for every available task and not only for those tasks which 

are later actually executed. 

After the configuration phase, the execution phase runs the code inside the doFirst or 

doLast closures of those tasks, which are actually executed. 



Gradle 

 

23 

  
  

 

Gradle build script defines a process to build projects; each project contains some 

dependencies and some publications. Dependencies means the things that support to build 

your project such as required JAR file from other projects and external JARs like JDBC JAR 

or Eh-cache JAR in the class path. Publications means the outcomes of the project, such 

as test class files and build files, like war files. 

Almost all the projects are not self-contained. They need files build by other projects to 

compile and test the source files. For example, in order to use Hibernate in the project, 

you need to include some Hibernate JARs in the classpath. Gradle uses some special script 

to define the dependencies, which needs to be downloaded.   

Gradle takes care of building and publishing the outcomes somewhere. Publishing is based 

on the task that you define. You might want to copy the files to the local directory, or 

upload them to a remote Maven or lvy repository, or you might use the files from another 

project in the same multi-project build. The process of publishing is called as publication. 

Declaring Your Dependencies 

Gradle follows some special syntax to define dependencies. The following script defines 

two dependencies, one is Hibernate core 3.6.7 and second one is Junit with the version 

4.0 and later. Take a look at the following code. Use this code in build.gradle file. 

apply plugin: 'java' 

 

repositories { 

    mavenCentral() 

} 

 

dependencies { 

    compile group: 'org.hibernate', name: 'hibernate-core', version: 
'3.6.7.Final' 

    testCompile group: 'junit', name: 'junit', version: '4.+' 

} 

Dependency Configurations 

Dependency configuration is nothing but defines a set of dependencies. You can use this 

feature to declare external dependencies, which you want to download from the web. This 

defines the following different standard configurations. 

 Compile: The dependencies required to compile the production source of the 

project. 

5. Gradle – Dependency Management 



Gradle 

 

24 

  
  

 Runtime: The dependencies required by the production classes at runtime. By 

default, also includes the compile time dependencies. 
 

 Test Compile: The dependencies required to compile the test source of the 

project. By default, it includes compiled production classes and the compile time 

dependencies. 
 

 Test Runtime: The dependencies required to run the tests. By default, it 

includes runtime and test compile dependencies.     

External Dependencies 

External dependencies is a type of dependency. This is a dependency on some files that is 

built outside the current build, and is stored in a repository of some kind, such as Maven 

central, corporate Maven or lvy repository, or a directory in the local file system. 

The following code snippet is to define the external dependency. Use this code in 

build.gradle file. 

dependencies { 

    compile group: 'org.hibernate', name: 'hibernate-core', version: 
'3.6.7.Final' 

} 

An external dependency is declaring external dependencies and the shortcut form looks 

like "group: name: version".  

Repositories 

While adding external dependencies. Gradle looks for them in a repository. A repository is 

just a collection of files, organized by group, name and version. By default, Gradle does 

not define any repositories. We have to define at least one repository explicitly. The 

following code snippet defines how to define maven repository. Use this code in 

build.gradle file. 

repositories { 

    mavenCentral() 

}  

Following code is to define remote maven. Use this code in build.gradle file. 

repositories { 

    maven { 

        url "http://repo.mycompany.com/maven2" 

    } 

} 



Gradle 

 

25 

  
  

Publishing Artifacts 

Dependency configurations are also used to publish files. These published files are called 

artifacts. Usually, we use plug-ins to define artifacts. However, you do need to tell Gradle 

where to publish the artifacts. You can achieve this by attaching repositories to the upload 

archives task. Take a look at the following syntax for publishing Maven repository. While 

executing, Gradle will generate and upload a Pom.xml as per the project requirements. 

Use this code in build.gradle file. 

apply plugin: 'maven' 

 

uploadArchives { 

    repositories { 

        mavenDeployer { 

            repository(url: "file://localhost/tmp/myRepo/") 

        } 

    } 

} 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gradle 

 

26 

  
  

A plugin is nothing but a set of tasks, almost all useful tasks such as compiling tasks, 

setting domain objects, setting up source files, etc. are handled by plugins. Applying a 

plugin to a project, allows the plugin to extend the project’s capabilities. Plugins can:  

 Extend the basic Gradle model (e.g. add new DSL elements that can be 

configured). 

 

 Configure the project according to conversions (e.g. add new tasks or configure 

sensible defaults). 

 

 Apply specific configuration (e.g. add organizational repositories or enforce 

standards). 

Types of Plugins 

There are two types of plugins in Gradle, script plugins and binary plugins. Script plugins 

is an additional build script that gives a declarative approach to manipulating the build. 

This is typically used within a build. Binary plugins are the classes that implement the 

plugin interface and adopt a programmatic approach to manipulating the build. Binary 

plugins can reside with a build script, with the project hierarchy or externally in a plugin 

JAR. 

Applying Plugins 

Project.apply() API method is used to apply the particular plugin. You can use the same 

plugin for multiple times. There are two types of plugins one is script plugin and second is 

binary plugin.  

Script Plugins 

Script plugins can be applied from a script on the local filesystem or at a remote location. 

Filesystem locations are relative to the project directory, while remote script locations 

specifies HTTP URL. Take a look at the following code snippet. It is used to apply the 

other.gradle plugin to the build script. Use this code in build.gradle file. 

apply from: 'other.gradle' 

Binary Plugins 

Each plugin is identified by a plugin id. Some core plugins use short names to apply it and 

some community plugins use fully qualified name for plugin id. Sometimes it allows to 

specify a class of plugin. 

 

 

6. Gradle – Plugins 



Gradle 

 

27 

  
  

Take a look at the following code snippet. It shows how to apply Java plugin by using its 

type. Use this code in build.gradle file. 

apply plugin: JavaPlugin 

Take a look at the following code for applying core plugin using the short name. Use this 

code in build.gradle file. 

plugins { 

    id 'java' 

} 

Take a look at the following code for applying community plugin using the short name. 

Use this code in build.gradle file. 

plugins { 

    id "com.jfrog.bintray" version "0.4.1" 

} 

Writing Custom Plugins 

While creating a custom plugin, you need to write an implementation of plugin. Gradle 

instantiates the plugin and calls the plugin instance using Plugin.apply() method. The 

following sample contains a greeting plugin, which adds a hello task to the project. Take 

a look at the following code. Use this code in build.gradle file. 

apply plugin: GreetingPlugin 

 

class GreetingPlugin implements Plugin<Project> { 

    void apply(Project project) { 

        project.task('hello') << { 

            println "Hello from the GreetingPlugin" 

        } 

    } 

} 

Use the following code to execute the above script. 

C:\> gradle -q hello 

If the command is executed successfully, you will get the following output. 

Hello from the GreetingPlugin 



Gradle 

 

28 

  
  

Getting Input from the Build 

Most of the plugins need the configuration support from the build script. The Gradle project 

has an associated ‘ExtensionContainer’ object that helps to track all the setting and 

properties being passed to plugins. 

Let's add a simple extension object to the project. Here, we add a greeting extension 

object to the project, which allows you to configure the greeting. Use this code in 

build.gradle file. 

apply plugin: GreetingPlugin 

 

greeting.message = 'Hi from Gradle' 

 

class GreetingPlugin implements Plugin<Project> { 

    void apply(Project project) { 

        // Add the 'greeting' extension object 

        project.extensions.create("greeting", GreetingPluginExtension) 

        // Add a task that uses the configuration 

        project.task('hello') << { 

            println project.greeting.message 

        } 

    } 

} 

 

class GreetingPluginExtension { 

    def String message = 'Hello from GreetingPlugin' 

}  

Use the following code to execute the above script. 

C:\> gradle -q hello 

If the command is executed successfully, you will get the following output. 

Hello from Gradle 

In this example, GreetingPlugin is a plain old Groovy object with a field called ‘message’. 

The extension object is added to the plugin list with the name greeting. This object then 

becomes available as a project property with the same name as the extension object. 

 

 

 



Gradle 

 

29 

  
  

Gradle adds a configuration closure for each extension object, so you can group the 

settings together. Take a look at the following code. Use this code in build.gradle file. 

apply plugin: GreetingPlugin 

 

greeting { 

    message = 'Hi' 

    greeter = 'Gradle' 

} 

 

class GreetingPlugin implements Plugin<Project> { 

    void apply(Project project) { 

        project.extensions.create("greeting", GreetingPluginExtension) 

        project.task('hello') << { 

            println "${project.greeting.message} from 
${project.greeting.greeter}" 

        } 

    } 

} 

 

class GreetingPluginExtension { 

    String message 

    String greeter 

}  

Use the following code to execute the above script. 

C:\> gradle -q hello 

If the command is executed successfully, you will get the following output. 

Hello from Gradle 

Standard Gradle Plugins 

There are different plugins which are included in the Gradle distribution. 

Language Plugins 

These plugins add support for various languages which can be compiled and executed in 

the JVM. 

 



Gradle 

 

30 

  
  

Plugin Id 
Automatically 

Applies 
Description 

java java-base 

Adds Java compilation, testing, and bundling 

capabilities to a project. It serves as the basis for 

many of the other Gradle plugins. 

groovy  java,groovy-base Adds support for building Groovy projects. 

scala java,scala-base 
Adds support for building Scala projects. 

antlr Java Adds support for generating parsers using Antlr. 

Incubating Language Plugins 

These plugins add support for various languages. 

Plugin Id 
Automatically 

Applies 
Description 

assembler  - 

Adds native assembly language capabilities 

to a project. 

c - 

Adds C source compilation capabilities to a 

project. 

cpp - 

Adds C++ source compilation capabilities 

to a project. 

objective-c  - 
Adds Objective-C source compilation 

capabilities to a project. 

objective-cpp  - 

Adds Objective-C++ source compilation 

capabilities to a project. 

windows-

resources  

- 

Adds support for including Windows 

resources in native binaries. 

 

 

 

 

 

 

 

 

 

 

 

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/groovy_plugin.html
https://docs.gradle.org/current/userguide/scala_plugin.html
https://docs.gradle.org/current/userguide/antlr_plugin.html
https://docs.gradle.org/current/userguide/native_software.html
https://docs.gradle.org/current/userguide/native_software.html
https://docs.gradle.org/current/userguide/native_software.html
https://docs.gradle.org/current/userguide/native_software.html
https://docs.gradle.org/current/userguide/native_software.html
https://docs.gradle.org/current/userguide/native_software.html
https://docs.gradle.org/current/userguide/native_software.html


Gradle 

 

31 

  
  

Gradle provides a command line to execute build script. It can execute more than one task 

at a time. This chapter explains how to execute multiple tasks using different options.  

Executing Multiple Tasks 

You can execute multiple tasks from a single build file. Gradle can handle that build file 

using gradle command. This command will compile each task in the order that they are 

listed and execute each task along with the dependencies using different options.  

Example: There are four tasks - task1, task2, task3, and task4. Task3 and task4 depends 

on task 1and task2. Take a look at the following diagram. 

 

 

In the above four tasks are dependent on each other, represented with an arrow symbol. 

Take a look at the following code. Copy and paste it into build.gradle file.     

task task1 << { 

    println 'compiling source' 

} 

 

task task2(dependsOn: task1) << { 

    println 'compiling unit tests' 

} 

 

task task3(dependsOn: [task1, task2]) << { 

    println 'running unit tests' 

} 

 

task task4(dependsOn: [task1, task3]) << { 

    println 'building the distribution' 

} 

You can use the following code for compiling and executing the above task. 

 

7. Gradle – Running a Build 



Gradle 

 

32 

  
  

C:\> gradle task4 test 

If the command is executed successfully, you will get the following output. 

:task1 

compiling source 

:task2 

compiling unit tests 

:task3 

running unit tests 

:task4 

building the distribution 

 

BUILD SUCCESSFUL 

 

Total time: 1 secs 

Excluding Tasks 

While excluding a task from the execution you can use –x option along with the gradle 

command and mention the name of the task, which you want to exclude. 

Use the following command to exclude task4 from the above script. 

C:\> gradle task4 -x test 

If the command is executed successfully, you will get the following output. 

:task1 

compiling source 

:task4 

building the distribution 

 

BUILD SUCCESSFUL 

 

Total time: 1 secs 

Continuing the Build When a Failure Occurs 

Gradle will abort the execution and fail the build as soon as any task fails. You can continue 

the execution even when a failure occurs. For this, you have to use –continue option with 

the gradle command. It handles each task separately along with their dependencies. The 

important point is, it will catch each encountered failure and report at the end of the 



Gradle 

 

33 

  
  

execution of the build. Suppose if a task fails, then the dependent subsequent tasks also 

will not be executed. 

Selecting Which Build to Execute 

When you run the gradle command, it looks for a build file in the current directory. You 

can use the –b option to select a particular build file along with the absolute path. The 

following example shows selecting a project ‘hello’ from myproject.gradle file, which is 

located in the subdir/.  

task hello << { 

    println "using build file '$buildFile.name' in 
'$buildFile.parentFile.name'." 

} 

You can use the following command to execute the above script. 

C:\> gradle -q -b subdir/myproject.gradle hello 

If the command is executed successfully, you will get the following output. 

using build file 'myproject.gradle' in 'subdir'. 

Obtaining Build Information 

Gradle provides several built-in tasks for retrieving the information details regarding the 

task and the project. This can be useful to understand the structure and the dependencies 

of your build and for debugging problems. You can use project report plugin to add tasks 

to your project, which will generate these reports. 

Listing Projects  

You can list the project hierarchy of the selected project and their sub projects using 

gradle –q projects command. Here is the example, use the following command to list all 

the project in the build file. 

C:\> gradle -q projects   

Output: 

------------------------------------------------------------ 

Root project 

------------------------------------------------------------ 

 

Root project 'projectReports' 

+--- Project ':api' - The shared API for the application 

\--- Project ':webapp' - The Web application implementation 



Gradle 

 

34 

  
  

 

To see a list of the tasks of a project, run gradle <project-path>:tasks 

For example, try running gradle :api:tasks 

The report shows the description of each project, if specified. You can use the following 

command to specify the description. Paste it in the build.gradle file. 

description = 'The shared API for the application' 

Listing Tasks 

You can list all the tasks which belong to the multiple projects by using the following 

command. 

C:\> gradle -q tasks 

If the command is executed successfully, you will get the following output. 

------------------------------------------------------------ 

All tasks runnable from root project 

------------------------------------------------------------ 

 

Default tasks: dists 

 

Build tasks 

----------- 

clean - Deletes the build directory (build) 

dists - Builds the distribution 

libs - Builds the JAR 

 

Build Setup tasks 

----------------- 

init - Initializes a new Gradle build. [incubating] 

wrapper - Generates Gradle wrapper files. [incubating] 

 

Help tasks 

---------- 

buildEnvironment - Displays all buildscript dependencies declared in root 
project 'projectReports'. 

components - Displays the components produced by root project 'projectReports'. 
[incubating] 

dependencies - Displays all dependencies declared in root project 
'projectReports'. 



Gradle 

 

35 

  
  

dependencyInsight - Displays the insight into a specific dependency in root 
project 'projectReports'. 

help - Displays a help message. 

model - Displays the configuration model of root project 'projectReports'. 
[incubating] 

projects - Displays the sub-projects of root project 'projectReports'. 

properties - Displays the properties of root project 'projectReports'. 

tasks - Displays the tasks runnable from root project 'projectReports' (some of 
the displayed tasks may belong to subprojects). 

 

To see all tasks and more detail, run gradle tasks --all 

 

To see more detail about a task, run gradle help --task <task> 

You can use the following command to display the information of all tasks. 

C:\> gradle -q tasks --all 

If the command is executed successfully, you will get the following output. 

------------------------------------------------------------ 

All tasks runnable from root project 

------------------------------------------------------------ 

 

Default tasks: dists 

 

Build tasks 

----------- 

clean - Deletes the build directory (build) 

api:clean - Deletes the build directory (build) 

webapp:clean - Deletes the build directory (build) 

dists - Builds the distribution [api:libs, webapp:libs] 

    docs - Builds the documentation 

api:libs - Builds the JAR 

    api:compile - Compiles the source files 

webapp:libs - Builds the JAR [api:libs] 

    webapp:compile - Compiles the source files 

 

Build Setup tasks 

----------------- 

init - Initializes a new Gradle build. [incubating] 



Gradle 

 

36 

  
  

wrapper - Generates Gradle wrapper files. [incubating] 

 

Help tasks 

---------- 

buildEnvironment - Displays all buildscript dependencies declared in root 
project 'projectReports'. 

api:buildEnvironment - Displays all buildscript dependencies declared in 
project ':api'. 

webapp:buildEnvironment - Displays all buildscript dependencies declared in 
project ':webapp'. 

components - Displays the components produced by root project 'projectReports'. 
[incubating] 

api:components - Displays the components produced by project ':api'. 
[incubating] 

webapp:components - Displays the components produced by project ':webapp'. 
[incubating] 

dependencies - Displays all dependencies declared in root project 
'projectReports'. 

api:dependencies - Displays all dependencies declared in project ':api'. 

webapp:dependencies - Displays all dependencies declared in project ':webapp'. 

dependencyInsight - Displays the insight into a specific dependency in root 
project 'projectReports'. 

api:dependencyInsight - Displays the insight into a specific dependency in 
project ':api'. 

webapp:dependencyInsight - Displays the insight into a specific dependency in 
project ':webapp'. 

help - Displays a help message. 

api:help - Displays a help message. 

webapp:help - Displays a help message. 

model - Displays the configuration model of root project 'projectReports'. 
[incubating] 

api:model - Displays the configuration model of project ':api'. [incubating] 

webapp:model - Displays the configuration model of project ':webapp'. 
[incubating] 

projects - Displays the sub-projects of root project 'projectReports'. 

api:projects - Displays the sub-projects of project ':api'. 

webapp:projects - Displays the sub-projects of project ':webapp'. 

properties - Displays the properties of root project 'projectReports'. 

api:properties - Displays the properties of project ':api'. 

webapp:properties - Displays the properties of project ':webapp'. 

tasks - Displays the tasks runnable from root project 'projectReports' (some of 
the displayed tasks may belong to subprojects). 



Gradle 

 

37 

  
  

api:tasks - Displays the tasks runnable from project ':api'. 

webapp:tasks - Displays the tasks runnable from project ':webapp'. 

Following is a list of commands with their descriptions. 

Sr. No. Command Description 

1 
gradle –q help –task <task 

name> 

Provides the usage information (such as path, 

type, description, group) about a specific task 

or multiple tasks.  

2 gradle –q dependencies 
Provides a list of dependencies of the selected 

project. 

3 

gradle -q api:dependencies 

--configuration <task 

name> 

Provides the list of limited dependencies 

respective to configuration. 

4 
gradle –q 

buildEnvironment 
Provides the list of build script dependencies. 

5 
gradle –q 

dependencyInsight 

Provides an insight into a particular 

dependency.  

6 Gradle –q properties 
Provides the list of properties of the selected 

project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gradle 

 

38 

  
  

 

This chapter explains how to build a Java project using Gradle build file. First, we have to 

add Java plugin to the build script because it provides tasks to compile Java source code, 

run unit tests, create Javadoc and create a JAR file. Use the following line in build.gradle 

file. 

apply plugin: 'java' 

Java Default Project Layout 

Whenever you add a plugin to your build, it assume a certain setup of Java project (similar 

to Maven). Take a look at the following directory structure. 

 src/main/java contains the Java source code 

 src/test/java contains the Java tests 

If you follow this setup, the following build file is sufficient to compile, test, and bundle a 

Java project. 

To start the build, type the following command on the command line. 

C:\> gradle build  

SourceSets can be used to specify a different project structure. For example, the sources 

are stored in a src folder rather than in src/main/java. Take a look at the following 

directory structure.  

apply plugin: 'java' 

sourceSets { 

  main { 

     java { 

        srcDir 'src'   

        }  

     } 

  test { 

     java { 

        srcDir 'test' 

        }  

     } 

} 

8. Gradle – Build a Java Project 



Gradle 

 

39 

  
  

init Task Execution 

Gradle does not yet support multiple project templates. But it offers an init task to create 

the structure of a new Gradle project. Without additional parameters, this task creates a 

Gradle project, which contains the gradle wrapper files, a build.gradle and 

settings.gradle file. 

When adding the --type parameter with java-library as value, a java project structure 

is created and the build.gradle file contains a certain Java template with Junit. Take a 

look at the following code for build.gradle file. 

apply plugin: 'java' 

 

repositories { 

    jcenter() 

} 

 

dependencies { 

    compile 'org.slf4j:slf4j-api:1.7.12' 

    testCompile 'junit:junit:4.12' 

} 

In the repositories section, it defines where to find the dependencies. Jcenter is for 

resolving your dependencies. Dependencies section is for providing information about 

external dependencies.  

Specifying Java Version 

Usually, a Java project has a version and a target JRE on which it is compiled. The version 

and sourceCompatibility property can be set in the build.gradle file. 

version = 0.1.0 

sourceCompatibility = 1.8 

If the artifact is an executable Java application, the MANIFEST.MF file must be aware of 

the class with the main method. 

apply plugin: 'java' 

 

jar { 

  manifest {  

    attributes 'Main-Class': 'com.example.main.Application'  

  } 

} 

 



Gradle 

 

40 

  
  

Let us consider an example. Create a directory structure as shown in the following 

screenshot. 

 

Copy the following Java code into App.java file and store it into 

consumerbanking\src\main\java\com\bank directory. 

package com.bank; 

 

/** 

 * Hello world! 

 * 

 */ 

public class App  

{ 

    public static void main( String[] args ) 

    { 

        System.out.println( "Hello World!" ); 

    } 

} 

Copy the following Java code into AppTset.java file and store into 

consumerbanking\src\test\java\com\bank directory. 

package com.bank; 

 

/** 

 * Hello world! 

 * 

 */ 

public class App  

{ 



Gradle 

 

41 

  
  

    public static void main( String[] args ) 

    { 

        System.out.println( "Hello World!" ); 

    } 

} 

Copy the following code into build.gradle file and placed into consumerbanking\ 

directory. 

apply plugin: 'java' 

 

repositories { 

    jcenter() 

} 

 

dependencies { 

    compile 'org.slf4j:slf4j-api:1.7.12' 

    testCompile 'junit:junit:4.12' 

} 

 

 

jar { 

  manifest {  

    attributes 'Main-Class': 'com.example.main.Application'  

  } 

} 

To compile and execute the above script use the following commands. 

consumerbanking\> gradle tasks 

consumerbanking\> gradle assemble 

consumerbanking\> gradle build 

Check all the class files in the respective directories and check 

consumerbanking\build\lib folder for consumerbanking.jar file. 

 

 

 

 

 



Gradle 

 

42 

  
  

 

This chapter explains how to compile and execute a Groovy project using build.gradle 

file. 

The Groovy Plug-in 

The Groovy plug-in for Gradle extends the Java plug-in and provides tasks for Groovy 

programs. You can use the following line for applying groovy plugin. 

apply plugin: 'groovy' 

The complete build script file is as follows. Copy the following code into build.gradle file. 

apply plugin: 'groovy' 

 

 

repositories { 

  mavenCentral() 

} 

dependencies { 

    compile 'org.codehaus.groovy:groovy-all:2.4.5' 

    testCompile 'junit:junit:4.12' 

} 

You can use the following command to execute the build script. 

gradle build 

Default Project Layout of Groovy Projects 

The Groovy plugin assumes a certain setup of your Groovy project. 

 src/main/groovy contains the Groovy source code 

 src/test/groovy contains the Groovy tests 

 src/main/java contains the Java source code 

 src/test/java contains the Java tests 

Check the respective directory from the build folder where build.gradle file is placed. 

 

 

9. Gradle – Build a Groovy Project 



Gradle 

 

43 

  
  

 

The test task automatically detects and executes all unit tests in the test source set. It 

also generates a report once test execution is complete. JUnit and TestNG are the 

supported APIs. 

The test task provides a Test.getDebug() method that can be set to launch to make the 

JVM wait for a debugger. Before proceeding to the execution, it sets the debugger post to 

5005. 

Test Detection 

The Test Task detects which classes are test classes by inspecting the compiled test 

classes. By default it scans all .class files. You can set custom includes / excludes, only 

those classes will be scanned. Depending on the test framework used (JUnit / TestNG), 

the test class detection uses different criteria. 

When using JUnit, we scan for both JUnit 3 and 4 test classes. If any of the following 

criteria match, the class is considered to be a JUnit test class: 

 Class or a super class extends TestCase or GroovyTestCase 

 Class or a super class is annotated with @RunWith 

 Class or a super class contain a method annotated with @Test 

 When using TestNG, we scan for methods annotated with @Test 

Note: The abstract classes are not executed. Gradle also scans the inheritance tree into 

jar files on the test classpath. 

If you don't want to use test class detection, you can disable it by setting 

scanForTestClasses to false. 

Test Grouping 

JUnit and TestNG allows sophisticated groupings of test methods. For grouping, JUnit test 

classes and methods JUnit 4.8 introduces the concept of categories. The test task allows 

the specification of the JUnit categories you want to include and exclude. 

You can use the following code snippet in build.gradle file to group test methods. 

test { 

    useJUnit { 

        includeCategories 'org.gradle.junit.CategoryA' 

        excludeCategories 'org.gradle.junit.CategoryB' 

    } 

} 

10.  Gradle – Testing 



Gradle 

 

44 

  
  

Include and Exclude Particular Tests 

The Test class has an include and exclude method. These methods can be used to 

specify, which tests should actually be run. 

 

Run only the included tests: 

test { 

  include '**my.package.name/*' 

} 

Skip excluded tests: 

test { 

  exclude '**my.package.name/*' 

} 

The sample build.gradle file as shown in the following code shows different configuration 

options. 

apply plugin: 'java' // adds 'test' task 

 

test { 

  // enable TestNG support (default is JUnit) 

  useTestNG() 

 

  // set a system property for the test JVM(s) 

  systemProperty 'some.prop', 'value' 

 

  // explicitly include or exclude tests 

  include 'org/foo/**' 

  exclude 'org/boo/**' 

 

  // show standard out and standard error of the test JVM(s) on the console 

  testLogging.showStandardStreams = true 

 

  // set heap size for the test JVM(s) 

  minHeapSize = "128m" 

  maxHeapSize = "512m" 

 

  // set JVM arguments for the test JVM(s) 

  jvmArgs '-XX:MaxPermSize=256m' 



Gradle 

 

45 

  
  

 

 

  // listen to events in the test execution lifecycle 

  beforeTest { descriptor -> 

     logger.lifecycle("Running test: " + descriptor) 

  } 

 

  // listen to standard out and standard error of the test JVM(s) 

  onOutput { descriptor, event -> 

     logger.lifecycle("Test: " + descriptor + " produced standard out/err: " + 
event.message ) 

  } 

} 

You can use the following command syntax to execute some test task. 

gradle <someTestTask> --debug-jvm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gradle 

 

46 

  
  

Gradle can handle smallest and largest projects easily. Small projects have a single build 

file and a source tree. It is very easy to digest and understand a project that has been 

split into smaller, inter-dependent modules. Gradle perfectly supports this scenario that is 

multi-project build. 

Structure for Multi-project Build 

Such builds come in all shapes and sizes, but they do have some common characteristics: 

 A settings.gradle file in the root or master directory of the project. 

 

 A build.gradle file in the root or master directory. 

 

 Child directories that have their own *.gradle build files (some multi-project builds 

may omit child project build scripts). 

 

For listing all the projects in the build file, you can use the following command. 

C:\> gradle -q projects   

If the command is executed successfully, you will get the following output. 

------------------------------------------------------------ 

Root project 

------------------------------------------------------------ 

 

Root project 'projectReports' 

+--- Project ':api' - The shared API for the application 

\--- Project ':webapp' - The Web application implementation 

 

To see a list of the tasks of a project, run gradle <project-path>:tasks 

For example, try running gradle :api:tasks 

The report shows the description of each project, if specified. You can use the following 

command to specify the description. Paste it in the build.gradle file. 

description = 'The shared API for the application' 

 

11.  Gradle – Multi-project Build  



Gradle 

 

47 

  
  

Specifying a General Build Configuration 

In a build.gradle file in the root_project, general configurations can be applied to all 

projects or just to the sub projects. 

allprojects { 

  group = 'com.example.gradle' 

  version = '0.1.0' 

} 

 

subprojects { 

  apply plugin: 'java' 

  apply plugin: 'eclipse' 

} 

This specifies a common com.example.gradle group and the 0.1.0 version to all 

projects. The subprojects closure applies common configurations for all sub projects, but 

not to the root project, like the allprojects closure does. 

Project Specific Configurations and Dependencies 

The core ui and util subprojects can also have their own build.gradle file, if they have 

specific needs, which are not already applied by the general configuration of the root 

project. 

For instance, the ui project usually has a dependency to the core project. So the ui project 

needs its own build.gradle file to specify this dependency. 

dependencies { 

  compile project(':core') 

  compile 'log4j:log4j:1.2.17' 

} 

Project dependencies are specified with the project method.  

 

 

 

 

 

 

 

 



Gradle 

 

48 

  
  

 

Gradle offers several ways to deploy build artifacts repositories. When deploying 

signatures for your artifacts to a Maven repository, you will also want to sign the published 

POM file. 

Using the Maven-publish Plugin 

Gradle provides maven-publish plugin by default. It is used to publish the gradle script. 

Take a look at the following code. 

apply plugin: 'java' 

apply plugin: 'maven-publish' 

 

publishing { 

  publications { 

    mavenJava(MavenPublication) { 

      from components.java 

    } 

  } 

 

  repositories { 

    maven { 

      url "$buildDir/repo" 

    } 

  } 

} 

There are several publish options, when the Java and the maven-publish plugin is 

applied. Take a look at the following code, it will deploy the project into a remote 

repository. 

apply plugin: 'groovy' 

apply plugin: 'maven-publish' 

 

group 'workshop' 

version = '1.0.0' 

 

publishing { 

12.  Gradle – Deployment 



Gradle 

 

49 

  
  

  publications { 

    mavenJava(MavenPublication) { from components.java } 

  } 

 

  repositories { 

    maven { 

      // default credentials for a nexus repository manager 

      credentials { 

        username 'admin' 

        password 'admin123' 

      } 

      // url to the releases maven repository 

      url "http://localhost:8081/nexus/content/repositories/releases/" 

    } 

  } 

} 

Converting a Project from Maven to Gradle 

There is a special command for converting Apache Maven pom.xml files to Gradle build 

files, if all used Maven plug-ins are known to this task. 

In this section, the following pom.xml maven configuration will be converted to a Gradle 

project. Take a look at the following code. 

<project xmlns="http://maven.apache.org/POM/4.0.0" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 

http://maven.apache.org/xsd/maven-4.0.0.xsd"> 

  <modelVersion>4.0.0</modelVersion> 

  <groupId>com.example.app</groupId> 

  <artifactId>example-app</artifactId> 

  <packaging>jar</packaging> 

  <version>1.0.0-SNAPSHOT</version> 

  <dependencies> 

    <dependency> 

      <groupId>junit</groupId> 

      <artifactId>junit</artifactId> 

      <version>4.11</version> 

      <scope>test</scope> 



Gradle 

 

50 

  
  

    </dependency> 

  </dependencies> 

</project>  

You can use the following command on the command line that results in the following 

Gradle configuration. 

C:\> gradle init --type pom 

The init task depends on the wrapper task so that a Gradle wrapper is created. 

The resulting build.gradle file looks similar to the following. 

apply plugin: 'java' 

apply plugin: 'maven' 

 

group = 'com.example.app' 

version = '1.0.0-SNAPSHOT' 

 

description = """""" 

 

sourceCompatibility = 1.5 

targetCompatibility = 1.5 

 

repositories { 

     maven { url "http://repo.maven.apache.org/maven2" } 

} 

 

dependencies { 

    testCompile group: 'junit', name: 'junit', version:'4.11' 

}  

 

 

 

 

 

 

 

 

 



Gradle 

 

51 

  
  

This chapter explains the integration of Eclipse and Gradle. Following are the steps to add 

Gradle plugin to Eclipse. 

Step 1: Open Eclipse Marketplace 

Open the eclipse which is installed in your system. Go to help -> click EclipseMarketplace 

as shown in the following screenshot. 

 

Step 2: Install Buildship Plugin 

Click Eclipse Marketplace, there you will find the following screenshot. On the left search 

bar, type buildship. Buildship is a Gradle integration plugin. When you find buildship on 

your screen, click Install button present on the right side of the screen as shown in the 

following screenshot. 

13.  Gradle – Eclipse Integration 



Gradle 

 

52 

  
  

 

You will find the following screenshot. There you need to confirm the software installation 

by clicking the confirm button. Take a look at the following screenshot. 



Gradle 

 

53 

  
  

 

Click ‘I accept the terms of the license agreement’ in the following screen and then click 

‘Finish’. Take a look at the following screenshot.  

 



Gradle 

 

54 

  
  

It will take some time to install. Take a look at the following screenshot. 

 

After that, it will ask for restarting Eclipse. There you will select Yes. 

Step 3: Verifying Gradle Plugin 

While verifying, we will create a new project by following the given procedure. In the 

eclipse, go to file -> click New-> click Other projects. The following screen pops up. Select 

Gradle Project and click Next.  

 

 

 

 



Gradle 

 

55 

  
  

After clicking the Next button, the following screen pops up. On the screen, you will have 

to provide the Gradle home directory path of local file system and then click Next button 

as shown in the following screenshot. 

 

 

 

 

 

 

 

 

 

 

 



Gradle 

 

56 

  
  

Take a look at the following screenshot. You will have to provide the name for Gradle 

project. In this tutorial, we are using the name demoproject. Click Finish button. 

 

 

 

 

 

 

 

 

 

 

 



Gradle 

 

57 

  
  

In the following screenshot, you will need to confirm the project. For which you will have 

to click Finish button. 

 

 

 

 

 

 

 

 

 



Gradle 

 

58 

  
  

Step 4: Verifying Directory Structure 

After successful installation of Gradle plugin, please check the demo project directory 

structure for the default files and folders as shown in the following screenshot. 

 

 

 

 

 


