
1.1

1.2

1.3

1.4

1.5

1.5.1

1.5.2

1.6

1.7

1.8

1.9

1.10

Table	of	Contents
Introduction

Quick	Start

DB

HTreeMap

BTreeMap

Composite	Keys

Batch	Import

Sorted	Table	Map

Performance

Layout

Volume

Format

1

Introduction
MapDB	is	an	open-source	(Apache	2.0	licensed),	embedded	Java	database	engine	and
collection	framework.	It	provides	Maps,	Sets,	Lists,	Queues,	Bitmaps	with	range	queries,
expiration,	compression,	off-heap	storage	and	streaming.	MapDB	is	probably	the	fastest
Java	database,	with	performance	comparable	to		java.util		collections.	It	also	provides
advanced	features	such	as	ACID	transactions,	snapshots,	incremental	backups	and	much
more.

This	manual	is	a	work-in-progress	and	it	will	be	completed	together	with	the	MapDB	3.0
release.	We	hope	you	will	find	it	useful.	If	you'd	like	to	contribute	to	MapDB,	we	would	be
very	happy	to	accept	pull	requests

Code	examples	from	this	manual	are	in	github	repository

Introduction

2

https://github.com/jankotek/mapdb-site/tree/master/doc
https://github.com/jankotek/mapdb-site/tree/gh-pages/src/test/java/doc

Quick	Introduction
MapDB	is	flexible,	with	many	configuration	options.	But	in	most	cases,	it	is	configured	with
just	a	few	lines	of	code.

TODO	more	resources:	cheat	sheet,	examples,	KATA...

Get	it
MapDB	binaries	are	hosted	in	Maven	Central	repository.	Here	is	dependency	fragment	for
MapDB.

<dependency>

				<groupId>org.mapdb</groupId>

				<artifactId>mapdb</artifactId>

				<version>VERSION</version>

</dependency>

	VERSION		is	the	last	version	number	from	Maven	Central.	You	can	also	find	the	current
version	on	this	image:

	Daily	builds	are	in	snapshot	repository.	The	version	number	for	the	latest
snapshot	is	here.

<repositories>

				<repository>

								<id>sonatype-snapshots</id>

								<url>https://oss.sonatype.org/content/repositories/snapshots</url>

				</repository>

</repositories>

<dependencies>

				<dependency>

								<groupId>org.mapdb</groupId>

								<artifactId>mapdb</artifactId>

								<version>VERSION</version>

				</dependency>

</dependencies>

You	can	also	download	MapDB	jar	files	directly	from	Maven	Central.	In	that	case	keep	on
mind	that	MapDB	depends	on	Eclipse	Collections,	Guava,	Kotlin	library	and	some	other
libraries.	Here	is	full	list	of	dependencies	for	each	version.

Quick	Start

3

http://mvnrepository.com/artifact/org.mapdb/mapdb
https://oss.sonatype.org/content/repositories/snapshots/org/mapdb/mapdb/
https://search.maven.org/#search%7Cga%7C1%7Ca%3A%22mapdb%22
http://mvnrepository.com/artifact/org.mapdb/mapdb

Hello	World
Hereafter	is	a	simple	example.	It	opens	in-memory	HashMap,	it	uses	off-heap	store	and	it	is
not	limited	by	Garbage	Collection:

//import	org.mapdb.*

DB	db	=	DBMaker.memoryDB().make();

ConcurrentMap	map	=	db.hashMap("map").createOrOpen();

map.put("something",	"here");

HashMap	(and	other	collections)	can	be	also	stored	in	file.	In	this	case	the	content	can	be
preserved	between	JVM	restarts.	It	is	necessary	to	call		DB.close()		to	protect	file	from	data
corruption.	Other	option	is	to	enable	transactions	with	write	ahead	log.

DB	db	=	DBMaker.fileDB("file.db").make();

ConcurrentMap	map	=	db.hashMap("map").createOrOpen();

map.put("something",	"here");

db.close();

TODO	Hello	World	examples	do	not	cover	the	commits.

By	default,	MapDB	uses	generic	serialization,	which	can	serialize	any	data	type.	It	is	faster
and	more	memory	efficient	to	use	specialized	serializers.	Also	we	can	enable	faster
memory-mapped	files	on	64bit	operating	systems:

DB	db	=	DBMaker

								.fileDB("file.db")

								.fileMmapEnable()

								.make();

ConcurrentMap<String,Long>	map	=	db

								.hashMap("map",	Serializer.STRING,	Serializer.LONG)

								.createOrOpen();

map.put("something",	111L);

db.close();

Example	projects
TODO	example	projects

Quick	Tips

Quick	Start

4

Memory	mapped	files	are	much	faster	and	should	be	enabled	on	64bit	systems	for
better	performance.
MapDB	has	Pump	for	fast	bulk	import	of	collections.	It	is	much	faster	than	to		Map.put()	
Transactions	have	a	performance	overhead,	but	without	them	the	store	gets	corrupted	if
not	closed	properly.
Data	stored	in	MapDB	(keys	and	values)	should	be	immutable.	MapDB	serializes
objects	on	background.
MapDB	needs	compaction	sometimes.	Run		DB.compact()		or	see	background
compaction	options.

Quick	Start

5

DB	and	DBMaker
MapDB	is	pluggable	like	Lego.	There	are	two	classes	that	act	like	the	glue	between	the
different	pieces,	namely	the		DBMaker		and	the		DB		classes.

The	DBMaker	class	handles	database	configuration,	creation	and	opening.	MapDB	has
several	modes	and	configuration	options.	Most	of	those	can	be	set	using	this	class.

A	DB	instance	represents	an	opened	database	(or	a	single	transaction	session).	It	can	be
used	to	create	and	open	collection	storages.	It	can	also	handle	the	database's	lifecycle	with
methods	such	as		commit()	,		rollback()		and		close()	.

To	open	(or	create)	a	store,	use	one	of	the	many		*DB		static	method	such	as
	DBMaker.fileDB()	.	MapDB	has	more	formats	and	modes,	whereby	each		xxxDB()		uses
different	modes:		memoryDB()		opens	an	in-memory	database	backed	by	a		byte[]		array,
	appendFileDB()		opens	a	database	which	uses	append-only	log	files	and	so	on.

A		xxxDB()		method	is	followed	by	one	or	several	configuration	options	and	finally	a		make()	
method	which	applies	all	options,	opens	the	selected	storage	and	returns	a		DB		object.	This
example	opens	a	file	storage	with	encryption	enabled:

DB	db	=	DBMaker

								.fileDB("/some/file")

								//TODO	encryption	API

								//.encryptionEnable("password")

								.make();

Open	and	create	collection
Once	you	have	DB	you	may	open	a	collection	or	other	record.	DB	uses	builder	style
configuration.	It	starts	with	type	of	collection	(hashMap	,		treeSet	...)	and	name,	followed	by
configuration	is	applied	and	finally	by	operation	indicator

This	example	opens	(or	creates	new)	TreeSet	named	'example'

NavigableSet	treeSet	=	db.treeSet("example").createOrOpen();

You	could	also	apply	additional	configuration:

DB

6

http://www.mapdb.org/dokka/latest/mapdb/org.mapdb/-d-b-maker/index.html
http://www.mapdb.org/dokka/latest/mapdb/org.mapdb/-d-b/index.html

NavigableSet<String>	treeSet	=	db

								.treeSet("treeSet")

								.maxNodeSize(112)

								.serializer(Serializer.STRING)

								.createOrOpen();

The	builder	can	end	with	three	different	methods:

	create()		will	create	new	collection,	and	throws	an	exception	if	collection	already	exists
	open()		opens	existing	collection,	and	throws	an	exception	if	it	does	not	exist
	createOrOpen()		opens	existing	collection	if	it	exists,	or	else	creates	it.

	DB		is	not	limited	to	collections,	but	creates	other	type	of	records	such	as	Atomic	Records:

Atomic.Var<Person>	var	=	db.atomicVar("mainPerson",Person.SERIALIZER).createOrOpen();

Transactions
	DB		has	methods	to	handle	a	transaction	lifecycle:		commit()	,		rollback()		and		close()	.

One		DB		object	represents	single	transaction.	The	example	above	uses	single	global
transaction	per	store,	which	is	sufficient	for	some	usages:

ConcurrentNavigableMap<Integer,String>	map	=	db

								.treeMap("collectionName",	Serializer.INTEGER,	Serializer.STRING)

								.createOrOpen();

map.put(1,"one");

map.put(2,"two");

//map.keySet()	is	now	[1,2]	even	before	commit

db.commit();		//persist	changes	into	disk

map.put(3,"three");

//map.keySet()	is	now	[1,2,3]

db.rollback();	//revert	recent	changes

//map.keySet()	is	now	[1,2]

db.close();

DB

7

HTreeMap
HTreeMap	provides		HashMap		and		HashSet		collections	for	MapDB.	It	optionally	supports
entry	expiration	and	can	be	used	as	a	cache.	It	is	thread-safe	and	scales	under	parallel
updates.

It	is	thread	safe,	and	supports	parallel	writes	by	using	multiple	segments,	each	with	separate
ReadWriteLock.		ConcurrentHashMap		in	JDK	7	works	in	a	similar	way.	The	number	of
segments	(also	called	concurrency	factor)	is	configurable.

HTreeMap	is	a	segmented	Hash	Tree.	Unlike	other	HashMaps	it	does	not	use	fixed	size
Hash	Table,	and	does	not	rehash	all	data	when	Hash	Table	grows.	HTreeMap	uses	auto-
expanding	Index	Tree,	so	it	never	needs	resize.	It	also	occupies	less	space,	since	empty
hash	slots	do	not	consume	any	space.	On	the	other	hand,	the	tree	structure	requires	more
seeks	and	is	slower	on	access.	Its	performance	degrades	with	size	TODO	at	what	scale?.

HTreeMap	optionally	supports	entry	expiration	based	on	four	criteria:	maximal	map	size,
maximal	storage	size,	time-to-live	since	last	modification	and	time-to-live	since	last	access.
Expired	entries	are	automatically	removed.	This	feature	uses	FIFO	queue	and	each
segment	has	independent	expiration	queue.

Serializers
HTreeMap	has	a	number	of	parameters.	Most	important	is	name,	which	identifies	Map
within	DB	object	and	serializers	which	handle	data	inside	Map:

HTreeMap<String,	Long>	map	=	db.hashMap("name_of_map")

								.keySerializer(Serializer.STRING)

								.valueSerializer(Serializer.LONG)

								.create();

//or	shorter	form

HTreeMap<String,	Long>	map2	=	db

								.hashMap("some_other_map",	Serializer.STRING,	Serializer.LONG)

								.create();

It	is	also	possible	to	skip	serializer	definition,	but	MapDB	will	use	slower	generic
serialization,	and	this	is	not	recommended:

HTreeMap

8

HTreeMap	map	=	db

								.hashMap("name_of_map")

								.create();

HTreeMap	is	recommended	for	handling	large	key/values.	In	same	cases	you	may	want	to
use	compression.	It	is	possible	to	enable	compression	store-wide,	but	that	has	some
overhead.	Instead,	it	is	better	to	apply	compression	just	to	a	specific	serializer	on	key	or
value.	This	is	done	by	using	serializer	wrapper:

HTreeMap<Long,	String>	map	=	db.hashMap("map")

								.valueSerializer(

																new	SerializerCompressionWrapper(Serializer.STRING))

								.create();

Hash	Code
Most	hash	maps	uses	32bit	hash	generated	by		Object.hashCode()		and	check	equality	with
	Object.equals(other)	.	However	many	classes	(byte[]	,		int[])	do	not	implement	it
correctly.

MapDB	uses	Key	Serializer	to	generate	Hash	Code	and	to	compare	keys.	For	example
	byte[]		can	be	used	directly	as	key	in	HTreeMap,	if		Serializer.BYTE_ARRAY		is	used	as	Key
Serializer:

HTreeMap<byte[],	Long>	map	=	db.hashMap("map")

								.keySerializer(Serializer.BYTE_ARRAY)

								.valueSerializer(Serializer.LONG)

								.create();

Another	problem	is	weak		hashCode()		in	some	classes,	it	causes	collisions	and	degrades
performance.		String.hashCode()		is	weak,	but	part	of	specification,	so	it	can	not	be	changed.
	HashMap		in	JDK	implemented	many	workarounds	at	the	expense	of	memory	and
performance	overhead.		HTreeMap		has	no	such	workarounds,	and	weak	Hash	would	slow	it
down	dramatically.

Instead		HTreeMap		is	fixing	the	root	of	the	problem,		Serializer.STRING		uses	stronger
XXHash	which	generates	less	collisions.		String.hashCode()		is	still	available	but	with
different	serializer:

HTreeMap

9

//this	will	use	strong	XXHash	for	Strings

HTreeMap<String,	Long>	map	=	db.hashMap("map")

								//	by	default	it	uses	strong	XXHash

								.keySerializer(Serializer.STRING)

								.valueSerializer(Serializer.LONG)

								.create();

//this	will	use	weak	`String.hashCode()`

HTreeMap<String,	Long>	map2	=	db.hashMap("map2")

								//	use	weak	String.hashCode()

								.keySerializer(Serializer.STRING_ORIGHASH)

								.valueSerializer(Serializer.LONG)

								.create();

Hash	Maps	are	vulnerable	to	Hash	Collision	Attack.		HTreeMap		adds	Hash	Seed	for
protection.	It	is	randomly	generated	when	collection	is	created	and	persisted	together	with	its
definition.	User	can	also	supply	its	own	Hash	Seed:

HTreeMap<String,	Long>	map	=	db

								.hashMap("map",	Serializer.STRING,	Serializer.LONG)

								.hashSeed(111)	//force	Hash	Seed	value

								.create();

TODO	64bit	Hash	Code

TODO	custom	hash	code	generator,	bit	spread,	use	DataIO.hashInt()

Layout
	HashMap		has	parameters	such	as	Initial	Capacity,	Load	Factor	etc..	MapDB	has	different	set
of	parameters	to	control	its	access	time	and	maximal	size.	Those	are	grouped	under	term
Map	Layout.

Concurrency	is	implemented	by	using	multiple	segments,	each	with	separate	read-write
lock.	Each	concurrent	segment	is	independent,	it	has	its	own	Size	Counter,	iterators	and
Expiration	Queues.	Number	of	segments	is	configurable.	Too	small	number	will	cause
congestion	on	concurrent	updates,	too	large	will	increase	memory	overhead.

	HTreeMap		uses	Index	Tree	instead	of	growing		Object[]		for	its	Hash	Table.	Index	Tree	is
sparse	array	like	structure,	which	uses	tree	hierarchy	of	arrays.	It	is	sparse,	so	unused
entries	do	not	occupy	any	space.	It	does	not	do	rehashing	(copy	all	entries	to	bigger	array),
but	also	it	can	not	grow	beyond	its	initial	capacity.

	HTreeMap		layout	is	controlled	by		layout		function.	It	takes	three	parameters:

HTreeMap

10

http://arstechnica.com/business/2011/12/huge-portions-of-web-vulnerable-to-hashing-denial-of-service-attack/

1.	 concurrency,	number	of	segments.	Default	value	is	8,	it	always	rounds-up	to	power	of
two.

2.	 maximal	node	size	of	Index	Tree	Dir	Node.	Default	value	is	16,	it	always	rounds-up	to
power	of	two.	Maximal	value	is	128	entries.

3.	 number	of	Levels	in	Index	Tree,	default	value	is	4

Maximal	Hash	Table	Size	is	calculated	as:		segment	*	node	size	^	level	count	.	The	default
maximal	Hash	Table	Size	is		8*16^4=		0.5	million	entries.	TODO	too	low?

If	Hash	Table	Size	is	set	too	low,	hash	collision	will	start	to	occur	once	its	filled	up	and
performance	will	degrade.		HTreeMap		will	accept	new	entries	even	after	Hash	Table	is	full,
but	performance	will	degrade.

32bit	hash	imposes	upper	limit	on	Hash	Table	Size:	4	billion	entries.	There	is	a	plan	to
support	64bit	hashing.

Other	parameters
Another	parameter	is	the	size	counter.	By	default	HTreeMap	does	not	keep	track	of	its	size
and		map.size()		performs	a	linear	scan	to	count	all	entries.	You	can	enable	size	counter	and
in	that	case		map.size()		is	instant,	but	there	is	some	overhead	on	inserts.

HTreeMap<String,	Long>	map	=	db

								.hashMap("map",	Serializer.STRING,	Serializer.LONG)

								.counterEnable()

								.create();

And	finally	some	sugar.	There	is	value	loader,	a	function	to	load	a	value	if	the	existing	key	is
not	found.	A	newly	created	key/value	is	inserted	into	the	map.	This	way		map.get(key)		never
returns	null.	This	is	mainly	useful	for	various	generators	and	caches.

HTreeMap<String,Long>	map	=	db

								.hashMap("map",	Serializer.STRING,	Serializer.LONG)

								.valueLoader(s	->	1L)

								.create();

//return	1,	even	if	key	does	not	exist

Long	one	=	map.get("Non	Existent");

//	Value	Creator	output	was	added	to	Map

map.size();	//		=>	1

HTreeMap

11

Shard	Stores	for	better	concurrency
	HTreeMap		is	split	into	separate	segments.	Each	segment	is	independent	and	does	not	share
any	state	with	other	segments.	However	they	still	share	underlying		Store		and	that	affects
performance	under	concurrent	load.	It	is	possible	to	make	segments	truly	independent,	by
using	separate		Store		for	each	segment.

That	is	called	Sharded	HTreeMap,	and	is	created	directly		DBMaker	:

HTreeMap<String,	byte[]>	map	=	DBMaker

								//param	is	number	of	Stores	(concurrency	factor)

							.memoryShardedHashMap(8)

							.keySerializer(Serializer.STRING)

							.valueSerializer(Serializer.BYTE_ARRAY)

							.create();

//DB	does	not	exist,	so	close	map	directly

map.close();

Sharded	HTreeMap	has	similar	configurations	options	as	HTreeMap	created	by		DB	.	But
there	is	no	DB	object	associated	with	this	HTreeMap.	So	in	order	to	close	Sharded
HTreeMap,	one	has	to	invoke		HTreeMap.close()		method	directly.

Expiration
	HTreeMap		offers	optional	entry	expiration	if	some	conditions	are	met.	Entry	can	expire	if:

An	entry	exists	in	the	map	longer	time	than	the	expiration	period	is.	The	expiration
period	could	be	since	the	creation,	last	modification	or	since	the	last	read	access.
The	number	of	entries	in	a	map	would	exceed	maximal	number
Map	consumes	more	disk	space	or	memory	than	space	limit

This	will	set	expiration	time	since	the	creation,	last	update	and	since	the	last	access:

//	remove	entries	10	minutes		after	their	last	modification,

//	or	1	minute	after	last	get()

HTreeMap	cache	=	db

								.hashMap("cache")

								.expireAfterUpdate(10,	TimeUnit.HOURS)

								.expireAfterCreate(10,	TimeUnit.HOURS)

								.expireAfterGet(1,	TimeUnit.MINUTES)

								.create();

This	will	create		HTreeMap		with	16GB	space	limit:

HTreeMap

12

//	Off-heap	map	with	max	size	16GB

Map	cache	=	db

								.hashMap("map")

								.expireStoreSize(16	*	1024*1024*1024)

								.expireAfterGet()

								.create();

It	is	also	possible	to	limit	the	maximal	size	of	a	map:

HTreeMap	cache	=	db

								.hashMap("cache")

								.expireMaxSize(128)

								.expireAfterGet()

								.create();

HTreeMap	maintains	LIFO	Expiration	Queue	for	each	segment,	eviction	traverses	queue
and	removes	oldest	entries.	Not	all	Map	entries	are	placed	into	Expiration	Queue.	For
illustration,	in	this	example	the	new	entries	never	expire,	only	after	update	(value	change)
entry	is	placed	into	Expiration	Queue.

HTreeMap	cache	=	db

								.hashMap("cache")

								.expireAfterUpdate(1000)

								.create();

Time	based	eviction	will	always	place	entry	into	Expiration	Queue.	But	other	expiration
criteria	(size	and	space	limit)	also	needs	hint	when	to	place	entry	into	Expiration	Queue.	In
following	example	no	entry	is	placed	into	queue	and	no	entry	ever	expires.

HTreeMap	cache	=	db

								.hashMap("cache")

								.expireMaxSize(1000)

								.create();

There	are	three	possible	triggers	which	will	place	entry	into	Expiration	Queue:
	expireAfterCreate()	,		expireAfterUpdate()		and		expireAfterGet()	.	Notice	there	is	no	TTL
parameter.

Entry	expiration	is	done	inside	other	methods.	If	you	call		map.put()		or		map.get()		it	might
evict	some	entries.	But	eviction	has	some	overhead,	and	it	would	slow	down	user
operations.	There	is	option	to	supply	HTreeMap	with	an	executor,	and	perform	eviction	in
background	thread.	This	will	evict	entries	in	two	background	threads,	and	eviction	will	be
triggered	every	10	seconds:

HTreeMap

13

DB	db	=	DBMaker.memoryDB().make();

ScheduledExecutorService	executor	=

								Executors.newScheduledThreadPool(2);

HTreeMap	cache	=	db

								.hashMap("cache")

								.expireMaxSize(1000)

								.expireAfterGet()

								.expireExecutor(executor)

								.expireExecutorPeriod(10000)

								.create();

//once	we	are	done,	background	threads	needs	to	be	stopped

db.close();

Expiration	can	be	combined	with	multiple	Sharded	HTreeMap	for	better	concurrency.	In	this
case	each	segment	has	independent	Store	and	that	improves	scalability	under	parallel
updates.

HTreeMap	cache	=	DBMaker

								.memoryShardedHashMap(16)

								.expireAfterUpdate()

								.expireStoreSize(128*1024*1024)

								.create();

Sharded	HTreeMap	should	be	combined	with	multiple	background	threads	for	eviction.	Also
over	time	the	Store	becomes	fragmented	and	eventually	space	can	not	be	reclaimed.	There
is	option	to	schedule	periodic	compaction	if	there	is	too	much	free	space.	Compaction	will
reclaim	free	space.	Because	each	Store	(segment)	is	compacted	separately,	compactions
do	not	affect	all	running	threads.

HTreeMap	cache	=	DBMaker

								.memoryShardedHashMap(16)

								.expireAfterUpdate()

								.expireStoreSize(128*1024*1024)

								//entry	expiration	in	3	background	threads

								.expireExecutor(

																Executors.newScheduledThreadPool(3))

								//trigger	Store	compaction	if	40%	of	space	is	free

								.expireCompactThreshold(0.4)

								.create();

HTreeMap

14

Expiration	Overflow
HTreeMap	supports	Modification	Listeners.	It	notifies	listener	about	inserts,	updates	and
removes	from	HTreeMap.	It	is	possible	to	link	two	collections	together.	Usually	faster	in-
memory	with	limited	size,	and	slower	on-disk	with	unlimited	size.	After	an	entry	expires	from
in-memory,	it	is	automatically	moved	to	on-disk	by	Modification	Listener.	And	Value	Loader
will	load	values	back	to	in-memory	map,	if	those	are	not	found	by	map.get()	operation.

To	establish	Disk	Overflow	use	following	code:

DB	dbDisk	=	DBMaker

								.fileDB(file)

								.make();

DB	dbMemory	=	DBMaker

								.memoryDB()

								.make();

//	Big	map	populated	with	data	expired	from	cache

HTreeMap	onDisk	=	dbDisk

								.hashMap("onDisk")

								.create();

//	fast	in-memory	collection	with	limited	size

HTreeMap	inMemory	=	dbMemory

								.hashMap("inMemory")

								.expireAfterGet(1,	TimeUnit.SECONDS)

								//this	registers	overflow	to	`onDisk`

								.expireOverflow(onDisk)

								//good	idea	is	to	enable	background	expiration

								.expireExecutor(Executors.newScheduledThreadPool(2))

								.create();

Once	binding	is	established,	every	entry	removed	from		inMemory		map	will	be	added	to
	onDisk		map.	This	applies	only	to	expired	entries,		map.remove()		will	also	remove	any	entry
from		onDisk	.

//insert	entry	manually	into	both	maps	for	demonstration

inMemory.put("key",	"map");

//first	remove	from	inMemory

inMemory.remove("key");

onDisk.get("key");	//	->	not	found

If	the		inMemory.get(key)		is	called	and	value	does	not	exist,	the	Value	Loader	will	try	to	find
Map	in		onDisk	.	If	value	is	found	inside		onDisk	,	it	is	added	into		inMemory	.

HTreeMap

15

onDisk.put(1,"one");				//onDisk	has	content,	inMemory	is	empty

inMemory.size();								//>	0

//	get	method	will	not	find	value	inMemory,	and	will	get	value	from	onDisk

inMemory.get(1);								//>	"one"

//	inMemory	now	caches	result,	it	will	latter	expire	and	move	to	onDisk

inMemory.size();								//>	1

It	is	also	possible	to	clear	entire	primary	map	and	move	all	data	to	disk:

inMemory.put(1,11);

inMemory.put(2,11);

//expire	entire	content	of	inMemory	Map

inMemory.clearWithExpire();

TODO	expiration	counts	are	approximate.	Map	size	can	go	slightly	over	limits	for	short
period	of	time.

TODO	modification	listeners

HTreeMap

16

BTreeMap
	BTreeMap		provides		TreeMap		and		TreeSet		for	MapDB.	It	is	based	on	lock-free	concurrent
B-Linked-Tree.	It	offers	great	performance	for	small	keys	and	has	good	vertical	scalability.

TODO	explain	compressions

TODO	describe	B-Linked-Tree

Parameters
BTreeMap	has	optional	parameters	which	can	be	specified	with	the	use	of	a	maker.:

The	most	important	among	them	are	serializers.	General	serialization	has	some	guessing
and	overhead,	so	better	performance	is	always	achieved	if	more	specific	serializers	are
used.	To	specify	the	key	and	value	serializer,	use	the	code	bellow.	There	are	dozens	ready
to	use	serializers	available	as	static	fields	on		Serializer		interface:

BTreeMap<Long,	String>	map	=	db.treeMap("map")

								.keySerializer(Serializer.LONG)

								.valueSerializer(Serializer.STRING)

								.createOrOpen();

Another	useful	parameter	is	the	size	counter.	By	default,	a	BTreeMap	does	not	keep	track
of	its	size	and	calling		map.size()		requires	a	linear	scan	to	count	all	entries.	If	you	enable
size	counter,	in	that	case		map.size()		is	instant,	but	there	is	some	overhead	on	the	inserts.

BTrees	store	all	their	keys	and	values	as	part	of	a	btree	node.	Node	size	affects	the
performance	a	lot.	A	large	node	means	that	many	keys	have	to	be	deserialized	on	lookup.	A
smaller	node	loads	faster,	but	makes	large	BTrees	deeper	and	requires	more	operations.
The	default	maximal	node	size	is	32	entries	and	it	can	be	changed	in	this	way:

BTreeMap<Long,	String>	map	=	db

								.treeMap("map",	Serializer.LONG,	Serializer.STRING)

								.counterEnable()

								.createOrOpen();

Values	are	also	stored	as	part	of	BTree	leaf	nodes.	Large	value	means	huge	overhead	and
on	a	single		map.get("key")		32	values	are	deserialized,	but	only	a	single	value	returned.	In
this	case,	it	is	better	to	store	the	values	outside	the	leaf	node,	in	a	separate	record.	In	this

BTreeMap

17

case,	the	leaf	node	only	has	a	6	byte	recid	pointing	to	the	value.

Large	values	can	also	be	compressed	to	save	space.	This	example	stores	values	outside
BTree	Leaf	Node	and	applies	compression	on	each	value:

BTreeMap<Long,	String>	map	=	db.treeMap("map")

								.valuesOutsideNodesEnable()

								.valueSerializer(new	SerializerCompressionWrapper(Serializer.STRING))

								.createOrOpen();

BTreeMap	needs	to	sort	its	key	somehow.	By	default	it	relies	on	the		Comparable		interface
implemented	by	most	Java	classes.	In	case	this	interface	is	not	implemented,	a	key
serializer	must	be	provided.	One	can	for	example	compare	Object	arrays:

BTreeMap<Object[],	Long>	map	=	db.treeMap("map")

								//	use	array	serializer	for	unknown	objects

								//	TODO	db.getDefaultSerializer()

								.keySerializer(new	SerializerArray(Serializer.JAVA))

								//	or	use	serializer	for	specific	objects	such	as	String

								.keySerializer(new	SerializerArray(Serializer.STRING))

								.createOrOpen();

Also	primitive	arrays	can	be	used	as	keys.	One	can	replace		String		by		byte[]	,	which
directly	leads	to	better	performance:

BTreeMap<byte[],	Long>	map	=	db.treeMap("map")

								.keySerializer(Serializer.BYTE_ARRAY)

								.valueSerializer(Serializer.LONG)

								.createOrOpen();

Key	serializers
BTreeMap	owns	its	performance	to	the	way	it	handles	keys.	Let's	illustrate	this	on	an
example	with		Long		keys.

A	long	key	occupies	8	bytes	after	serialization.	To	minimize	the	space	usage	one	could	pack
this	value	to	make	it	smaller.	So	the	number	10	will	occupy	a	single	byte,	300	will	take	2
bytes,	10000	three	bytes	etc.	To	make	keys	even	more	packable,	we	need	to	store	them	in
even	smaller	values.	The	keys	are	sorted,	so	lets	use	delta	compression.	This	will	store	the
first	value	in	full	form	and	then	only	the	differences	between	consecutive	numbers.

BTreeMap

18

Another	improvement	is	to	make	the	deserialization	faster.	In	normal		TreeMap		the	keys	are
stored	in	awrapped	form,	such	as		Long[]	.	That	has	a	huge	overhead,	as	each	key	requires
a	new	pointer,	class	header...	BTreeMap	will	store	keys	in	primitive	array		long[]	.	And
finally	if	keys	are	small	enough	it	can	even	fit	into		int[]	.	And	because	an	array	has	better
memory	locality,	there	is	a	huge	performance	increase	on	binary	searches.

It	is	simple	to	do	such	optimisation	for	numbers.	But	BTreeMap	also	applies	that	on	other
keys,	such	as		String		(common	prefix	compression,single		byte[]		with	offsets),		byte[]	,
	UUID	,		Date		etc.

This	sort	of	optimization	is	used	automatically.	All	you	have	to	do	is	provide	the	specialized
key	serializer:		.keySerializer(Serializer.LONG)	.

There	are	several	options	and	implementations	to	pack	keys.	Have	a	look	at	static	fields	with
	_PACK		suffix	in	Serializer	class	for	more	details.

TODO	this	is	a	major	feature,	document	details	and	add	benchmarks

Data	Pump
TODO	data	pump

Fragmentation
A	trade-off	for	lock-free	design	is	fragmentation	after	deletion.	The	B-Linked-Tree	does	not
delete	btree	nodes	after	entry	removal,	once	they	become	empty.	If	you	fill	a	BTreeMap	and
then	remove	all	entries,	about	40%	of	space	will	not	be	released.	Any	value	updates	(keys
are	kept)	are	not	affected	by	this	fragmentation.

This	fragmentation	is	different	from	storage	fragmentation,	so		DB.compact()		will	not	help.	A
solution	is	to	move	all	the	content	into	a	new		BTreeMap	.	As	it	is	very	fast	with	Data	Pump
streaming,	the	new	Map	will	have	zero	fragmentation	and	better	node	locality	(in	theory	disk
cache	friendly).

TODO	provide	utils	to	move	BTreeMap	content	TODO	provide	statistics	to	calculate
BTreeMap	fragmentation

In	the	future,	we	will	provide	BTreeMap	wrapper,	which	will	do	this	compaction	automatically.
It	will	use	three	collections:	the	first		BTreeMap		will	be	read-only	and	will	also	contain	the
data.	The	second	small	map	will	contain	updates.	Periodically	a	third	map	will	be	produced
as	a	merge	of	the	first	two,	and	will	be	swapped	with	the	primary.		SSTable	's	in	Cassandra
and	other	databases	work	in	a	similar	way.

BTreeMap

19

http://www.mapdb.org/dokka/latest/mapdb/org.mapdb/-serializer/index.html

TODO	provide	wrapper	to	compact/merge	BTreeMap	content	automatically.

Prefix	submaps
For	array	based	keys	(tuples,	Strings,	or	arrays)	MapDB	provides	prefix	submap.	It	uses
intervals,	so	prefix	submap	is	lazy,	it	does	not	load	all	keys.	Here	as	example	which	uses
prefix	on		byte[]		keys:

BTreeMap<byte[],	Integer>	map	=	db

								.treeMap("towns",	Serializer.BYTE_ARRAY,	Serializer.INTEGER)

								.createOrOpen();

map.put("New	York".getBytes(),	1);

map.put("New	Jersey".getBytes(),	2);

map.put("Boston".getBytes(),	3);

//get	all	New*	cities

Map<byte[],	Integer>	newCities	=	map.prefixSubMap("New".getBytes());

TODO	key	serializer	must	provide		nextValue		for	prefix	submaps.	Implement	it	on	more
serializers

Composite	keys	and	tuples
MapDB	allows	composite	keys	in	the	form	of		Object[]	.	Interval	submaps	can	be	used	to
fetch	tuple	subcomponents,	or	to	create	a	simple	form	of	multimap.	Object	array	is	not
comparable,	so	you	need	to	use	specialized	serializer	which	provides	comparator.

Here	is	an	example	which	creates		Map<Tuple3<String,	String,	Integer>,	Double>		in	the	form
of	Object[].	First	component	is	town,	second	is	street	and	third	component	is	house	number.
It	has	more	parts,	source	code	is	on	github	To	serialize	and	compare	tuples
use	SerializerArrayTuple		which	takes	serializer	for	each	tuple	component	as	s	constructor
parameter:

//	initialize	db	and	map

DB	db	=	DBMaker.memoryDB().make();

BTreeMap<Object[],	Integer>	map	=	db.treeMap("towns")

								.keySerializer(new	SerializerArrayTuple(

																Serializer.STRING,	Serializer.STRING,	Serializer.INTEGER))

								.valueSerializer(Serializer.INTEGER)

								.createOrOpen();

BTreeMap

20

https://github.com/jankotek/mapdb-site/blob/master/src/test/java/doc/btreemap_composite_keys.java

Once	map	is	populated	we	can	get	all	houses	in	the	town	of	Cong	by	using	prefix	submap
(town	is	first	component	in	tuple):

//get	all	houses	in	Cong	(town	is	primary	component	in	tuple)

Map<Object[],	Integer>	cong	=

								map.prefixSubMap(new	Object[]{"Cong"});

The	prefix	submap	is	equal	to	the	range	query	which	uses	submap	method:

Interval	submap	can	only	filter	components	on	the	left	side.	To	get	components	in	the	middle
we	have	to	combine	the	submap	with	a	forloop:

cong	=	map.subMap(

								new	Object[]{"Cong"},											//shorter	array	is	'negative	infinity'

								new	Object[]{"Cong",null,null}	//	null	is	positive	infinity'

);

Submaps	are	modifiable,	so	we	could	delete	all	the	houses	within	a	town	by	calling	clear()
on	submap	etc..

Multimap
Multimap	is	a	Map	which	associates	multiple	values	with	a	single	key.	An	example	can	be
found	in	Guava	or	in	Eclipse	Collections	It	can	be	written	as	Map<Key,List<Value>>,	but	that
does	not	work	well	in	MapDB,	we	need	keys	and	values	to	be	immutable,	and	List	is	not
immutable.

There	is	a	plan	to	implement	Multimap	from	Guava	and	EC	directly	in	MapDB.	But	until	then
there	is	an	option	to	use	SortedSet	in	combination	with	tuples	and	interval	subsets.	Here	is
an	example	which	constructs	Set,	inserts	some	data	and	gets	all	values	(second	tuple
component)	associated	with	key	(first	tuple	component):

BTreeMap

21

http://docs.guava-libraries.googlecode.com/git/javadoc/com/google/common/collect/Multimap.html
https://www.eclipse.org/collections/javadoc/7.0.0/org/eclipse/collections/api/multimap/Multimap.html

//	initialize	multimap:	Map<String,List<Integer>>

NavigableSet<Object[]>	multimap	=	db.treeSet("towns")

								//set	tuple	serializer

								.serializer(new	SerializerArrayTuple(Serializer.STRING,	Serializer.INTEGER))

								.counterEnable()

								.counterEnable()

								.counterEnable()

								.createOrOpen();

//	populate,	key	is	first	component	in	tuple	(array),	value	is	second

multimap.add(new	Object[]{"John",1});

multimap.add(new	Object[]{"John",2});

multimap.add(new	Object[]{"Anna",1});

//	print	all	values	associated	with	John:

Set	johnSubset	=	multimap.subSet(

								new	Object[]{"John"},									//	lower	interval	bound

								new	Object[]{"John",	null});		//	upper	interval	bound,	null	is	positive	infini

ty

TODO	delta	packing	for	Tuples

TODO	MapDB	will	soon	implement	multimap	from	Guava

Compared	to	HTreeMap
BTreeMap	is	better	for	smaller	keys,	such	as	numbers	and	short	strings.

TODO	compare	to	HTreeMap

BTreeMap

22

Composite	Keys
BTreeMap	can	have	composite	key;	an	key	composed	from	multiple	components.	Range
query	can	get	all	sub-components	associated	with	primary	component.

Here	is	an	example;	lets	associate	persons	name	(composed	of	surname	and	firstname)
with	age.	We	than	find	all	persons	with	surname	Smith	(primary	key	component)	.

				//create	new	map

				BTreeMap<Tuple2,	Integer>	persons	=	db

						.treeMap("persons",	Tuple2.class,	Integer.class)

						.createOrOpen();

				//insert	three	persons	into	map

				persons.put(new	Tuple2("Smith","John"),	45);

				persons.put(new	Tuple2("Smith","Peter"),	37);

				persons.put(new	Tuple2("Doe","John"),	70);

				//now	lets	get	map	which	contains	all	Smiths

				NavigableMap<Tuple2,Integer>	smiths	=

						persons.prefixSubMap(

new	Tuple2("Smith",	null)		//null	indicates	wildcard	for	range	query

);

Example	above	can	be	more	strongly-typed	with	wrapper	classes	and	generics.	In	here	we
use		Surname		and		Firstname		classes.

				//create	new	map

				BTreeMap<Tuple2<Surname,	Firstname>,	Integer>	persons	=	db

						.treeMap("persons")

						.keySerializer(new	Tuple2Serializer())	//specialized	tuple	serializer

						.valueSerializer(Serializer.INTEGER)

						.createOrOpen();

				//insert	three	person	into	map

				persons.put(new	Tuple2(new	Surname("Smith"),new	Firstname("John")),	45);

				persons.put(new	Tuple2(new	Surname("Smith"),new	Firstname("Peter")),	37);

				persons.put(new	Tuple2(new	Surname("Doe"),new	Firstname("John")),	70);

				//now	lets	get	map	which	contains	all	Smiths

				NavigableMap<Tuple2<Surname,	Firstname>,Integer>	smiths	=

						persons.prefixSubMap(

new	Tuple2(new	Surname("Smith"),	null)		//null	indicates

);

Composite	Keys

23

Tuples	use		Comparable		interface,	all	key	components	(Person		and		Firstname)	should
implement	it.	Other	option	is	to	use	composite	serializer	with	comparator	method.	For
example	to	have		Tuple2<byte[],	byte[]>		key	we	create	tuple	serializer	following	way:		new
Tuple2Serializer(Serializer.BYTE_ARRAY,	Serializer.BYTE_ARRAY)	.	Complete	example:

				//create	new	map

				BTreeMap<Tuple2<byte[],	byte[]>,	Integer>	persons	=	db

						.treeMap("persons")

						.keySerializer(new	Tuple2Serializer(Serializer.BYTE_ARRAY,	Serializer.BYTE_ARRAY

))

						.valueSerializer(Serializer.INTEGER)

						.createOrOpen();

				persons.put(new	Tuple2("Smith".getBytes(),"John".getBytes()),	45);

				NavigableMap<Tuple2,Integer>	smiths	=

						persons.prefixSubMap(

new	Tuple2("Smith".getBytes(),	null)

);

Range	query
In	examples	above	we	used		prefixSubMap(new	Tuple2("surname",	null))		method.	It	performs
range	query	where	second	component	is	replaced	by	minimal	and	maximal	value.	This
method		BTreeMap		class	and	is	not	standard		Map		method,	there	is		NavigableMap.subMap	
equivalent:

				NavigableMap<Tuple2,Integer>	smiths	=

						persons.prefixSubMap(new	Tuple2("Smith",	null));

				//	is	equivalent	to

				smiths	=	persons.subMap(

						new	Tuple2("Smith",	Integer.MIN_VALUE),	true,

						new	Tuple2("Smith",	Integer.MAX_VALUE),	true

);

In	example	above	we	use		Integer		because	it	provides	minimal	and	maximal	values.	To
make	this	easier		TupleSerializer		introduces	special	values	for	negative	and	positive
infinity,	those	are	even	smaller/greater	than	min/max	values.		null		corresponds	to	negative
infinity,		Tuple.HI		is	positibe	infinity.

Those	two	values	are	not	serializable	and	can	not	be	stored	in	Map.	But	can	be	used	for
range	query:

Composite	Keys

24

				persons.subMap(

						new	Tuple2("Smith",	null),

						new	Tuple2("Smith",	Tuple.HI)

);

Submap	returns	only	single	range.	It	means	that	we	can	only	query	left	most	components.
Common	mistake	is	to	put	infinity	in	middle,	and	expect	right	components	to	be	included.
Tuple	in	example	bellow	has	three	components	(surname,	firstname,	age).	But	we	can	not
just	query	Surname	and	Age,	because	age	is	left	most	and	it	will	be	overriden	by	infinity
component	before	it:

				//WRONG!!	null	is	in	middle	position

				persons.prefixSubMap(new	Tuple3("Smith",null,11));

				//same	but	submap

				//WRONG!!	infinity	is	in	middle

				persons.subMap(

						new	Tuple3("Smith",	null,					11),

						new	Tuple3("Smith",	Tuple.HI,	11)

);

Fixed	size	array	tuples
Tuples	can	be	replaced	by	array.	In	this	case	we	do	not	have	generics	and	will	have	to	do	lot
of	casting.	Here	is	an	example	with	surname/firstname.	For	key	serializer	we	use		new
SerializerArrayTuple(tupleSize)	.		null		and		Tuple.HI		will	not	work,	but	we	can	use	shorter
array	for	prefix:

				//create	new	map

				BTreeMap<Object[],	Integer>	persons	=	db

						.treeMap("persons",	new	SerializerArrayTuple(2),	Serializer.INTEGER)

						.createOrOpen();

				//insert	three	person	into	map

				persons.put(new	Object[]{"Smith",	"John"},	45);

				persons.put(new	Object[]{"Smith",	"Peter"},	37);

				persons.put(new	Object[]{"Doe",	"John"},	70);

				//now	lets	get	map	which	contains	all	Smiths

				NavigableMap<Object[],Integer>	smiths	=

						persons.prefixSubMap(

new	Object[]{"Smith"}

);

Composite	Keys

25

//TODO	null	is	positive	infinity,	Tuple.HI	does	not	exist

Variable	size	array	tuples
MapDB	also	has	generic	array	serializer	which	can	be	used	for	tuples.	In	this	case
	prefixSubmap		will	not	work.	But	we	can	use	submap:

				//create	new	map

				BTreeMap<Object[],	Integer>	persons	=	db

						.treeMap("persons",	new	SerializerArrayDelta(),	Serializer.INTEGER)

						.createOrOpen();

				//insert	three	persons	into	map

				persons.put(new	Object[]{"Smith",	"John"},	45);

				persons.put(new	Object[]{"Smith",	"Peter"},	37);

				persons.put(new	Object[]{"Doe",	"John"},	70);

				NavigableMap<Object[],Integer>	smiths	=	persons.subMap(

						new	Object[]{"Smith"},	//lower	bound

						new	Object[]{"Smith",	null}	//upper	bound,	null	is	positive	infinity	in	this	ser

ializer

);

Delta	compression
All	three	tuples	type	use	delta	compression.

TODO	delta	compression

Composite	Keys

26

https://en.wikipedia.org/wiki/Delta_encoding

Batch	Import	in	BTreeMap
BTreeMap	(as	any	other	b-tree)	suffers	from	write	amplification.	Single	entry	update	has	to
traverse	tree,	and	modify	entire	tree	node.	Inserting	many	entries	might	be	too	slow.

There	are	two	solutions	for	this	problem.	Write	cache	improves	write	amplification	if	updated
entries	are	near	each	other.	Tree	node	is	updated	many	times	in	cache,	but	written	only
once	when	cache	is	flushed.

Another	solution	is	to	import	BTreeMap	from	sorted	stream	(in	older	versions	called	Data
Pump).	It	takes	sorted	stream	of	entries,	and	creates	tree	structure	directly	from	stream.

Stream	import	does	not	use	random	IO,	only	sequential	write.	Nodes	are	never	modified,
only	created.	So	in	practice	it	imports	BTreeMap	at	rate	50	MB/s.	Also	import	speed	does
not	degrade	as	btree	becomes	larger	(N*log(N)),	it	can	create	multi-TB	b-trees	on	spinning
disk	in	just	a	few	hours.

Only	downside	is	that	imported	data	needs	to	be	sorted	in	ascending	order.	Older	MapDB
version	required	data	sorted	in	reversed	descending	order,	that	is	solved	in	3.0.

Here	we	create	TreeSet	from	sorted	iterator:

						//	note	that	source	data	are	sorted

						List<Integer>	source	=	Arrays.asList(1,2,3,4,5,7,8);

						//create	map	with	content	from	source

						NavigableSet<Integer>	set	=	db.treeSet("set")

.serializer(Serializer.INTEGER)

.createFrom(source);	//use	`createFrom`	instead	of	`create`

It	is	also	possible	to	import	SortedMap	from	an	iterator.	In	this	case	we	need	to	use	iterator
of		Pair(key,value)	,	or	another	sorted	Map	as	a	source.

Batch	Import

27

						//	source	data,	first	entry	in	pair	is	key,	second	is	value

						//	note	that	source	data	are	sorted

						List<Pair<Integer,Integer>>	source	=

		Arrays.asList(new	Pair(1,2),new	Pair(3,4),new	Pair(5,7));

						//create	map	with	content	from	source

						BTreeMap<Integer,	Integer>	map	=	db.treeMap("map")

.keySerializer(Serializer.INTEGER)

.valueSerializer(Serializer.INTEGER)

.createFrom(source);	//use	`createFrom`	instead	of	`create`

						//we	can	also	use	another	source	map	as	a	source

						db.treeMap("map2")

.keySerializer(Serializer.INTEGER)

.valueSerializer(Serializer.INTEGER)

.createFrom(map);

Create	using	Sink

Some	data	are	not	available	in	collections	or	as	an	iterator,	for	example	when	you	are
receive	data	in	packets	or	read	file	line	by	line.	For	that	case	MapDB	provides	a	Sink,	an
callback	class	which	accepts	entries	and	has	finish	method.	Here	is	an	example	which	fills
Map	using	for-loop:

						//create	sink

						DB.TreeMapSink<Integer,String>	sink	=	db

.treeMap("map",	Serializer.INTEGER,Serializer.STRING)

.createFromSink();

						//loop	and	pass	data	into	map

						for(int	lineNum=0;lineNum<10000;lineNum++){

String	line	=	"some	text	from	file"+lineNum;

//add	key	and	value	into	sink,	keys	must	be	added	in	ascending	order

sink.put(lineNum,	line);

						}

						//	Sink	is	populated,	map	was	created	on	background

						//	Close	sink	and	return	populated	map

						BTreeMap<Integer,String>	map	=	sink.create();

Batch	Import

28

Sorted	Table	Map
	SortedTableMap		is	inspired	by	Sorted	String	Tables	from	Cassandra.	It	stores	keys	in	file	(or
memory	store)	in	fixed	size	table,	and	uses	binary	search.	There	are	some	tricks	to	support
variable-length	entries	and	to	decrease	space	usage.	Compared	to		BTreeMap		it	is	faster,
has	zero	fragmentation,	but	is	readonly.

	SortedTableMap		is	read-only	and	does	not	support	updates.	Changes	should	be	applied	by
creating	new	Map	with	Data	Pump.	Usually	one	places	change	into	secondary	map,	and
periodically	merges	two	maps	into	new		SortedTableMap	.

	SortedTableMap		is	read-only.	Its	created	and	filled	with	content	by	Data	Pump	and
Consumer:

//create	memory	mapped	volume

Volume	volume	=	MappedFileVol.FACTORY.makeVolume(file,	false);

//open	consumer	which	will	feed	map	with	content

SortedTableMap.Sink<Integer,String>	sink	=

								SortedTableMap.create(

																volume,

																Serializer.INTEGER,

																Serializer.STRING

).createFromSink();

//feed	content	into	consumer

for(int	key=0;	key<100000;	key++){

				sink.put(key,	"value"+key);

}

//	finally	open	created	map

SortedTableMap<Integer,	String>	map	=	sink.create();

Once	file	is	created,	it	can	be	reopened:

//open	existing		memory-mapped	file	in	read-only	mode

Volume	volume	=	MappedFileVol.FACTORY.makeVolume(file,	true);

																																																									//read-only=true

SortedTableMap<Integer,String>	map	=

								SortedTableMap.open(

																volume,

																Serializer.INTEGER,

																Serializer.STRING

);

Sorted	Table	Map

29

Binary	search
Storage	is	split	into	pages.	Page	size	is	power	of	two,	with	maximal	size	1MB.	First	key	on
each	page	is	stored	on-heap.

Each	page	contains	several	nodes	composed	of	keys	and	values.	Those	are	very	similar	to
BTreeMap	Leaf	nodes.	Node	offsets	are	known,	so	fast	seek	to	beginning	of	node	is	used.

Each	node	contains	several	key-value	pairs	(by	default	32).	Their	organization	depends	on
serializer,	but	typically	are	compressed	together	(delta	compression,	LZF..)	to	save	space.
So	to	find	single	entry,	one	has	to	load/traverse	entire	node.	Some	fixed-length	serializer
(Serializer.LONG...)	do	not	have	to	load	entire	node	to	find	single	entry.

Binary	search	on		SortedTableMap		is	performed	in	three	steps:

First	key	for	each	page	is	stored	on-heap	in	an	array.	So	perform	binary	search	to	find
page.
First	key	on	each	node	can	by	loaded	without	decompressing	entire	node.	So	perform
binary	search	over	first	keys	on	each	node
Now	we	know	node,	so	perform	binary	search	over	node	keys.	This	depends	on
Serializer.	Usually	entire	node	is	loaded,	but	other	options	are	possible	TODO	link	to
serializer	binary	search.

Parameters
	SortedTableMap		takes	key	serializer	and	value	serializers.	The	keys	and	values	are	stored
together	inside	Value	Array	TODO	link	to	serializers.	They	can	be	compressed	together	to
save	space.	Serializer	is	trade-off	between	space	usage	and	performance.

Another	setting	is	Page	Size.	Default	and	maximal	value	is	1MB.	Its	value	must	be	power	of
two,	other	values	are	rounded	up	to	nearest	power	of	two.	Smaller	value	typically	means
faster	access.	But	for	each	page	one	key	is	stored	on-heap,	smaller	Page	Size	also	means
larger	memory	usage.

And	finally	there	is	Node	Size.	It	has	similar	implications	as	BTreeMap	node	size.	Larger
node	means	better	compression,	since	large	chunks	are	better	compressible.	But	it	also
means	slower	access	times,	since	more	entries	are	loaded	to	get	single	entry.	Default	node
size	is	32	entries,	it	should	be	lowered	for	large	values.

Parameters	are	set	following	way

Sorted	Table	Map

30

//create	memory	mapped	volume

Volume	volume	=	MappedFileVol.FACTORY.makeVolume(file,	false);

//open	consumer	which	will	feed	map	with	content

SortedTableMap.Sink<Integer,String>	sink	=

								SortedTableMap.create(

																volume,

																Serializer.INTEGER,	//	key	serializer

																Serializer.STRING			//	value	serializer

)

																.pageSize(64*1024)	//	set	Page	Size	to	64KB

																.nodeSize(8)							//	set	Node	Size	to	8	entries

																.createFromSink();

//feed	content	into	consumer

for(int	key=0;	key<100000;	key++){

				sink.put(key,	"value"+key);

}

//	finally	open	created	map

SortedTableMap<Integer,	String>	map	=	sink.create();

volume.close();

//	Existing	SortedTableMap	can	be	reopened.

//	In	that	case	only	Serializers	needs	to	be	set,

//	other	params	are	stored	in	file

volume	=	MappedFileVol.FACTORY.makeVolume(file,	true);

																																																					//	read-only=true

map	=	SortedTableMap.open(volume,	Serializer.INTEGER,	Serializer.STRING);

Volume
	SortedTableMap		does	not	use		DB		object,	but	operates	directly	on		Volume		(MapDB
abstraction	over	ByteBuffer).	Following	example	show	how	to	construct	various		Volume	
using	in-memory	byte	array	or	memory-mapped	file:

Sorted	Table	Map

31

//create	in-memory	volume	over	byte[]

Volume	byteArrayVolume	=	ByteArrayVol.FACTORY.makeVolume(null,	false);

//create	in-memory	volume	in	direct	memory	using	DirectByteByffer

Volume	offHeapVolume	=	ByteBufferMemoryVol.FACTORY.makeVolume(null,	false);

File	file	=	File.createTempFile("mapdb","mapdb");

//create	memory	mapped	file	volume

Volume	mmapVolume	=	MappedFileVol.FACTORY.makeVolume(file.getPath(),	false);

//or	if	data	were	already	imported,	create	it	read-only

mmapVolume.close();

mmapVolume	=	MappedFileVol.FACTORY.makeVolume(file.getPath(),	true);

																																																																		//read-only=true

Volume	is	than	passed	to		SortecTableMap		factory	method	as	an	parameter.	It	is
recommended	to	open	existing	Volumes	in	read-only	mode	(last	param	is		true)	to
minimize	file	locking	and	simplify	your	code.

Data	Pump	sync	Volume	content	to	disk,	so	file	based		SortedTableMap		is	durable	once	the
	Consumer.finish()		method	exits

Sorted	Table	Map

32

Performance	and	durability
Good	performance	is	result	of	compromise	between	consistency,	speed	and	durability.
MapDB	gives	several	options	to	make	this	compromise.	There	are	different	storage
implementations,	commit	and	disk	sync	strategies,	caches,	compressions...

This	chapter	outlines	performance	and	durability	related	options.	Some	options	will	make
storage	writes	durable	at	expense	of	speed.	Some	other	settings	might	cause	memory
leaks,	data	corruption	or	even	JVM	crash!	Make	sure	you	understand	implications	and	read
Javadoc	on	DBMaker.

Transactions	and	crash	protection
If	store	is	not	closed	properly	and	are	pending	changes	flushed	to	disk,	store	might	become
corrupted.	That	often	happens	if	JVM	process	crashes	or	is	violently	terminated.

To	protect	file	from	corruption,	MapDB	offers	Write	Ahead	Log	(WAL).	It	is	reliable	and
simple	way	to	make	file	changes	atomic	and	durable.	WAL	is	used	by	many	databases
including	Posgresql	or	MySQL.	However	WAL	is	slower,	data	has	to	be	copied	and	synced
multiple	times	between	files.

WAL	is	disabled	by	default.	It	can	be	enabled	with		DBMaker.transactionEnable()	:

DB	db	=	DBMaker

								.fileDB(file)

								.transactionEnable()

								.make();

With	WAL	disabled	(by	default)	you	do	not	have	a	crash	protection.	In	this	case	you	must
correctly	close	the	store,	or	you	will	loose	all	your	data.	MapDB	detects	unclean	shutdown
and	will	refuse	to	open	such	corrupted	storage.	There	is	a	way	to	open	corrupted	store	in
readonly	mode	and	perform	data	rescue.

There	is	a	shutdown	hook	to	close	the	database	automatically	before	JVM	exits,	however
this	does	not	protect	your	data	if	JVM	crashes	or	is	killed.	Use
	DBMaker.closeOnJvmShutdown()		option	to	enable	it.

With	transactions	disabled	you	do	not	have	rollback	capability,		db.rollback()		will	throw	an
exception.		db.commit()		will	have	nothing	to	commit	(all	data	are	already	stored),	so	it	does
the	next	best	thing:	Commit	tries	to	flush	all	the	write	caches	and	synchronizes	the	storage

Performance

33

http://www.mapdb.org/javadoc/latest/mapdb/org/mapdb/DBMaker.Maker.html

files.	So	if	you	call		db.commit()		and	do	not	make	any	more	writes,	your	store	should	be	safe
(no	data	loss)	in	case	of	JVM	crash.

TODO	JVM	write	cache	flush,	versus	system	flush.

Memory	mapped	files	(mmap)
MapDB	was	designed	from	ground	to	take	advantage	of	mmap	files.	However	on	32bit	JVM
mmap	files	are	limited	to	4GB	by	its	addressing	limit.	When	JVM	runs	out	of	addressing
space	there	are	nasty	effects	such	as	JVM	crash.	By	default	we	use	a	slower	and	safer	disk
access	mode	called	Random-Access-File	(RAF).

Mmap	files	are	much	faster	compared	to	RAF.	The	exact	speed	bonus	depends	on	the
operating	system	and	disk	case	management,	but	is	typically	between	10%	and	300%.

Memory	mapped	files	are	activated	with		DBMaker.mmapFileEnable()		setting.

One	can	also	activate	mmap	files	only	if	a	64bit	platform	is	detected:
	DBMaker.mmapFileEnableIfSupported()	.

Mmap	files	are	highly	dependent	on	the	operating	system.	For	example,	on	Windows	you
cannot	delete	a	mmap	file	while	it	is	locked	by	JVM.	If	Windows	JVM	dies	without	closing	the
mmap	file,	you	have	to	restart	Windows	to	release	the	file	lock.

There	is	also	bug	in	JVM.	Mmaped	file	handles	are	not	released	until		DirectByteBuffer		is
GCed.	That	means	that	mmap	file	remains	open	even	after		db.close()		is	called.	On
Windows	it	prevents	file	to	be	reopened	or	deleted.	On	Linux	it	consumes	file	descriptors,
and	could	lead	to	errors	once	all	descriptors	are	used.

There	is	a	workaround	for	this	bug	using	undocumented	API.	But	it	was	linked	to	JVM
crashes	in	rare	cases	and	is	disabled	by	default.	Use		DBMaker.cleanerHackEnable()		to
enable	it.

Here	is	example	with	all	mmap	related	options:

Performance

34

http://bugs.java.com/view_bug.do?bug_id=4724038

DB	db	=	DBMaker

				.fileDB(file)

				.fileMmapEnable()												//	Always	enable	mmap

				.fileMmapEnableIfSupported()	//	Only	enable	mmap	on	supported	platforms

				.fileMmapPreclearDisable()			//	Make	mmap	file	faster

								//	Unmap	(release	resources)	file	when	its	closed.

								//	That	can	cause	JVM	crash	if	file	is	accessed	after	it	was	unmapped

								//	(there	is	possible	race	condition).

				.cleanerHackEnable()

				.make();

//optionally	preload	file	content	into	disk	cache

db.getStore().fileLoad();

File	channel
By	default	MapDB	uses		RandomAccessFile		to	access	disk	storage.	Outside	fast	mmap	files
there	is	third	option	based	on		FileChannel	.	It	should	be	faster	than		RandomAccessFile	,	but
has	bit	more	overhead.	It	also	works	better	under	concurrent	access	(RAF	has	global	lock).

FileChannel	was	causing	problems	in	combination	with		Thread.interrupt	.	If	threads	gets
interrupted	while	doing	IO,	underlying	channel	is	closed	for	all	other	threads.

To	use	FileChannel	use		DBMaker.fileChannelEnable()		option:

DB	db	=	DBMaker

				.fileDB(file)

				.fileChannelEnable()

				.make();

In-memory	mode
MapDB	has	three	in-memory	stores:

On-heap	which	stores	objects	in		Map<recid,Object>		and	does	not	use	serialization.	This
mode	is	very	fast	for	small	datasets,	but	is	affected	by	GC,	so	performance	drops	from	cliff
after	a	few	gigabytes.	It	is	activated	with:

DB	db	=	DBMaker

				.heapDB()

				.make();

Performance

35

Store	based	on		byte[]	.	In	this	mode	data	are	serialized	and	stored	into	1MB	large	byte[].
Technically	this	is	still	on-heap,	but	is	not	affected	by	GC	overhead,	since	data	are	not	visible
to	GC.	This	mode	is	recommended	by	default,	since	it	does	not	require	any	additional	JVM
settings.	Increasing	maximal	heap	memory	with		-Xmx10G		JVM	parameter	is	enough.

DB	db	=	DBMaker

				.memoryDB()

				.make();

Store	based	on		DirectByteBuffer	.	In	this	case	data	are	stored	completely	off-heap.	in	1MB
DirectByteBuffers	created	with		ByteBuffer.allocateDirect(size)	.	You	should	increase
maximal	direct	memory	with	JVM	parameter.	This	mode	allows	you	to	decrease	maximal
heap	size	to	very	small	size	(-Xmx128M).	Small	heap	size	has	usually	better	and	more
predictable	performance.

//	run	with:	java	-XX:MaxDirectMemorySize=10G

DB	db	=	DBMaker

				.memoryDirectDB()

				.make();

Allocation	options
By	default	MapDB	tries	minimize	space	usage	and	allocates	space	in	1MB	increments.	This
additional	allocations	might	be	slower	than	single	large	allocation.	There	are	two	options	to
control	storage	initial	size	and	size	increment.	This	example	will	allocate	10GB	initially	and
then	increment	size	in	512MB	chunks:

DB	db	=	DBMaker

				.fileDB(file)

				.fileMmapEnable()

				.allocateStartSize(10	*	1024*1024*1024)		//	10GB

				.allocateIncrement(512	*	1024*1024)							//	512MB

				.make();

Allocation	Increment	has	side	effect	on	performance	with	mmap	files.	MapDB	maps	file	in
series	of	DirectByteBuffer.	Size	of	each	buffer	is	equal	to	Size	Increment	(1MB	by	default),
so	larger	Size	Increment	means	less	buffers	for	the	same	disk	store	size.	Operations	such
as	sync,	flush	and	close	have	to	traverse	all	buffers.	So	larger	Size	Increment	could
speedup	commit	and	close	operations.

Performance

36

Performance

37

Collection	Layout
Partitioning	in	databases	is	usually	way	to	distribute	data	between	multiple	stores,	tables
etc...	MapDB	has	great	flexibility	and	its	partitioning	is	more	complicated.	So	in	MapDB
partitioning	is	when	collection	is	using	more	than	single	Store,	to	contain	its	state.

For	example		HTreeMap		can	split	key-value	entries	between	multiple	disks,	while	its	Hash
Table	uses	in-memory	Store	and	Expiration	Queues	are	regular	on-heap	collections.

This	chapter	gives	overview	of	most	partitioning	options	in	MapDB.	Details	are	in	separate
chapters	for	each	collection	or	Store.

Hash	Partitioning
HP	is	well	supported	in	HTreeMap	TODO	link.	To	achieve	concurrency	HashMap	is	split	into
segments,	each	segment	is	separate	HashMap	with	its	own	ReadWriteLock.	Segment
number	is	calculated	from	hash.	When	expiration	is	enabled	each	segment	has	its	own
Expiration	Queue.

Usually	HTreeMap	segments	share	single	Store	TODO	link.	But	each	segment	can	have	its
own	Store,	that	improves	concurrency	and	allows	to	shard	HTreeMap	across	multiple	disks.

Range	partitioning
Is	not	currently	supported	in	BTreeMap.

TODO	discus	sharding	based	on	Node	Recid	hash

TODO	investigate	feasibility	in	BTreeMap

Time	of	Update	Partitioning
Large	BTrees	usually	has	slow	updates,	due	to	write	amplification	TODO	chapter	&	link.	In
some	cases	(time	series)	it	makes	sense	to	shard	data	based	on	last	modification.	Each	day
(or	other	interval)	has	its	own	store,	old	data	can	be	removed	just	by	deleting	files.	There	are
various	options	to	handle	modifications,	delete	markers	etc...	MapDB	supports	this	with
SortedTableMap	and	CopyOnWriteMap

TODO	this	could	also	work	on	HTreeMap	(sorted	by	hash)

Layout

38

Partitioning	by	Durability

Durable	commits	are	much	slower	than	non-durable.	We	have	to	move	data	to/from	write-
ahead-log,	sync	files,	calculate	checksums...	Durability	Partitioning	allows	to	minimize	size
of	durable	data,	by	moving	non	essential	data	into	non-durable	store.	Trade	off	is	longer
recovery	time	after	crash.

Good	example	is	BTree.	We	really	only	care	about	Leaf	Nodes,	which	contains	all	key-value
pairs.	Directory	nodes	(index)	can	be	easily	reconstructed	from	Leaf	Nodes.	BTreeMap	can
use	two	stores,	one	with	durable	commits	for	leafs,	second	non-durable	for	directory	nodes.
Pump	than	reconstructs	Directory	Store	in	case	of	crash.

Name?

TODO	HTreeMap	expiration	queues	onheap,	in	memory

TODO	in-memory	indexes	for	HTreeMap	and	BTreeMap

TODO	HTreeMap	IndexTree	onheap

Expiration	Partitioning

TODO	HTreeMap	disk	overflow

Layout

39

Storage	format
This	chapter	is	storage	specification	for	MapDB	files.

File	operations
File	operations	(such	as	file	create,	rename	or	sync)	must	be	atomic	and	must	survive
system	crash.	In	case	of	crash	there	is	recovery	operation	after	restart.	If	file	operation	did
not	finished	it	reverts	everything	into	last	stable	state.	That	means	file	operations	are	atomic
(they	either	succeed	or	fail	without	side	effects).

To	ensure	crash	resistance	and	atomicity	MapDB	relies	on	marker	files.	Those	are	empty
files	created	and	deleted	using	atomic	filesystem	API.	Marker	files	have	the	same	name	as
main	file,	but	with		.$X		suffix.

File	Create

Empty	file	creation	is	atomic	operation,	but	populating	file	with	content	is	not.	MapDB	needs
file	population	to	be	atomic,	and	uses	uses		.$c		marker	file	for	that.

File	creation	sequence:

1.	 create	marker	file	with		File.createNewFile()	
2.	 create	empty	main	file	and	lock	it
3.	 fill	main	file	with	content,	write	checksums
4.	 sync	main	file
5.	 remove	marker	file

In	case	of	recovery,	or	when	file	is	being	opened,	follow	this	sequence:

1.	 open	main	file	and	lock	it,	fail	if	main	file	does	not	exist
2.	 TODO	we	should	check	for	pending	File	Rename	operations	here
3.	 check	if	marker	file	exists,	fail	if	it	exists

In	case	of	failure	throw	an	data	corruption	exception.

Temporary	file	write	open

Format

40

Temporary	file	in	MapDB	is	write-able	file	without	crash	protection	(usually	by	write-ahead-
log).	Compared	to	File	Create	this	file	is	opened	continuously	and	only	closed	on	system
shutdown.	If	file	was	not	closed,	it	most	likely	becomes	corrupted	and	MapDB	will	refuse	to
reopen	in.

File	Create	sequence	is	also	used	for	temporary	file	without	crash	protection.	In	that	case
marker	file	stays	while	the	main	file	is	opened	for	write.	If	there	is	an	crash,	recovery
sequence	will	find	marker	file,	assume	that	main	file	was	not	closed	correctly	and	will	refuse
to	open	it.	In	this	case	main	file	should	be	discarded	and	recreated	from	original	data	source.
Or	user	can	remove	marker	file	and	try	his	luck.

File	Rename

File	Rename	is	used	in	StoreDirect	compaction.	Store	is	recreated	in	new	file,	and	old	file	is
replaced	with	new	content.	The	'old	file'	is	file	which	is	being	replaced,	it	will	be	deleted
before	File	Rename.	The	'new	file'	replaces	old	file	and	has	its	name	changed.

MapDB	needs	file	move	to	be	atomic,	and	supported	in	range	variety	of	platforms.	There	are
following	problems:

	java.nio.file.Files#move		is	atomic,	but	it	might	fail	in	some	cases
Opened	memory	mapped	file	on	Windows	can	not	be	renamed.	MappedByteBuffer
handle	is	not	released	until	GC	or	cleaner	hack.	Sometimes	handle	is	not	released	even
after	JVM	exit,	and	OS	restart	is	required.
There	should	be	fallback	option,	when	we	can	not	close	file	Volume,	but	copy	content
between	Volumes.

File	rename	has	following	sequence:

synchronize	and	close	new	file,	release	its	c	marker
create	'c'	marker	on	old	file
create	'r'	marker	on	new	file
delete	old	file
use		java.nio.file.Files#move		in	atomic	or	non-atomic	way.	But	rename	operation	must
be	finished	and	synced	to	disk.
delete	r	marker	for	new	file
delete	c	marker	on	old	file
open	old	file	(with	new	content)

TODO	this	does	not	work	on	windows	with	memory	mapped	files.	We	need	plan	B	with
Volume	copy,	without	closing	them.

Recovery	sequence	is	simple.	If	following	files	exist:

Format

41

c	marker	for	old	file
r	marker	for	new	file
new	file	(under	its	name	before	rename)

Than	discard	the	old	file	if	present	and	continue	rename	sequence	from	step	'delete	old	file'

Rolling	file

Rolling	file	is	a	single	file,	but	continuously	replaced	with	new	content.	To	make	content
replacement	atomic,	the	content	of	file	is	written	into	new	file,	synced	and	then	old	file	is
deleted.	File	name	has	'.N'	suffix,	where	N	is	sequential	number	increased	with	each
commit.	Rolling	file	is	used	in		StoreTrivial	.

There	is	following	sequence	for	updating	rolling	file	with	new	content.	Ther	is	'old	file'	with
original	content	and	number	N	and	'new	file'	with	number	N+1.

Create	c	marker	for	new	file,	fail	if	it	already	exists
Populate	new	file	with	content,	sync	and	close
Remove	C	marker	for	new	file
Delete	the	old	file

And	there	is	following	sequence	for	recovery

List	all	files	in	parent	directory,	find	file	with	highest	number	without	C	marker,	lock	and
open	it.
Delete	any	other	files	and	their	markers	(only	files	associated	with	the	rolling	file,	there
might	be	more	files	with	different	name)

File	sync

On	commit	or	close,	write	cache	needs	to	be	flushed	to	disk,	in	MapDB	this	is	called	sync.
We	also	need	to	detect	corrupted	files	if	system	crashes	in	middle	of	write.

There	are	following	ways	to	sync	file:

'c'	file	marker	(see	File	Rename).
File	checksum:	Before	the	file	sync	is	called,	checksum	of	entire	file	is	calculated	and
written	into	file	header.	Corruption	is	detected	by	matching	file	checksum	from	header
with	file	content.	This	is	slow	because	entire	file	has	to	be	read
Commit	seal:	Uses	double	file	sync,	but	does	not	require	checksum	calculation.	First
file	is	synced	with	zero	checksum	in	file	header.	Than	commit	seal	is	written	into	file
header,	and	file	is	synced	again.	Valid	commit	seal	means	that	file	was	synced.	TODO:
commit	seal	is	calculated	based	on	file	size

Format

42

File	header
Every	non	empty	file	created	by	MapDB	has	16	byte	header.	It	contains	header,	file	version,
bitfield	for	optional	features	and	optional	checksum	for	entire	file.

Bites:

0-7	constant	value	0x4A
8-15	type	of	file	generated.	I
16-31	format	version	number.	File	will	not	be	opened	if	format	is	too	high
32-63	bitfield	which	identifies	optional	features	used	in	this	format.	File	will	not	be
opened	if	unknown	bit	is	set.
64-127	checksum	of	entire	file.

File	type

can	have	following	values:

0	unused
1	StoreDirect	(also	shared	with	StoreWAL)
2	WriteAheadLog	for	StoreWAL
10	SortedTableMap	without	multiple	tables	(readonly)
11	SortedTableMap	with	multiple	tables
12	WriteAheadLog	for	SortedTableMap

Feature	bitfield

has	following	values.	It	is	8-byte	long,	number	here	is	from	least	significant	bit.

0	encryption	enabled.	Its	upto	user	to	provide	encryption	type	and	password
1-2	checksum	used.	0=no	checksum,	1=XXHash,	2=CRC32,	3=user	hash.
TODO	more	bitfields

Checksum

is	either	XXHash	or	CRC32.	It	is	calculated	as		(checksum	from	16th	byte	to
end)+vol.getLong(0)	.	If	checksum	is		0		the		1		value	is	used	instead.		0		indicates
checksum	is	disabled.

StoreDirect

Format

43

StoreDirect	uses	update	in	place.	It	keeps	track	of	free	space	released	by	record	deletion
and	reuses	it.	It	has	zero	protection	from	crash,	all	updates	are	written	directly	into	store.
Write	operations	are	very	fast,	but	data	corruption	is	almost	guaranteed	when	JVM	crashes.
StoreDirect	uses	parity	bits	as	passive	protection	from	returning	incorrect	data	after
corruption.	Internal	data	corruption	should	be	detected	reasonably	fast.

StoreDirect	allocates	space	in	'pages'	of	size	1MB.	Operations	such	as		readLong	,
	readByte[]		must	be	aligned	so	they	do	not	cross	page	boundaries.

Head

Header	in	StoreDirect	format	is	composed	by	number	of	8-byte	longs.	Each	offset	here	is
multiplied	by	8

1.	 header	and	format	version	from	file	header	TODO	chapter	link
2.	 file	checksum	from	file	header	TODO	chapter	link
3.	 header	checksum	is	updated	every	time	header	is	modified,	that	can	detect	corruption

quite	fast
4.	 data	tail	points	to	end	location	where	data	were	written	to.	Beyond	this	is	empty	(except

index	pages).	Parity	4	with	no	shift	(data	offset	is	multiple	of	16)
5.	 max	recid	maximal	allocated	recid.	Parity	4	with	shift.
6.	 file	tail	file	size.	Must	be	multiple	of	PAGE_SIZE	(1MB).	Parity	16
7.	 not	yet	used
8.	 not	yet	used

This	is	followed	by	Long	Stack	Master	Pointers.	Those	are	used	to	track	free	space,	unused
recids	and	other	information.

	8		-	Free	recid	Long	Stack,	unused	Recids	are	put	here
	9		-	Free	records	16	-	Long	Stack	with	offsets	of	free	records	with	size	16
	10		-	Free	records	32	-	Long	Stack	with	offsets	of	free	records	with	size	32	etc...
...snip	4095	minus	3	entries...
	8+4095		-	Free	records	65520	-	Long	Stack	with	offsets	of	free	records	with	size	65520
bytes	(maximal	unlinked	record	size).	4095	=	65520/16	is	number	of	Free	records	Long
Stacks.
	8+4095+1		until		8+4095+4		-	Unused	long	stacks	-	Those	could	be	used	latter	for	some
other	purpose.

Index	page

Format

44

Rest	of	the	zero	page	(up	to	offset	1024*1024)	is	used	as	Index	Page	(sometimes	it	is
refered	as	Zero	Index	Page).	Offset	to	next	Index	Page	(First	Index	Page)	is	at		8+4095+4+1	,
Zero	Index	Page	checksum	is	at		8+4095+4+2	.	First	recid	value	is	at		8+4095+4+3	.

Index	page	starts	at		N*PAGE_SIZE	,	except	Zero	Index	Page	which	starts	at		8	*	(8+4095	+	4
+	1)	.	Index	page	contains	at	start:

zero	value	(offset		page+0)	is	pointer	to	next	index	page,	Parity	16
first	value	(offset		page+8)	in	page	is	checksum	of	all	values	on	page	(add	all	values)
TODO	seed?	and	not	implemented	yet

Rest	of	the	index	page	is	filled	with	index	values.

Index	Value

Index	value	translates	Record	ID	(recid)	into	offset	in	file	and	record	size.	Position	and	size
of	record	might	change	as	data	are	updated,	that	makes	index	tables	necessary.	Index
Value	is	8	byte	long	with	parity	1

bite	49-64	-	16	bite	record	size.	Use		val>>48		to	get	it
bite	5-48	-	48	bite	offset,	records	are	aligned	to	16	bytes,	so	last	four	bites	can	be	used
for	something	else.	Use		val&MOFFSET		to	get	it
bite	4	-	linked	or	null,	indicates	if	record	is	linked	(see	section	TODO	link	to	section).
Also		linked	&&	size==0		indicates	null	record.	Use		val&MLINKED	.
bite	3	-	indicates	unused	(preallocated	or	deleted)	record.	This	record	is	destroyed	by
compaction.	Use		val&MUNUSED	
bite	2	-	archive	flag.	Set	by	every	modification,	cleared	by	incremental	backup.	Use
	val&MARCHIVE	

bite	1	-	parity	bit

Linked	records

Maximal	record	size	is	64KB	(16bits).	To	store	larger	records	StoreDirect	links	multiple
records	into	single	one.	Linked	records	starts	with	Index	Value	where	Linked	Record	is
indicates	by	a	bit.	If	this	bit	is	not	set,	entire	record	is	reserved	for	record	data.	If	Linked	bit	is
set,	than	first	8	bytes	store	Record	Link	with	offset	and	size	of	the	next	part.

Structure	of	Record	Link	is	similar	to	Index	Value.	Except	parity	is	3.

bite	49-64	-	16	bite	record	size	of	next	link.	Use		val>>48		to	get	it
bite	5-48	-	48	bite	offset	of	next	record	aligned	to	16	bytes.	Use		val&MOFFSET		to	get	it

Format

45

bite	4	-	true	if	next	record	is	linked,	false	if	next	record	is	last	and	not	linked	(is	tail	of
linked	record).
Use		val&MLINKED	

bite	1-3	-	parity	bits

Tail	of	linked	record	(last	part)	does	not	have	8-byte	Record	Link	at	beginning.

Long	Stack

Long	Stack	is	linked	queue	of	longs	stored	as	part	of	storage.	It	supports	two	operations:	put
and	take,	longs	are	returned	in	FIFO	order.	StoreDirect	uses	this	structure	to	keep	track	of
free	space.	Space	allocation	involves	taking	long	from	stack.	There	are	more	stacks,	each
size	has	its	own	stack,	there	is	also	stack	to	keep	track	of	free	recids.	For	space	usage	there
are	in	total		64K	/	16	=	4096		Long	Stacks	(maximal	non-linked	record	size	is	64K	and
records	are	aligned	to	16	bytes).

Long	stack	is	organized	similar	way	as	linked	record.	It	is	stored	in	chunks,	each	chunks
contains	multiple	long	values	and	link	to	next	chunk.	Chunks	size	varies.	Long	values	are
stored	in	bidirectional-packed	form,	to	make	unpacking	possible	in	both	directions.	Single
value	occupies	from	2	bytes	to	9	bytes.	TODO	explain	bidi-packing,	for	now	see	DataIO
class.

Each	Long	Stack	is	identified	by	master	pointer,	which	points	to	its	last	chunk.	Master
Pointer	for	each	Long	Stack	is	stored	in	head	of	storage	file	at	its	reserved	offset	(zero
page).	Head	chunk	is	not	linked	directly,	one	has	to	fully	traverse	Long	Stack	to	get	to	head.

Structure	of	Long	Stack	Chunk	is	as	follow:

byte	1-2	total	size	of	this	chunk.
byte	3-8	pointer	to	previous	chunk	in	this	long	stack.	Parity	4,	parity	is	shared	with	total
size	at	byte	1-2.
rest	of	chunk	is	filled	with	bidi-packed	longs	with	parity	1

Master	Link	structure:

byte	1-2	tail	pointer,	points	where	long	values	are	ending	at	current	chunk.	Its	value
changes	on	every	take/put.
byte	3-8	chunk	offset,	parity	4.

Adding	value	to	Long	Stack	goes	as	follow:

1.	 check	if	there	is	space	in	current	chunk,	if	not	allocate	new	one	and	update	master
pointer

2.	 write	packed	value	at	end	of	current	chunk

Format

46

3.	 update	tail	pointer	in	Master	Link

Taking	value:

1.	 check	if	stack	is	not	empty,	return	zero	if	true
2.	 read	value	from	tail	and	zero	out	its	bits
3.	 update	tail	pointer	in	Master	Link
4.	 if	tail	pointer	is	0	(empty),	delete	current	chunk	and	update	master	pointer	to	previous

page

Write	Ahead	Log
WAL	protects	storage	from	data	corruption	if	transactions	are	enabled.	Technically	it	is
sequence	of	instructions	written	to	append-only	file.	Each	instruction	says	something	like:
'write	this	data	at	this	offset'.	TODO	explain	WAL.

WAL	is	stored	in	sequence	of	files.

WAL	lifecycle

open	(or	create)	WAL
replay	if	unwritten	data	exists	(described	in	separate	section)
start	new	file
write	instructions	as	they	come
on	commit	start	new	file
sync	old	file.	Once	sync	is	done,	exit	commit	(it	is	blocking	operation,	until	data	are	safe)
once	log	is	full,	replay	all	files
discard	logs	and	start	over

WAL	file	format

byte	1-4	header	and	file	number
byte	5-8	CRC32	checksum	of	entire	log	file.	TODO	perhaps	Adler32?
byte	9-16	Log	Seal,	written	as	last	data	just	before	sync.
rest	of	file	are	instructions
end	of	file	-	End	Of	File	instruction

WAL	Instructions

Each	instruction	starts	with	single	byte	header.	First	3	bits	indicate	type	of	instruction.	Last	5
bits	contain	checksum	to	verify	instruction.

Format

47

Type	of	instructions:

1.	 end	of	file.	Last	instruction	of	file.	Checksum	is		bit	parity	from	offset	&	31	
2.	 write	long.	Is	followed	by	8	bytes	value	and	6	byte	offset.	Checksum	is		(bit	count	from

15	bytes	+	1)&31	

3.	 write	byte[].	Is	followed	by	2	bytes	size,	6	byte	offset	and	data	itself.	Checksum	is		(bit
count	from	size	+	bit	count	from	offset	+	1)&31	

4.	 skip	N	bytes.	Is	followed	by	3	bytes	value,	number	of	bytes	to	skip	.	Used	so	data	do
not	overlap	page	size.	Checksum	is		(bit	count	from	3	bytes	+	1)&31	

5.	 skip	single	byte.	Skip	single	byte	in	WAL.	Checksum	is		bit	count	from	offset	&	31	
6.	 record.	Is	followed	by	packed	recid,	than	packed	record	size	and	an	record	data.	Real

size	is	+1,	0	indicates	null	record	TODO	checksum	for	record	inst
7.	 tombstone.	Is	followed	ba	packed	recid.	.	Checksum	is		bit	count	from	offset	&	31	
8.	 preallocate.	Is	followed	ba	packed	recid.	.	Checksum	is		bit	count	from	offset	&	31	
9.	 commit.	TODO	checksum
10.	 rollback.	TODO	checksum

Sorted	Table	Map
	SortedTableMap		uses	its	own	file	format.	File	is	split	into	page,	where	page	size	is	power	of
two	and	maximal	page	size	1MB.

Each	page	has	header.	Header	size	is	bigger	for	zero	page,	because	it	also	contains	file
header.	TODO	header	size.

After	header	there	is	a	series	of	4-byte	integers.

First	integer	is	number	of	nodes	on	this	page	(N).	It	is	followed	by	N*2	integers.	First	N
integers	are	offsets	of	key	arrays	for	each	node.	Next	N	integers	are	offsets	for	value	arrays
for	each	node.	Offsets	are	relative	to	page	offset.	The	last	integer	points	to	end	of	data,	rest
of	the	page	after	that	offset	is	filled	with	zeroes.

Offsets	of	key	array	(number	i)	are	stored	at:		PAGE_OFFSET	+	HEAD_SIZE	+	I*4	.

Offsets	of	value	array	(number	i)	are	stored	at:		PAGE_OFFSET	+	HEAD_SIZE	+	(NODE_COUNT	+	I)
*	4	.

Format

48

	Introduction
	Quick Start
	DB
	HTreeMap
	BTreeMap
	Composite Keys
	Batch Import

	Sorted Table Map
	Performance
	Layout
	Format

