
OSG Virtual Planets User Guide

2

Info: http://gvsig.org/web/projects/gvsig-commons/osgvp

Author: Rafael Gaitán <rgaitan@ai2.upv.es>

Author: Jordi Torres <jtorres@ai2.upv.es>

Author: Marı́a Ten <mten@ai2.upv.es>

Author: Jesús Zarzoso <jzarzoso@ai2.upv.es>

Date: 2008-12-22, 13:02

Revision: 1

Description: OSG Virtual Planets User Guide.

Contents

1 Introduction 7

1.1 System Requirements . 8

1.2 Download and Installation . 9

2 Getting Started 13

2.1 Running the examples . 13

2.2 Configure Eclipse with osgVP . 15

3 OSGVP Core 21

3.1 Managing the scenegraph . 21

3.2 Loading and saving scenes . 22

3.3 Mathematic Tools . 23

3.4 Positioning a Node . 23

3.5 Defining Geometries . 24

3.5.1 Overview . 24

3.5.2 Geometry creation example . 25

3.6 StateSets . 26

3

4 CONTENTS

3.7 Textures and Materials . 27

3.7.1 Loading images . 28

3.8 Updating a Node . 30

3.9 GLSL Programming . 30

4 OSGVP Viewer 33

4.1 Overview . 33

4.2 Creating a Viewer . 34

4.3 Camera manipulators . 35

4.4 Display settings . 35

4.4.1 MultiSampling . 35

4.4.2 Stereo Settings . 36

4.5 Intersections . 37

4.6 Printing utilities . 37

5 OSGVP Planets 41

5.1 The Planet View . 41

5.1.1 Create a planet viewer . 42

5.1.2 Set the scene data in a planet viewer 43

5.1.3 Using camera manipulators . 44

5.2 Define a planet . 46

5.3 Layer management . 48

5.3.1 Adding layers . 50

5.3.2 Request layers . 51

5.3.3 Removing layers . 52

5.3.4 Reorder layers . 52

5.3.5 Visibility ranges . 53

CONTENTS 5

5.3.6 Other layer properties . 53

5.4 Planet utilities . 54

6 OSGVP Manipulator 57

6.1 The Manipulator node . 57

6.1.1 Types of dragger . 58

6.1.2 Adding a Node . 58

6.1.3 Other available methods . 58

6.2 Setting the Manipulator Handler . 60

6.2.1 Example: Manipulate an object . 60

6.3 Managing the Scene with EditionManager 61

6.3.1 Methods implemented by EM . 62

6.3.2 Implementing the picking functionality 63

6.4 The GeometryManipulator node . 65

7 OSGVP Features 67

7.1 Overview . 67

7.2 Points . 68

7.3 Polylines . 70

7.4 Polygons . 71

7.5 Text . 72

7.6 Extruded Geometries . 73

8 Latest changes in OSGVirtualPlanets version 2.2 75

8.1 JAVA SIDE . 75

8.1.1 OSGVPPlanets::TerrainViewer . 75

8.1.2 OSGVPPlanets::CustomCameraManipulator 77

6 CONTENTS

8.1.3 OSGVPPlanets::TerrainCameraManipulator 77

8.1.4 OSGVPPlanets::Terrain . 77

9 Appendix 79

9.1 Compilation Requirements . 79

9.2 Stable Version Build Guide (osgVP-2.1.7) 81

9.2.1 Compiling with assisted compilation 81

9.2.2 Executing with assited compilation 82

9.2.3 Compile without assisted compilation 83

9.2.4 Executing without assited compilation 84

1
Introduction

Welcome to the OSG Virtual Planets (osgVP) Users Guide. This manual serves as a
reference to the osgVP library, and collecting documentation and examples provided
with the code.

As you probably know, any software application requires some effort to learn.
We’ve done our best to minimize the learning curve while making the process as en-
joyable as possible. This document is a short programming guide that covers the basic
and essential elements of the osgVP API.

In this section, you will be able to see the main structure of osgVP library and a
brief introduction of supported features and architectural goals.

The osgVP is a set of libraries built specially for GIS development. As you can
see in the image shown in Figure 1, it runs over OpenSceneGraph, an OpenSource
cross-platform graphics toolkit for the development of high-performance graphics ap-
plications. Communication between layers is done through JNI. The classes belongs
to this library are implemented by native calls (from Java to C++).

The osgVP could be interpreted as an abstraction layer between JAVA-GIS applica-
tions and the render system. So, osgVP API is offered in JAVA. The following libraries
were implemented.

7

8 Introduction

• osgVP-core: involves necessary elements for building and optimize the scene
graph. Also includes Mathematic tools to handle vectorial data.

• osgVP-viewer: with this library users are able to create a scenegraph OSG viewer
inside Java application, using JPanel or a integrated Canvas. Jogl is used in this
library just to start a render context. There are several classes to take control over
the Camera or Intersections...

• osgVP-planets: this library allows developers to create Planet specific scene graphs
and manages geometry generation and memory paging. Also controls texture
and elevation layer.

• osgVP-features: serves to draw vectorial data such as text, points, lines, poly-
gons, simple geometric figures and extruded figures.

• osgVP-manipulator: manages the edition of transformations associated to 3D
objects. The library also manages modifications over Geometries.

1.1 System Requirements

-Minimum system requirements: Pentium IV / 512 MB RAM / Graphics card OpenGL
1.5 compatible.

1.2 Download and Installation 9

-Recommended: Pentium IV / 1 GB RAM / Graphics card OpenGL 2.0 compatible.

-Operative Systems: Windows XP, Linux and Mac OS X.

Notes:

1. In the case Linux OS is used, the libc library installed should be
version 2.4 or higher. Lower versions (for instance, in Ubuntu
Dapper) will cause problems.

2. Tested in Windows XP, Ubuntu Linux (Hardy Heron 8.04 release)
and Mac OS X (on Mac Intel: Mac Book Pro and iMac 20, both
“core 2 duo”).

1.2 Download and Installation

First of all, download and install OpenSceneGraph by following the instructions at
http://www.openscenegraph.org Suggest that you also download the OpenScene-
Graph data sets, follow the instructions for setting up your environment variables
and verify that you can run the OpenSceneGraph examples before moving on.

Download osgVP SDK from Downloads section in the osgVP site. This package
contains native libraries whose format depends on your Operative System (.so for
linux, .dll for windows and .dylib for os X) and necessary jar files to compile and run
your osgvp projects and compiled examples framework.

The SDK package contains:

• binaries directory (˜/osgVP/binaries): Native binaries per platform and the re-
quired precompiled dependencies.

• lib directory (˜/osgVP/lib): Jar files.

• product directory (˜/osgVP/product): Compiled examples ready to be launched.

Resources required for carrying out osgvp projects:

• Jar files:

http://www.openscenegraph.org

10 Introduction

– gluegen-rt-1.1.0.jar

– jogl-1.1.0.jar

– libNative-1.0.jar

– libosgvp-core-2.x.x.jar

– libosgvp-examples-2.x.x.jar

– libosgvp-features-2.x.x.jar

– libosgvp-manipulator-2.x.x.jar

– libosgvp-planets-2.x.x.jar

– libosgvp-viewer-2.x.x.jar

• Native libraries:

– libjniosgvpcore.*

– libjniosgvpmanipulator.*

– libjniosgvpviewer.*

– libosgvpfeatures.*

– libosgvpplanets.*

– libjniosgvpfeatures.*

– libjniosgvpplanets.*

– libosgvpcore.*

– libosgvpmanipulator.*

– libosgvpviewer.*

Once you have downloaded the libraries, there are several forms to include it on
to your project, depending how you are developing.

If your are developing with Eclipse, maybe the easy-way is creating a “lib” di-
rectory inside your project and include the jar files into this directory, also create a
“binaries” directory and add native libraries into this directory. Then add “lib” direc-
tory to the java build path, and to execute is necessary to add the correct environment
variables (see Getting Started section).

If you want to use our library in your project you can get java binaries using
maven, it’s necessary to add this dependencies section in your pom.xml.

<dependencies>

1.2 Download and Installation 11

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-core</artifactId>

<version>2.1.7</version>

</dependency>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-features</artifactId>

<version>2.1.7</version>

</dependency>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-manipulator</artifactId>

<version>2.1.7</version>

</dependency>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-planets</artifactId>

<version>2.1.7</version>

</dependency>

<dependency>

<groupId>org.gvsig.osgvp.libosgvp</groupId>

<artifactId>libosgvp-viewer</artifactId>

<version>2.1.7</version>

</dependency>

</dependencies>

and also need to add a new remote repository in your pom.xml

<repositories>

...

<repository>

<id>gvsig-http-repository</id>

<url>http://downloads.gvsig.org/pub/gvSIG-desktop/

maven-repository</url>

</repository>

</repositories>

12 Introduction

The native binaries are not deployed in maven so you need to use the librarı́es
inside SDK.

2
Getting Started

The osgVP has an ever growing number of examples available for developers to learn
from. Following is a guide to getting these examples running.

2.1 Running the examples

Once the osgVP SDK is installed the next step is to run the runexamples script located
in ˜/osgVP/product. If your OS is Windows you shall execute run-Examples.bat, in
case you are running on linux or on Mac osX you must execute run-Examples.sh.

All binaries and precompiled dependencies are placed inside binaries directory, so
if the installation was success you should view the examples framework and you will
be able to execute any example in the framework.

If all is ok and previous process is correct, the image shown in Figure 2.1 should
be similar to your examples execution.

13

14 Getting Started

Figure 2.1: Examples framework. Running basicViewer Example in wired mode.

2.2 Configure Eclipse with osgVP 15

2.2 Configure Eclipse with osgVP

1. Create a new Java application with this simple example:

package org.examples.Main;

import java.awt.BorderLayout;

import java.awt.Component;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import javax.swing.JFrame;

import javax.swing.JPanel;

import org.gvsig.osgvp.PositionAttitudeTransform;

import org.gvsig.osgvp.Vec3;

import org.gvsig.osgvp.osgDB;

import org.gvsig.osgvp.exceptions.node.NodeException;

import org.gvsig.osgvp.features.Text;

import org.gvsig.osgvp.planets.CustomTerrainManipulator;

import org.gvsig.osgvp.planets.Planet;

import org.gvsig.osgvp.planets.PlanetViewer;

import org.gvsig.osgvp.planets.CustomTerrainManipulator.

MouseButtonMaskType;

import org.gvsig.osgvp.viewer.Camera;

import org.gvsig.osgvp.viewer.IViewerContainer;

import org.gvsig.osgvp.viewer.ViewerFactory;

public class Main {

private static IViewerContainer canvas3d;

public static void main(String[] args) {

JPanel jContentPane = new JPanel();

jContentPane.setLayout(new BorderLayout());

16 Getting Started

JFrame jFrame = new JFrame();

jFrame.setContentPane(jContentPane);

jFrame.setTitle("Create Planet View Example");

jFrame.setSize(600, 400);

jFrame.setDefaultCloseOperation(JFrame.

EXIT ON CLOSE);

/**

* Create a planet viewer

*/

PlanetViewer planetViewer = null;

try {
planetViewer = new PlanetViewer();

} catch (NodeException e) {
// TODO Auto-generated catch block

e.printStackTrace();

}

/**

* Define the viewer type and add to the canvas

*/

canvas3d = ViewerFactory.getInstance().

createViewer(ViewerFactory.

VIEWER TYPE.CANVAS VIEWER,

planetViewer);

jContentPane.add((Component) canvas3d,

BorderLayout.CENTER);

ViewerFactory.getInstance().startAnimator();

/**

* Add a planet to the scene data

*/

2.2 Configure Eclipse with osgVP 17

Planet earth = null;

try {
earth = new Planet();

planetViewer.addPlanet(earth);

} catch (NodeException e2) {
// TODO Auto-generated catch block

e2.printStackTrace();

}

/**

* Put the camera in the scene

*/

Camera cam = new Camera();

cam.setViewByLookAt(earth.

getRadiusEquatorial() * 5.0,

0, 0, 0, 0, 0, 0, 0, 1);

planetViewer.setCamera(cam);

/**

* Add a cow in the north pole

*/

double factor = earth.

getRadiusEquatorial() / 20.0;

try {
PositionAttitudeTransform transform =

new PositionAttitudeTransform();

transform.addChild(osgDB.

readNodeFileFromResources("/cow.ive"));

transform.setScale(new Vec3(factor,factor,

factor));

transform.setPosition(new Vec3(0,0,

earth.getRadiusPolar()*1.1));

planetViewer.addSpecialNode(transform);

} catch (NodeException e1) {

18 Getting Started

// TODO Auto-generated catch block

e1.printStackTrace();

}

/**

* Adding some information in the HUD

*/

try {
Text info = new Text();

info.setText("Planet View Example");

planetViewer.addNodeToHUD(info);

} catch (NodeException e1) {
// TODO Auto-generated catch block

e1.printStackTrace();

}

/**

* Customizing the manipulator

*/

CustomTerrainManipulator manip =

(CustomTerrainManipulator) planetViewer.

getCameraManipulator();

manip.addAzimButtonMask(MouseButtonMaskType.

LEFT MOUSE BUTTON, ’a’);

manip.setMinCameraDistance(earth.

getRadiusEquatorial());

manip.setMaxCameraDistance(earth.

getRadiusEquatorial()*5.0);

manip.setEnabledNorthOrientation(true);

jFrame.setVisible(true);

jFrame.addWindowListener(new WindowAdapter() {

2.2 Configure Eclipse with osgVP 19

public void windowClosing(WindowEvent e) {
ViewerFactory.getInstance().

stopAnimator();

canvas3d.dispose();

}
});

}

}

1. Configure Java Build Path of the project. Add the jars of osgVP as external
jars (˜/osgVP/lib/*.jar).

2. Configure the Launcher (Open Run Dialog) and create a new Java Appli-
cation with this configuration:

• Name: SimpleExample

• Main Tab:

– Project: simple-example

– Main Class: org.example.Main

• Environment Tab:

– Linux: LD LIBRARY PATH=/home/myaccount/osgVP/binaries/linux32/lib

– Windows: PATH=C:\osgVP\binaries\win32\bin
– MacOSX: DYLD LIBRARY PATH=/home/myaccount/osgVP/binaries/mac/lib

3. Run the new launcher, if all is ok, then you should see the image shown in
the Figure 2.2.

20 Getting Started

Figure 2.2: Simple example

3
OSGVP Core

The following section is dedicated to explain how the osgVP-core library works. In
particular, adding or removing nodes to the graph, positioning or updating a node,
loading and appliying textures or materials, etc. The osgVP-core library also contains
mathematical tools necessaries to manage the scenegraph.

3.1 Managing the scenegraph

Adding and/or removing nodes to the scene should be easy if you know the basics of
scenegraphs. Usually the root of the scene is a Group node. This object is capable to
add or remove nodes to itself by a simple call. Following lines of code tries to illustrate
the process.

Group root = new Group();// creates the root of the scene

try {
Node dummy = new Node(); // creates a dummy node

root.addChild(dummy); //Adds node to root group

21

22 OSGVP Core

} catch (NodeException e) {
Util.logger.severe(e.toString());

return null;

}

In the same way you can remove nodes from groups.

try {
root.removeChild(dummy);

} catch (NodeException e) {
Util.logger.severe(e.toString());

return null;

}

The rest of the public interface of Nodes and Groups are easy to manage. The name
of the methods are quite illustrative for people who have the neccessary know-how of
scenegraphs. For more information you can look up in the Javadocs.

3.2 Loading and saving scenes

The osgVP-core library is capable to load and save scenes or nodes in the same format
as OpenSceneGraphs does it. It includes .osg .ive .3ds or/and any format supported
in the plugins of OpenSceneGraph. The way to load/save nodes or scenes is using
osgDB class. In the next piece of code a Node is loaded from disk, and added to the
root of scene.

public Node createScene() {
root = new Group();

try {
g.addChild(osgDB.readNodeFileFromResources("/cow.ive"));

} catch (NodeException e1) {
e1.printStackTrace();

}
return root;

}

3.3 Mathematic Tools 23

In the same way you should be able to persist nodes using de call

osgDB.WriteNodeFile("/cow.ive");

3.3 Mathematic Tools

Mathematic tools are included in this library. They are neccessary to manage some
behaviours of nodes in the scene, like positioning, rotating, scaling, etc. You can do
this through Vector, Matrix or Quaternion operations. Using this entities depends on
your maths skills. The public Api of these classes is extensive and lets the user to do
almost any operation.

The defined mathematics classes are:

• Vec2, Vec3 and Vec4: Usually Vec3 are used to define vertex positions
and Vec4 to define colors. Since Java 1.5 you can use Vector<T>, this
is the way to create arrays of Vecs.

• Matrix: Everybody who works in CG knows the importance of matri-
ces in the view process. Matrix operations could serve for changing
the perspective or the projection of the view, etc. For more informa-
tion you can consult any manual of OpenGL.

• Quat: This entity is used to acumulate rotations. It could be used in
spherical interpolations,etc. The use of this class requires some ad-
vanced maths skills.

• EllipsoidModel: Serves to do changes between coordinate systems
using an ellipsoid model to do the operations.

3.4 Positioning a Node

Once we know how to use Maths tools it’s quite easy to implement affine transfor-
mations. It can be done using the structures PositionAttitudeTransform. Indeed this
transformations, the class Autotransform could be used to implement Billboarding or
autoscaling to screen.

Let’s see some code:

24 OSGVP Core

Group root= new Group();

//create node

AutoTransform at = new AutoTransform();

at.addChild(osgDB.readNodeFileFromResources("/cow.ive"));

//affine transformations

at.setPosition(new Vec3(0, 0, -2));

at.setScale(new Vec3(0.8, 1, 0.8));

at.setRotation(90, new Vec3(0, 0, 1));

//add transform to the scene

root.addChild(at);

If we want to do billboarding we must write this line:

at.setAutoRotateMode(AutoTransform.AutoRotateMode.ROTATE TO CAMERA);

You can see some implementation in the example “Camera Matrices” of the exam-
ples framework.

3.5 Defining Geometries

This section covers some of the methods that can be used to create geometric primi-
tives. There are several ways to deal with geometry objects: at the lowest level loosly
wraps OpenGL primitives; an intermediate level using open scene graph basic shapes
and at a higher level, loaded from files. This section covers the lowest level. This
method provides the greatest flexibility and requies the most effort. Normally at the
scene graph level geometry is loaded from files. Most of the effort of tracking vertices
is handled by file loaders.

3.5.1 Overview

A brief explanation of the following classes is helpful:

3.5 Defining Geometries 25

-Geodes: The geode class is derived from the ’node’ class. Nodes (and thus geodes)
can be added to a scene graph as leaf nodes. Geode instances can have any number of
’drawables’ associated with them.

-Drawables: The base class ’drawable’ is a pure virtual class with six concrete de-
rived classes. (reference) The ’geometry’ class can have vertex (and vertex data) asso-
ciated with it directly, or can have any number of ’primitiveSet’ instances associated
with it. Vertex and vertex attribute data (color, normals, texture coordinates) is stored
in arrays. Since more than one vertex may share the same color, normal or texture
coordinate, and array of indices can be used to map vertex arrays to color, normal or
texture coordinate arrays.

-PrimitiveSet: This class loosely wraps the OpenGL drawing primitives - POINTS,
LINES, LINE STRIP, LINE LOOP,... QUADS,... POLYGON.

3.5.2 Geometry creation example

The following section of code sets up a viewer to see the scene we create, a ’group’
instance to serve as the root of the scene graph, a geometry node (geode) to collect
drawables, and a geometry instance to associate vertices and vertex data. The follow-
ing code is from “Geometry example” of the examples framework.

//Creation of Instances

Geometry geometry = new Geometry();

Geode g = new Geode();

// Arrays of normals vertices andd colors

Vector<Vec3> vertices = new Vector<Vec3>();

Vector<Vec4> color = new Vector<Vec4>();

Vector<Vec3> normal = new Vector<Vec3>();

//Fill in the vertex array

vertices.add(new Vec3(-1.02168, -2.15188e-09, 0.885735));

vertices.add(new Vec3(-0.976368, -2.15188e-09, 0.832179));

vertices.add(new Vec3(-0.873376, 9.18133e-09, 0.832179));

vertices.add(new Vec3(-0.836299, -2.15188e-09, 0.885735));

vertices.add(new Vec3(-0.790982, 9.18133e-09, 0.959889));

26 OSGVP Core

//Normal array

normal.add(new Vec3(0.0, -1.0, 0.0));

//Color array

color.add(new Vec4(1.0f, 1.0f, 0.0f, 1.0f));

//Setting the arrays into geometry

geometry.setVertexArray(vertices);

geometry.setColorArray(color);

//The value in the first element of the color array

//will be used in all the vertices

geometry.setColorBinding(Geometry.AttributeBinding.BIND OVERALL);

geometry.setNormalArray(normal);

//The value in the first element of the normal array

//will be used in all the vertices

geometry.setNormalBinding(Geometry.AttributeBinding.BIND OVERALL);

try{
//We can decide the primitive to draw the geometry

geometry.addPrimitiveSet(new DrawArrays(DrawArrays.Mode.POINTS, 0,

geometry.getVertexArray().size()));

...

If you want to use textures you must define the texture coordinates array. For dig
in PrimitiveSets and Geometries you can take a look to the OpenSceneGraph website.

3.6 StateSets

A scene graph manager traverses a scene graph to determine what geometry needs to
be sent to the grapics pipeline for rendering. During this traversal, the scene graph
manager can also collect information on how that geometry should be rendered. This
information is stored in osg::StateSet instances. StateSets contain lists of OpenGL at-
tribute/value pairs. These StateSets can be associated with nodes of the scenegraph.
During pre-render traversal, StateSets are accumulated from the root to leaf nodes.
State attributes that are not changed at a node are simply inherited from above.

3.7 Textures and Materials 27

A few additional features allow more control and flexibility. A state’s attribute
value can be set to OVERRIDE. This means that all the children of that node - regard-
less of what the children’s attribute value is - will inherit the parent node’s attribute
value. This OVERRIDE can be, well, over-ridden. If one of the child nodes set that
attributes value to PROTECTED, they can set this attribute value regardless of the
parent’s setting.

With StateSets you can switch the lighting mode, or activate blending, fog, texture
and material modes, etc. The normal way to do that is creating or getting the StateSet
of a node and then activate the mode you want. In the example of code below Material
mode is activated.

g = new Group();

//create the stateset

StateSet st= g.getOrCreateStateSet();

//activating Material mode

Material m = new Material();

st.setMaterial(m, Node.Mode.ON);

For more information about StateSet modes you can look up in the OpenScene-
Graph website or in the Javadoc of osgVP.

3.7 Textures and Materials

As in OpenGL, you can apply textures or materials to an object in the scene. The way
to do that is activating the desired stateset mode associated to the object as explained
before. In case of materials you can define it as in OpenGL, let’s see an example:

Sphere sphere = new Sphere();

//create material

Material m = new Material();

try {
//settings

m.setDiffuse(Material.Face.FRONT, new Vec4(1.0,

(float) i / 10.0f, 0.6f, 1.0f));

m.setAmbient(Material.Face.FRONT, new Vec4(0.9f, 0.8f, 0.6f,

28 OSGVP Core

1.0f));

m.setSpecular(Material.Face.FRONT, new Vec4(0.9f, 0.8f, 0.6f,

1.0f));

m.setEmission(Material.Face.FRONT AND BACK, new Vec4(1, 0, 0,

1));

m.setShininess(Material.Face.FRONT, 85);

m.setTransparency(Material.Face.FRONT, (float) i / 15.0f);

//apply material

sphera.getOrCreateStateSet().setMaterial(m, Node.Mode.ON);

...

}

If you want to use textures, the object receiver of these textures must have the
TexCoord vector defined. If TexCoord vector is not defined, the texture will not be
applied correctly. To load Textures the library osgVP-core offers the classes Texture2D
and Image. The procedure to activate the corresponding stateset is very similar to the
material case.

try{
Sphere sphere = new Sphere();

Texture2D tex = new Texture2D();

//activates the texture mode in stage 0

sphera.getOrCreateStateSet().setTexture2D(tex, 0, Node.Mode.ON);

....

Once you have activated the corresponding stateset mode, now you have to load
one or several images in the texture instance.

3.7.1 Loading images

There are two basic ways to load images through the public interface of the class Im-
age. First way is loading images of a .jpg .bmp or whatever kind of image file sup-
ported by OpenSceneGraph. The other way is using BufferedImage of Java. The class
image is prepared to convert images from BufferedImages to osgVP images. Coding
first way should look like next lines.

try{

3.7 Textures and Materials 29

...

Texture2D tex = new Texture2D();

//We have image file in a resources folder

File texture = Util.extractFromURL(this.getClass().getResource(

"/test.jpg"));

//load the image

Image im = new Image(texture.getPath());

//setting the image in the texture instance

tex.setImage(im);

...

If you want to load textures using BufferedImages you can implement a similar
code like the written below.

try{
...

Texture2D tex = new Texture2D();

Image im = new Image();

//charging the imagefile in a BufferedImage

BufferedImage bufferim = ImageIO.read(new File(Util.extractFromURL(

this.getClass().getResource("/planet.png"))

.getAbsolutePath()));

im.setBufferedImage(bufferim);

tex.setImage(im);

In a similar way you can convert images from osgVP to BufferedImages of Java.

try {
....

File texture = Util.extractFromURL(this.getClass().getResource(

"/earth.gif"));

Image im = new Image(texture.getAbsolutePath());

BufferedImage bufferim = im.getBufferedImage();

...

30 OSGVP Core

3.8 Updating a Node

Updating a Node is a very usual process in CG applications. Th scenegraph gives us
the way to do it. Your main class must implement the UpdateNodeListener Interface.
Implemeting this interface forces you to write the update method. Is in this method
where you have to do whatever you want with your node. You can take a look to the
example AxisExample of examples framework. Let’s see how it works.

public class AxisExample extends AbstractCoreExample

implements UpdateNodeListener {
//declare the axis

Axis ejes = new Axis();

//Atention!! You must set the Listener

ejes.setUpdateListener(this);

...

//Do updating stuff

public void update(Node node) {
ejes.update(getCanvas3D().getOSGViewer().getCamera());

}

3.9 GLSL Programming

OpenGL Shading Language allows programers to write custom pixel and vertex shaders.
For more information on shading languages - including minimum hardware and soft-
ware requirements - see www.opengl.org. The classes Program and Shader allow
users to apply these shaders as part of a StateSet to selected subtrees within a scene
graph. In this manual we explain nothing about writting shaders, but we explain
how to apply these shaders to a Node of our scenegraph. Using a custom vertex or
fragment shader in osgVP involves the following basic classes:

• Program - application level abstraction of the OpenGL Shading Language glPro-
gramObject. Instance of the Program class can be associated with StateSets and
enabled using the StateSet class.Enabling a program object for a stateset results
in drawables within that stateset being rendered using the Program’s shaders.

3.9 GLSL Programming 31

• Shader - application level abstraction of the OpenGL Shading Language glShader-
Object. This class manages loading and compiling shader source code. Instances
of the Shader class can be assigned to one or more Program instances. There are
two types of shader objects: Shader.Type.FRAGMENT and Shader.Type.VERTEX.

The steps to create an application that uses an OpenGL pixel and fragment shader
are as follows:

• Create a Program instance

• Create VERTEX and FRAGMENT instances of the Shader class

• Load and compile the shader source

• Add the shaders to the Program instance

• Associate and enable the Program instance as part of a StateSet.

The code implemented in the GLSL Program Example of examples framework
looks like this:

//create the instances

Program prog= new Program();

Shader shad = new Shader();

Shader shadfrag = new Shader();

//set type of shader

shad.setType(Shader.Type.VERTEX);

shadfrag.setType(Shader.Type.FRAGMENT);

//Load and compile the shader source

File source = Util.extractFromURL(this.getClass().getResource(

"/marble.vert"));

File sourcefrag = Util.extractFromURL(this.getClass().getResource(

"/marble.frag"));

shad.loadShaderSourceFromFile(source.getPath());

shadfrag.loadShaderSourceFromFile(sourcefrag.getPath());

//adding shaders to program instance

prog.addShader(shad);

prog.addShader(shadfrag);

//activate the stateset

mynode.getOrCreateStateSet().setProgram(prog, Node.Mode.ON);

32 OSGVP Core

4
OSGVP Viewer

In the following lines you might find the way to create a viewer and to be able to
render your scenegraph from different views. Doing high resolution printing, mak-
ing your viewer stereo or getting your scene multisampled are some of the features
explained in this section.

4.1 Overview

A difficulty users have with OpenSceneGraph is complexity of building, with the
number of external dependencies being a barrier to entry. Also when learning the
API having multiple API’s to learn adds to steepness of the learning curve - if we can
provide a native viewer library all using the same matrix, memory management, and
coding style and design then hopefully it’ll become easier to learn.

With this library you are able to create different types of Viewer, including Com-
positeViewers and Offscreen Viewers. Offscreen Viewers are useful in the print proc-
cess. They are implemented with pbuffers. Composite Viewers are util when we need
different views of the same scene.

33

34 OSGVP Viewer

4.2 Creating a Viewer

First of all, you must create a new IViewerContainer variable to access the canvas and
viewer properties.

private static IViewerContainer canvas3d;

Later the OSGViewer instance can be created and assigned to the canvas. The first
parameter of the createViewer method specifies the viewer type. A viewer can be a
CANVAS VIEWER or a JPANEL VIEWER type. In the second parameter of the method
you have to assign the recently created planet viewer. A planet viewer can be added
into a JPanel and integrated in your application.

JPanel jContentPane = new JPanel();

jContentPane.setLayout(new BorderLayout());

OSGViewer Viewer = new OSGViewer();

canvas3d = ViewerFactory.getInstance().createViewer(

ViewerFactory.VIEWER TYPE.CANVAS VIEWER,

Viewer);

jContentPane.add((Component) canvas3d, BorderLayout.CENTER);

ViewerFactory.getInstance().startAnimator();

Then we must attach a scene graph to it, and the viewer allows it to render. The
way to do that is through a method called setSceneData in OSGViewer to add nodes
into the scene graph.

Before your application finalize you must call the dispose method of the viewer and
stop the animator.

jFrame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

ViewerFactory.getInstance().stopAnimator();

canvas3d.dispose();

}
});

4.3 Camera manipulators 35

4.3 Camera manipulators

A camera manipulator define how to move the camera in the scene.You can attach a
camera manipulator to the OSGViewer. There are different types of CameraManipula-
tors and it should be easy to implement your own CameraManipulator. Each manip-
ulator modify the way that the mouse controls the camera position. The manipulators
we implemented are :

• DriveManipulator: is a camera manipulator which provides drive-
like functionality.By default, the left mouse button accelerates, the
right mouse button decelerates, and the middle mouse button (or left
and right simultaneously) stops dead.

• FlightManipulator:is a MatrixManipulator which provides flight simulator-
like updating of the camera position & orientation.By default, the left
mouse button accelerates, the right mouse button decelerates, and the
middle mouse button (or left and right simultaneously) stops dead.

• TerrainManipulator: is a camera manipulator done to move the per-
spective in a Terrain scenerio.

• TrackballManipulator: is the manipualtor created and attached to viewer
by deafult. The TrackballManipulator class receives updates of mouse
events in the form of GUIEventAdapter instances.

4.4 Display settings

This class serves, among other capabilities, to change the features of the viewer de-
pending on the display type you want to use. The different kinds of displays that you
can choose are: monitor, powerwall, reality center and head mounted display. Other
thing you can do with this entity is apply multisampling to reduce aliasing.

4.4.1 MultiSampling

According to the OpenGL GL ARB multisample specification, “multisampling” refers
to a specific optimization of supersampling. The specification dictates that the ren-
derer evaluate one color, stencil, etc. value per pixel, and only “truly” supersample

36 OSGVP Viewer

the depth value. (This is not the same as supersampling, but by the OpenGL 1.5 speci-
fication[2], the definition had been updated to include fully supersampling implemen-
tations as well.) In graphics literature in general, “multisampling” refers to any special
case of supersampling where some components of the final image are not fully super-
sampled. Most modern GPUs are capable of this form of antialiasing, but it greatly
taxes resources such as texture bandwidth and fillrate. Let’s see some example:

//create the viewer

OSGViewer viewer= new OSGViewer();

DisplaySettings ds= new DisplaySettings();

//set multisamples

ds.setNumMultiSamples(4);

//set display settings to the viewer

viewer.setDisplaySettings(ds);

4.4.2 Stereo Settings

The osgVP has support for anaglyphic stereo (i.e. red/green or red/cyan glasses),
quad buffered stereo (i.e. active stereo using shutter glasses, or passive stereo using
polarized projectors & glasses) and horizontal and vertical split window stereo imple-
mentations. Almost all OSG applications have the potential for stereo support simply
by setting the relevant environmental variables, or using DisplaySettings class. Lit-
tle or no code changes will be required, the support is handled transparently inside
the sceneview handling of rendering. To acomplish stereo settings from code you can
follow next lines.

//create the viewer

OSGViewer viewer= new OSGViewer();

DisplaySettings ds= new DisplaySettings();

//enabling stereo

ds.setStereo(true);

//set the stereo preferred mode

ds.setStereoMode(DisplaySettings.StereoMode.ANAGLYPHIC);

//set display settings to the viewer

viewer.setDisplaySettings(ds);

For more information about making stereo viewing you can look at www.openscenegraph.org.

4.5 Intersections 37

4.5 Intersections

Typically, 3D applications need to support user interaction or selection, such as pick-
ing. The osgVP-viewer library efficiently supports picking with some classes that test
the scene graph for intersection. Next piece of code demonstrates how to obtain the
intersections from a ray traced from View point.

Intersections hits = getCanvas3D().getOSGViewer().rayPick(

manager, arg0.getX(), arg0.getY(),

Manipulator.NEG MANIPULATOR NODEMASK);

if (hits.containsIntersections()) {
Intersection hit = polytopeHits.getFirstIntersection();

...

}

In the same way we are able to calculate intersections inside a polytope traced from
the view point.

Intersections polytopeHits = getCanvas3D().getOSGViewer().rayPick(

manager, arg0.getX(), arg0.getY(),

Manipulator.NEG MANIPULATOR NODEMASK);

if (polytopeHits.containsIntersections()) {
Intersection hit = polytopeHits.getFirstIntersection();

...

}

4.6 Printing utilities

For High Resolution Printing we decided to take several tile images in memory and
then build a collage begining from this tile images. The way to do that is using an
OffscreenViewer.

printViewer = new OSGViewer();

38 OSGVP Viewer

printViewer.setUpViewerInBackground(0, 0, getCanvas3D().getWidth(),getCanvas3D().getHeight());

printViewer.setSceneData(cow.osg);

The first step was create a tiled view of the scene. Then we have to take a image of
this tiles in memory.

The class PrintUtilities makes for us this work, we can decide wich is the size in
pixels of final image. This image is converted to a BufferedImage in Java.

PrintUtilities util = new PrintUtilities();

util.setViewer(printViewer);

BufferedImage s = util.getHighResolutionImage(g, viewerCam, 5600, 2700);

As you can see, you can create big images in memory and then convert it to Java
images, following a tiling process all done in background.

4.6 Printing utilities 39

Figure 4.1: Tiled scene.

40 OSGVP Viewer

5
OSGVP Planets

In this section, you will learn how to build planets and terrains using osgVP-planets
library and how to visualize and manipulate them in your own application. Next, we
present you the layer management for textures and elevations as well as the editable
layer properties.

5.1 The Planet View

Since a planet is a node into the scene graph, you can use a viewer of osgVP-viewer
library or a default viewer of OpenSceneGraph to visualize it. But the planet special
characteristics like the ellipsoidal geometry, the coordinate system or the huge size of
the terrain, forces to use a special viewer adapted to the planet needs.

There is a specific PlanetViewer class inside the osgVP-planets library. This viewer
inherit his methods of the OSGViewer class defined in the osgVP-viewer library and
re-implements the scene graph cull visitor to solve some issues with the Z-buffer. To
use this planet viewer for terrain visualization is highly recommended instead of the
other OpenSceneGraph based viewers.

41

42 OSGVP Planets

5.1.1 Create a planet viewer

The procedure to create a planet viewer is similar to the procedure to create an OS-
Gviewer. First of all, you must create a new IViewerContainer variable to access the
canvas and viewer properties.

private static IViewerContainer canvas3d;

Later the PlanetViewer instance can be created and assigned to the canvas. The
first parameter of the createViewer method specifies the viewer type. A viewer can be a
CANVAS VIEWER or a JPANEL VIEWER type. In the second parameter of the method
you have to assign the recently created planet viewer. A planet viewer can be added
into a JPanel and integrated in your application.

JPanel jContentPane = new JPanel();

jContentPane.setLayout(new BorderLayout());

PlanetViewer planetViewer = new PlanetViewer();

canvas3d = ViewerFactory.getInstance().createViewer(

ViewerFactory.VIEWER TYPE.CANVAS VIEWER,

planetViewer);

jContentPane.add((Component) canvas3d, BorderLayout.CENTER);

ViewerFactory.getInstance().startAnimator();

When a planet viewer is created, three new nodes are created and added to the
scene graph. A osgVP-viewer viewer only has a method called setSceneData to add
nodes into the scene graph, but in the planet viewer the scene data is composed by
three void nodes: planets, special nodes and hud nodes with their set and get meth-
ods. The methods setSceneData and getSceneData are still available in the planet viewer
but is recommended don’t use them because you have to keep the structure of the
scene graph. A default special manipulator for planet navigation called CustomTer-
rainManipulator is added to the viewer. We will analyze the methods for add nodes to
scene graph and how to use a manipulator in depth in the next sections.

We would like to remind you that a planet viewer inherits his methods from the
OSGViewer class defined in the library osgVP-viewer. You can use this methods to

5.1 The Planet View 43

modify the viewer properties. Before your application finalize you must call the dis-
pose method of the viewer and stop the animator.

jFrame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

ViewerFactory.getInstance().stopAnimator();

canvas3d.dispose();

}
});

5.1.2 Set the scene data in a planet viewer

The scene data in a planet viewer must be distributed in three different nodes accord-
ing to the type of visualization of the node. All terrain nodes must be included in the
planets node of the scene data because the planet viewer needs this nodes to compute
some intersections with them. This intersections are used in the planet manipulator of
the viewer and to compute the near and the far planes of the view.

The nodes added in the special group aren’t used in the compute of the intersec-
tions for manipulate the view. You can use this node to add some 3D geometry in the
surface of your terrain.

Finally the HUD node let you to add some nodes in the display that are always
visible like text or images with information useful for the users.

You can add some nodes into the scene graph to test your new viewer. For exam-
ple, you can create a new planet with the default constructor (it builds the Earth) and
add to the scene graph.

44 OSGVP Planets

Planet earth = new Planet();

planetViewer.addPlanet(earth);

By default, the position of the camera when you build a viewer is inside the planet.
You must move the camera to a new position for view the whole planet.

Camera cam = new Camera();

cam.setViewByLookAt(earth.getRadiusEquatorial() * 5.0, 0,

0, 0, 0, 0, 0, 0, 1);

planetViewer.setCamera(cam);

Now, we can put some 3D models in the planet surface. For example, you can put
a OpenSceneGraph model called cow.ive in the North Pole. Adding a matrix transform
to the model let you set the scale and the position in the scene graph.

double factor = earth.getRadiusEquatorial() / 20.0;

PositionAttitudeTransform transform =

new PositionAttitudeTransform();

transform.addChild(osgDB.readNodeFileFromResources(

"/cow.ive"));

transform.setScale(new Vec3(factor,factor,factor));

transform.setPosition(new Vec3(0,0,

earth.getRadiusPolar()*1.1));

planetViewer.addSpecialNode(transform);

Finally you can add some information always visible in the screen. For example,
you can add some text in the HUD node.

Text info = new Text();

info.setText("Planet View Example");

planetViewer.addNodeToHUD(info);

5.1.3 Using camera manipulators

A camera manipulator define how to move the camera in the scene. By default, a
PlanetViewer set a CustomTerrainManipulator. This camera manipulator is specific for

5.1 The Planet View 45

terrain navigation. It defines three basic movements: Zoom, Azimut and Roll. The
first one, let you to move closer or away from the planet surface. The second one, let
you to change the angle of inclination and the last let you move around the planet
surface.

By default, there are a combination of button mouse and keys for each movement.
You can add more keys and mouse combinations for movement with the methods: ad-
dAzimButtonMask, addRollButtonMask and addZoomButtonMask and remove them with:
removeAzimButtonMask, removeRollButtonMask and removeZoomButtonMask. The mouse-
Mask parameter of this functions is defined by the MouseButtonMaskType class. For
example, if you want to add a new combination of the left mouse button and the a key
for change the Azimut you can use the following line:

manip.addAzimButtonMask(

MouseButtonMaskType.LEFT MOUSE BUTTON, ’a’);

For remove the last combination you can use the remove method:

manip.removeAzimButtonMask(manip.getAzimButtonMaskSize()-1);

Aslo you can change the speed of the movement for the Zoom and Roll actions
with the methods setRollFactor and setZoomFactor (there are are get methods for every
set method). Furthermore, there are set and get methods for specify the minimum and
maximum distance of the camera from the center of the planet: setMinCameraDistance,
setMaxCameraDistance, getMinCameraDistance and getMaxCameraDistance. Finally, you
have some methods to force the orientation of the planet to the North: setEnabled-
NorthOrientation or forceNorthOrientation.

manip.setMinCameraDistance(earth.getRadiusEquatorial());

manip.setMaxCameraDistance(earth.getRadiusEquatorial()*5.0);

manip.setEnabledNorthOrientation(true)

Finally your example should look like the following image.

46 OSGVP Planets

5.2 Define a planet

When you create a planet with the default constructor it build an ellipsoidal Earth
planet in a cartesian coordinate system. But you can specify some parameters in the
constructor to create a lot of different planets.

When you would define a planet you can specify his name in the first parameter
of the constructor. The second one specify the type of the coordinate system, it could
be Geocentric for ellipsoidal terrains in cartesian coordinate system, Geographic for
plane terrains in cartesian coordinate systems and Projected for plane terrains in carte-
sian or UTM coordinate systems. The third parameter define the format of the next
parameter (the coordinate system name) and usually is set to WKT. The next param-
eter is the coordinate system name, in a Geocentric or Geographic terrain is usually
set to “EPSG:4326” and in a Projected terrain it must be set in UTM coordinates like
“EPSG:23030”. After the coordinate system name you have to set four parameters that
indicates the extent of the terrain (always in the units of the coordinate system speci-
fied in the coordinate system name). Finally the two last parameters are the equatorial
and the polar radius of the planet respectively.

Planet mars = new Planet("Mars",

CoordinateSystemType.GEOCENTRIC, "WKT", "EPSG:4326",

-180.0, -90.0, 180.0, 90.0, 3396200, 3376200)

5.2 Define a planet 47

Alternatively, you can define a default planet and use the set and get methods
to change some parameters. The following code is equivalent to the code of the last
paragraph.

Planet mars = new Planet();

mars.setPlanetName("Mars");

mars.setCoordinateSystemType(CoordinateSystemType.GEOCENTRIC);

mars.setCoordinateSystemFormat("WKT");

mars.setCoordinateSystemName("EPSG:4326");

mars.setExtent(-180.0, -90.0, 180.0, 90.0);

mars.setRadiusEquatorial(3396200);

mars.setRadiusPolar(3376200);

Using this methods you can create a lot of differents planets. For example, you can
created a projected view of the autonomous region of Valencia. First you must create
a planet viewer with the methods explained in the previous section. Then you can
add a new projected planet specifying the dimensions in the appropriate coordinate
system and add to the planet viewer.

private static Planet planet;

planet = new Planet("Valencia",

Planet.CoordinateSystemType.PROJECTED, "WKT",

"EPSG:23030", 0, 4000000, 1000000, 5000000,

6378137.0, 6356752.3142);

planetViewer.addPlanet(planet);

Don’t forget to put the camera in the correct position to see all the terrain.

double difx = planet.getExtent().getWidth() / 2.0d;

double dify = planet.getExtent().getHeight() / 2.0d;

double posx = planet.getExtent().getX() + difx;

double posy = planet.getExtent().getY() + dify;

double height = Math.sqrt(difx * difx + dify * dify)

* 4.0f;

48 OSGVP Planets

Camera cam = new Camera();

cam.setViewByLookAt((float) posx, (float) posy,

(float) height, (float) posx, (float) posy,

0f, 0f, 1f, 0f);

planetViewer.setCamera(cam);

All of the explained methods can be changed in real time but you have to keep in
mind the correlation between the coordinate system and the units of the extent. For
example, you can add a key listener to the example for change the size of the terrain
extent.

canvas3d.addKeyListener(new KeyListener() {
public void keyPressed(KeyEvent e) {

if (e.getKeyCode() == KeyEvent.VK 1) {
planet.setExtent(0, 4000000,

1000000, 5000000);

} else if (e.getKeyCode() == KeyEvent.VK 2) {
planet.setExtent(0, 4000000,

2000000, 5000000);

}
}

}});

Finally your example should look like the figure 4.1 when the key 1 is pressed and
like the figure 4.2 when the key 2 is pressed.

5.3 Layer management

The class Planet give you the necessary methods to afford the layer management. You
can add raster layers like textures or elevations in your terrain. For add a layer, we
need a planet before. You can create a default planet and add to the planet viewer
with the methods explained in previous sections. Don’t forget to place the camera in
the correct position.

5.3 Layer management 49

Figure 5.1: Projected planet sample with the extent of the autonomous region of Valencia.

Figure 5.2: Projected planet sample after change the size of his extent.

50 OSGVP Planets

5.3.1 Adding layers

The method addTextureLayer lets you to add layers to the planet. The data of this layer
is used to set textures over the terrain. For example, you can add a key listener to add
some texture layers when the key 1 is pressed. This methods require the extent of the
layer like a Rectangle2D class. In a Rectangle2D the first and second parameters are
the position of the top left corner (minimum x and y) and the third and fourth are the
length of the x and y dimensions.

canvas3d.addKeyListener(new KeyListener() {
public void keyPressed(KeyEvent e) {

if (e.getKeyCode() == KeyEvent.VK 1) {
Rectangle2D extent = new

Rectangle2D.Double(-180,

-90, 360, 180);

planet.addTextureLayer(extent);

}
}

}});

If you would to use the raster data to change the elevation of the terrain, you must
use the method addHeightfield instead of the other one. Add this method to the key
listener.

if (e.getKeyCode() == KeyEvent.VK 2) {
Rectangle2D extent = new Rectangle2D.Double(-180,

-90, 360, 180);

planet.addHeightfieldLayer(extent);

}

Remember, when you add a layer to the planet, the planet put the layer in the top
of the planet surface and his order number is the number of layers less one. The order
numbers of texture and elevation has different numerations because the planet has
separated lists of layer for each one.

5.3 Layer management 51

5.3.2 Request layers

When you add a layer in the planet, you are only notifying the planet to request the
layer data in other words this methods only adds the layer in the planet list of layer.
Then the planet compute which regions are visible and request the necessary data
for them. You must overwrite the methods provided in the RequestLayerListener and
attach the listener to the planet. For example, you can put a test image when the
planet request the layer data with the methods setTexture and setHeightfield. The first
parameter of both methods is the pointer to the terrain node that request the data and
the third is the number of the layer. You can get both of the RequestLayerEvent. The
second one of the both methods is the path to the file that contains the requested data
for the extension was given in the RequestLayerEvent

planet.setRequestLayerListener(new RequestLayerListener() {

public void requestElevationLayer(

RequestLayerEvent evt) {
planet.setHeightfield(evt.getTerrainNode(),

"test.tiff", evt.getOrder());

}

public void requestTextureLayer(

RequestLayerEvent evt) {
planet.setTexture(evt.getTerrainNode(),

"test.jpg", evt.getOrder());

}

}});

Alternatively, you can create a layer manager class that implements the methods of
the RequestLayerListener and set to the planet later. Notice the importance of this meth-
ods. A planet send a event to the RequestLayerListener with the necessary information
to give him the requested data. This information is stored int the RequestLayerEvent.

A RequestLayerEvent has methods to get some information about the layer and the
terrain that requested the data.

52 OSGVP Planets

• getTerrainNode: returns the pointer to the terrain node. You must use this
pointer to send the data to the terrain node with the setTexture and setHeightfield
methods.

• getOrder: returns the number of the layer. You must use to obtain the data of the
correct layer and to send the data with the setTexture and setHeightfield methods.

• getMinX, getMinY, getMaxX, getMaxY: return the extent of the data requested.
You have to implement or use some driver to get the data of this extent from
remote services or local files and store in a cached file.

• getLevel, getX, getY: return the identifier of the terrain node. It’s useful to use
this identifier for the file name of the requested data to create a cache filesystem.

5.3.3 Removing layers

When a layer is no longer used you can remove it with the methods removeTextureLayer
and removeHeightfieldLayer. You only have to specify the number of the layer that you
would be removed. For example, you can add this methods to the key listener to
remove the last layer added of each type.

if (e.getKeyCode() == KeyEvent.VK 3) {
planet.removeTextureLayer(planet

.getNumberLayerTexture()-1);

}

if (e.getKeyCode() == KeyEvent.VK 4) {
planet.removeHeightfieldLayer(planet

.getNumberLayerElevation()-1);

}

5.3.4 Reorder layers

Also you can move up and down the layers using specific methods called reorderTex-
tureLayer and reorderElevationLayer. You must specify the actual position and the new
one. For example, you can move the first layer to the top of the planet surface.

5.3 Layer management 53

if (e.getKeyCode() == KeyEvent.VK 5) {
planet.reorderTextureLayer(0, planet

.getNumberLayerElevation()-1);

}

if (e.getKeyCode() == KeyEvent.VK 6) {
planet.reorderElevationLayer(0, planet

.getNumberLayerElevation()-1);

}

5.3.5 Visibility ranges

Sometimes is interesting only show a layer when you are really close to the planet
or when you are far of it. You can establish some visibility ranges to reproduce this
behavior with some planet methods.

• setMinTextureRange, setMinElevationRange: they establish the minimum level
of range necessary to see the layer.

• setMaxTextureRange, setMaxElevationRange: they establish the maximum level
of range since the layer is no longer visible.

• setMaxTextureResolution, setMaxElevationResolution: they are useful to set
the maximum level of the data resolution. Since this level no more data is re-
quested but the textures are propagated to the higher resolution ranges.

The first parameter of this methods is always the order number of the layer and
the second one is the level. Notice that the level is a integer that indicates the number
of subdivisions of the mesh and represents the quality of the rendered data.

5.3.6 Other layer properties

There are some methods to change layer properties in the Planet class. The next meth-
ods are available for texture and elevations layers and you must specify the order
number of the layer to apply them.

54 OSGVP Planets

• setEnabledTextureLayer, setEnabledHeightfieldLayer: let you enable or dis-
able the layer. When a layer is disabled, the planet doesn’t request data for it
and the layer it isn’t visible. The second parameter of the method it’s a boolean
value set to true for enabling and false for disabling it.

• invalidateTextureLayer, invalidateHeightfieldLayer: you can use them to force
the planet to reload all the data for the selected layer. They are useful if you are
using cached files and one or more of them has been modified.

Finally, you can change the opacity only for the texture layer using the method
setTextureOpacityLayer. The second parameter is a float between 0 and 1 and establish
the transparency level. For elevations you can change the vertical exaggeration with
the setVerticalExaggerationLayer. You must put values between 0 and 1 to reduce the
elevations or put values bigger than 1 to exaggerate them. You can add this methods
to the key listener of your example to change the properties of the first layer.

if (e.getKeyCode() == KeyEvent.VK 7) {
planet.setTextureOpacityLayer(0, 0.5f);

}

if (e.getKeyCode() == KeyEvent.VK 8) {
planet.setVerticalExaggerationLayer(0, 20.0f);

}

Finally, your example should look like the following image.

5.4 Planet utilities

The Planet class has other useful methods. In this section we explain them to give
more functionality to your application.

• getZoom, getLongitude, getLatitude, getAltitude: they give you the position of
the camera in the unities of the coordinate system of the planet.

• convertXYZToLatLongHeight, convertLatLongHeightToXYZ: you can convert
coordinates between the XYZ and latitud, longitud and height using the real

5.4 Planet utilities 55

ellipsoid of the planet. It’s very important to set the correct radius in all of the
type planets for a good performance of these methods. They are very useful to
put some 3D objects over the planet surface because all of the nodes put in the
special node scene data are in XYZ coordinate system.

• setEnabledSkirts: enable and disable the skirts of the subregions of the terrain.
This skirts are used to prevent see holes in the terrain surface.

• setEnabledSubdivision: enable and disable the terrain subdivision in subre-
gions of bigger data quality. If you disable the subdivision, you have poor data
quality.

• setSubdivisionFactor: sets the subdivision factor of the mesh of the terrain. A
higher value can collapse your system.

56 OSGVP Planets

6
OSGVP Manipulator

In this section, you will learn how to use the classes provided by the library osgVP-
manipulator. You will learn how to add a manipulator to a node of the scene-graph
and how to transform it, as well how to manage all the manipulators present in the
scene. We provide the same manipulators implemented in OSG, as well as a new
type of manipulator that allows the transformation of individual vertex of a given
geometry.

6.1 The Manipulator node

To add a Manipulator to an existing node is a very simple task. First of all, you have
to create an instance of the class Manipulator. There are two possibilities to create a
Manipulator.

public Manipulator();

public Manipulator(String draggerType);

The only difference between these two constructors is what type of manipulator
will be created. The argument draggerType specifies this type. If no argument is passed,
the default manipulator will be created.

57

58 OSGVP Manipulator

6.1.1 Types of dragger

Here is a list with all the draggers available in this version of the library:

Scale1DDragger: Scales the object over an axis.

Scale2DDragger: Scales the object over two given axis.

ScaleAxisDragger: Scale the object over the three axis.

TabBoxDragger: Scales the object through the eight corners of a box containing
the object. Also permits to translate the object picking on one of the six planes which
form this box. This is the default manipulator.

TabPlaneDragger: Scales and translates the object through a plane.

TabPlaneTrackballDragger: Scales and translates the object through a plane. Also,
rotates the object through a sphere.

TrackballDragger: Rotates the object through a sphere that contains it.

Translate1DDragger: Translates the object over an axis.

Translate2DDragger: Translates the object over two given axis.

TranslateAxisDragger: Translates the object over the three axis.

TranslatePlaneDragger: Translates the object over a plane.

6.1.2 Adding a Node

Once a Manipulator has been created, the method

public boolean addChild(Node child);

inserts the given node inside the manipulator. This method can be used as many
times as wanted, therefore a Manipulator can transform several objects at the same
time.

6.1.3 Other available methods

public void setDragger(String draggerType);

6.1 The Manipulator node 59

Changes the dragger type.

public Node getChild(int i);

Returns the node at the position i.

public int getNumChildren();

Returns the number of nodes being manipulated at the moment.

public boolean removeChild(Node child);

Removes the child

public boolean removeChildren();

Removes all the chidren inside the Manipulator.

public Group getSelection();

Returns the subgraph with all the objects transformed.

public boolean removeChild(int i);

Removes the child number i of the Manipulator

public void setChild(int i, Node node);

Puts the node as the chid number i of the Manipulator.

public String getDragger();

Returns the dragger type.

60 OSGVP Manipulator

6.2 Setting the Manipulator Handler

Once one or more nodes have been added to a manipulator, you can instantiate the
class ManipulatorHandler in order to interact with them.

ManipulatorHandler();

Once the new class has been created, it must be added as an EventHandler to the
OSGViewer.

getCanvas3D().getOSGViewer().addEventHandler(hand);

Now, the object can be transformed depending on the dragger type selected. If
your application wants to enable or disable this handler, use the method:

public void setActive(boolean active);

6.2.1 Example: Manipulate an object

Let’s see an example that shows the use of the Manipulator node. (Note that this is not
exactly the same code present in the library examples. It has been simplified to give
a better understanding of the functionality. For example, the try/catch clauses have
been removed)

private ManipulatorHandler hand;

private Manipulator manip;

private Node cow;

cow = osgDB.readNodeFileFromResources("/cow.ive");

manip = new Manipulator(Manipulator.DraggerType.TRANSLATE PLANE DRAGGER);

manip.addChild(cow);

hand = new ManipulatorHandler();

getCanvas3D().getOSGViewer().addEventHandler(hand);

In this example, the 3D model stored in the file cow.ive is loaded as a node. The
next step is to create an instance of Manipulator. In this case, we have chosen the

6.3 Managing the Scene with EditionManager 61

TRANSLATE PLANE DRAGGER, which draws a plane around the object and allows
to translate the objects clicking on it. Later, we add the loaded node as a child of the
Manipulator. Instantiating a ManipulatorHandler and adding it to the OSGViewer
ends the process.

Figure 6.1: Node being Manipulated.

6.3 Managing the Scene with EditionManager

EditionManager is a class created to help the developers to build a more advanced
edition systems. It allows the creation and management of many Manipulators at the
same time, and even permits the interaction between them. Its use is very similar to
the Manipulator class. The following example shows its use:

manager = new EditionManager(scene);

getCanvas3D().addKeyListener(new ViewerStateListener(getCanvas3D()

.getOSGViewer()));

getCanvas3D().addKeyListener(this);

62 OSGVP Manipulator

hand = new ManipulatorHandler();

getCanvas3D().getOSGViewer().addEventHandler(hand);

getCanvas3D().addMouseListener(this);

6.3.1 Methods implemented by EM

public Node getScene()

Gets the part of the scene not manipulated.

public Group getTransformedScene()

Gets the whole transformed scene without the draggers.

public void setScene(Node node)

Changes the whole scene in the EditionManager.

public int getNumChildren()

Returns the number of children.

public Manipulator addNode(int i)

Creates a manipulator for the node at the position i in the scene branch of the EM.

public Node removeNode(Node object)

Extracts the node from the manipulator and returns it to the scene branch.

public void removeAllNodes()

Extract all transformed nodes and put them in the scene branch.

public void deleteSelectedNodes()

Deletes all the Manipulators and the nodes inside them.

6.3 Managing the Scene with EditionManager 63

public void changeDragger(String draggerType)

Changes the type of all the active draggers.

public String getDraggerType()

Returns the type of the dragger.

public void group()

Gets all manipulators in the scene and creates one with all of them.

public void ungroup()

Separates different nodes present in a manipulator and makes one manipulator for
each of them.

6.3.2 Implementing the picking functionality

To interact with the EditionManager class, your Java application must implement at
least one MouseListener. The following code shows one simple example.

public void mouseClicked(MouseEvent arg0) {
if (arg0.getButton() == MouseEvent.BUTTON1) {
Intersections polytopeHits =

getCanvas3D().getOSGViewer()

.rayPick(manager, arg0.getX(),

arg0.getY(),

Manipulator.NEG MANIPULATOR NODEMASK);

if (polytopeHits.containsIntersections()) {
Intersection hit = polytopeHits.

getFirstIntersection();

Node nodeHit = (Node) (hit.getNodePath().get(2));

int k;

k = nodeHit.getParent(0).getChildIndex(nodeHit);

AddSelectionCommand addCommand =

64 OSGVP Manipulator

new AddSelectionCommand(k, manager);

addCommand.execute();

commands.add(addCommand);

} else {

RemoveAllSelectionCommand removeAllCommand =

new RemoveAllSelectionCommand(manager);

removeAllCommand.execute();

commands.add(removeAllCommand);

}

}
}

In this example, when the left button of the mouse is clicked, it computes the inter-
sections with the objects present in the scene and stores the first object that intersects.
Later, the subgraph containing the object is included in a new Manipulator. This pro-
cess is shown in the figure 5.1:

Figure 6.2: Adding a node to the EditionManager.

6.4 The GeometryManipulator node 65

If the mouse is clicked and no intersections are computed, the listener makes all
the manipulators dissapear. One important part is how to extract the node to add to
the EditionManager. In this example, we are assuming that the EM is the root node of
the scene, therefore the nodepath level selected is 2 (as can be seen in the figure 5.1).
If the EM is in a sublevel of the graph, the nodepath level selected must be changed.
For example, if the EM is a child of the root of the scene, the nodepath level selected
must be 3.

6.4 The GeometryManipulator node

The Manipulator node transforms the objets through a MatrixTransform in the scene-
graph. In this way, the transformations are applied to the whole subgraph below
it. To achieve a more advanced functionality that allows to edit each vertex of the
object individually, we have created the GeometryManipulator node. The use of this
node is very similar to the Manipulator. First of all, you have to instantiate the class
GeometryManipulator with the following method:

public GeometryManipulator(Geometry geo, Vector<Integer> indexArray);

The first argument is the Geometry to be manipulated, the second is a vector that
contains the selected vertex indices of that geometry. The ManipulatorHandler class
must be instantiated and added to the OSGViewer to transform the vertices too. In the
next figure you can see a geometry with some of its vertices being manipulated.

66 OSGVP Manipulator

Figure 6.3: GeometryManipulator example.

7
OSGVP Features

The osgvpfeatures library is capable to draw vectorial data such as text, points, lines,
polygons, simple geometric figures and extruded figures in a three-dimensional way.

All of this features could be edited in the same way. Text and shapes lacks some
geometric values which are essential to edit them.

Blending and color changes are supported for all the features. Adding or removing
vertices are too supported operations. Polylines ant PixelPoints could be antialiased.

Users can extrude simple geometric forms using different techniques. New fea-
tures can be added wihtout modifying classes hierarchy.

7.1 Overview

In a GIS, geographical features are often expressed as vectors, by considering those
features as geometrical shapes Different geographical features are best expressed by
different types of geometry. Each of these geometries are linked to a row in a database
that describes their attributes. This information can be used to make a map to describe
a particular attribute of the dataset.

67

68 OSGVP Features

Vector data can be displayed as vector graphics used on traditional maps, whereas
raster data will appear as an image that may have a blocky appearance for object
boundaries. Vector data can be easier to register, scale, and re-project. This can sim-
plify combining vector layers from different sources. Vector data are more compatible
with relational database environment. They can be part of a relational table as a nor-
mal column and processes using a multitude of operators.

The visualization of vectorial data will be faster if we use the facilities that scene
graphs give us. An API that allow developers showing vectorial data with some guar-
antee must be implememted. This API will offer support to draw geometric figures
and to do basic vector operations.

Basic and common elements in a lot of GIS systems are: points, lines, polylines,
polygons and multipolygons. This entities are those which the library could represent.

Looking for simplicity we decided to implement an abstraction layer over Open-
SceneGraph. The mapping isn’t direct between OSG and Java classes(like in osgvp-
core).This classes remains over osgvpfeatures library, implemented in C++.

7.2 Points

In GIS is useful to show points in different metric units, at least pixels and meters.
The osgVP API for Points lets the user to change the size, color, transparency, etc.
dinamicly. It works in the same way of GL POINTS, one primitive could have several
points. There are two main classes for drawing points:

• PixelPoint: represents points in pixels.

• QuadPoint: represents points in meters with a quad geometry where
the real position of the point is the center of the quad.

Let’s see some code example.

PixelPoint points;

g = new Group();

try {
points = new PixelPoint();

} catch (NodeException e) {

7.2 Points 69

e.printStackTrace();

}
points.setPointSize(5.0f);

points.setEnabledSmoothing(false);

for (int i = 0; i < 1000; i++) {
Vec3 position1 = new Vec3(Math.random() * 100,

Math.random() * 100, Math.random() * 100);

Vec4 color1 = new Vec4(Math.random(), Math.random(),

Math.random(), 1);

points.addPoint(position1, color1);

}
g.addChild(points);

If you want to use QuadPoints you can set billboarding enabled to rotate the quads
to the screen.

QuadPoint points;

g = new Group();

try {
points = new QuadPoint();

} catch (NodeException e) {
e.printStackTrace();

}
points.setPointSize(5.0f);

points.setBillboardingEnabled(true);

for (int i = 0; i < 1000; i++) {
Vec3 position1 = new Vec3(Math.random() * 100,

Math.random() * 100, Math.random() * 100);

Vec4 color1 = new Vec4(Math.random(), Math.random(),

Math.random(), 1);

points.addPoint(position1, color1);

}
g.addChild(points);

70 OSGVP Features

7.3 Polylines

Drawing polylines should be easy with osgVP. The API let change the width, color,
pattern or blending of the polyline. It works with lines like OpenGL does.

Group g = new Group();

Polyline lines;

try {
lines = new Polyline();

} catch (NodeException e) {
e.printStackTrace();

}
lines.setWidth(100);

//Like points, Polylines can be antialias

lines.setEnabledSmoothing(true);

lines.setEnabledBlending(true);

for (int i = 0; i < 1000; i++) {
Vec3 position1 = new Vec3(Math.random() * 10,

Math.random() * 10, Math.random() * 10);

Vec4 color1 = new Vec4(Math.random(), Math.random(),

Math.random(),Math.random());

lines.addVertex(position1, color1);

}
g.addChild(lines);

To change the pattern of a polyline you must set the pattern as a 16 bits variable
which is repeated as necessary along line feature. Then you should set the factor, it
serves to scale pattern and must be in range [1,255].

Samples:

polyline.setpattern((short)0XAAAA);

polyline.setFactor(3);

7.4 Polygons 71

7.4 Polygons

The class Polygon involves all the polygon functionality (patterns, textures...). You
can define what kind of polygon you want to renderize: empty (only borders), filled,
pattern or point(only vertices) polygons.

Is important when you define a polygon to specify coords for polygons into a anti-
clockwise direction for their front face to be pointing towards your, get this wrong and
you could find back face culling removing the wrong faces of your model. A texture
could be applied to the polygon, and the user can rotate, scale or translate this texture.

For convex polygons, those that OpenGL can’t paint without errors, the user will
use TessellablePolygon to triangulate convex geometries.

Example:

Polygon rect;

g = new Group();

Vec4 color = new Vec4(1.0, 1.0, 0.0, 1.0);

try {
rect = new Polygon();

} catch (NodeException e1) {
e1.printStackTrace();

}
rect.setType(Polygon.PolygonType.FILLED POLYGON);

//vertices

rect.addVertex(new Vec3(-5, 0, 0), color);

rect.addVertex(new Vec3(0, 5, 0), color);

rect.addVertex(new Vec3(-5, 10, 0), color);

rect.addVertex(new Vec3(10, 10, 0), color);

rect.addVertex(new Vec3(5, 5, 0), color);

rect.addVertex(new Vec3(10, 0, 0), color);

//normals

Vector<Vec3> normalarray = new Vector<Vec3>();

Vector<Vec3> normalarray1 = new Vector<Vec3>();

normalarray.add(new Vec3(0, 0, -1));

rect.setNormalArray(normalarray);

rect.setNormalBinding(GeometryFeature.AttributeBinding.BIND OVERALL);

72 OSGVP Features

g.addChild(rect);

If tessellable polygon is needed:

rect1 = new TessellablePolygon();

rect1.setType(Polygon.PolygonType.FILLED POLYGON);

rect1.addVertex(new Vec3(-5, 0, 5), color);

rect1.addVertex(new Vec3(-5, 10, 5), color);

rect1.addVertex(new Vec3(10, 10, 5), color);

rect1.addVertex(new Vec3(20, 5, 5), color);

rect1.addVertex(new Vec3(10, 0, 5), color);

rect1.setNormalArray(normalarray1);

rect1.setNormalBinding(GeometryFeature.AttributeBinding.BIND PER VERTEX);

File texture = Util.extractFromURL(this.getClass().getResource(

"/earth.gif"));

rect1.setTexture(texture.getPath());

rect1.setEnabledBlending(true);

rect1.tessellate();

7.5 Text

Text has several methods that control its size, appearance, orientation, and position.
The following section describe how to control some of these parameters.To use osgText
in your application, you usually need to perform three steps:

1. To display multiple text strings using the same font, create a sin-
gle Font object that you can share between all Text objects.

2. For each text string to display, create a Text object. Specify op-
tions for alignment, orientation, position, and size. Assign the
Font object you created in step 1 to the new Text object.

3. Add your Text objects to a Geode using addDrawable(). You
can add multiple Text objects to a single Geode or create multi-
ple Geode objects,depending on your application requirements.
Add your Geode objects as child nodes in your scene graph.

7.6 Extruded Geometries 73

Text text= null;

try {
text = newText();

} catch (NodeException e) {
e.printStackTrace();

}
text.setFont("arial.ttf");

text.setText("example");

te1.setPosition(0f, 0f, 20f);

text.setCharactherSize(3.0f);

try {
g.addChild(t);

...

}

7.6 Extruded Geometries

Extrusion classes in osgvpfeatures extends of OSGExtruder class, belonging osgvp-
core library. This class is mapped against a generic extrusor, created in C++ from a
J.Hidalgo Project(Deparment of Computer System & Computation of UPV). It works
over a stack matrix system. From this class we can create specific extruders depending
the geometry we want to extrude. So, there are three specific extruders: PointExtruder,
PolylineExtruder and PolygonExtruder. They three work in a very similar way. But
the extruder returns a determinated kind of geometry depending what was the input.
See next example to view a polygon extrusion:

PolygonExtruder pol = new PolygonExtruder();

Polygon shape= null;

try {
shape = new Polygon();

} catch (NodeException e) {
e.printStackTrace();

}

74 OSGVP Features

shape.addVertex(new Vec3(2, 0, 0), color);

shape.addVertex(new Vec3(2, 0, 5), color);

shape.addVertex(new Vec3(2, 5, 5), color);

shape.addVertex(new Vec3(2, 5, 0), color);

pol.extrude(shape, 10);

Geode ge = new Geode();

ge.addDrawable(pol.getGeometry());

You can look up the examples framework for further information.

8
Latest changes in

OSGVirtualPlanets version 2.2

The next section explains how to migrate from osgvp 2.1.x libraries to the new version
2.2.0.

8.1 JAVA SIDE

Now, we explain the API changes in the Java side and how to use the new functionally
added in the latest version.

8.1.1 OSGVPPlanets::TerrainViewer

• Rename PlanetViewer to TerrainViewer class.

• The method getScene() is deprecated. To obtain the scene you can use the getScene-
Data() defined in the OSGViewer.

• Rename addPlanet to addTerrain method.

75

76 Latest changes in OSGVirtualPlanets version 2.2

• Rename removePlanet to removeTerrain method.

• Rename getPlanet to getTerrain method.

• Rename setPlanet to setTerrain method.

• Rename getPlanets to getTerrains method.

• Added setPlanets method.

• Rename setEnabledPlanets to setTerrainsEnabled method.

• Added getTerrainsEnabled method.

• Rename activePlanet to setTerrainActive method.

• Rename getActivePlanet to getTerrainActive method.

• Rename addSpecialNode to addFeature method.

• Rename removeSpecialNode to removeFeature method.

• Rename getSpecialNode to getFeature method.

• Added setFeature method.

• Rename getSpecialNodes to getFeatures method.

• Added setFeatures method.

• Rename setEnabledSpecialNodes to setFeaturesEnabled method.

• Added getFeaturesEnabled method.

• Rename addNodeToHUD to addNodeToCameraHUD method.

• Rename removeNodeFromHUD to removeNodeFromCameraHUD method.

• Rename getNodeFromHUD to getNodeFromCameraHUD method.

• Added setNodeToCameraHUD method.

• The method getHUD is deprecated, you must use the getCameraHUD method.

• Added setCameraHUD method.

• Rename setEnabledHUD to setCameraHUDEnabled method.

8.1 JAVA SIDE 77

• Added getCameraHUDEnabled method.

• The method getCustomTerrainManipulator() is deprecated. The manipulator is
getted or setted like other camera manipulators.

• Rename getOrCreatePlanetViewerHandler to getOrCreateEventHandler mehtod.

8.1.2 OSGVPPlanets::CustomCameraManipulator

Every custom camera manipulator must be implement this interface to obtain the cus-
tomized keys settings.

8.1.3 OSGVPPlanets::TerrainCameraManipulator

• TerrainCameraManipulator replaces the CustomTerrainManipulator class.

• The static class MouseButtonMaskType is moved to CustomCameraManipula-
tor interface.

• The methods to add, get or remove mouse and key masks are deprecated. Now
you must implement the CustomCameraManipulator methods to let change the
mouse and key masks.

• Rename the setMinCameraDistance to setMinimumDistance method.

• Rename the getMinCameraDistance to getMinimumDistance method.

• Rename the setMaxCameraDistance to setMaximumDistance method.

• Rename the getMaxCameraDistance to getMaximumDistance method.

• Rename the getNorthOrientation to getEnabledNorthOrientation method.

8.1.4 OSGVPPlanets::Terrain

• Rename PlanetNode to Terrain class.

• Rename getPlanetID to getTerrainID method.

• Rename getPlanetName to getTerrainName method.

78 Latest changes in OSGVirtualPlanets version 2.2

• Rename setPlanetName to setTerrainName method.

• Rename getCSFormat to getCoordinateSystemFormat method.

• Rename setCSFormat to setCoordinateSystemFormat method.

• Rename setPlanetExtent to setExtent method.

• Rename getPlanetExtent to getExtent method.

• Rename getPlanetRadiusEquatorial to getRadiusEquatorial method.

• Rename getPlanetRadiusPolar to getRadiusPolar method.

9
Appendix

In this appendix you will find a extended compilation guide. The appendix describe
the different ways to get your project working using osgVP libraries.

9.1 Compilation Requirements

Once you have dowloaded the libraries of (https://gvsig.org/web/projects/gvsig-
commons/osgvp) there are several tools that you must have installed in your system.
They are:

1. Subversion (Only to get development Version):

• Linux: Depending on your distribution there are sev-
eral ways to install subversion. For Ubuntu or De-
bian based distributions #apt-get install subversion.

• Windows: download and install subversion com-
mand line version or TortoiseSVN from http://tortoisesvn.net

• Mac osX: For Leopard install Developer tools from
Leopard installation CD’s. For Tiger download the
command line version.

79

https://gvsig.org/web/projects/gvsig-commons/osgvp
https://gvsig.org/web/projects/gvsig-commons/osgvp
http://tortoisesvn.net

80 Appendix

2. C++ Compiler:

• Linux: Download and install g++. You can do it via
apt if you use a Debian based Distribution. #apt-get
install g++.

• Windows: begginning from Visual Studio 2003 on,
you can compile native packages of osgVP libraries.

• Mac osX: Once you have installed developer tools,
you are able tu compile osgVP native libraries with
g++ or XCode.

3. CMake:

• Linux: On debian based distributions #apt-get in-
stall cmake. Or download and install latest stable
version from http://www.cmake.org

• Windows: Download latest stable version from the
same link than above.

• Mac osX: Download latest stable version from the
same link than above.

5. Java JDK: If you plan to use osgVP inside gvSIG you must install
jdk 5.0 , but if your project is independent of gvSIG you are able
to use jdk 6.0.

• Linux: Download and install Java JDK. #apt-get in-
stall sun-javaX-jdk, where X are 5 or 6 depending on
your project.

• Windows: Download and install Java JDK from http://java.sun.com

• Mac osX: Java JDK is installed with your mac osX
Developer Tools packages.

6. Maven:

• Linux: If you are using a debian based distribution
like Ubuntu #apt-get install maven2. If not you must
download the packages from http://maven.apache.org

• Windows: Download and install maven from the
link of above.

• Mac osX: Maven comes with Developer Tools pack-
ages.

http://www.cmake.org
http://java.sun.com
http://maven.apache.org

9.2 Stable Version Build Guide (osgVP-2.1.7) 81

7. Ant:

• Linux: If you are using a debian based distribution
like Ubuntu #apt-get install ant.

• Windows: Download and install ant from http://ant.apache.org.

• Mac osX: ant comes with the basic packages of De-
veloper Tools

8. Python (Only if you want assisted compilation and precompiled
dependency management):

• Linux: #apt-get install python

• Windows: download and install python from http://www.python.org

• Mac osX: python comes with clean installation of
osX.

9.2 Stable Version Build Guide (osgVP-2.1.7)

The osgVP has a range of dependencies which could be managed automatically or by
user. So there are two ways to compile source code, with or without assisted compila-
tion.

9.2.1 Compiling with assisted compilation

Build Manager (BuildMan) is a set of extensible Python scripts that helps in the man-
agement of binary dependencies and automated build systems. Experts readers could
ask themselves if ANT and MaVen exits why not use it?

1. Ant is a really good choice, but you need to have Java installed.

2. Ant is extensible too, but you need to do it in Java, and this im-
plies to compile. We want quick development, and only define a
simple config file or create a python script that only is installed
on buildman plugins path or $HOME/.buildman/plugins.

3. Maven is useful to manage dependencies, but only for Java, and
Maven is created for the same reason.. Ant is powerful but to
dispatch tasks, not to manage complex dependency systems.

http://ant.apache.org
http://www.python.org

82 Appendix

Working with buildman should be very easy, the procedure is:

1. Download sources from Downloads page

2. Enter to the directory osgVP

3. Execute $ant inside the directory osgVP

There are two more options to execute ANT, you should use it instead of the de-
fault if you meet the requirements:

• “ant ati” This option should be used if you are under a Linux OS and
using the ATI restricted driver.

• “ant vs8” This option should be used if you are under a Windows OS
and want to compile with Visual Studio 8.

The previous command execute buildman to download required native depen-
dencies from ai2 servers, then executes CMake and prepares the Makefiles ready to
compile with gcc (in Linux and Mac OS X), or prepares the projects to compile with
Visual Studio 7 (in Windows. The use of VS7 is a requirement of the gvSIG project, so
it tries to use the VS7 Generator with CMake) . It also prepares the Java projects that
can be imported with Eclipse.

9.2.2 Executing with assited compilation

1. Once finished compilation, check if inside osgVP/binaries/{platform}/{lib/bin}
directory you have the native libraries (.so or .dll or .jnilib/.dylib).

2. Open Eclipse and select as workspace the directory osgVP.

3. Import projects with eclipse assistant from the osgVP directory.

4. Open the launcher assistant with Open Run Dialog inside Run
Menu or Run As bar button

5. Create a new Java Application Launcher:

• Name: ExamplesLauncher

• Project: osgvp-examples

• Main Class: org.gvsig.ExamplesLauncher

9.2 Stable Version Build Guide (osgVP-2.1.7) 83

Before Launch, go to the Environment Tab Button and add a new Environment
Variable:

• Windows:
PATH=${workspace loc}\binaries\win32\bin;

C:\documents and Settings\{username}\depman\bin
• Linux:

LD LIBRARY PATH=${workspace loc}/binaries/linux32/lib:
/home/{username}/.depman/lib

• MacOsX:
DYLD LIBRARY PATH=${workspace loc}/binaries/mac/lib:

/Developer/DepMan/lib

Run the application, and if all is ok you should see the examples frame-
work.

9.2.3 Compile without assisted compilation

If you rather work without assisted compilation, you must set up your project with na-
tive dependencies installed correctly. A priori, the libraries you need are: OpenSceneGraph-
2.2, jogl and gdal.

1. Download sources from Downloads page.

2. Enter to the directory osgVP/libosgvp/libjni-osgvp

3. Execute CMake and solve native dependencies stuff. Cmake will
ask you for them.

4. Compile calling install target (make install or in VS/XCode se-
lecting INSTALL to compile)

5. Once finished compilation, check if inside osgVP/binaries/{platform}/{lib/bin}
directory you have the native libraries (.so or .dll or .jnilib/.dylib).

6. Enter to the directory osgVP/

7. Prepare eclipse workspace and eclipse projects:

• $ mvn install -Dmaven.test.skip=true

• $ mvn eclipse:eclipse

• $ mvn eclipse:add-maven-repo -Declipse.workspace=“.”

84 Appendix

8. To Develop with Eclipse Plugins:

• $ cd eclipse-plugins

• $ mvn eclipse:eclipse

9. To Develop with Eclipse RCPs:

• $ cd applications/eclipse-applications

• $ mvn eclipse:eclipse

9.2.4 Executing without assited compilation

Configure de launcher exactly equals to assited compilation except for environment
variables, where OSG DIR is the path to your compiled version of OpenSceneGraph-
2.2.0, GDAL DIR is the path to your installation of GDAL (required by OSG) and
finally JOGL DIR is the installation path of jogl.

• Windows:
PATH=${workspace loc}\binaries\win32\bin;

%OSG DIR%\bin:%GDAL DIR}%\bin:%JOGL DIR%\bin

• Linux:
LD LIBRARY PATH=${workspace loc}/binaries/linux32/lib:

${OSG DIR}/lib:${GDAL DIR}/lib:${JOGL DIR}/lib

• MacOsX:
DYLD LIBRARY PATH=${workspace loc}/binaries/mac/lib:

${OSG DIR}/lib:${GDAL DIR}/lib:${JOGL DIR}/lib

Run the application, and if all is ok you should see the examples framework.

	Introduction
	System Requirements
	Download and Installation

	Getting Started
	Running the examples
	Configure Eclipse with osgVP

	OSGVP Core
	Managing the scenegraph
	Loading and saving scenes
	Mathematic Tools
	Positioning a Node
	Defining Geometries
	Overview
	Geometry creation example

	StateSets
	Textures and Materials
	Loading images

	Updating a Node
	GLSL Programming

	OSGVP Viewer
	Overview
	Creating a Viewer
	Camera manipulators
	Display settings
	MultiSampling
	Stereo Settings

	Intersections
	Printing utilities

	OSGVP Planets
	The Planet View
	Create a planet viewer
	Set the scene data in a planet viewer
	Using camera manipulators

	Define a planet
	Layer management
	Adding layers
	Request layers
	Removing layers
	Reorder layers
	Visibility ranges
	Other layer properties

	Planet utilities

	OSGVP Manipulator
	The Manipulator node
	Types of dragger
	Adding a Node
	Other available methods

	Setting the Manipulator Handler
	Example: Manipulate an object

	Managing the Scene with EditionManager
	Methods implemented by EM
	Implementing the picking functionality

	The GeometryManipulator node

	OSGVP Features
	Overview
	Points
	Polylines
	Polygons
	Text
	Extruded Geometries

	Latest changes in OSGVirtualPlanets version 2.2
	JAVA SIDE
	OSGVPPlanets::TerrainViewer
	OSGVPPlanets::CustomCameraManipulator
	OSGVPPlanets::TerrainCameraManipulator
	OSGVPPlanets::Terrain

	Appendix
	Compilation Requirements
	Stable Version Build Guide (osgVP-2.1.7)
	Compiling with assisted compilation
	Executing with assited compilation
	Compile without assisted compilation
	Executing without assited compilation

