
MapDB
Release 2.0

Jan Kotek

Jun 30, 2016





CONTENTS

1 Introduction 1

2 Quick Introduction 3
2.1 Get it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Hello World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Example projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Quick Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 DB and DBMaker 5

4 HTreeMap 7
4.1 Serializers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Hash Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.4 Other parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.5 Shard Stores for better concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.6 Expiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.7 Expiration Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 BTreeMap 15
5.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Key serializers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Data Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Prefix submaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.6 Composite keys and tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.7 Multimap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.8 Compared to HTreeMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Sorted Table Map 21
6.1 Binary search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.3 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7 Performance and durability 25
7.1 Transactions and crash protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Memory mapped files (mmap) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 File channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4 In-memory mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.5 Allocation options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

i



8 Collection Layout 29
8.1 Hash Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2 Range partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.3 Time of Update Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

9 Volume 31
9.1 Construct DB from Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.2 Load Volume into memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10 Storage format 33
10.1 File operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
10.2 File header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.3 StoreDirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.4 Write Ahead Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
10.5 Sorted Table Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ii



CHAPTER

ONE

INTRODUCTION

MapDB is an open-source (Apache 2.0 licensed), embedded Java database engine and collection framework. It pro-
vides Maps, Sets, Lists, Queues, Bitmaps with range queries, expiration, compression, off-heap storage and streaming.
MapDB is probably the fastest Java database, with performance comparable to java.util collections. It also pro-
vides advanced features such as ACID transactions, snapshots, incremental backups and much more.

This manual is a work-in-progress and it will be completed together with the MapDB 3.0 release. We hope you will
find it useful. If you’d like to contribute to MapDB, we would be very happy to accept pull requests

1

https://github.com/jankotek/mapdb-site/tree/master/doc


MapDB, Release 2.0

2 Chapter 1. Introduction



CHAPTER

TWO

QUICK INTRODUCTION

MapDB is flexible, with many configuration options. But in most cases, it is configured with just a few lines of code.

TODO more resources: cheat sheet, examples, KATA...

Get it

MapDB binaries are hosted in Maven Central repository. Here is dependency fragment for MapDB.

<dependency>
<groupId>org.mapdb</groupId>
<artifactId>mapdb</artifactId>
<version>VERSION</version>

</dependency>

VERSION is the last version number from Maven Central. You can also find the current version on this image:

Daily builds are in snapshot repository. The version number for the latest snapshot is here.

<repositories>
<repository>

<id>sonatype-snapshots</id>
<url>https://oss.sonatype.org/content/repositories/snapshots</url>

</repository>
</repositories>

<dependencies>
<dependency>

<groupId>org.mapdb</groupId>
<artifactId>mapdb</artifactId>
<version>VERSION</version>

</dependency>
</dependencies>

You can also download MapDB jar files directly from [Maven Central](https://search.maven.org/#search%7Cga%
7C1%7Ca%3A%22mapdb%22). In that case keep on mind that MapDB depends on Eclipse Collections, Guava,
Kotlin library and some other libraries. Here is [full list of dependencies](http://mvnrepository.com/artifact/org.
mapdb/mapdb) for each version.

3

http://mvnrepository.com/artifact/org.mapdb/mapdb
https://oss.sonatype.org/content/repositories/snapshots/org/mapdb/mapdb/
https://search.maven.org/#search%7Cga%7C1%7Ca%3A%22mapdb%22
https://search.maven.org/#search%7Cga%7C1%7Ca%3A%22mapdb%22
http://mvnrepository.com/artifact/org.mapdb/mapdb
http://mvnrepository.com/artifact/org.mapdb/mapdb


MapDB, Release 2.0

Hello World

Hereafter is a simple example. It opens in-memory HashMap, it uses off-heap store and it is not limited by Garbage
Collection:

//import org.mapdb.*
DB db = DBMaker.memoryDB().make();
ConcurrentMap map = db.hashMap("map").make();
map.put("something", "here");

HashMap (and other collections) can be also stored in file. In this case the content can be preserved between JVM
restarts. It is necessary to call DB.close() to protect file from data corruption. Other option is to enable transactions
with write ahead log.

DB db = DBMaker.fileDB("file.db").make();
ConcurrentMap map = db.hashMap("map").make();
map.put("something", "here");
db.close();

TODO Hello World examples do not cover the commits.

By default, MapDB uses generic serialization, which can serialize any data type. It is faster and more memory efficient
to use specialized serializers. Also we can enable faster memory-mapped files on 64bit operating systems:

DB db = DBMaker
.fileDB("file.db")
//TODO memory mapped files enable here
.make();

ConcurrentMap<String,Long> map = db
.hashMap("map", Serializer.STRING, Serializer.LONG)
.make();

map.put("something", 111L);

db.close();

Example projects

TODO example projects

Quick Tips

• Memory mapped files are much faster and should be enabled on 64bit systems for better performance.

• MapDB has Pump for fast bulk import of collections. It is much faster than to Map.put()

• Transactions have a performance overhead, but without them the store gets corrupted if not closed properly.

• Data stored in MapDB (keys and values) should be immutable. MapDB serializes objects on background.

• MapDB needs compaction sometimes. Run DB.compact() or see background compaction options.

4 Chapter 2. Quick Introduction



CHAPTER

THREE

DB AND DBMAKER

MapDB is pluggable like Lego. There are two classes that act like the glue between the different pieces, namely the
DBMaker and the DB classes.

The DBMaker class handles database configuration, creation and opening. MapDB has several modes and configura-
tion options. Most of those can be set using this class.

A DB instance represents an opened database (or a single transaction session). It can be used to create and open
collection storages. It can also handle the database’s lifecycle with methods such as commit() , rollback() and
close() .

To open (or create) a store, use one of the DBMaker.xxxDB() static methods. MapDB has more formats and
modes, whereby each xxxDB() uses different modes: memoryDB() opens an in-memory database backed by a
byte[] array, appendFileDB() opens a database which uses append-only log files and so on.

A xxxDB() method is followed by one or several configuration options and finally a make() method which applies
all options, opens the selected storage and returns a DB object. This example opens a file storage with encryption
enabled:

DB db = DBMaker
.fileDB("/some/file")
//TODO encryption API
//.encryptionEnable("password")
.make();

5

http://www.mapdb.org/dokka/latest/mapdb/org.mapdb/-d-b-maker/index.html
http://www.mapdb.org/dokka/latest/mapdb/org.mapdb/-d-b/index.html


MapDB, Release 2.0

6 Chapter 3. DB and DBMaker



CHAPTER

FOUR

HTREEMAP

HTreeMap provides HashMap and HashSet collections for MapDB. It optionally supports entry expiration and
can be used as a cache. It is thread-safe and scales under parallel updates.

It is thread safe, and supports parallel writes by using multiple segments, each with separate ReadWriteLock.
ConcurrentHashMap in JDK 7 works in a similar way. The number of segments (also called concurrency factor)
is configurable.

HTreeMap is a segmented Hash Tree. Unlike other HashMaps it does not use fixed size Hash Table, and does not
rehash all data when Hash Table grows. HTreeMap uses auto-expanding Index Tree, so it never needs resize. It also
occupies less space, since empty hash slots do not consume any space. On the other hand, the tree structure requires
more seeks and is slower on access. Its performance degrades with size TODO at what scale?.

HTreeMap optionally supports entry expiration based on four criteria: maximal map size, maximal storage size, time-
to-live since last modification and time-to-live since last access. Expired entries are automatically removed. This
feature uses FIFO queue and each segment has independent expiration queue.

Serializers

HTreeMap has a number of parameters. Most important is name, which identifies Map within DB object and serial-
izers which handle data inside Map:

HTreeMap<String, Long> map = db.hashMap("name_of_map")
.keySerializer(Serializer.STRING)
.valueSerializer(Serializer.LONG)
.create();

//or shorter form
HTreeMap<String, Long> map2 = db

.hashMap("some_other_map", Serializer.STRING, Serializer.LONG)

.create();

It is also possible to skip serializer definition, but MapDB will use slower generic serialization, and this is not recom-
mended:

HTreeMap<String, Long> map =
(HTreeMap<String,Long>)db
.hashMap("name_of_map")
.create();

HTreeMap is recommended for handling large key/values. In same cases you may want to use compression. It is
possible to enable compression store-wide, but that has some overhead. Instead, it is better to apply compression just
to a specific serializer on key or value. This is done by using serializer wrapper:

7



MapDB, Release 2.0

HTreeMap<Long, String> map = db.hashMap("map")
.valueSerializer(

new SerializerCompressionWrapper(Serializer.STRING))
.create();

Hash Code

Most hash maps uses 32bit hash generated by Object.hashCode() and check equality with
Object.equals(other) . However many classes (byte[] , int[] ) do not implement it correctly.

MapDB uses Key Serializer to generate Hash Code and to compare keys. For example byte[] can be used directly
as key in HTreeMap, if Serializer.BYTE_ARRAY is used as Key Serializer:

HTreeMap<byte[], Long> map = db.hashMap("map")
.keySerializer(Serializer.BYTE_ARRAY)
.valueSerializer(Serializer.LONG)
.create();

Another problem is weak hashCode() in some classes, it causes collisions and degrades performance.
String.hashCode() is weak, but part of specification, so it can not be changed. HashMap in JDK implemented
many workarounds at the expense of memory and performance overhead. HTreeMap has no such workarounds, and
weak Hash would slow it down dramatically.

Instead HTreeMap is fixing the root of the problem, Serializer.STRING uses stronger XXHash which gener-
ates less collisions. String.hashCode() is still available but with different serializer:

//this will use strong XXHash for Strings
HTreeMap<String, Long> map = db.hashMap("map")

// by default it uses strong XXHash
.keySerializer(Serializer.STRING)
.valueSerializer(Serializer.LONG)
.create();

//this will use weak `String.hashCode()`
HTreeMap<String, Long> map2 = db.hashMap("map2")

// use weak String.hashCode()
.keySerializer(Serializer.STRING_ORIGHASH)
.valueSerializer(Serializer.LONG)
.create();

Hash Maps are vulnerable to Hash Collision Attack. HTreeMap adds Hash Seed for protection. It is randomly
generated when collection is created and persisted together with its definition. User can also supply its own Hash
Seed:

HTreeMap<String, Long> map = db
.hashMap("map", Serializer.STRING, Serializer.LONG)
.hashSeed(111) //force Hash Seed value
.create();

TODO 64bit Hash Code

TODO custom hash code generator, bit spread, use DataIO.hashInt()

8 Chapter 4. HTreeMap

http://arstechnica.com/business/2011/12/huge-portions-of-web-vulnerable-to-hashing-denial-of-service-attack/


MapDB, Release 2.0

Layout

HashMap has parameters such as Initial Capacity, Load Factor etc.. MapDB has different set of parameters to control
its access time and maximal size. Those are grouped under term Map Layout.

Concurrency is implemented by using multiple segments, each with separate read-write lock. Each concurrent segment
is independent, it has its own Size Counter, iterators and Expiration Queues. Number of segments is configurable. Too
small number will cause congestion on concurrent updates, too large will increase memory overhead.

HTreeMap uses Index Tree instead of growing Object[] for its Hash Table. Index Tree is sparse array like
structure, which uses tree hierarchy of arrays. It is sparse, so unused entries do not occupy any space. It does not do
rehashing (copy all entries to bigger array), but also it can not grow beyond its initial capacity.

HTreeMap layout is controlled by layout function. It takes three parameters:

1. concurrency, number of segments. Default value is 8, it always rounds-up to power of two.

2. maximal node size of Index Tree Dir Node. Default value is 16, it always rounds-up to power of two. Maximal
value is 128 entries.

3. number of Levels in Index Tree, default value is 4

Maximal Hash Table Size is calculated as: segment * node size ^ level count . The default maximal
Hash Table Size is 8*16^4= 0.5 million entries. TODO too low?

If Hash Table Size is set too low, hash collision will start to occur once its filled up and performance will degrade.
HTreeMap will accept new entries even after Hash Table is full, but performance will degrade.

32bit hash imposes upper limit on Hash Table Size: 4 billion entries. There is a plan to support 64bit hashing.

Other parameters

Another parameter is the size counter. By default HTreeMap does not keep track of its size and map.size()
performs a linear scan to count all entries. You can enable size counter and in that case map.size() is instant, but
there is some overhead on inserts.

HTreeMap<String, Long> map = db
.hashMap("map", Serializer.STRING, Serializer.LONG)
.counterEnable()
.create();

And finally some sugar. There is value loader, a function to load a value if the existing key is not found. A newly
created key/value is inserted into the map. This way map.get(key) never returns null. This is mainly useful for
various generators and caches.

HTreeMap<String,Long> map = db
.hashMap("map", Serializer.STRING, Serializer.LONG)
.valueLoader(s -> 1L)
.create();

//return 1, even if key does not exist
Long one = map.get("Non Existent");

// Value Creator output was added to Map
map.size(); // => 1

4.3. Layout 9



MapDB, Release 2.0

Shard Stores for better concurrency

HTreeMap is split into separate segments. Each segment is independent and does not share any state with other
segments. However they still share underlying Store and that affects performance under concurrent load. It is
possible to make segments truly independent, by using separate Store for each segment.

That is called Sharded HTreeMap, and is created directly DBMaker :

HTreeMap<String, byte[]> map = DBMaker
//param is number of Stores (concurrency factor)

.memoryShardedHashMap(8)

.keySerializer(Serializer.STRING)

.valueSerializer(Serializer.BYTE_ARRAY)

.create();

//DB does not exist, so close map directly
map.close();

Sharded HTreeMap has similar configurations options as HTreeMap created by DB . But there is no DB object associ-
ated with this HTreeMap. So in order to close Sharded HTreeMap, one has to invoke HTreeMap.close() method
directly.

Expiration

HTreeMap offers optional entry expiration if some conditions are met. Entry can expire if:

• An entry exists in the map longer time than the expiration period is. The expiration period could be since the
creation, last modification or since the last read access.

• The number of entries in a map would exceed maximal number

• Map consumes more disk space or memory than space limit

This will set expiration time since the creation, last update and since the last access:

// remove entries 10 minutes after their last modification,
// or 1 minute after last get()
HTreeMap cache = db

.hashMap("cache")

.expireAfterUpdate(10, TimeUnit.HOURS)

.expireAfterCreate(10, TimeUnit.HOURS)

.expireAfterGet(1, TimeUnit.MINUTES)

.create();

This will create HTreeMap with 16GB space limit:

// Off-heap map with max size 16GB
Map cache = db

.hashMap("map")

.expireMaxSize(16 * 1024*1024*1024)

.expireAfterGet()

.create();

It is also possible to limit the maximal size of a map:

10 Chapter 4. HTreeMap



MapDB, Release 2.0

HTreeMap cache = db
.hashMap("cache")
.expireMaxSize(128)
.expireAfterGet()
.create();

HTreeMap maintains LIFO Expiration Queue for each segment, eviction traverses queue and removes oldest entries.
Not all Map entries are placed into Expiration Queue. For illustration, in this example the new entrues never expire,
only after update (value change) entry is placed into Expiration Queue.

HTreeMap cache = db
.hashMap("cache")
.expireAfterUpdate(1000)
.create();

Time based eviction will always place entry into Expiration Queue. But other expiration criteria (size and space limit)
also needs hint when to place entry into Expiration Queue. In following example no entry is placed into queue and no
entry ever expires.

HTreeMap cache = db
.hashMap("cache")
.expireMaxSize(1000)
.create();

There are three possible triggers which will place entry into Expiration Queue: expireAfterCreate() ,
expireAfterUpdate() and expireAfterGet() . Notice there is no TTL parameter.

Entry expiration is done inside other methods. If you call map.put() or map.get() it might evict some entries.
But eviction has some overhead, and it would slow down user operations. There is option to supply HTreeMap with an
executor, and perform eviction in background thread. This will evict entries in two background threads, and eviction
will be triggered every 10 seconds:

DB db = DBMaker.memoryDB().make();

ScheduledExecutorService executor =
Executors.newScheduledThreadPool(2);

HTreeMap cache = db
.hashMap("cache")
.expireMaxSize(1000)
.expireAfterGet()
.expireExecutor(executor)
.expireExecutorPeriod(10000)
.create();

//once we are done, background threads needs to be stopped
db.close();

Expiration can be combined with multiple Sharded HTreeMap for better concurrency. In this case each segment has
independent Store and that improves scalability under parallel updates.

HTreeMap cache = DBMaker
.memoryShardedHashMap(16)
.expireAfterUpdate()
.expireStoreSize(128*1024*1024)
.create();

4.6. Expiration 11



MapDB, Release 2.0

Sharded HTreeMap should be combined with multiple background threads for eviction. Also over time the Store
becomes fragmented and eventually space can not be reclaimed. There is option to schedule periodic compaction
if there is too much free space. Compaction will reclaim free space. Because each Store (segment) is compacted
separately, compactions do not affect all running threads.

HTreeMap cache = DBMaker
.memoryShardedHashMap(16)
.expireAfterUpdate()
.expireStoreSize(128*1024*1024)

//entry expiration in 3 background threads
.expireExecutor(

Executors.newScheduledThreadPool(3))

//trigger Store compaction if 40% of space is free
.expireCompactThreshold(0.4)

.create();

Expiration Overflow

HTreeMap supports Modification Listeners. It notifies listener about inserts, updates and removes from HTreeMap.
It is possible to link two collections together. Usually faster in-memory with limited size, and slower on-disk with
unlimited size. After an entry expires from in-memory, it is automatically moved to on-disk by Modification Listener.
And Value Loader will load values back to in-memory map, if those are not found by map.get() operation.

To establish Disk Overflow use following code:

DB dbDisk = DBMaker
.fileDB(file)
.make();

DB dbMemory = DBMaker
.memoryDB()
.make();

// Big map populated with data expired from cache
HTreeMap onDisk = dbDisk

.hashMap("onDisk")

.create();

// fast in-memory collection with limited size
HTreeMap inMemory = dbMemory

.hashMap("inMemory")

.expireAfterGet(1, TimeUnit.SECONDS)
//this registers overflow to `onDisk`
.expireOverflow(onDisk)
//good idea is to enable background expiration
.expireExecutor(Executors.newScheduledThreadPool(2))
.create();

Once binding is established, every entry removed from inMemory map will be added to onDisk map. This applies
only to expired entries, map.remove() will also remove any entry from onDisk .

//insert entry manually into both maps for demonstration
inMemory.put("key", "map");

12 Chapter 4. HTreeMap



MapDB, Release 2.0

//first remove from inMemory
inMemory.remove("key");
onDisk.get("key"); // -> not found

If the inMemory.get(key) is called and value does not exist, the Value Loader will try to find Map in onDisk .
If value is found inside onDisk , it is added into inMemory .

onDisk.put(1,"one"); //onDisk has content, inMemory is empty
inMemory.size(); //> 0
// get method will not find value inMemory, and will get value from onDisk
inMemory.get(1); //> "one"
// inMemory now caches result, it will latter expire and move to onDisk
inMemory.size(); //> 1

It is also possible to clear entire primary map and move all data to disk:

inMemory.put(1,11);
inMemory.put(2,11);

//expire entire content of inMemory Map
inMemory.clearWithExpire();

TODO expiration counts are approximate. Map size can go slightly over limits for short period of time.

TODO modification listeners

4.7. Expiration Overflow 13



MapDB, Release 2.0

14 Chapter 4. HTreeMap



CHAPTER

FIVE

BTREEMAP

BTreeMap provides TreeMap and TreeSet for MapDB. It is based on lock-free concurrent B-Linked-Tree. It
offers great performance for small keys and has good vertical scalability.

TODO explain compressions

TODO describe B-Linked-Tree

Parameters

BTreeMap has optional parameters which can be specified with the use of a maker.:

The most important among them are serializers. General serialization has some guessing and overhead, so better
performance is always achieved if more specific serializers are used. To specify the key and value serializer, use the
code bellow. There are dozens ready to use serializers available as static fields on Serializer interface:

BTreeMap<Long, String> map = db.treeMap("map")
.keySerializer(Serializer.LONG)
.valueSerializer(Serializer.STRING)
.createOrOpen();

Another useful parameter is the size counter. By default, a BTreeMap does not keep track of its size and calling
map.size() requires a linear scan to count all entries. If you enable size counter, in that case map.size() is
instant, but there is some overhead on the inserts.

BTreeMap<Long, String> map = db
.treeMap("map", Serializer.LONG, Serializer.STRING)
.counterEnable()
.createOrOpen();

BTrees store all their keys and values as part of a btree node. Node size affects the performance a lot. A large node
means that many keys have to be deserialized on lookup. A smaller node loads faster, but makes large BTrees deeper
and requires more operations. The default maximal node size is 32 entries and it can be changed in this way:

BTreeMap<Long, String> map = db
.treeMap("map", Serializer.LONG, Serializer.STRING)
.maxNodeSize(64)
.createOrOpen();

Values are also stored as part of BTree leaf nodes. Large value means huge overhead and on a single
map.get("key") 32 values are deserialized, but only a single value returned. In this case, it is better to store
the values outside the leaf node, in a separate record. In this case, the leaf node only has a 6 byte recid pointing to the
value.

15



MapDB, Release 2.0

Large values can also be compressed to save space. This example stores values outside BTree Leaf Node and ap-
plies compression on each value:

BTreeMap<Long, String> map = db.treeMap("map")
.valuesOutsideNodesEnable()
.valueSerializer(new SerializerCompressionWrapper(Serializer.STRING))
.createOrOpen();

BTreeMap needs to sort its key somehow. By default it relies on the Comparable interface implemented by most
Java classes. In case this interface is not implemented, a key serializer must be provided. One can for example compare
Object arrays:

BTreeMap<Object[], Long> map = db.treeMap("map")
// use array serializer for unknown objects
// TODO db.getDefaultSerializer()
.keySerializer(new SerializerArray(Serializer.JAVA))
// or use serializer for specific objects such as String
.keySerializer(new SerializerArray(Serializer.STRING))
.createOrOpen();

Also primitive arrays can be used as keys. One can replace String by byte[] , which directly leads to better
performance:

BTreeMap<byte[], Long> map = db.treeMap("map")
.keySerializer(Serializer.BYTE_ARRAY)
.valueSerializer(Serializer.LONG)
.createOrOpen();

Key serializers

BTreeMap owns its performance to the way it handles keys. Let’s illustrate this on an example with Long keys.

A long key occupies 8 bytes after serialization. To minimize the space usage one could pack this value to make it
smaller. So the number 10 will occupy a single byte, 300 will take 2 bytes, 10000 three bytes etc. To make keys even
more packable, we need to store them in even smaller values. The keys are sorted, so lets use delta compression. This
will store the first value in full form and then only the differences between consecutive numbers.

Another improvement is to make the deserialization faster. In normal TreeMap the keys are stored in awrapped form,
such as Long[] . That has a huge overhead, as each key requires a new pointer, class header... BTreeMap will store
keys in primitive array long[] . And finally if keys are small enough it can even fit into int[] . And because an
array has better memory locality, there is a huge performance increase on binary searches.

It is simple to do such optimisation for numbers. But BTreeMap also applies that on other keys, such as String
(common prefix compression,single byte[] with offsets), byte[] , UUID , Date etc.

This sort of optimization is used automatically. All you have to do is provide the specialized key serializer:
.keySerializer(Serializer.LONG) .

There are several options and implementations to pack keys. Have a look at static fields with _PACK suffix in
Serializer class for more details.

TODO this is a major feature, document details and add benchmarks

16 Chapter 5. BTreeMap

http://www.mapdb.org/dokka/latest/mapdb/org.mapdb/-serializer/index.html


MapDB, Release 2.0

Data Pump

TODO data pump

Fragmentation

A trade-off for lock-free design is fragmentation after deletion. The B-Linked-Tree does not delete btree nodes after
entry removal, once they become empty. If you fill a BTreeMap and then remove all entries, about 40% of space will
not be released. Any value updates (keys are kept) are not affected by this fragmentation.

This fragmentation is different from storage fragmentation, so DB.compact() will not help. A solution is to move
all the content into a new BTreeMap . As it is very fast with Data Pump streaming, the new Map will have zero
fragmentation and better node locality (in theory disk cache friendly).

TODO provide utils to move BTreeMap content TODO provide statistics to calculate BTreeMap fragmentation

In the future, we will provide BTreeMap wrapper, which will do this compaction automatically. It will use three
collections: the first BTreeMap will be read-only and will also contain the data. The second small map will contain
updates. Periodically a third map will be produced as a merge of the first two, and will be swapped with the primary.
SSTable ‘s in Cassandra and other databases work in a similar way.

TODO provide wrapper to compact/merge BTreeMap content automatically.

Prefix submaps

For array based keys (tuples, Strings, or arrays) MapDB provides prefix submap. It uses intervals, so prefix submap is
lazy, it does not load all keys. Here as example which uses prefix on byte[] keys:

BTreeMap<byte[], Integer> map = db
.treeMap("towns", Serializer.BYTE_ARRAY, Serializer.INTEGER)
.createOrOpen();

map.put("New York".getBytes(), 1);
map.put("New Jersey".getBytes(), 2);
map.put("Boston".getBytes(), 3);

//get all New* cities
Map<byte[], Integer> newCities = map.prefixSubMap("New".getBytes());

TODO key serializer must provide nextValue for prefix submaps. Implement it on more serializers

Composite keys and tuples

MapDB allows composite keys in the form of Object[] . Interval submaps can be used to fetch tuple subcompo-
nents, or to create a simple form of multimap. Object array is not comparable, so you need to use specialized serializer
which provides comparator.

Here is an example which creates Map<Tuple3<String,String,Integer>,Double> in the form of Ob-
ject[]. First component is town, second is street and third component is house number. It has more parts, source code is
on github To serialize and compare tuples use‘‘SerializerArrayTuple‘‘ which takes serializer for each tuple component
as s constructor parameter:

5.3. Data Pump 17

https://github.com/jankotek/mapdb-site/blob/master/src/test/java/doc/btreemap_composite_keys.java


MapDB, Release 2.0

// initialize db and map
DB db = DBMaker.memoryDB().make();
BTreeMap<Object[], Integer> map = db.treeMap("towns")

.keySerializer(new SerializerArrayTuple(
Serializer.STRING, Serializer.STRING, Serializer.INTEGER))

.valueSerializer(Serializer.INTEGER)

.createOrOpen();

Once map is populated we can get all houses in the town of Cong by using prefix submap (town is first component in
tuple):

//get all houses in Cong (town is primary component in tuple)
Map<Object[], Integer> cong =

map.prefixSubMap(new Object[]{"Cong"});

The prefix submap is equal to the range query which uses submap method:

cong = map.subMap(
new Object[]{"Cong"}, //shorter array is 'negative infinity'
new Object[]{"Cong",null,null} // null is positive infinity'

);

Interval submap can only filter components on the left side. To get components in the middle we have to combine the
submap with a forloop:

int total = 0;
for(String town:towns){ //first loop iterates over towns

for(Integer salary: //second loop iterates over all houses on main street
map.prefixSubMap(new Object[]{town, "Main Street"}).values()){

total+=salary; //and calculate sum
}

}
System.out.println("Salary sum for all Main Streets is: "+total);

Submaps are modifiable, so we could delete all the houses within a town by calling clear() on submap etc..

Multimap

Multimap is a Map which associates multiple values with a single key. An example can be found in Guava or in
Eclipse Collections It can be written as Map<Key,List<Value>>, but that does not work well in MapDB, we need
keys and values to be immutable, and List is not immutable.

There is a plan to implement Multimap from Guava and EC directly in MapDB. But until then there is an option to
use SortedSet in combination with tuples and interval subsets. Here is an example which constructs Set, inserts some
data and gets all values (second tuple component) associated with key (first tuple component):

// initialize multimap: Map<String,List<Integer>>
NavigableSet<Object[]> multimap = db.treeSet("towns")

//set tuple serializer
.serializer(new SerializerArrayTuple(Serializer.STRING, Serializer.INTEGER))
.createOrOpen();

// populate, key is first component in tuple (array), value is second
multimap.add(new Object[]{"John",1});
multimap.add(new Object[]{"John",2});

18 Chapter 5. BTreeMap

http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/collect/Multimap.html
https://www.eclipse.org/collections/javadoc/7.0.0/org/eclipse/collections/api/multimap/Multimap.html


MapDB, Release 2.0

multimap.add(new Object[]{"Anna",1});

// print all values associated with John:
Set johnSubset = multimap.subSet(

new Object[]{"John"}, // lower interval bound
new Object[]{"John", null}); // upper interval bound, null is positive

→˓infinity

TODO delta packing for Tuples

TODO MapDB will soon implement multimap from Guava

Compared to HTreeMap

BTreeMap is better for smaller keys, such as numbers and short strings.

TODO compare to HTreeMap

5.8. Compared to HTreeMap 19



MapDB, Release 2.0

20 Chapter 5. BTreeMap



CHAPTER

SIX

SORTED TABLE MAP

SortedTableMap is inspired by Sorted String Tables from Cassandra. It stores keys in file (or memory store) in
fixed size table, and uses binary search. There are some tricks to support variable-length entries and to decrease space
usage. Compared to BTreeMap it is faster, has zero fragmentation, but is readonly.

SortedTableMap is read-only and does not support updates. Changes should be applied by creating new Map
with Data Pump. Usually one places change into secondary map, and periodically merges two maps into new
SortedTableMap .

SortedTableMap is read-only. Its created and filled with content by Data Pump and Consumer:

//create memory mapped volume
Volume volume = MappedFileVol.FACTORY.makeVolume(file, false);

//open consumer which will feed map with content
SortedTableMap.Sink<Integer,String> sink =

SortedTableMap.create(
volume,
Serializer.INTEGER,
Serializer.STRING

).createFromSink();

//feed content into consumer
for(int key=0; key<100000; key++){

sink.put(key, "value"+key);
}

// finally open created map
SortedTableMap<Integer, String> map = sink.create();

Once file is created, it can be reopened:

//open existing memory-mapped file in read-only mode
Volume volume = MappedFileVol.FACTORY.makeVolume(file, true);

//read-only=true

SortedTableMap<Integer,String> map =
SortedTableMap.open(

volume,
Serializer.INTEGER,
Serializer.STRING
);

21



MapDB, Release 2.0

Binary search

Storage is split into pages. Page size is power of two, with maximal size 1MB. First key on each page is stored
on-heap.

Each page contains several nodes composed of keys and values. Those are very similar to BTreeMap Leaf nodes.
Node offsets are known, so fast seek to beginning of node is used.

Each node contains several key-value pairs (by default 32). Their organization depends on serializer, but typically are
compressed together (delta compression, LZF..) to save space. So to find single entry, one has to load/traverse entire
node. Some fixed-lenght serializer (Serializer.LONG...) do not have to load entire node to find single entry.

Binary search on SortedTableMap is performed in three steps:

• First key for each page is stored on-heap in an array. So perform binary search to find page.

• First key on each node can by loaded without decompressing entire node. So perform binary search over first
keys on each node

• Now we know node, so perform binary search over node keys. This depends on Serializer. Usually entire node
is loaded, but other options are possible TODO link to serializer binary search.

Parameters

SortedTableMap takes key serializer and value serializers. The keys and values are stored together inside Value
Array TODO link to serializers. They can be compressed together to save space. Serializer is trade-off between space
usage and performance.

Another setting is Page Size. Default and maximal value is 1MB. Its value must be power of two, other valuaes are
rounded up to nearest power of two. Smaller value typically means faster access. But for each page one key is stored
on-heap, smaller Page Size also means larger memory usage.

And finally there is Node Size. It has similar implications as BTreeMap node size. Larger node means better compres-
sion, since large chunks are better compressible. But it also means slower access times, since more entries are loaded
to get single entry. Default node size is 32 entries, it should be lowered for large values.

Parameters are set following way

//create memory mapped volume
Volume volume = MappedFileVol.FACTORY.makeVolume(file, false);

//open consumer which will feed map with content
SortedTableMap.Sink<Integer,String> sink =

SortedTableMap.create(
volume,
Serializer.INTEGER, // key serializer
Serializer.STRING // value serializer

)
.pageSize(64*1024) // set Page Size to 64KB
.nodeSize(8) // set Node Size to 8 entries
.createFromSink();

//feed content into consumer
for(int key=0; key<100000; key++){

sink.put(key, "value"+key);
}

// finally open created map

22 Chapter 6. Sorted Table Map



MapDB, Release 2.0

SortedTableMap<Integer, String> map = sink.create();
volume.close();

// Existing SortedTableMap can be reopened.
// In that case only Serializers needs to be set,
// other params are stored in file
volume = MappedFileVol.FACTORY.makeVolume(file, true);

// read-only=true
map = SortedTableMap.open(volume, Serializer.INTEGER, Serializer.STRING);

Volume

SortedTableMap does not use DB object, but operates directly on Volume (MapDB abstraction over ByteBuffer).
Following example show how to construct various Volume using in-memory byte array or memory-mapped file:

//create in-memory volume over byte[]
Volume byteArrayVolume = ByteArrayVol.FACTORY.makeVolume(null, false);

//create in-memory volume in direct memory using DirectByteByffer
Volume offHeapVolume = ByteBufferMemoryVol.FACTORY.makeVolume(null, false);

File file = File.createTempFile("mapdb","mapdb");
//create memory mapped file volume
Volume mmapVolume = MappedFileVol.FACTORY.makeVolume(file.getPath(), false);

//or if data were already imported, create it read-only
mmapVolume.close();
mmapVolume = MappedFileVol.FACTORY.makeVolume(file.getPath(), true);

//read-only=true

Volume is than passed to SortecTableMap factory method as an parameter. It is recommended to open existing
Volumes in read-only mode (last param is true ) to minimize file locking and simplify your code.

Data Pump sync Volume content to disk, so file based SortedTableMap is durable once the
Consumer.finish() method exits

6.3. Volume 23



MapDB, Release 2.0

24 Chapter 6. Sorted Table Map



CHAPTER

SEVEN

PERFORMANCE AND DURABILITY

Good performance is result of compromise between consistency, speed and durability. MapDB gives several options
to make this compromise. There are different storage implementations, commit and disk sync strategies, caches,
compressions...

This chapter outlines performance and durability related options. Some options will make storage writes durable at
expense of speed. Some other settings might cause memory leaks, data corruption or even JVM crash! Make sure you
understand implications and read Javadoc on DBMaker.

Transactions and crash protection

If store is not closed properly and are pending changes flushed to disk, store might become corrupted. That often
happens if JVM process crashes or is violently terminated.

To protect file from corruption, MapDB offers Write Ahead Log (WAL). It is reliable and simple way to make file
changes atomic and durable. WAL is used by many databases including Posgresql or MySQL. However WAL is
slower, data has to be copied and synced multiple times between files.

WAL is disabled by default. It can be enabled with DBMaker.transactionEnable() :

DB db = DBMaker
.fileDB(file)
.transactionEnable()
.make();

With WAL disabled (by default) you do not have a crash protection. In this case you must correctly close the store, or
you will loose all your data. MapDB detects unclean shutdown and will refuse to open such corrupted storage. There
is a way to open corrupted store in readonly mode and perform data rescue.

There is a shutdown hook to close the database automatically before JVM exits, however this does not protect your
data if JVM crashes or is killed. Use DBMaker.closeOnJvmShutdown() option to enable it.

With transactions disabled you do not have rollback capability, db.rollback() will throw an exception.
db.commit() will have nothing to commit (all data are already stored), so it does the next best thing: Commit
tries to flush all the write caches and synchronizes the storage files. So if you call db.commit() and do not make
any more writes, your store should be safe (no data loss) in case of JVM crash.

TODO JVM write cache flush, versus system flush.

25

http://www.mapdb.org/javadoc/latest/mapdb/org/mapdb/DBMaker.Maker.html


MapDB, Release 2.0

Memory mapped files (mmap)

MapDB was designed from ground to take advantage of mmap files. However on 32bit JVM mmap files are limited to
4GB by its addressing limit. When JVM runs out of addressing space there are nasty effects such as JVM crash. By
default we use a slower and safer disk access mode called Random-Access-File (RAF).

Mmap files are much faster compared to RAF. The exact speed bonus depends on the operating system and disk case
management, but is typically between 10% and 300%.

Memory mapped files are activated with DBMaker.mmapFileEnable() setting.

One can also activate mmap files only if a 64bit platform is detected:
DBMaker.mmapFileEnableIfSupported() .

Mmap files are highly dependent on the operating system. For example, on Windows you cannot delete a mmap file
while it is locked by JVM. If Windows JVM dies without closing the mmap file, you have to restart Windows to release
the file lock.

There is also bug in JVM. Mmaped file handles are not released until DirectByteBuffer is GCed. That means
that mmap file remains open even after db.close() is called. On Windows it prevents file to be reopened or
deleted. On Linux it consumes file descriptors, and could lead to errors once all descriptors are used.

There is a workaround for this bug using undocumented API. But it was linked to JVM crashes in rare cases and is
disabled by default. Use DBMaker.cleanerHackEnable() to enable it.

Here is example with all mmap related options:

DB db = DBMaker
.fileDB(file)
.fileMmapEnable() // Always enable mmap
.fileMmapEnableIfSupported() // Only enable mmap on supported platforms
.fileMmapPreclearDisable() // Make mmap file faster

// Unmap (release resources) file when its closed.
// That can cause JVM crash if file is accessed after it was unmapped
// (there is possible race condition).

.cleanerHackEnable()

.make();

//optionally preload file content into disk cache
db.getStore().fileLoad();

File channel

By default MapDB uses RandomAccessFile to access disk storage. Outside fast mmap files there is third option
based on FileChannel . It should be faster than RandomAccessFile , but has bit more overhead. It also works
better under concurrent access (RAF has global lock).

FileChannel was causing problems in combination with Thread.interrupt . If threads gets interrupted while
doing IO, underlying channel is closed for all other threads.

To use FileChannel use DBMaker.fileChannelEnable() option:

DB db = DBMaker
.fileDB(file)
.fileChannelEnable()
.make();

26 Chapter 7. Performance and durability

http://bugs.java.com/view_bug.do?bug_id=4724038


MapDB, Release 2.0

In-memory mode

MapDB has three in-memory stores:

On-heap which stores objects in Map<recid,Object> and does not use serialization. This mode is very fast for
small datasets, but is affected by GC, so performance drops from cliff after a few gigabytes. It is activated with:

DB db = DBMaker
.heapDB()
.make();

Store based on byte[] . In this mode data are serialized and stored into 1MB large byte[]. Technically this is still on-
heap, but is not affected by GC overhead, since data are not visible to GC. This mode is recommended by default, since
it does not require any additional JVM settings. Increasing maximal heap memory with -Xmx10G JVM parameter is
enough.

DB db = DBMaker
.memoryDB()
.make();

Store based on DirectByteBuffer . In this case data are stored completely off-heap. in 1MB DirectByteBuffers
created with ByteBuffer.allocateDirect(size) . You should increase maximal direct memory with JVM
parameter. This mode allows you to decrease maximal heap size to very small size (-Xmx128M ). Small heap size has
usually better and more predictable performance.

// run with: java -XX:MaxDirectMemorySize=10G
DB db = DBMaker

.memoryDirectDB()

.make();

Allocation options

By default MapDB tries minimize space usage and allocates space in 1MB increments. This additional allocations
might be slower than single large allocation. There are two options to control storage initial size and size increment.
This example will allocate 10GB initially and then increment size in 512MB chunks:

DB db = DBMaker
.fileDB(file)
.fileMmapEnable()
.allocateStartSize( 10 * 1024*1024*1024) // 10GB
.allocateIncrement(512 * 1024*1024) // 512MB
.make();

Allocation Increment has side effect on performance with mmap files. MapDB maps file in series of DirectByteBuffer.
Size of each buffer is equal to Size Increment (1MB by default), so larger Size Increment means less buffers for the
same disk store size. Operations such as sync, flush and close have to traverse all buffers. So larger Size Increment
could speedup commit and close operations.

7.4. In-memory mode 27



MapDB, Release 2.0

28 Chapter 7. Performance and durability



CHAPTER

EIGHT

COLLECTION LAYOUT

Partitioning in databases is usually way to distribute data between multiple stores, tables etc... MapDB has great
flexibility and its partitioning is more complicated. So in MapDB partitioning is when collection is using more than
single Store, to contain its state.

For example HTreeMap can split key-value entries between multiple disks, while its Hash Table uses in-memory
Store and Expiration Queues are regular on-heap collections.

This chapter gives overview of most partitioning options in MapDB. Details are in separate chapters for each collection
or Store.

Hash Partitioning

HP is well supported in HTreeMap TODO link. To achieve concurrency HashMap is split into segments, each segment
is separate HashMap with its own ReadWriteLock. Segment number is calculated from hash. When expiration is
enabled each segment has its own Expiration Queue.

Usually HTreeMap segments share single Store TODO link. But each segment can have its own Store, that improves
concurrency and allows to shard HTreeMap across multiple disks.

Range partitioning

Is not currently supported in BTreeMap.

TODO discus sharding based on Node Recid hash

TODO investigate feasibility in BTreeMap

Time of Update Partitioning

Large BTrees usually has slow updates, due to write amplification TODO chapter & link. In some cases (time series)
it makes sense to shard data based on last modification. Each day (or other interval) has its own store, old data can
be removed just by deleting files. There are various options to handle modifications, delete markers etc... MapDB
supports this with SortedTableMap and CopyOnWriteMap

TODO this could also work on HTreeMap (sorted by hash)

29



MapDB, Release 2.0

Partitioning by Durability

Durable commits are much slower than non-durable. We have to move data to/from write-ahead-log, sync files,
calculate checksums... Durability Partitioning allows to minimize size of durable data, by moving non essential data
into non-durable store. Trade off is longer recovery time after crash.

Good example is BTree. We really only care about Leaf Nodes, which contains all key-value pairs. Directory nodes
(index) can be easily reconstructed from Leaf Nodes. BTreeMap can use two stores, one with durable commits for
leafs, second non-durable for directory nodes. Pump than reconstructs Directory Store in case of crash.

Name?

TODO HTreeMap expiration queues onheap, in memory

TODO in-memory indexes for HTreeMap and BTreeMap

TODO HTreeMap IndexTree onheap

Expiration Partitioning

TODO HTreeMap disk overflow

30 Chapter 8. Collection Layout



CHAPTER

NINE

VOLUME

MapDB has its own storage abstraction similar to ByteBuffer . It is called Volume and resides in package
org.mapdb.volume. It is growable, works over 2GB and has number of tweaks to work better with MapDB.

There are several implementations:

• Volume over multiple byte[] . Use DBMaker.memoryDB(file)

• DirectByteBuffer for direct memory. Use DBMaker.memoryDirectDB()

• RandomAccessFile is safer way to access files. It is enabled by default, use DBMaker.fileDB(file)

• FileChannel a bit faster then RAF. Use DBMaker.fileDB(file).fileChannelEnable()

• MappedByteBuffer for memory mapped files. Use DBMaker.fileDB(file).fileMMapEnable()

• Unsafe over memory region (heap or direct memory). This is not available in DBMaker yet.

• Unsafe over file. This is not available in DBMaker yet.

Construct DB from Volume

You can supply your own Volume and create DB on top of it. Example bellow opens memory mapped file and creates
DB over it. Note contentAlreadyExists boolean. It tells DBMaker if Volume already contains database and
should be just opened, or is empty and it should be overwritten.

File f = File.createTempFile("some","file");
Volume volume = MappedFileVol.FACTORY.makeVolume(f.getPath(),false);

boolean contentAlreadyExists = false;
DB db = DBMaker.volumeDB(volume, contentAlreadyExists).make();

Load Volume into memory

Volume content can be copied from one to another. This example opens inmemory Volume backed by byte[] and
fills its content from file:

//open file volume
String file = "pom.xml";
Volume fileVolume = MappedFileVol.FACTORY.makeVolume(file,false);

//create in memory volume

31

https://github.com/jankotek/mapdb/tree/master/src/main/java/org/mapdb/volume


MapDB, Release 2.0

Volume memoryVolume = new ByteArrayVol();

//and copy content from file to memory
fileVolume.copyTo(memoryVolume);

It is also possible to load Volume content from InputStream or save Volume content into OutputStream

InputStream input = new FileInputStream("pom.xml");

Volume volume = new ByteArrayVol();
volume.copyFrom(input);

OutputStream out = new ByteArrayOutputStream();
volume.copyTo(out);

Memory mapped files can also cache file content into memory. It uses MappedByteBuffer.load() method under hood:

//open memory mapped file
String file = "pom.xml";
MappedFileVol fileVolume = (MappedFileVol) MappedFileVol.FACTORY.
→˓makeVolume(file,false);

//and ensure its content is cached in memory
fileVolume.fileLoad();

32 Chapter 9. Volume

https://docs.oracle.com/javase/8/docs/api/java/nio/MappedByteBuffer.html#load--


CHAPTER

TEN

STORAGE FORMAT

This chapter is storage specification for MapDB files.

File operations

File operations (such as file create, rename or sync) must be atomic and must survive system crash. In case of crash
there is recovery operation after restart. If file operation did not finished it reverts everything into last stable state. That
means file operations are atomic (they either succeed or fail without side effects).

To ensure crash resistance and atomicity MapDB relies on marker files. Those are empty files created and deleted
using atomic filesystem API. Marker files have the same name as main file, but with .$X suffix.

File Create

Empty file creation is atomic operation, but populating file with content is not. MapDB needs file population to be
atomic, and uses uses .$c marker file for that.

File creation sequence:

1. create marker file with File.createNewFile()

2. create empty main file and lock it

3. fill main file with content, write checksums

4. sync main file

5. remove marker file

In case of recovery, or when file is being opened, follow this sequence:

1. open main file and lock it, fail if main file does not exist

2. TODO we should check for pending File Rename operations here

3. check if marker file exists, fail if it exists

In case of failure throw an data corruption exception.

Temporary file write open

Temporary file in MapDB is write-able file without crash protection (usually by write-ahead-log). Compared to File
Create this file is opened continuously and only closed on system shutdown. If file was not closed, it most likely
becomes corrupted and MapDB will refuse to reopen in.

33



MapDB, Release 2.0

File Create sequence is also used for temporary file without crash protection. In that case marker file stays while the
main file is opened for write. If there is an crash, recovery sequence will find marker file, assume that main file was
not closed correctly and will refuse to open it. In this case main file should be discarded and recreated from original
data source. Or user can remove marker file and try his luck.

File Rename

File Rename is used in StoreDirect compaction. Store is recreated in new file, and old file is replaced with new content.
The ‘old file’ is file which is being replaced, it will be deleted before File Rename. The ‘new file’ replaces old file and
has its name changed.

MapDB needs file move to be atomic, and supported in range variety of platforms. There are following problems:

• java.nio.file.Files#move is atomic, but it might fail in some cases

• Opened memory mapped file on Windows can not be renamed. MappedByteBuffer handle is not released until
GC or cleaner hack. Sometimes handle is not released even after JVM exit, and OS restart is required.

• There should be fallback option, when we can not close file Volume, but copy content between Volumes.

File rename has following sequence:

• synchronize and close new file, release its c marker

• create ‘c’ marker on old file

• create ‘r’ marker on new file

• delete old file

• use java.nio.file.Files#move in atomic or non-atomic way. But rename operation must be finished
and synced to disk.

• delete r marker for new file

• delete c marker on old file

• open old file (with new content)

TODO this does not work on windows with memory mapped files. We need plan B with Volume copy, without closing
them.

Recovery sequence is simple. If following files exist:

• c marker for old file

• r marker for new file

• new file (under its name before rename)

Than discard the old file if present and continue rename sequence from step ‘delete old file’

Rolling file

Rolling file is a single file, but continuously replaced with new content. To make content replacement atomic, the
content of file is written into new file, synced and then old file is deleted. File name has ‘.N’ suffix, where N is
sequential number increased with each commit. Rolling file is used in StoreTrivial .

There is following sequence for updating rolling file with new content. Ther is ‘old file’ with original content and
number N and ‘new file’ with number N+1.

• Create c marker for new file, fail if it already exists

34 Chapter 10. Storage format



MapDB, Release 2.0

• Populate new file with content, sync and close

• Remove C marker for new file

• Delete the old file

And there is following sequence for recovery

• List all files in parent directory, find file with highest number without C marker, lock and open it.

• Delete any other files and their markers (only files associated with the rolling file, there might be more files with
different name)

File sync

On commit or close, write cache needs to be flushed to disk, in MapDB this is called sync. We also need to detect
corrupted files if system crashes in middle of write.

There are following ways to sync file:

• ‘c’ file marker (see File Rename).

• File checksum: Before the file sync is called, checksum of entire file is calculated and written into file header.
Corruption is detected by matching file checksum from header with file content. This is slow because entire file
has to be read

• Commit seal: Uses double file sync, but does not require checksum calculation. First file is synced with zero
checksum in file header. Than commit seal is written into file header, and file is synced again. Valid commit
seal means that file was synced. TODO: commit seal is calculated based on file size

File header

Every non empty file created by MapDB has 16 byte header. It contains header, file version, bitfield for optional
features and optional checksum for entire file.

Bites:

• 0-7 constant value 0x4A

• 8-15 type of file generated. I

• 16-31 format version number. File will not be opened if format is too high

• 32-63 bitfield which identifies optional features used in this format. File will not be opened if unknown bit is
set.

• 64-127 checksum of entire file.

File type

can have following values:

• 0 unused

• 1 StoreDirect (also shared with StoreWAL)

• 2 WriteAheadLog for StoreWAL

• 10 SortedTableMap without multiple tables (readonly)

• 11 SortedTableMap with multiple tables

10.2. File header 35



MapDB, Release 2.0

• 12 WriteAheadLog for SortedTableMap

Feature bitfield

has following values. It is 8-byte long, number here is from least significant bit.

• 0 encryption enabled. Its upto user to provide encryption type and password

• 1-2 checksum used. 0=no checksum, 1=XXHash, 2=CRC32, 3=user hash.

• TODO more bitfields

Checksum

is either XXHash or CRC32. It is calculated as (checksum from 16th byte to end)+vol.getLong(0)
. If checksum is 0 the 1 value is used instead. 0 indicates checksum is disabled.

StoreDirect

StoreDirect uses update in place. It keeps track of free space released by record deletion and reuses it. It has zero
protection from crash, all updates are written directly into store. Write operations are very fast, but data corruption is
almost guaranteed when JVM crashes. StoreDirect uses parity bits as passive protection from returning incorrect data
after corruption. Internal data corruption should be detected reasonably fast.

StoreDirect allocates space in ‘pages’ of size 1MB. Operations such as readLong , readByte[] must be aligned
so they do not cross page boundaries.

Head

Header in StoreDirect format is composed by number of 8-byte longs. Each offset here is multiplied by 8

0. header and format version from file header TODO chapter link

1. file checksum from file header TODO chapter link

2. header checksum is updated every time header is modified, that can detect corruption quite fast

3. data tail points to end location where data were written to. Beyond this is empty (except index pages). Parity 4
with no shift (data offset is multiple of 16)

4. max recid maximal allocated recid. Parity 4 with shift.

5. file tail file size. Must be multiple of PAGE_SIZE (1MB). Parity 16

6. not yet used

7. not yet used

This is followed by Long Stack Master Pointers. Those are used to track free space, unused recids and other informa-
tion.

• 8 - Free recid Long Stack, unused Recids are put here

• 9 - Free records 16 - Long Stack with offsets of free records with size 16

• 10 - Free records 32 - Long Stack with offsets of free records with size 32 etc...

• ...snip 4095 minus 3 entries...

36 Chapter 10. Storage format



MapDB, Release 2.0

• 8+4095 - Free records 65520 - Long Stack with offsets of free records with size 65520 bytes (maximal
unlinked record size). 4095 = 65520/16 is number of Free records Long Stacks.

• 8+4095+1 until 8+4095+4 - Unused long stacks - Those could be used latter for some other purpose.

Index page

Rest of the zero page (up to offset 1024*1024) is used as Index Page (sometimes its refered as Zero Index Page).
Offset to next Index Page (First Index Page) is at 8+4095+4+1 , Zero Index Page checksum is at 8+4095+4+2 .
First recid value is at 8+4095+4+3 .

Index page starts at N*PAGE_SIZE , except Zero Index Page which starts at 8 * (8+4095 + 4 + 1) . Index
page contains at start:

• zero value (offset page+0 ) is pointer to next index page, Parity 16

• first value (offset page+8 ) in page is checksum of all values on page (add all values) TODO seed? and
not implemented yet

Rest of the index page is filled with index values.

Index Value

Index value translates Record ID (recid) into offset in file and record size. Position and size of record might change as
data are updated, that makes index tables necessary. Index Value is 8 byte long with parity 1

• bite 49-64 - 16 bite record size. Use val>>48 to get it

• bite 5-48 - 48 bite offset, records are aligned to 16 bytes, so last four bites can be used for something else. Use
val&MOFFSET to get it

• bite 4 - linked or null, indicates if record is linked (see section TODO link to section). Also linked &&
size==0 indicates null record. Use val&MLINKED .

• bite 3 - indicates unused (preallocated or deleted) record. This record is destroyed by compaction. Use
val&MUNUSED

• bite 2 - archive flag. Set by every modification, cleared by incremental backup. Use val&MARCHIVE

• bite 1 - parity bit

Linked records

Maximal record size is 64KB (16bits). To store larger records StoreDirect links multiple records into single one.
Linked records starts with Index Value where Linked Record is indicates by a bit. If this bit is not set, entire record is
reserved for record data. If Linked bit is set, than first 8 bytes store Record Link with offset and size of the next part.

Structure of Record Link is similar to Index Value. Except parity is 3.

• bite 49-64 - 16 bite record size of next link. Use val>>48 to get it

• bite 5-48 - 48 bite offset of next record alligned to 16 bytes. Use val&MOFFSET to get it

• bite 4 - true if next record is linked, false if next record is last and not linked (is tail of linked record).
Use val&MLINKED

• bite 1-3 - parity bits

Tail of linked record (last part) does not have 8-byte Record Link at beginning.

10.3. StoreDirect 37



MapDB, Release 2.0

Long Stack

Long Stack is linked queue of longs stored as part of storage. It supports two operations: put and take, longs are
returned in FIFO order. StoreDirect uses this structure to keep track of free space. Space allocation involves taking
long from stack. There are more stacks, each size has its own stack, there is also stack to keep track of free recids. For
space usage there are in total 64K / 16 = 4096 Long Stacks (maximal non-linked record size is 64K and records
are aligned to 16 bytes).

Long stack is organized similar way as linked record. It is stored in chunks, each chunks contains multiple long values
and link to next chunk. Chunks size varies. Long values are stored in bidirectional-packed form, to make unpacking
possible in both directions. Single value occupies from 2 bytes to 9 bytes. TODO explain bidi-packing, for now see
DataIO class.

Each Long Stack is identified by master pointer, which points to its last chunk. Master Pointer for each Long Stack
is stored in head of storage file at its reserved offset (zero page). Head chunk is not linked directly, one has to fully
traverse Long Stack to get to head.

Structure of Long Stack Chunk is as follow:

• byte 1-2 total size of this chunk.

• byte 3-8 pointer to previous chunk in this long stack. Parity 4, parity is shared with total size at byte 1-2.

• rest of chunk is filled with bidi-packed longs with parity 1

Master Link structure:

• byte 1-2 tail pointer, points where long values are ending at current chunk. Its value changes on every take/put.

• byte 3-8 chunk offset, parity 4.

Adding value to Long Stack goes as follow:

1. check if there is space in current chunk, if not allocate new one and update master pointer

2. write packed value at end of current chunk

3. update tail pointer in Master Link

Taking value:

1. check if stack is not empty, return zero if true

2. read value from tail and zero out its bits

3. update tail pointer in Master Link

4. if tail pointer is 0 (empty), delete current chunk and update master pointer to previous page

Write Ahead Log

WAL protects storage from data corruption if transactions are enabled. Technically it is sequence of instructions
written to append-only file. Each instruction says something like: ‘write this data at this offset’. TODO explain WAL.

WAL is stored in sequence of files.

WAL lifecycle

• open (or create) WAL

• replay if unwritten data exists (described in separate section)

38 Chapter 10. Storage format



MapDB, Release 2.0

• start new file

• write instructions as they come

• on commit start new file

• sync old file. Once sync is done, exit commit (it is blocking operation, until data are safe)

• once log is full, replay all files

• discard logs and start over

WAL file format

• byte 1-4 header and file number

• byte 5-8 CRC32 checksum of entire log file. TODO perhaps Adler32?

• byte 9-16 Log Seal, written as last data just before sync.

• rest of file are instructions

• end of file - End Of File instruction

WAL Instructions

Each instruction starts with single byte header. First 3 bits indicate type of instruction. Last 5 bits contain checksum
to verify instruction.

Type of instructions:

0. end of file. Last instruction of file. Checksum is bit parity from offset & 31

1. write long. Is followed by 8 bytes value and 6 byte offset. Checksum is (bit count from 15 bytes +
1)&31

2. write byte[]. Is followed by 2 bytes size, 6 byte offset and data itself. Checksum is (bit count from
size + bit count from offset + 1 )&31

3. skip N bytes. Is followed by 3 bytes value, number of bytes to skip . Used so data do not overlap page size.
Checksum is (bit count from 3 bytes + 1)&31

4. skip single byte. Skip single byte in WAL. Checksum is bit count from offset & 31

5. record. Is followed by packed recid, than packed record size and an record data. Real size is +1, 0 indicates
null record TODO checksum for record inst

6. tombstone. Is followed ba packed recid. . Checksum is bit count from offset & 31

7. preallocate. Is followed ba packed recid. . Checksum is bit count from offset & 31

8. commit. TODO checksum

9. rollback. TODO checksum

Sorted Table Map

SortedTableMap uses its own file format. File is split into page, where page size is power of two and maximal
page size 1MB.

Each page has header. Header size is bigger for zero page, because it also contains file header. TODO header size.

10.5. Sorted Table Map 39



MapDB, Release 2.0

After header there is a series of 4-byte integers.

First integer is number of nodes on this page (N). It is followed by N*2 integers. First N integers are offsets of key
arrays for each node. Next N integers are offsets for value arrays for each node. Offsets are relative to page offset.
The last integer points to end of data, rest of the page after that offset is filled with zeroes.

Offsets of key array (number i) are stored at: PAGE_OFFSET + HEAD_SIZE + I*4 .

Offsets of value array (number i) are stored at: PAGE_OFFSET + HEAD_SIZE + (NODE_COUNT + I) * 4 .

40 Chapter 10. Storage format


	Introduction
	Quick Introduction
	Get it
	Hello World
	Example projects
	Quick Tips

	DB and DBMaker
	HTreeMap
	Serializers
	Hash Code
	Layout
	Other parameters
	Shard Stores for better concurrency
	Expiration
	Expiration Overflow

	BTreeMap
	Parameters
	Key serializers
	Data Pump
	Fragmentation
	Prefix submaps
	Composite keys and tuples
	Multimap
	Compared to HTreeMap

	Sorted Table Map
	Binary search
	Parameters
	Volume

	Performance and durability
	Transactions and crash protection
	Memory mapped files (mmap)
	File channel
	In-memory mode
	Allocation options

	Collection Layout
	Hash Partitioning
	Range partitioning
	Time of Update Partitioning

	Volume
	Construct DB from Volume
	Load Volume into memory

	Storage format
	File operations
	File header
	StoreDirect
	Write Ahead Log
	Sorted Table Map


